
Complex Object Management in Databases:
About the Preparedness of

Database Technology for New Emerging Applications

Markus Schneider
University of Florida

Department of Computer & Information
Science &Engineering

Outline

Outline

1. Introduction and Motivation
2. Problems of Complex Object Management Approaches
3. Requirements of Complex Object Management in Databases
4. iBLOB: Complex Object Management in Databases through Intelligent

Binary Large Objects
5. TSS: Representing the Structure of Complex Application Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 2

5. TSS: Representing the Structure of Complex Application Objects
through Type Structure Specifications

6. Conclusions and Future Work

Research described in this talk is funded by

Outline

Outline

1. Introduction and Motivation
2. Problems of Complex Object Management Approaches
3. Requirements of Complex Object Management in Databases
4. iBLOB: Complex Object Management in Databases through Intelligent

Binary Large Objects
5. TSS: Representing the Structure of Complex Application Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 3

5. TSS: Representing the Structure of Complex Application Objects
through Type Structure Specifications

6. Conclusions and Future Work

Big Data (I)

Introduction and Motivation

�Quantity and nature of data has changed over the years
�Nature of the data at the beginning of database technology

� Alphanumerical data
� Simple structure of data
� Manageable volumes of data

�Nature of the data nowadays: “big data”

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 4

�Nature of the data nowadays: “big data”
� Very large volumes of simple alphanumerical data
� Diverse data
� Distributed data
� Single, large complex application objects

� “Big Data” is a loosely defined term and refers to large, diverse, complex,
and/or distributed data sets that are difficult to capture, store, manage,
query, and analyze with conventional database management tools.

Big Data (II)

Introduction and Motivation

�Very large volumes of simple alphanumerical data are generated as raw
data from sensing devices like instruments, sensors, satellites, mobile
devices, cameras, microphones, radio-frequency identification readers,
etc. and usually have a simple internal structure.

�Problem: Many of these data stay stored as
raw data although they describe complex

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 5

raw data although they describe complex
objects (like hurricanes, maps, DNA
structures), that is, the composition step of
raw data to complex data is often missing.

�Diverse data such as text, geometry, images, video, or sound have rather
different properties and operations and lead to increased difficulties of big
data processing.

Big Data (III)

Introduction and Motivation

�Single large, complex application objects are characteristic for new
emerging (that is, non-traditional) applications including biological,
genomic, meteorological, multimedia, web, digital library, imaging,
scientific, location‐based, geospatial, and spatiotemporal applications.

�Examples

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 6

The brain's complex network of 70
billion neurons and thousands of
kilometers of circuits

The Bubble complex (the
Hodge object), a star
cluster, in NGC 6946

A street map

What are Complex (Application) Objects? (I)

Introduction and Motivation

�Properties
� highly structured
� large in size (but can also be small)
� of variable representation length

�Domain-specific application knowledge required

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 7

�Example 1: A book

What are Complex (Application) Objects? (II)

Introduction and Motivation

�Example 2: A complex spatial region object

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 8

Focus of this Talk

Introduction and Motivation

�Main topic: Database management for complex application objects

�Subtopics of this talk
� What are the current solutions for complex object management?
� Which strengths and weaknesses do they reveal?
� What are the requirements of complex object management in

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 9

databases?
� How can we store, retrieve, and manage complex, highly-structured,

variable-length, and large-sized application objects in a database?
� How can we support efficient insertions and updates of their

components?
� Novel two-step approach: Intelligent Binary Large Objects (iBLOBs)

and Type Structure Specification (TSS)

Outline

Outline

1. Introduction and Motivation
2. Problems of Complex Object Management Approaches
3. Requirements of Complex Object Management in Databases
4. iBLOB: Complex Object Management in Databases through Intelligent

Binary Large Objects
5. TSS: Representing the Structure of Complex Application Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 10

5. TSS: Representing the Structure of Complex Application Objects
through Type Structure Specifications

6. Conclusions and Future Work

General Problems of Current Approaches

Problems of Complex Object Management Approaches

�Abstraction problem: no “real” ADTs in databases, restricted high-level
modeling of complex application objects

�Data management problem: specialized file format solutions lack any well
established DBMS features

�Generality problem: non-uniform concepts and mechanisms for

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 11

�Generality problem: non-uniform concepts and mechanisms for
supporting complex objects, lack of portability

�Update problem: no support for random updates

�Acceptance problem: useful concepts of DBMS research prototypes
cannot be easily transferred to commercial DBMS

Abstraction Problem (I)

Problems of Complex Object Management Approaches

Relational features in the SQL standard
�No complex object support
� Flat tables only, atomic data types only, no type constructors available
� Internals of a single complex object are spread over several tables

Point PId X Y Segment SId SPId EPId Region RId SId

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 12

Point PId X Y

1 5 5

2 6 7

3 4 6

Segment SId SPId EPId

1 1 2

2 2 3

3 1 3

Region RId SId

1 1

1 2

1 3

�Expensive joins required to bring object information together
�But still no object in our hands
�No domain-specific operations can be defined since they cannot be

expressed by the Relational Algebra and by SQL

Abstraction Problem (II)

Problems of Complex Object Management Approaches

Relational features in the SQL standard (continued)
�Domain-specific data structures and operations have to be implemented

in a middleware layer on top of the DBMS

Application 1Application 1 Application nApplication n

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 13

�Database as a repository for primitive data
�Consequences: Loss of important DBMS services like query processing,

concurrency control, transactions, recovery, backup, …

Middleware 1Middleware 1 Middleware nMiddleware n

RDBMSRDBMS

Abstraction Problem (III)

Problems of Complex Object Management Approaches

Relational features in the SQL standard (continued)
�Advantage: Large values can be stored in BLOBs (Binary Large Objects)

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 14

� Shortcomings of BLOBs
� Provide and process byte sequences, no structure preservation of objects
� Offer low-level interface for simple read/write access to byte ranges
� Provide no high-level view of complex objects and their components
� No methods to access internal components of complex objects

Abstraction Problem (IV)

Problems of Complex Object Management Approaches

Specialized file formats
�Reaction to the lack of support for complex objects in relational databases

by scientists
�Examples: HDF, NetCDF, XML
� File formats allow one to represent hierarchical and multidimensional data
�Problems:

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 15

�Problems:
� HDF and NetCDF are binary and compressed data formats
� XML is a textual format, produces large data volumes, and does not

support data encapsulation (information hiding)
� File formats do not support efficient insertions and updates
� No support of standard DBMS functions like transaction management,

concurrency control, and recovery
� HDF and NetCDF have no support for querying (no query language)

Abstraction Problem (V)

Problems of Complex Object Management Approaches

Object-relational features in the SQL standard
�Object-oriented features allow one to specify user-defined types (UDT)

and user-defined functions (UDF) (create type …)
�But object-oriented concepts are insufficient for defining complex objects

� They reveal the structure and representation of data, all internal
attributes of a UDT are public, no encapsulation of the internal

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 16

attributes of a UDT are public, no encapsulation of the internal
implementation of a type, no ADTs but pseudo ADTs

� Not usable for proprietary data (no information hiding)
� Fixed-length types can only be defined, by using the built-in types and

type constructors of the object-oriented features of SQL
� SQL is not a programming language: complex operations cannot be

expressed in SQL
�Vendor solutions: extension packages like cartridges, data blades, and

extenders with predefined functionality, difficult to create by a user

Abstraction Problem (VI)

Problems of Complex Object Management Approaches

Object-relational features in the SQL standard (continued)
�High-level ADTs are registered in the DBMS, and their objects are stored

in low-level BLOBs
�No structure preservation of application objects in BLOBs
�Byte level operations in BLOBs complicate the implementation of high-

level component retrieval and update operations in ADTs

Extensible DBMS

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 17

level component retrieval and update operations in ADTs
� For component access, whole BLOB must be loaded, or incremental load

Application 1Application 1 Application nApplication n

ADT 1ADT 1 ADT mADT m

Unstructured BLOBsUnstructured BLOBs

…

…

Data Management Problem

Problems of Complex Object Management Approaches

�Special file formats like NetCDF and HDF5 store objects in files

�Advantage: Hierarchical and multi-dimensional data can be stored
�Problems

� No standard DBMS functionality available like
o Transaction management
o Recovery, backup

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 18

o Recovery, backup
o Concurrency control
o Data security

� No query language available
� Each “query” has to be formulated as an application program

Generality Problem

Problems of Complex Object Management Approaches

�BLOB implementations have different interfaces with different
functionalities in different DBMS

�Consequences
� Software portability across different DBMS limited
� Non-uniformity of the BLOB interfaces makes it difficult for third-party

developers to create database applications that are DBMS independent

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 19

developers to create database applications that are DBMS independent
� Partial reimplementation of type systems for different DBMS needed

�Software extension packages like cartridges, data blades, and extenders
are DBMS specific
� Lack of portability

Update Problem

Problems of Complex Object Management Approaches

�No literature about updates on complex application problems (high-level
problem)

�BLOBs allow data to be
� appended
� truncated
� modified through the overwriting of bytes

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 20

� modified through the overwriting of bytes
�BLOBs do not support general data

� insertions
� deletions
User has to explicitly shift data

Acceptance Problem

Problems of Complex Object Management Approaches

�Useful concepts of DBMS research prototypes
� are tailor-made for a certain problem area
� assume and utilize a specialized infrastructure
� cannot be easily transferred to commercial DBMS

�Consequences

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 21

�Consequences
� Lack of adequate appreciation
� User’s question of whether the achievements can be used in their own

(commercial or public domain) DBMS has to be negated

�On the other hand, scientists want
� open-source solutions
� the ability to recompile the entire software stack
� to avoid high license fees for commercial DBMS software

Outline

Outline

1. Introduction and Motivation
2. Problems of Complex Object Management Approaches
3. Requirements of Complex Object Management in Databases
4. iBLOB: Complex Object Management in Databases through Intelligent

Binary Large Objects
5. TSS: Representing the Structure of Complex Application Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 22

5. TSS: Representing the Structure of Complex Application Objects
through Type Structure Specifications

6. Conclusions and Future Work

Requirements

Requirements of Complex Object Management in Databases

1. User must be able to design, implement, and integrate own complex data
types into databases

2. Design and implementation must be independent of the DBMS
3. Design of complex data types must be performed at a high abstraction level

and not at a low byte level
4. Enable multi-structured data representations of the same complex object
5. Complex data types should be designed as proper abstract data types that

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 23

5. Complex data types should be designed as proper abstract data types that
hide implementation details for both data structures and algorithms

6. Complex objects should be arranged in compact storage structures (no
main memory pointer structures) in order to avoid expensive serialization
and deserialization cost

7. Stored binary data should correspond to the representation that algorithms
can process to avoid data conversion

8. Efficient access to components of complex objects must be possible to
avoid their complete loading into main memory

9. Updates (random insertions and deletions) should be possible

Outline

Outline

1. Introduction and Motivation
2. Problems of Complex Object Management Approaches
3. Requirements of Complex Object Management in Databases
4. iBLOB: Complex Object Management in Databases through Intelligent

Binary Large Objects
5. TSS: Representing the Structure of Complex Application Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 24

5. TSS: Representing the Structure of Complex Application Objects
through Type Structure Specifications

6. Conclusions and Future Work

System Architecture

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

Application 1Application 1 Application nApplication n

ADT 1ADT 1 ADT mADT m

…

…

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 25

ADT 1ADT 1 ADT mADT m

Type Structure Specification

(TSS)

Intelligent BLOBs (iBLOBs)

Unstructured BLOBsUnstructured BLOBs

…

TSS provides a

generic interface for

ADT specification and

manipulation

iBLOBs offer an

innovative way to

store structured data

Extensible

DBMS

BLOBs are the only BLOBs are the only

available database

structure for storing

large application

objects

iBLOB Framework

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

� Idea: smartly extend compact storage by preserving the complex
application object structure internally and by providing application-friendly
random access and update interfaces to object components

�Compact storage can, for example, be
� traditional database BLOBs
� file structures

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 26

� file structures
� array structures (persistent, main memory)

� iBLOBs (intelligent Binary Large Objects) are application neutral and do
not understand the semantics of complex application objects

� iBLOB components to preserve structure in unstructured storage
� Structure index: Preserving the physical structure of application objects

in unstructured storage space
� Sequence index: Preserving the logical structure of application objects,

especially for updates

Components and their Designers

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

Application

Type system

Application
developer

Type system
implementer (TSI)

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 27

TSS framework

iBLOB framework

implementer (TSI)

TSS framework
designer

iBLOB framework
designer

Structure Index (I)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�An iBLOB is defined as a hierarchy (even as a graph) with three kinds of
anonymous component sub-objects
� Base objects: leaf nodes representing indivisible base components
� Structure objects: internal nodes showing levels with additional

structure objects and/or base objects
� Reference objects: pointer nodes linking to other base or structure

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 28

� Reference objects: pointer nodes linking to other base or structure
objects and supporting the construction of secondary structures for an
application object

Structure Index (II)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Schematic representation of a multi-structured iBLOB
� Primary and secondary structures providing different views of a

complex application object
� Conceptual user view of a complex object does often not coincide with

the representation (data structure) view of a complex object

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 29

Shaded rectangles := base objects

Un-shaded rectangles := structured objects

Circles with arrows := reference objects

Structure Index (III)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

� The structure index consists of links to components (represented by
offsets) and the actual components

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 30

• Three types of components: base objects, structured objects, and
reference objects

Sequence Index (I)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Our solution to the problem of updating sub-objects of complex
application objects
� Physically store new components or updated parts of existing

components at the end of the structure index (append operation is fast
on BLOBs)

� Use the sequence index to preserve the logically correct order

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 31

� Use the sequence index to preserve the logically correct order
� All operations on the iBLOB get routed through the sequence index for

retrieving the exact physical byte address to operate on

Sequence Index (II)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Operation insert

Initial in-order and defragmented data in the structure
index, and the sequence index

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 32

Insertion of block [j…l] at position k

Sequence Index (III)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Operation delete

Deletion of block [m…n]

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 33

Sequence Index (IV)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Operation update

Update of block [o…p] by block [l…q]

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 34

iBLOB Interface (I)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Generic interface for constructing, retrieving, and manipulating iBLOBs

�Assumed data types
� Int for representing integers
� Storage as a storage structure handle type (e.g. BLOB handle, file

descriptor, array address)

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 35

descriptor, array address)
� Locator as a reference type for referencing an iBLOB or any of its sub-

objects by their physical address
� Stream as an output channel for reading byte blocks of arbitrary size

from an iBLOB object or any of its sub-objects
� data as a representation of a base object

iBLOB Interface (II)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 36

iBLOB Interface (III)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Construction and duplication
� (1) create() creates an empty iBLOB
� (2) create(sh), constructs an iBLOB from a storage structure handle sh
� (3) create(s) is a copy constructor
� (4) copy(s1, s2) copies an iBLOB object s2 into another iBLOB object s1

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 37

� Internal referencing
� (5) locateiBLOB(s) yields a locator of the topmost hierarchical level of

the iBLOB s
� (6) locate(s, l, i) references a next level sub-object from locator l by its

slot i

iBLOB Interface (IV)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Read and write

� (7) getStream(s, l) consecutively reads arbitrary size data from the
object referenced by locator l of iBLOB s

� (8) insert(s, d, z, l, i) inserts a base object d of size z into the object
referenced by locator l at slot i of iBLOB s

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 38

� (9) insert(s, s1, l, i) inserts an entire iBLOB s1 into the object referenced
by locator l at slot i of iBLOB s

� (10) remove(s, l, i) deletes the sub-object at slot i from the parent
component with locator l of iBLOB s

� (11) append(s, d, z, l) appends a base object d of size z to the object
referenced by locator l of iBLOB s

� (12) append(s, s1, l) appends an iBLOB s1 to the object referenced by
locator l of iBLOB s

iBLOB Interface (V)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Properties and Maintenance

� (13) length(s, l) returns the actual size of the object referenced by
locator l of iBLOB s

� (14) count(s, l) returns the number of sub-objects of the object
referenced by locator l of iBLOB s

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 39

� (15) resequence(s) reorganizes and defragments the iBLOB s

iBLOB Evaluation – First Results (I)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Goal: to compare different options and show that the iBLOB approach is
efficient in storage, data access, and data manipulation

�Example application: shapefile (.shp)

� popular geospatial vector data format for GIS software in a binary file
� It contains geometric object descriptions like points, polylines, and

polygons as wells as thematic data like name or temperature for

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 40

polygons as wells as thematic data like name or temperature for
geographic objects like wells, rivers, or lakes.

�Evaluation setup

� Test cases: the 56 TIGER 2010 county maps for USA

� File sizes: from 9KB to 9M, number of vertices: from 551 to 604747
� Database environment: Oracle11g

� Approaches to compare: BLOB, iBLOB, and XMLType

� Operations to compare: create, single read, single insert, single delete

iBLOB Evaluation – First Results (II)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

�Structure of a polygon shapefile hierarchy

shapefile

shape type entity count box shape entities

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 41

shape 1 shape 2 shape k

shape id shape type box numParts numPoints parts points

p1 p2 p3 … pm v1 v2 v3 … vn

shape 3 …

iBLOB Evaluation – First Results (III)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

� Storage comparison between iBLOB, nBLOB, and XMLType

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 42

iBLOB Evaluation – First Results (IV)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

� Storage comparison between iBLOB and nBLOB

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 43

iBLOB Evaluation – First Results (V)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

� Creation time

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 44

iBLOB Evaluation – First Results (VI)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

• Single read time between iBLOB, nBLOB, and XMLType

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 45

iBLOB Evaluation – First Results (VII)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

• Single read time between iBLOB and nBLOB

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 46

iBLOB Evaluation – First Results (VIII)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

• Single insert time between iBLOB, nBLOB, and XMLType

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 47

iBLOB Evaluation – First Results (IX)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

• Single insert time between iBLOB and nBLOB

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 48

iBLOB Evaluation – First Results (X)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

• Single delete time between iBLOB, nBLOB, and XMLType

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 49

iBLOB Evaluation – First Results (XI)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

• Single delete time between iBLOB and nBLOB

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 50

iBLOB Architecture

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

TSS Interface

TSS Implementation

iBLOB Interface

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 51

switch

In-Memory iBLOB Implementation External iBLOB Implementation

Generic BLOB Interface

Oracle BLOB

Oracle Generic BLOB Impl.

PostgreSQL BLOB

PostgreSQL Generic BLOB Impl. …

Requirements Checked (I)

iBLOB: Complex Object Management in Databases through Intelligent Binary Large Objects

? User must be able to design, implement, and integrate own complex data
types into databases

� Design and implementation must be independent of the DBMS
? Design of complex data types must be performed at a high abstraction level

and not at a low byte level
� Enable multi-structured data representations of the same complex object
? Complex data types should be designed as proper abstract data types that

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 52

? Complex data types should be designed as proper abstract data types that
hide implementation details for both data structures and algorithms

� Complex objects should be arranged in compact storage structures (no
main memory pointer structures) in order to avoid expensive serialization
and deserialization cost

� Stored binary data should correspond to the representation that algorithms
can process to avoid data conversion

� Efficient access to components of complex objects must be possible to
avoid their complete loading into main memory

� Updates (random insertions and deletions) should be possible

Outline

Outline

1. Introduction and Motivation
2. Problems of Complex Object Management Approaches
3. Requirements of Complex Object Management in Databases
4. iBLOB: Complex Object Management in Databases through Intelligent

Binary Large Objects
5. TSS: Representing the Structure of Complex Application Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 53

5. TSS: Representing the Structure of Complex Application Objects
through Type Structure Specifications

6. Conclusions and Future Work

Abstract Data Types in Databases

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�ADTs used as attribute types in relational (or other) schemas

�Example:
states(sname : string; spop : integer; sarea : region)
hurricanes(hname : string; hzone : hmregion)

�Operations and predicates on ADTs embedded into an SQL extension

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 54

�Operations and predicates on ADTs embedded into an SQL extension

� intersects: region × region → bool
intersection: region × region → region
traversed: hmregion → region

�Example query: Find all pairs of states and hurricanes where the
hurricane crossed the state, and determine the impacted area

SELECT sname, hname, intersection(sarea, traversed(hzone)) AS dzone
FROM states, hurricanes
WHERE sarea intersects traversed(hzone)

TSS Framework (I)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�Problems of the direct use of the iBLOB interface
� Component-wise access possible but still at a low level
� Semantics of complex object and sub-components not existent

� The TSS framework

� is an abstract, type structure oriented component on top of the iBLOB

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 55

is an abstract, type structure oriented component on top of the iBLOB
component

� represents the type structure of a complex data type in the form of a
TSS grammar

� internally processes the grammar and automatically creates data type
objects which follow the specified grammar

� provides a clean, user-friendly, and generic TSS interface for the TSI to
access and manipulate complex application objects at a high semantic
level on the basis of iBLOBs

TSS Framework (II)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�A type structure is defined as a hierarchy with three kinds of nodes
� Base object types: leaf nodes representing indivisible base

components
� Structure object types: internal nodes showing levels with additional

structure objects and/or base objects
� Reference object types: pointer nodes linking to other base or structure

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 56

� Reference object types: pointer nodes linking to other base or structure
objects. These represent secondary structures in the application object.

� Four main TSS concepts
� TSS grammar
� TSS parser
� Path navigator
� TSS engine

Multi-Structured Complex Application Objects

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

Conceptual user view Type structure view / implementation view

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 57

P := primary structure
S := secondary structure
F := face
O := outer cycle
H := hole cycle
S := segment

TSS Grammar

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�Example: A region ADT and its TSS hierarchy/tree and TSS grammar

Region

rbox:MBB faces:Face+ segIndex:Index

fbox:MBB oCycle:OuterCycle hCycle:HoleCycle+ iLabel:char+ segPtr:&Segment+

obox:MBB seg:Segment+ hbox:MBB seg:Segment+

… …

……

… … … …

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 58

Region ::= rBox:MBB faces:Face+ segIndex:Index;

MBB ::= llP:Poi2D ruP:Poi2D;

Face ::= fBox:MBB oCycle:OuterCycle hCycle:HoleCycle+;

OuterCycle ::= oBox:MBB seg:Segment+;

HoleCycle ::= hBox:MBB seg:Segment+;

Segment ::= leftEP:Poi2D rightEP:Poi2D;

Poi2D ::= x:double y:double;

Index ::= iLabel:char+ segPtr:&Segment+;

llP:Poi2D ruP:Poi2D

x:double y:double x:double y:double

leftEP:Poi2D rightEP:Poi2D

x:double y:double x:double y:double

… … … …

TSS Paths

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�A path
� describes a route from the root to a subcomponent of an object
� is required in order to identify and access parts of a complex object
� consists of a dot separated string of component names
� is a human understandable, “semantic pointer” to locations inside a

complex object

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 59

complex object

�Paths are manipulated as strings

�Examples (let reg be an object of type Region):
� “reg.rbox”
� “reg.faces[3].ocycle.seg[4].leftEP.y”
� “reg.segIndex.segPtr[9]”

TSS Interface (I)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 60

TSS Interface (II)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�Constructors
� create(tssfile) creates a TSS object from a grammar stored in file tssfile
� create(tssgrammar) creates a TSS object from a grammar given as an

input string in tssgrammar

�Path creation
� createPath() returns a default path pointing to the root of the complex

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 61

� createPath() returns a default path pointing to the root of the complex
data type

� createPath(strPath) returns a path based on the input string strPath

�Read functions
� readInt(p), readDouble(p), etc. read and return an int value, double

value, etc. from a base object pointed to by path p
� readIntArray(p, a), readDoubleArray(p, a), etc. read an int array,

double array, etc. a from a base object pointed to by path p. Each
function returns the size of the array read.

TSS Interface (III)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�Set functions
� set(p, v) stores the value v of type int, double, etc. into a new base

object at the location pointed to by the path p and returns the path to
the newly inserted object

� set(p, a, n) stores an array a of n int, double, etc. values into a new
base object at the location pointed to by the path p and returns the path

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 62

base object at the location pointed to by the path p and returns the path
to the newly inserted object

� setRef(p1, p2) stores a reference object pointing to a location described
by the path p2 at the location pointed to by the path p1 and returns the
path to the newly inserted object

�Delete function
� remove(p) removes the base object, structured object, or reference

object pointed to by the path p

TSS Interface (IV)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

�Append function
� append(p, v) appends the value v of type int, double, etc. to an int

array, double array, etc. at the location pointed to by the path p and
returns the path to the newly inserted object

� append(p, a, n) appends an array a of n int, double, etc. values to an
int array, double array, etc. at the location pointed to by the path p and

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 63

int array, double array, etc. at the location pointed to by the path p and
returns the path to the newly inserted object

� append(p1, p2) appends a reference object pointing to a location
described by the path p2 to an array of reference objects at the location
pointed to by the path p1 and returns the path to the newly inserted
object

Requirements Checked (II)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

� User must be able to design, implement, and integrate own complex data
types into databases

� Design and implementation must be independent of the DBMS
� Design of complex data types must be performed at a high abstraction level

and not at a low byte level
� Enable multi-structured data representations of the same complex object
� Complex data types should be designed as proper abstract data types that

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 64

� Complex data types should be designed as proper abstract data types that
hide implementation details for both data structures and algorithms

� Complex objects should be arranged in compact storage structures (no
main memory pointer structures) in order to avoid expensive serialization
and deserialization cost

� Stored binary data should correspond to the representation that algorithms
can process to avoid data conversion

� Efficient access to components of complex objects must be possible to
avoid their complete loading into main memory

� Updates (random insertions and deletions) should be possible

Requirements Checked (III)

TSS: Representing the Structure of Complex Application Objects through Type Structure Specifications

� User must be able to design, implement, and integrate own complex data
types into databases

� Design and implementation must be independent of the DBMS
� Design of complex data types must be performed at a high abstraction level

and not at a low byte level
� Enable multi-structured data representations of the same complex object
� Complex data types should be designed as proper abstract data types that

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 65

� Complex data types should be designed as proper abstract data types that
hide implementation details for both data structures and algorithms

� Complex objects should be arranged in compact storage structures (no
main memory pointer structures) in order to avoid expensive serialization
and deserialization cost

� Stored binary data should correspond to the representation that algorithms
can process to avoid data conversion

� Efficient access to components of complex objects must be possible to
avoid their complete loading into main memory

� Updates (random insertions and deletions) should be possible

Outline

Outline

1. Introduction and Motivation
2. Problems of Complex Object Management Approaches
3. Requirements of Complex Object Management in Databases
4. iBLOB: Complex Object Management in Databases through Intelligent

Binary Large Objects
5. TSS: Representing the Structure of Complex Application Objects

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 66

5. TSS: Representing the Structure of Complex Application Objects
through Type Structure Specifications

6. Conclusions and Future Work

Conclusions

Conclusions and Future Work

�Available approaches to complex object management in databases reveal
shortcomings

�Application developer and type system implementer depend on but
should be independent of DBMS specific implementations of advanced
data types

� Type system implementers should be enabled to design and implement

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 67

� Type system implementers should be enabled to design and implement
own new type systems (algebras) and integrate them into any DBMS and
its query language

� Talk has shown ongoing research work to accomplish these goals

� The iBLOB concept and the TSS concept
� are intended to free the application developer and the type system

implementer from DBMS specific peculiarities and restrictions
� enable the type system implementer to be creative and to design new

advanced type systems under his/her control

Future Work

Conclusions and Future Work

� In general, more research needed regarding complex object management
in databases in the sense of the “big data” initiative

�Regarding iBLOBs and TSS

� Intensive functionality and practicability testing needed
� Derivation of C++ class skeletons

Complex Object Management in Databases: About the Preparedness of Database Technology for New Emerging Applications 68

� Derivation of C++ class skeletons

� Performance testing and comparison, tuning

� Consequences for query processing

Thank You
for Your Attention!

Spatial and Moving Objects Databases: State of the Art and Future Research Challenges 69

