
Acknowledgments

}  Joint Work with people from the BDRI Group at
UFAM and InWeb at UFMG

}  Industrial cooperation

}  Support

Contexto – Amazonas

Maior Unidade da Federação
98% da floresta original preservada
Maior rede hidrográfica do mundo

Contexto – Manaus

2,2 milhões habitantes
6º PIB em capitais

600 indústrias
Lei de Informática
Institutos de P&D

Nokia, Samsung, ...

Contexto - UFAM

80 cursos de graduação
35 cursos de pós-grad

25 k alunos

5 campi por todo estado
Diâmetro de 1500 KM

Contexto - IComp

35 doutores
Graduação: CC, SI, ½ EC

Mestrado e Doutorado (4)
190 mestres e 7 doutores

}  JASIST, IEEE TDKE, Information Systems
}  ACM SIGIR, ACM CIKM, ACM SIGMOD, VLDB, WWW
}  SBBD, WebMedia

Contexto – Grupo BDRI

6

Professores	
 Informa,on	
 Machine	
 	
 Databases	

Retrieval	
 Learning	

	
 Edleno	
 Silva	
 de	
 Moura	
 	
 	
 	
 	
 	
 	

	
 Al0gran	
 Soares	
 da	
 Silva	
 	
 	
 	
 	
 	
 	

	
 João	
 Marcos	
 Cavalcan0	
 	
 	
 	
 	
 	
 	

	
 Marco	
 Antônio	
 Cristo	
 	
 	
 	
 	
 	
 	

	
 David	
 Fernandes	
 	
 	
 	
 	
 	
 	

	
 Moisés	
 Carvalho	
 	
 	
 	
 	
 	
 	

	
 André	
 Carvalho	
 	
 	
 	
 	
 	
 	

Where is the data?
}  Data of interest is no longer only in databases

}  They are, though, available in on-line sources
}  In particular: textual sources

}  Social networks, Wikis, Blogs, Web of Data, RSS, e-mail, …

}  Search engines are effective and popular tools
}  Consensus:

}  its possible to better exploit them

7

How to deal with it?
}  Textual Sources

}  The structure is only implicit
}  Meta-data is a luxury
}  Constraints are a utopia

}  We do need semantics!
}  Multiple proposals to increase the expressive power

}  Syntactically: e.g., XML technology, RDF, etc.
}  Semantically: e.g., Semantic Web, Linked Data, etc.

}  Challenge: adoption of standards
}  Governance is needed, and it is good!!
}  But, the web was born messy and its is likely to remain like that

8

Any alternative ?
}  Possible alternative perspective:

}  Methods & Techniques for “automatically” gathering,
extracting , enriching and exploiting data available in textual
Web sources

}  By no means new!
}  It has been out there for more than a decade!

}  New impulse: Industrial needs
}  Advances in Data Management, Information Retrieval, Machine

Learning, Data Mining, Artificial Intelligence, …

}  Research on this subject is immediately applicable
}  Motivates a continuous feedback between industry and

academia

9

Many Problems …

10

Search Query

...

Dissemination

Publishing

Data Acquisition
& Recording

Information Extraction &
 Cleaning

Integration,
Aggregation,

Representation

Query Processing,
Data Modeling &

Analysis

It is Big Data !

The Big Data Analysis Pipeline
H. V. Jagadish – ACM SIGMOD Blog - 05/06/2012
Challenges & Opportunities w/ Big Data – Online report

e-Shopping Aggregation
}  e-Shopping Aggregators receive and/or crawl hundreds of

thousands unstructured product offers from thousands of
stores

}  Available as ordinary unstructured textual descriptions
}  Different “styles” depending on the source and on the

type of product

12

Apple iPad 2 Wi-Fi + 3G 64 GB - Apple iOS 4 1 GHz - Black $589
LG - 32LE5300 - 32" LED-backlit LCD TV - 1080p (FullHD) - $400
Samsung - UN55D7000 - 55" Class (54.6" viewable) LED-backlit LCD ... $2,048
Mixter Max Accessory Plasma TV Rack Tilt Bracket 248-A05 $65
HP Deskjet 3050 All-in-One Color Ink-jet - Printer / copier / scanner $50

e-Shopping Aggregation

13

HP Deskjet 3050 All-in-One Color Ink-jet - Printer / copier / scanner $50

}  Main Tasks/Services
}  Crawl product offers over the Web
}  Product aggregation: cluster offers of a same product
}  Categorization: put offers in the right category
}  Structured search: e.g., search by brand
}  Product comparison: e.g., give me the cheapest 3D 40” TV

}  Easier if data in offers is correctly segmented and labeled

 TV Samsung 55“ LED-backlit $2,048

e-Shopping Aggregation

14

Type Brand Size Screen Type Price

Live showcase: neemu.com by

Also powered by

People

Places

Entity recognition by

Entity Disambiguation at

Management of Bib. References in SHINE

19

Structured Data in Textual Content
}  We have studied, developed, published and applied

methods and techniques for all of these problems

20

Structured Data in Textual Content
}  In this talk, focus on 3 specific results for two problems

21

In this talk
}  Information Extraction

}  ONDUX [SIGMOD’10] and JUDIE [SIGMOD’11]

}  Filling of Web Forms
}  IForm [VLDB’11]

}  Complex Schema Matching
}  EvoMatch [IS’13]

22

IETS

l  Information extraction by text segmentation (IETS)
l  Extracting semi-structured data records by identifying

attribute in continuous text
l  bibliographic citations, product descriptions, classified ads,

etc

l  Ungrammatical text – not suitable for NLP methods

Supervised Methods
l  Current IETS methods use probabilistic frameworks such

as HMM or CRF
l  Learn a model for extracting data related to a domain
l  Supervised IETS methods

l  Require training data from each source

<Neighboorhood>Regent Square </Neighboorhood> <Price> $228,900 </Price>

<No>1028 </No><Street>Mifflin Ave, </Street> <Bed>6 Bedrooms </Bed> <Bath> 2

Bathrooms </Bath> <Phone>412-638-7273 </Phone>

Supervised	
 IETS	

Learning

f1, f2, f3,...,fk
g1, g2,g3,...,gl

Extraction

Labeled Segments
(Tranining)

Features

Output Labeled
Segments

Unlabeled Input Strings

Model

Input Texts

Supervised IETS

Text Source 1

Text Source 2

Text Source 3

Supervised IETS

Text Source 1

Text Source 2

Text Source 3

Unsupervised IETS methods
l  Learn from datasets
-  Dictionaries, knowledge bases, references tables, etc.

l  No need for manual training for each input
l  Source Independent
l  IETS methods

l  Unsup. CRF (Zhao et al. @SIAM ICDM’08)
l  ONDUX (Cortez et al. @SIGMOD’10)
l  JUDIE (Cortez et al. @SIGMOD’11)

Unsupervised	
 IETS	

ONDUX	
 &	
 JUDIE	

Learning

Extraction

Output Labeled
Segments

Model

 Dataset

Model Model Model Model Model

 Dataset

Content Features

Source 1

Source 3

Source 2

Unsupervised	
 IETS	
 -­‐	
 ONDUX	
 &	
 JUDIE	

f1 ,f2 , f3 ,...,fk

 Dataset

Content Features

Source 1

Source 3

Source 2

Unsupervised	
 IETS	
 -­‐	
 ONDUX	
 &	
 JUDIE

f1 ,f2 , f3 ,...,fk

Features

}  IETS methods rely on two types of features:
} Content (or state) features:
} Related to the contents of the tokens/strings

}  Structure (or transition) features:
} Related to the location of tokens/strings in a

sequence

Content Features we use
}  Vocabulary:

}  Similarity betweew strings in the input and values of an
attribute from the KB

}  Value Range:
}  How close a numeric string in the input is from the mean value

of a set of numeric values of an attribute in the KB

}  Format:
}  Common style often used to represent values of some

attributes
}  URLs, e-mails, telephone numbers, etc

Structure Features we use

}  Features
}  Positioning:

}  position of the values of a given attribute within the input
}  Sequencing:

}  relative order of attribute values within the input

}  Assumption:
}  Some regularity in the appearance of attribute values within

the input texts
}  Does not necessarily mean assuming a fixed order of

appearance

Content x Structure Features

} Content Features
}  Domain-dependent but input-independent
}  For a given attribute A, can be computed from a any

representative set of values in domain of A
} e.g., from a previous existing dataset

}  Structure Features
}  Dependent of the placement of attributes values on

the input
}  Thus, they are input-dependent

35

Unsupervised IETS methods

36

Method Content
 Features

Structure
Features

Mansuri@ICDE’06 Dictionaries Seed instances

Agichtein@SIGKDD’04 Reference Tables Sample, assumed to have
a fixed order

Zhao@SICDM’08 Reference Tables Sample, assumed to have
a fixed order

Cortez@JASIST’09 Bibliographic Files Heuristics for the
bibliographic domain

Cortez@SIGMOD’10 Knowledge Bases Automatically Induced

Cortez@SIGMOD’11 Knowledge Bases Automatically Induced –
multiple records

ONDUX
}  General View

37

Features – Content Related
}  Features Considered:

White sugar

Value Format

Value Range

Attribute Vocabulary

Noisy
OR

KB

Ingredient

38

Noisy OR

 Matching

Adding Structure Related Features

Street Mifflin 39

ONDUX
}  Reinforcement

}  Once the PSM is built, we combine the matching, positioning
and sequencing evidences using the Bayesian operator OR.

))1()1()),(1((1),(,, kiijii ptaBMaBFS −×−×−−=

 Matching Result Sequence Positioning

40

Experimental Results

0

0.2

0.4

0.6

0.8

1

F-
M

ea
su

re

Attributes

Dataset: Web Ads | Source: Folha On-line

U-CRF

ONDUX-M

ONDUX-R

Due to the Matching
Phase and the PSM
that is learned On-
Demand, ONDUX
achieve very high
quality results

U-CRF presented a
poor performance
(very heterogeneous
dataset)

41

Reinforcement

42

JUDIE

1/2 cup butter 2 eggs 4 cups white sugar ground cinnamon 2 tablespoons dark
rum 6 chopped pecans 1/2 cup milk 1 1/2 cups applesauce 2 cups all-purpose
flour 1/4 cup cocoa powder 2 teaspoons baking soda 1/8 teaspoon salt 1 cup
raisins 1/4 cup dark rum

Chocolate Cake Recipe

Quantity Unit Ingredient

1/2 cup butter

2 eggs

4 cups white sugar

ground cinnamon

2 tablespoons dark rum

6 chopped pecans
43

JUDIE
}  Joint Unsupervised Structure Discovery and Information

Extraction
}  Detects the structure of each individual record being extracted

without any user intervention
}  Looks for frequent patterns of label repetitions or cycles

}  Integrates this algorithm in the IE process
}  Accomplished by successive refinement steps that

alternate information extraction and structure
discovery.

44

The SD Algorithm

Title Conference Year Author Author Title Conference Year Author Title
Conference Year … Author Title Journal Issue Year Author Title Journal
Issue Year Author Author Journal Issue Year Title Year … Author Title
Conference Year Author Author Author Title Journal Issue Year

Author

Title

Journal Issue

Conference

Year

Coincident Cycles

Viable Cycle

45

Comparison with baselines – Attribute Level

}  Results very close to ONDUX and even better than U-CRF
}  Recall: JUDIE faces a harder task.

Attribute JUDIE ONDUX U-CRF

Author 0.88 0.922 0.87

Title 0.70 0.79 0.69

Booktitle 0.86 0.89 0.56

Journal 0.84 0.90 0.55

Volume 0.90 0.96 0.43

Pages 0.86 0.84 0.50

Date 0.87 0.89 0.49

Average 0.86 0.88 0.58

CORA

Attribute JUDIE ONDUX U-CRF

Bedroom 0.82 0.86 0.79

Living 0.89 0.90 0.72

Phone 0.87 0.92 0.75

Price 0.92 0.93 0.78

Kitchen 0.83 0.84 0.78

Bathroom 0.77 0.79 0.81

Others 0.73 0.79 0.71

Average 0.84 0.85 0.76

Web Ads

46

More details ….
}  Cortez, Silva, Gonçalves & Moura. ONDUX: on-demand

unsupervised learning for information extraction. SIGMOD 2010
}  Cortez, Oliveira, Silva, Moura & Laender: Joint unsupervised

structure discovery and information extraction. SIGMOD 2011

47

One more …

48

Search Query

...

Dissemination

Publishing

Data Acquisition
& Recording

Information Extraction &
 Cleaning

Integration,
Aggregation,

Representation

Query Processing,
Data Modeling &

Analysis

The Form Filling Problem

}  Goal:
}  To automatically fill out the fields of a given form-based

interface with values extracted from a data-rich free text
document.
1.  Extracting values from the input text;
2.  Filling out the fields of the target form using them.

Example
}  Form-based interface

Check-box
Text Box

Selection List

Example
}  Data-rich free text document

Example
}  Form Filling

2005
Honda
Accord

low
Automatic

Alloy Wheels

x
x
x

x
x

x

x

Common usage of Web Forms

}  A user manually fills each form field
}  Text-box, selection list, check-box and radio button

}  Tedious, error prone and repetitive process

values

Our Aproach

}  IForm: Information Extraction + Form Filling
}  A Probabilistic Approach for Automatically Filling Form-

Based Web Interfaces
}  Appeared in PVLBD 2010 / VLDB 2011
}  With Guilherme Toda, Eli Cortez and Edleno Moura

54

iForm

}  Information Extraction + Form Filling

}  Automatic form filling;

Data-rich text document Values

Verify Values

iForm
}  A probabilistic approach for automatically filling

form-based interface

}  Relies on a model that estimates the probability of each
field in the form given the input text based on the values
previously used for filling the form.

}  Exploits features related to the content and style, which
are combined through a Bayesian framework
}  tokens (words) composing each segment
}  wording style of each segment

}  CRF (Conditional Random Fields): state-of-the-art
information extraction approach

}  Lafferty, J. et al [ICML,2001]
}  Peng and McCallum [IPM, 2006]
}  Mansuri and Sarawagi [ICDE, 2006]
}  Kristjansson et al [IAAA, 2004]

}  Usually requires training instances manually labeled
}  Extracts all segments in a input text

}  Iform extracts only relevant segments

Related Work – Information Extraction

}  Chen et al. [ICDE, 2010]
}  USHER, a system used to automatically adapt the form design

according to user experience.

}  M. Al-Muhammed e Embley D. [ICDE,2007]
}  An approach that relies on a manually built ontology to guide the user

in the form filling process.

}  iCRF - Kristjansson et al [IAAA, 2004] - Baseline
}  CRF approach for the task of automatically filling web forms.
}  Relies on content and positioning features extracted from training

instances
}  Model requires training instances to be manually labeled.

Related Work – Form Filling

iForm - Overview

Data-rich text document Values

Verify Values

Previous
Submissions

Shutter Island is a 2010 American
psychological thriller film directed by

Martin Scorsese. The film is based on
Dennis Lehane's 2003 novel of the

same name . Starring Leonardo
DiCaprio, Mark Ruffalo and Ben

Kingsley.

Movie Review - Data-rich text

iForm - Scenario

Web Form

iForm – Selecting plausible segments

}  What is the probability of a form field given each text segment?

Shutter Island is a 2010 American psychological
thriller film directed by Martin Scorsese. The film is
based on Dennis Lehane's 2003 novel of the same

name . Starring Leonardo DiCaprio, Mark Ruffalo and
Ben Kingsley.

Shu;er	
 Shu;er	
 Island	
 Shu;er	
 Island	
 is	
 Shu;er	
 Island	
 is	
 a	

…

Leonardo	
 Leonardo	
 DiCaprio	
 Kingsley.	

Redundant computation of several probabilities can be
avoided by using dynamic programming.

iForm - Features
}  Features Considered:

Shutter Island

Style

Value

Token

Bayes.
Noisy
OR

Previous
Submissions

Title

Shu;er	
 	
 	
 Island	

Title Director Genre

Shutter Masayuki … Terror

Shutter Bug Paul J. Animation

… … …

The Departed Martin … Thriller

The Island Michael B. Action

The Island of Dr. .. John Frank Terror

Previous
Submissions

iForm – Token Similarity
}  Likelihood of each token present in the segment

occurring in each field

Average number of
words of each field

Actors

Joshua Jackson

Mark Man

Mark Rufallo

Leonardo DiCaprio

Ewan Mcgregor,

Marlon Brando

Title Director Genre

Kung Fu Panda Mark Osborne Animation

Daredevil Mark S. Johson Action

… … …

Yes Man Peyton Reed Comedy

What Doesn’t Brian Goodma Action

Zodiac David Fincher Thriller

iForm – Value Similarity

}  Likelihood of the value present in the segment occurring
in each field

Mark	
 	
 Ruffalo	

Actors

Seth Rogen

Ben Affleck

Jim Carrey,

Zooey Deschanel

Ethan Hawke

Mark Ruffalo

Previous Submissions

}  Given a text segment, we encode it according to a
taxonomy of symbols.

}  Verifies the likelihood of the sequence following the same
wording style of the known values for each field

Ben	
 Kingsley	

[A-­‐Z][a-­‐z]+	
 	
 	
 [A-­‐Z][a-­‐z]+	

iForm – Style Similarity

}  iForm models the computation of the probability of a
field given a segment using a Bayesian network.

iForm – Combining all probabilities

}  Given the set of text segments such that theirs
probability is above a threshold

}  iForm aims at finding a mapping between candidate values and
form fields with a maximum aggregate probability
}  Select non-overlaping segments.

}  Accomplished by means of a two-phase procedure

iForm – Mapping Segments to Fields

)|(abj SfP ε

}  In the first phase, we begin by computing the candidate
values for each field based only on content-based features
(token + value).
}  The initial mapping is composed by the set of all candidate

values for all fields and contains segment-field pairs.

}  Goal: To find a subset of segment-field pairs in
the mapping whose probabilities are maximum.
}  iForm relies on a simple greedy heuristic to find an

approximate solution.

iForm – Mapping Segments to Fields

jC

〉〈 jab FS ,

}  Extracts the pair with the highest
probability from the initial mapping and verifies if the
current field was already filled with a text segment.

}  To deal with fields that were not mapped to a segment,
we use the probabilities derived from the style-related
features, in the second phase.
}  We adopt the two phase mapping after verifying through

experiments that the style-related feature is less precise than
the other two features adopted.

iForm – Mapping Segments to Fields

〉〈 jab FS ,

}  Uses the final mapping to fill out the form fields
}  Text Boxes: Mapped text segments as a field values.

}  Check boxes: Set true for mapped fields.

“Movie”

“Shutter Island”

“Martin Scorsese”

title

director
Shutter Island

Martin Scorsese

iForm – Filling Form-based interfaces

}  Selection list
}  iForm aims at finding an item such that its similarity with

the extracted value is maximum – “softTF-IDF”

“psychological thriller”

iForm – Filling Form-based interfaces

iForm - Overview

Structure
Sketching

Phase 2

Shutter Island is a 2010 American
psychological thriller film directed by

Martin Scorsese. The film is based on
Dennis Lehane's 2003 novel of the

same name . Starring Leonardo
DiCaprio, Mark Ruffalo and Ben

Kingsley.

Web Form

Previous
Submissions

Shutter Island
Martin Scorsese

Leonardo DiCaprio
Mark Ruffalo
Ben Kingslev

Thriller

X

Evaluation – Multi-typed web forms

Type of Field # Fields P R F

Text Box 4 0.74 0.69 0.71

Submission-Level 0.73 0.67 0.69

Movies

Type of Field # Fields P R F

Text Box 5 0.78 0.73 0.76

Check Box 30 0.79 0.79 0.79

Average 0.79 0.78 0.79

Submission-Level 0.77 0.73 0.75

Cars

iForm achieved high
quality results in

all datasets

The quality of iForm
was almost the same
for the text box and
the check box fields.

Evaluation – Multi-typed web forms

Type of Field # Fields P R F

Text Box 2 0.89 0.69 0.78

Check Box 35 0.94 0.94 0.94

Average 0.94 0.93 0.93

Submission-Level 0.96 0.94 0.95

Cellphones

Type of Field # Fields P R F

Text Box 4 0.88 0.67 0.76

Drop Down 1 0.96 0.96 0.96

Average 0.90 0.73 0.80

Submission-Level 0.89 0.67 0.76

Books 1

Filling quality above
0.90. In fact, more than

90% of each
submission was

correctly entered in the
web form interface.

Precision levels are
above 0.8 in all cases,
and submission-level
f-measure results for
this dataset is above
0.7.

Evaluation – Comparison with iCRF

Field iForm iCRF

Application 0.82 0.37

Area 0.18 0.23

City 0.70 0.65

Company 0.41 0.17

Country 0.77 0.87

Desired Degree 0.57 0.37

Language 0.84 0.69

Platform 0.47 0.38

Recruiter 0.44 0.22

Req. Degree 0.31 0.59

Salary 0.22 0.25

State 0.85 0.81

Title 0.72 0.49

iForm was designed to
conveniently exploit
these field-related
features from previous
submissions

iForm had
superior F-measure
levels in nine fields.

The lower quality obtained by
iCRF is explained by the fact that
segments to be extracted
from typical free text inputs, such as
jobs postings, may not
appear in a regular context.

Jobs

Previous Submissions Impact

For the Movies and Books 1 datasets, the quality achieved by
iForm increases proportionally with the number of previous

submissions

Previous Submissions Impact

Notice that F-measure values stabilize at around 3000
previous submissions and remain the same until 10000. Besides, even

starting with a small number of submissions, iForm is able to help
decrease the human effort in the form lling task.

Conclusions
}  A probabilistic approach for automatically filling

form-based interface
}  Relies on a model that estimates the probability of each

field in the form given the input text based on the values
previously used for filling the form.

}  Achieved good results in comparison with iCRF
}  Our experiments demonstrate that our approach is able

to properly deal with different types of input fields, such
as text boxes, pull-down lists and check boxes

}  More in
}  Toda, Cortez, Silva & Moura: A Probabilistic Approach for

Automatically Filling Form-Based Web Interfaces. VLDB 2011

The last one …

79

Search Query

...

Dissemination

Publishing

Data Acquisition
& Recording

Information Extraction &
 Cleaning

Integration,
Aggregation,

Representation

Query Processing,
Data Modeling &

Analysis

Complex Schema Matching
}  A group of elements from a given schema match a group

of elements from another schema.

80

given name surname street number address 1 address 2 suburb

rose leslie 26 coranderrk street rowethorpe hill end

katheri hand 18 derrington crescent homewood kingsthorpe

mary white 23 prescott street bonbeach

full name age address area

leslei rose 43 coranderrk 26, rowethorpe hi end

katherine hand 33 derrington crescent 18 , homewood kingsthorpe

mary wite 39 prescott str bonbeach

Figure 1: Complex schema matches

investigation, counter-terrorism and homeland security. Most often, data
repositories manipulated in such scenarios are deliberately deprived from any
form of identification or structural clues to make it di�cult to be processed
and analyzed.

Another important issue we need to deal with is that most real-world
situations involve complex matches. Di↵erently from the task of finding 1-1
matches (that represent a relationship between single elements from distinct
schemas), identifying complex matches is a more challenging problem. This
happens because complex matches require finding combinations of existing
elements in one schema that are related to combinations of elements into
another one.

In this article, we propose an evolutionary approach1 that aims at auto-
matically finding complex matches between schema elements of two seman-
tically related data repositories. Since we only exploit the data stored in
the repositories for this task, we rely on matching strategies that are based
on record deduplication and information retrieval techniques to find complex
schema matches. As pointed out by Gal [19], only limited research has been
devoted to more complex schema matches, such as 1:N, N:1 and N:M, thus
our evolutionary approach is a step forward towards solving this problem.

The reason for adopting an evolutionary approach is the size of the search

1Our approach adopts concepts and ideas that are strongly inspired by genetic program-
ming, but does not use the “classical” data structures usually adopted for representing
the solutions.

3

Complex Schema Matching
}  A group of elements from a given schema matches a

group of elements from another schema.

81

Our approach
}  An Evolutionary Approach to Complex Schema Matching

}  Just accepted to Information Systems to appear in 2013
}  With Moises Carvalho, Alberto Laender & Marcos Gonçalves

}  Given two input schema, use an evolutionary process to
generate Schema Matching Solutions for them

}  Start from an initial set of possible spurious/meaningless
schema matching solution

}  Hopefully reach a final meaningful schema matching
solution

}  Use a fitness function to evaluate and refine the solutions
been generated

82

Requirements and Assumptions
}  Schemata are known, but we can’t rely on attribute

names
}  Different labels, noisy label extraction

}  Instances are known, we rely on them
}  Assumed to be abundant

83

given name surname street number address 1 address 2 suburb

rose leslie 26 coranderrk street rowethorpe hill end

katheri hand 18 derrington crescent homewood kingsthorpe

mary white 23 prescott street bonbeach

full name age address area

leslei rose 43 coranderrk 26, rowethorpe hi end

katherine hand 33 derrington crescent 18 , homewood kingsthorpe

mary wite 39 prescott str bonbeach

Figure 1: Complex schema matches

investigation, counter-terrorism and homeland security. Most often, data
repositories manipulated in such scenarios are deliberately deprived from any
form of identification or structural clues to make it di�cult to be processed
and analyzed.

Another important issue we need to deal with is that most real-world
situations involve complex matches. Di↵erently from the task of finding 1-1
matches (that represent a relationship between single elements from distinct
schemas), identifying complex matches is a more challenging problem. This
happens because complex matches require finding combinations of existing
elements in one schema that are related to combinations of elements into
another one.

In this article, we propose an evolutionary approach1 that aims at auto-
matically finding complex matches between schema elements of two seman-
tically related data repositories. Since we only exploit the data stored in
the repositories for this task, we rely on matching strategies that are based
on record deduplication and information retrieval techniques to find complex
schema matches. As pointed out by Gal [19], only limited research has been
devoted to more complex schema matches, such as 1:N, N:1 and N:M, thus
our evolutionary approach is a step forward towards solving this problem.

The reason for adopting an evolutionary approach is the size of the search

1Our approach adopts concepts and ideas that are strongly inspired by genetic program-
ming, but does not use the “classical” data structures usually adopted for representing
the solutions.

3

Schema Matching Solutions (SMS)

Figure 5: Example of a simple match between two schemas.

Schema Matching Solutions. Let A and B be two distinct schemas. A
schema matching solution is defined by a set of matches {m1, . . . ,mn} (n > 0)
between them.

Figure 6 shows an example of a schema matching solution composed of
two matches labeled M1 and M2. For simplicity, in this figure base elements
are represented by numbers.

BA

<Cosine Sim>

concat

3

5

concat

4

1M1

<Cosine Sim>

concat

1

3

concat

2

3

concat

1

M2

Figure 6: Example of a schema matching solution composed of two matches.

The ultimate goal of our proposed approach is to generate suitable schema
matching solutions for two given input data repositories (e.g., two relational
tables), in the sense that they accurately reflect the semantic equivalence
between schema elements from these repositories.

In the evolutionary process we propose, schema matching solutions are
the individuals that evolve, starting from an initial population of possible
spurious individuals, i.e., a meaningless schema matching solution, to a final
population of fitting individuals, i.e., a meaningful schema matching solution.
We describe this process next.

14

84

Schema A Schema B

Attributes
Operators

Derivation Tree Similarity Function

SMS Evolution

85

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

K evolutionary steps

SMS Evolution: A Single Step

86

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

SMS Evolution: Crossover

87

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

SMS Evolution: New Solution

88

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

SMS Evolution – Details
}  Setup

}  Similarity Functions (e.g., Jaro, Consine, Prob. Density, etc.)
}  Data types with operators

}  STRING: concatenation, insertion, substitution, etc.
}  DATE: sum, sub, conversion (e.g., year to days), etc

}  NUMBER: sum, mult, etc.
}  Next Generation

}  k individuals with the fitness value above a threshold ε is
selected for mutation and crossover

89

SMS Evolution – Details

}  Fitness: which solutions are good?
} General idea
}  Given a SMS, evaluate its matches
}  In good matches, similarity functions must give

high values

90

4.2. Evolutionary Generation of Schema Matching Solutions

Let A and B be two distinct schemas to be matched. The evolutionary
process we propose for achieving a suitable schema matching solution is based
on the generational algorithm we have described in Section 3.2.

In the first step, individuals, that is, schema matching solutions, are
randomly generated. This means that schema elements are grouped into
derived elements for both schemas. Pairs of derived elements are used to
form matches with the addition of a similarity functions. These matches are
then grouped into candidate schema matching solutions, composing the first
generation of the evolutionary process.

This first generation, as well as all other upcoming generations, are evalu-
ated according to a fitness function. For a given candidate schema matching
solution S = {m1, m2, . . . ,mn}, where each mi is a match, the fitness func-
tion f(S) is calculated as follows:

f(S) =

nX

i=1

eval(mi)

n

(1)

In Equation 1, let mi = hai, bi, ↵ii be a match composed of derived ele-
ments ai and bi, and a similarity function ↵i. eval is an evaluation of the
similarity function ↵i using instances of schemas A and B to compute ai and
bi, respectively, according to the sequence of operations they describe.

A very important issue in our approach is how the instances of schemas
A and B are used for evaluating the fitness function. In this work, we con-
sider two distinct evaluation strategies: an entity-oriented strategy and a
value-oriented strategy. Adopting one of these evaluation strategies has some
implications and may be determined by the characteristics of the reposito-
ries being processed. We postpone a detailed discussion on these issues until
Section 4.4.

As described in Section 3.2, the next generation in the evolutionary pro-
cess is obtained based on the value calculated for each individual S using
the fitness function f(S) as follows. Thus, first the n individuals with the
highest fitness values are reproduced to form the next generation. Then,
a set of m << n individuals with the fitness value above a threshold ✏ is
selected as input to the genetic operations mutation and crossover that will
generate part of the individuals for the next generation. Values of n and ✏

are parameters to be defined.

15

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

mi =

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

a

cb

/

+

a

cb

/

+

a

a

cb

/

+

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

+

ba

a

cb

/

+

b b

<levens>

<levens>

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

a) b)

a

cb

/

+

a

cb

/

+

a

cb

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

a

cb

/

+

b b

c)
1A 1B

2B2A

1A 1A1B

1B2A

2A

2B 2B

C1

C2

C3

C4

a

a

d)

2

53

+

+

+

21

2
53

+
+

+

2

1

e)
a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A

1B

2A

2B

f)

+

ba

+

ba

+

ba

a

c b

/

+

a

c b

/

+

a

cb

/

+

b b

a

cb

/

+

+

ba

1A 1B

2A 2B

+

ba

+

ba

+

ba

a

c b

/

+

<levens>

<levens>

<levens>

<levens>

Figure 7: Crossover operation.

The mutation operation acts locally on a single individual. In our case, it
works by randomly transforming the trees that compose the derived elements.
This is done by replacing base schema elements in the leafs or operators in
the internal nodes. Notice that, although these transformations are randomly
performed, they are constrained to preserve the type of match.

The crossover operation allows for exchanging components between two
selected individuals. Intuitively, these individuals play the role of parents
whose o↵spring will compose part of the individuals of a new generation in
the evolutionary process. Like the mutation operation, the type of the match
is also preserved.

Figure 4.2 illustrates how the crossover operation creates new individuals
in our approach. As we can see, initialy two individuals are selected from the
population (a) and then matches related to a same schema are paired (1A
with 2A and 1B with 2B) (b). Next, a sequence of crossover operations (C1,

16

SMS Evolution – Details
}  Two different entities
}  Entity-oriented Strategy:

}  Assumes a non-negligible overlap between the instances
}  First, use similarity functions to look for similar entities
}  Then, verify if the match can detect these entities

}  Value-oriented Strategy
}  Assumes an empty or negligible overlap between the instances
}  First, use similarity functions to look for similar attributes
}  Then verify if the match can detect these entities

91

SMS Evolution – Details
}  Constraints

}  For a given match, all attributes, operations, similarity functions
should be of same data type

}  The set of possible similarity functions can be select by a
specialists

}  These are practical constraints
}  The evolutionary process could be carried out without them
}  But using them we narrow the solution space and save some

time

92

Experiments - Datasets

93

Table 1: Experimental Dataset characteristics
Characteristic Synthetic 1, 2, 3 Real State Inventory
Total of Elements in File A 12 32 44
Total of Elements in File B 7 19 38
Total of 1-1 Matches 7 7 27
String Matches 3 6 11
Numerical Matches 4 1 16
Total of Complex Matches 2 12 11
String Matches 2 5 4
Numerical Matches 0 7 7

Table 2: Characteristics of tables obtained from GTF
Characteristic Real Estate Car Dealers Restaurants
Total of Elements in Table A 7 28 6
Total of Elements in Table B 6 8 9
Total of 1-1 Matches 6 5 2
String Matches 3 5 2
Numerical Matches 3 1 0

disjoint data scenario, since they do not present overlapping entities. We
also noticed that their schemas do not required complex matches. Table 2
summarizes the characteristics of these tables.

Our experimental evaluation adopts the same accuracy metric used in
other works [14, 22, 24], that is, the fraction of all target schema elements
whose candidate match is correct, as given by:

Accuracy = NumberOfCorrectlyIdentifiedMatches
NumberOfMatches

For each data scenario, di↵erent datasets and parameter setups (evolu-
tionary parameters and similarity functions options) were used. This param-
eter setup was chosen after initial tuning experiments with the training set.
It provided good results and, at the same time, avoided problems with over-
fitting and extensive training time requirements. We present this information
in Table 3.

We run our experiments in a workstation with the following hardware and
software configuration: Pentium Core 2 Duo Quad (2 Ghz) processor, with
a 4 GB RAM DDR2 memory, and a 320 GB SATA hard drive, and running
a 64-Bits FreeBSD 7.1 Unix-based operational system.

25

Table 1: Experimental Dataset characteristics
Characteristic Synthetic 1, 2, 3 Real State Inventory
Total of Elements in File A 12 32 44
Total of Elements in File B 7 19 38
Total of 1-1 Matches 7 7 27
String Matches 3 6 11
Numerical Matches 4 1 16
Total of Complex Matches 2 12 11
String Matches 2 5 4
Numerical Matches 0 7 7

Table 2: Characteristics of tables obtained from GTF
Characteristic Real Estate Car Dealers Restaurants
Total of Elements in Table A 7 28 6
Total of Elements in Table B 6 8 9
Total of 1-1 Matches 6 5 2
String Matches 3 5 2
Numerical Matches 3 1 0

disjoint data scenario, since they do not present overlapping entities. We
also noticed that their schemas do not required complex matches. Table 2
summarizes the characteristics of these tables.

Our experimental evaluation adopts the same accuracy metric used in
other works [14, 22, 24], that is, the fraction of all target schema elements
whose candidate match is correct, as given by:

Accuracy = NumberOfCorrectlyIdentifiedMatches
NumberOfMatches

For each data scenario, di↵erent datasets and parameter setups (evolu-
tionary parameters and similarity functions options) were used. This param-
eter setup was chosen after initial tuning experiments with the training set.
It provided good results and, at the same time, avoided problems with over-
fitting and extensive training time requirements. We present this information
in Table 3.

We run our experiments in a workstation with the following hardware and
software configuration: Pentium Core 2 Duo Quad (2 Ghz) processor, with
a 4 GB RAM DDR2 memory, and a 320 GB SATA hard drive, and running
a 64-Bits FreeBSD 7.1 Unix-based operational system.

25

Experiments - Results

94

Table 4: Results - Partially overlapped data scenario
Matches Accuracy
All 1-1 Matches 57%
String 1-1 Matches 100%
Numeric 1-1 Matches 24%
All Complex Matches 75%
String Complex Matches 75%

5.3. Experiments in the Partially Overlapped Data Scenario

This first set of experiments evaluates the capability of our evolutionary
approach to find complex matches in partially overlapped data repositories.
In this case, our schema matching system has to deal with some “noise”
during the search process, since there is no external evidence or structural
information available to be used. This is the most common real-world sce-
nario [28]. We have used only the Synthetic 1 dataset for these experiments,
since there is no partially overlapped data in the Real State and Inventory
datasets.

In this scenario, our searchers employ the entity-oriented strategy to find
the most similar schema element combinations by comparing the correspond-
ing instances stored in both files. The most similar combination is considered
a possible replica, thus it is used for matching purposes.

Table 4 shows the results for the partially overlapped data scenario using
Levenshtein, a well known edit distance function, as the similarity function.
This function was the most e↵ective among many others (e.g., Sort Winlker,
Jaro and Soundex [6, 10]) we used in our set of experiments. The similarity
boundary value for this experiment was empirically chosen after initial tuning
tests and its value was set to 0.9, since it maximized the e↵ectiveness of the
Levenshtein function.

Our 1-1 match searcher was able to find 57% of all matches. As we
can see, most of the unidentified matches are numeric ones, which is mainly
due to the fact that we have treated all schema elements as strings. As a
consequence, the unidentified 1-1 matches increased the search space of the
complex match searcher. Yet, we were still able to find about one fourth of
all the numeric matches in this scenario. On the other hand, the complex
matching searcher found 75% of the complex matches. This result includes
mostly complex matches involving addresses and one partial match6 involving

6A partial match is a complex match that misses one or more schema elements.

27

Table 5: Results - Fully overlapped data scenario
Matches Accuracy
All 1-1 Matches 100%
Strings 1-1 Matches 100%
Numeric 1-1 Matches 100%
All Complex Matches 100%
String Complex Matches 100%

the e↵ectiveness of the Sort Winkler similarity function.
As shown in Table 5, our 1-1 match searcher was able to identify all 1-1

matches. Even matches involving numeric schema elements were identified.
This happened because the comparisons were performed between entries cor-
responding to the same real-world entities and the numerical values for each
entry were mostly the same ones in both files, allowing the correct matching.
The complex match searcher was also able to identify all existing matches.
Moreover, since we have used the Sort Winkler similarity function, some of
the correct answers found in the output solution presented the same schema
elements, but with di↵erent concatenation sequences (e.g., forename after
surname). For matching purposes, this is not a problem because the final
solution includes the correct schema elements.

These results show that the e↵ectiveness of our match searchers was im-
proved by the specific characteristics of the fully overlapped data scenario.
In this scenario, the match searchers only have to identify subsets of schema
elements that are able to improve the overall similarity results. In the pre-
vious experiments, with partially overlapped data, our searchers also need
to deal with di↵erent entities during the comparisons. Comparisons involv-
ing di↵erent entities may mislead the replica identification, being, therefore,
considered as “noise” for the searchers.

5.5. Experiments in the Disjoint Data Scenario

This set of experiments evaluates the capability of our evolutionary ap-
proach to find schema matches in disjoint data repositories. This means that
they do not share entries that correspond to the same real-world entities and,
therefore, cannot be used as “rules” for identifying semantic relationships.
For this reason, this is the most di�cult scenario for any schema matching
system based on the instance-level approach [28].

Since the repositories do no share entries that correspond to the same
real-world entities, we cannot use our entity-oriented strategy in this sce-
nario. Hence, we use instead our value-oriented strategy, which considers a

29

Table 6: Results - Disjoint data scenario
Matches Accuracy
RS All 1-1 Matches 85%
RS String 1-1 Matches 100%
RS Numeric 1-1 Matches 0%
RS All Complex Matches 25%
RS String Complex Matches 60%
RS Numeric Complex Matches 0%

INV All 1-1 Matches 40%
INV String 1-1 Matches 100%
INV Numeric 1-1 Matches 0%
INV All Complex Matches 20%
INV String Complex Matches 56%
INV Numeric Complex Matches 0%

ST3 All 1-1 Matches 42%
ST3 String 1-1 Matches 100%
ST3 Numeric 1-1 Matchings 0%
ST3 All Complex Matches 100%
ST3 String Complex Matches 100%

similarity function derived from the classic vector space model.
The rationale of this strategy is to find matches between schema ele-

ments that present similar term frequencies and share common terms (e.g.,
personal names, addresses and product descriptions). For this, we compare
text vectors that are assembled using all data instances stored in the reposi-
tory that are associated with a combination of schema elements. The higher
the similarity value between the text vectors, the higher the likelihood of
the schema element combinations being related to each other. The simila-
rity boundary for this experiment was empirically chosen after initial tuning
tests and its value was set to 0.95, since it maximized the e↵ectiveness of the
cosine similarity function.

We have used the Synthetic 3, Inventory and Real State datasets in these
experiments. However, we notice that the two real datasets are too small
(only 100 entries), since they were created using real data, aiming at exper-
iments with hybrid schema matching approaches [14, 22, 24]. Considering
that real datasets are usually much bigger, we overcome this situation by
using a synthetic dataset whose data better resembles that found in real
applications.

Table 6 shows the results of our experiments in the disjoint data scenario.
We use the acronyms RS, INV and ST3 when referring to the Real State,
Inventory and Synthetic 3 datasets, respectively. Our 1-1 match searcher
missed all matches involving numeric and date schema elements (age, birth
dates, prices and discounts) in all datasets. However, it was able to identify

30

Overlap Non-Overlap

Partial (ST1)

Full (ST2)

Experiments – Examples of Matches
}  Inventory dataset:

}  ship-address = (ship-address + ship-postal-code) +
 (ship-city + ship-country)

}  Real State dataset:
}  house-address = (house-street + house-city) + house-zip-code

}  Synthetic 3 dataset:
}  fullname = forename + surname

95

Conclusions and Remarks
}  Data of interest is no longer in databases, although they

are in on-line sources
}  In particular: Textual Sources

}  The structure is only implicit
}  Meta-data is a luxury
}  Constraints are a utopia

96

Other areas can help a lot
}  Information Retrieval

}  IR models, text indexing, relevance metrics, language models,
etc.

}  Data/Text Mining
}  Rule Mining, Learning, Categorization, Graph Models

}  Artificial Intelligence
}  Ontologies, Automated Reasoning

}  ….

97

An expanded set of CS foundations is helpful!

}  Computer Science Theory for the Information Age
}  Upcoming book by John Hopcroft and Ravindran Kannan

}  From the TOC
}  High-Dimensional Space
}  Random Graphs
}  Singular Value Decomposition (SVD)
}  Markov Chains
}  Learning and VC-dimension
}  Algorithms for Massive Data Problems
}  Clustering
}  Graphical Models and Belief Propagation

98

This is the theory
for the next 30

years !!

Many other approaches
}  Named Entity Recognition (NER)

}  E.g. Sarawagi@FTD’08, Ratinov@CoNLL’09

}  Open Information Extraction
}  Unsupervised NER over massive text collections, e.g., the Web
}  Oren Etzioni (e.g., EMNLP-CoNLL’12, WWW’08, IJICAI’07)

}  Hidden Web
}  Juliana Freire (e.g., WWW’07, ICDE’07, WebD’10)

}  Web Tables
}  Alon Halevy, Mike Cafarela (e.g., PVLDB’08, CIDR’07)

}  NoDB – Scientific Data!
}  Anastacia Ailamaki (e.g., SIGMOD’12)

99

