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�  Part 1: Statistical properties of static and evolving 
networks.  
¡  Power law degree distributions found in static networks  
¡  Small world phenomena and six degrees of separation  
¡  Densification of time evolving networks  
¡  Shrinking diameters of growing networks  
¡  Communities and clusters in networks  

�  Part 2: Link predictions in complex networks.  
¡  Link Prediction 

÷ Link existence 
÷ Link weight 
÷ Link type 
÷ Link cardinality 

¡  Applications 
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What do the following things 
have in common?  

 



World economy 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 3 



Human cell 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 4 



Roads 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 5 



Brain 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 6 



domain2 

domain1 

domain3 

router 

Internet 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 7 



Friends & Family 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 8 



Media & Information 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 9 



Society 
9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 10 



The Network 



� Behind each such system there is an 
intricate wiring diagram, a network, that 
defines the interactions between the 
components  

 
� We will never understand these systems 

unless we understand the networks behind it  

Network 
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Facebook social graph 
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011] 

Networks: Social 

Facebook social graph  
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]  
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Graph of the Internet  (Autonomous Systems) 
Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999] 

Robustness [Doyle-Willinger, 2005] 

Networks: Communication 

Graph of the Internet (Autonomous Systems)  
Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999]  

Robustness [Doyle-Willinger, 2005]  
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Connections between political blogs 
Polarization of the network [Adamic-Glance, 2005] 

Networks: Media 

Connections between political blogs  
Polarization of the network [Adamic-Glance, 2005]  



Networks:Technology 

Seven Bridges of Königsberg [Euler, 1735]  
Return to the starting point by traveling each link of the graph once and only once.  
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Citation networks and Maps of science 
[Börner et al., 2012] 

Networks: Information 

Citation networks and Maps of science  
[Börner et al., 2012]  
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Understand how humans 
navigate Wikipedia 

Get an idea of how 
people connect concepts 

9/25/2012 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis 

[West-Leskovec, 2012] 

Networks: Knowledge 

[West-Leskovec, 2012]  
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9/11 terrorist network 
[Krebs, 2002] 

Network: Organizations 

9/11 terrorist network  
[Krebs, 2002]  
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Nodes: 

Links:  

Companies 
 

Investment 
 

Pharma 
 

Research Labs 
 

Public 
 

Biotechnology 

Collaborations 
 

Financial 
 

R&D 

Bio-tech companies 
[Powell-White-Koput, 2002] 

Networks: Economy 

Bio-tech companies  
[Powell-White-Koput, 2002]  
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Human brain has between  
10-100 billion neurons 

[Sporns, 2011] 

Networks: Brain 

Human brain has between 10-100 billion neurons [Sporns, 2011]  
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Metabolic networks: 
Nodes: Metabolites and enzymes 

Edges: Chemical reactions 

Protein-Protein Interaction Networks: 
Nodes: Proteins 

Edges:  ‘physical’  interactions 

Network: Biology 



�  How do we reason about networks?  
¡  Empirical: Study network data to find organizational 

principles  
¡  Mathematical models: Probabilistic, graph theory  
¡  Algorithms for analyzing graphs 

�  What do we hope to achieve from studying 
networks?  
¡  Patterns and statistical properties of network data  
¡  Design principles and models  
¡  Understand why networks are organized the way they are 

(Predict behavior of networked systems)  

Reasoning about Networks 



�  How do large network “look like”? 
¡  Empirical: statistical tools to quantify structure networks  
¡  Models: mechanisms that reproduce such properties (models 

also make “predictions” about other properties)  

�  3 parts/goals:  
¡  Large scale statistical properties of large networks  
¡  Models that help understand these properties  
¡  Predict behavior of networked systems based on measured 

structural properties and local rules governing individual 
nodes  

Motivation 



�  What do we study in networks?  
¡  Structure and evolution:  

÷ What is the structure of a network?  
÷ Why and how did it became to have such 

structure?  

�  Processes and dynamics:  
¡  Networks provide “skeleton” for 

spreading of information, behavior, 
diseases  
÷ How do information and diseases spread?  

Motivation 

What do we study in networks? 
 Structure and evolution:  

 What is the structure of a network? 
 Why and how did it became to have  

such structure? 
 Processes and dynamics: 

 Networks  provide  “skeleton” 
for spreading of information, 
behavior, diseases 

 How do information and  
diseases spread? 
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�  Why is the role of networks expanding?  
¡  Data availability 

÷ Rise of Mobile, Web 2.0 and Social media  
¡  Universality 

÷ Networks from science, nature, and technology are more similar 
than one would expect  

¡  Shared vocabulary between fields 
÷ Computer Science, Social science, Physics, Economics, Statistics, 

Biology  
¡  Impact!  

÷ Social networking, Social media, Drug design 
 

Why Networks? Why Now? 



�  Network data: Orders of magnitude  
¡  436-node network of email exchange at a corporate research 

lab [Adamic-Adar, SocNets ‘03]  
¡  43,553-node network of email exchange at an university 

[Kossinets-Watts, Science ‘06]  
¡  4.4-million-node network of declared friendships on a 

blogging community [Liben-Nowell et al., PNAS ‘05]  
¡  240-million-node network of communication on Microsoft 

Messenger [Leskovec-Horvitz, WWW ’08]  
¡  800-million-node Facebook network [Backstrom et al. ‘11]  

Networks: Size Matters 



�  If you were to understand the spread of diseases, can 
you do it without social networks?  

�  If you were to understand the WWW structure and 
information, hopeless without invoking the Web’s 
topology.  

�  If you want to understand dissemination of news or 
evolution of science, it is hopeless without 
considering the information networks  

Networks Really Matter 



�  Social network analysis: sociologists and computer 
scientists – influence goes both ways  
¡  Large‐scale network data in “traditional” sociological domains  

÷ Friendship and informal contacts among people 
÷ Collaboration/influence in companies, organizations, professional 

communities, political movements, markets, ...  
¡  Emerge of rich social structure in computing applications  

÷ Content creation, on‐line communication, blogging, social 
networks, social media, electronic markets, ...  

÷ People seeking information from other people vs. more formal 
channels: MySpace, del.icio.us, Flickr, LinkedIn, Yahoo Answers, 
Facebook, ...  

 
Networks – Social and Technological  



�  Leonhard Euler, 1875 
�  As pontes de Königsberg: 

¡  “Pode alguém caminhar pelas 7 
pontes sem nunca cruzar a mesma 
ponte duas vezes?” 

�  A resposta: não é possível, 
pois o grafo precisa ter no 
máximo dois nós com grau 
ímpar; 

�  Surgimento Teoria dos Grafos 

Como tudo começou... 

Appel & Hruschka - SBBD 2011 
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Examples of NetworksExamples�of�Networks
(b) (c)

(a)

� Internet (a)

(d)(e)

� Internet�(a)
� Citation�network�(b)
� World Wide Web (c)

� Sexual�network�(d)
� Dating�network(e)

� World�Wide�Web�(c)

Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ4

Examples of Networks  



�  Information networks: 
¡  World Wide Web: hyperlinks  
¡  Citation networks 
¡  Blog networks  

�  Social networks: people + 
interactions  
¡  Organizational networks  
¡  Communication networks  
¡  Collaboration networks 
¡  Sexual networks  

�  Technological networks:  
¡  Power grid  
¡  Airline, road, river networks  
¡  Telephone networks 
¡  Internet 
¡  Autonomous systems  

Networks of the Real‐world (1) CMU�SCS

Networks of the RealͲworld (1)Networks�of�the�Real world�(1)
� Information�networks:

� World�Wide�Web:�hyperlinks
Cit ti t k� Citation�networks

� Blog�networks
� Social�networks:�people�+�

interactions Fl f iliinteractions
� Organizational�networks
� Communication�networks�
� Collaboration networks

Florence families Karate club network

� Collaboration�networks
� Sexual�networks�
� Collaboration�networks

� Technological networks:Technological�networks:
� Power�grid
� Airline,�road,�river�networks
� Telephone�networkse ep o e et o s

� Internet

� Autonomous�systems

Collaboration networkFriendship network

Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ5



�  Biological networks 
¡  metabolic networks  
¡  food web  
¡  neural networks  
¡  gene regulatory networks  

�  Language networks  
¡  Semantic networks  

�  Software networks 

Networks of the Real‐world (2) CMU�SCS

Networks of the RealͲworld (2)Networks�of�the�Real world�(2)

� Biological networksBiological�networks
� metabolic�networks

� food�web

� neural�networks

� gene�regulatory�
k

Yeast protein
interactions

Semantic network

networks

� Language�networks
S ti t k� Semantic�networks

� Software�networks

� … Language network
Software network

Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ6



The emergence of ‘cyberspace’ and the World Wide 
Web is like the discovery of a new continent.  
�  Jim Gray, 1998 Turing Award address 

 
�  Complex networks as phenomena, not just designed 

artifacts  
�  What are the common patterns that emerge?  
 

Networks as Phenomena  



We want Kepler’s Laws of Motion for the Web.  
�  Mike Steuerwalt, NSF KDI workshop, 1998 

�  Need statistical methods and tools to quantify large 
networks  

�  What do we hope to achieve from models of 
networks?  
¡  Patterns and statistical properties of network data  
¡  Design principles and models  
¡  Understand why networks are organized the way they are 

(predict behavior of networked systems)  

Models and Laws of Networks  



�  Mining social networks has a long history in social sciences:  
¡  Wayne Zachary’s PhD work (1970‐72): observe social ties and rivalries in a 

university karate club 
¡  During his observation, conflicts led the group to split 
¡  Split could be explained by a minimum cut in the social network  

Mining Social Network Data  

CMU�SCS

Mining Social Network DataMining�Social�Network�Data

� Mining social networks has a long history in social sciences:Mining�social�networks�has�a�long�history�in�social�sciences:
� Wayne�Zachary’s�PhD�work�(1970Ͳ72):�observe�social�ties�and�

rivalries�in�a�university�karate�club
� During�his�observation,�conflicts�led�the�group�to�splitg , g p p
� Split�could�be�explained�by�a�minimum�cut�in�the�social�network

Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ9



�  Traditional obstacle:  
�  Can only choose 2 of 3:  

¡  Large‐scale 
¡  Realistic 
¡  Completely mapped  

�  Now: large on‐line systems leave detailed records of 
social activity  
¡  On‐line communities: MyScace, Facebook, LiveJournal  
¡  Email, blogging, electronic markets, instant messaging  
¡  On‐line publications repositories, arXiv, MedLine  

Networks: Rich Data  



�  How does massive network data compare to small‐
scale studies?  

�  Massive network datasets give you both more and 
less:  
¡  More: can observe global phenomena that are genuine, but 

literally invisible at smaller scales  
¡  Less: don’t really know what any node or link means. Easy to 

measure things, hard to pose right questions  
¡  Goal: Find the point where the lines of research converge  

Scale Matters 



�  What have we learned about large networks?  
�  We know about the structure: Many recurring 

patterns  
¡  Scale‐free, small‐world, locally clustered, bow‐tie, hubs and 

authorities, communities, bipartite cores, network motifs, 
highly optimized tolerance  

�  We know about the processes and dynamics  
¡  Cascades, epidemic threshold, viral marketing, virus 

propagation, threshold model 
 

Structure vs. Process  



�  What is the structure of a large network?  
�  Why and how did it became to have such structure?  

Structure of Networks  

CMU�SCS

Structure of NetworksStructure�of�Networks

� What�is�the�structure�of�a�large�network?
� Why�and�how�did�it�became�to�have�such�

t t ?structure?

Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ14



�  One of the networks is a spread of a disease, the 
other one is product recommendations  

�  Which is which? ☺�
 

Diffusion in Networks  

CMU�SCS

Diffusion in NetworksDiffusion�in�Networks

� One of the networks is a spread of a disease� One�of�the�networks�is�a�spread�of�a�disease,�
the�other�one�is�product�recommendations

h h h h -� Which�is�which?�-
Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ15



�  Sociologists were first to study networks: 
¡  Study of patterns of connections between people to understand 

functioning of the society  
¡  People are nodes, interactions are edges  
¡  Questionnaires are used to collect link data (hard to obtain, 

inaccurate, subjective)  
¡  Typical questions: Centrality and connectivity  

�  Limited to small graphs (~100 nodes) and properties 
of individual nodes and edges  

Traditional approach  



�  Large networks (e.g., web, internet, on‐line social 
networks) with millions of nodes  

�  Many traditional questions not useful anymore:  
¡  Traditional: What happens if a node u is removed?  
¡  Now: What percentage of nodes needs to be removed to affect 

network connectivity?  

�  Focus moves from a single node to study of 
statistical properties of the network as a whole  

Motivation: New approach (1)  



�  How the network “looks like” even if I can’t look at 
it?  

�  Need statistical methods and tools to quantify large 
networks  

�  3 parts/goals: 
¡  Statistical properties of large networks  
¡  Models that help understand these properties  
¡  Predict behavior of networked systems based on measured 

structural properties and local rules governing individual 
nodes  

Motivation: New approach (2) 



�  Six degrees of separation [Milgram 60s]  
¡  Random people in Nebraska were asked to send letters to stock 

brokers in Boston  
¡  Letters can only be passed to first‐name acquaintances  
¡  Only 25% letters reached the goal 
¡  But they reached it in about 6 steps  

Small‐world effect (1) � Six degrees of separation
[Milgram 60s]:
� Random people in Nebraska 

were asked to send letters to 
stock brokers in Boston

� Letters can only be passed to 
first-name acquaintances

� On average letters reached the 
goal in 6 steps

6/14/2009 Jure Leskovec, ICML '09 33
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�  Microsoft Messenger network  
¡  180 million people  
¡  1.3 billion edges  
¡  Edge if two people exchanged at least one message in one 

month period  

Small‐world effect (2) 

CMU�SCS

SmallͲworld effect (2)Small world�effect�(2)

108

[Leskovec&Horvitz,07]

� Distribution�of�shortest�
path�lengths�
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MSN Messenger

Average path length is 6.6
90% of nodes is reachable <8 steps

Hops Nodes

0 1

1 10

2 78

3 3,96

4 8,648

5 3,299,252

6 28,395,849

7 79,059,497

8 52,995,778

9 10,321,008

10 1,955,007

11 518,410

12 149,945

13 44,616

14 13,740

15 4,476

16 1,542

17 536

18 167

19 71

20 29

21 16

22 10

23 3

24 2

25 3
6/14/2009 Jure Leskovec, ICML '09

[Leskovec-Horvitz  WWW ‘08]

Average path 
length is 6.6 
90% of nodes is 
reachable <8 
steps  
 



� Measuring path lengths:  
¡  Diameter (longest shortest path): max dij  
¡  Effective diameter: distance at which 90% of all 

connected pairs of nodes can be reached  
¡  Mean geodesic (shortest) distance l  

Measuring diameter 

CMU�SCS

SmallͲworld effect (1)Small world�effect�(1)
� Six�degrees�of�separation [Milgram 60s]

R d l i N b k k d t d l tt t t k� Random�people�in�Nebraska�were�asked�to�send�letters�to�stock�
brokes in�Boston

� Letters�can�only�be�passed�to�firstͲname�acquaintances
� Only 25% letters reached the goal� Only�25%�letters�reached�the�goal
� But�they�reached�it�in�about�6 steps

� Measuring�path�lengths:�
� Diameter�(longest�shortest�path):�max dij
� Effective�diameter:�distance�at�which�90%�of�all�connected�pairs�

of�nodes�can�be�reached
M d i ( h ) di l� Mean�geodesic�(shortest)�distance�l

oror
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�  Efetivo 

Diâmetro Efetivo 

Appel & Hruschka - SBBD 2010 
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�  Efetivo 
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�  Diâmetro Efetivo: 
¡  É o menor número de “arestas” em que no mínimo 90% de 

todos os nós da maior componente conexa do grafo podem ser 
alcançados entre si 

¡  É um valor mais robusto que o diâmetro tradicional 
÷ somente os pares de nós conexos são considerados  
÷ a direção das arestas (no caso de grafos direcionados) são 

ignoradas 
÷ experimentos mostram que o diâmetro efetivo exibe 

comportamento qualitativamente similar ao diâmetro tradicional 
¡  Principal algoritmo é o ANF que calcula o diâmetro efetivo em 

O(N) 

Diâmetro Efetivo 
57 

Palmer, C. R.; Gibbons, P. B. & Faloutsos, C. ANF: A Fast and Scalable 
Tool for Data Mining in Massive Graphs KDD 2002, 1, 81-90 



Gráfico Hop-Plot 
58 



�  Let pk denote a fraction of nodes with degree k  
�  We can plot a histogram of pk vs. k  
�  In a (Erdos‐Renyi) random graph degree distribution 

follows Poisson distribution  
�  Degrees in real networks are heavily skewed to the right  
�  Distribution has a long tail of values that are far above 

the mean  
�  Power‐law [Faloutsos et al], Zipf’s law, Pareto’s law, Long 

tail, Heavy‐tail  
�  Many things follow Power‐law:  

¡  Amazon sales,  
¡  word length distribution,  
¡  Wealth, Earthquakes, ...  

Degree distributions (1)  

CMU�SCS

Degree distributions (1)Degree�distributions�(1)

� Let�pk denote�a�fraction�of�nodes�with�degree�k
� We�can�plot�a�histogram�of�pk vs.�k
� In�a�(ErdosͲRenyi)�random�graph�degree�distribution�

follows�Poisson�distribution
� Degrees�in�real�networks�are�heavily�skewed�to�the�

right
� Distribution�has�a�long�tail�of�values�that�are�far�above�g

the�mean
� PowerͲlaw�[Faloutsos et�al],�Zipf’s law,�Pareto’s�law,�

Long�tail,�HeavyͲtailg , y
� Many�things�follow�PowerͲlaw:

� Amazon�sales,
� word�length�distribution,�g ,
� Wealth,�Earthquakes,�…
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Degree distributions (1)Degree�distributions�(1)
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� We�can�plot�a�histogram�of�pk vs.�k
� In�a�(ErdosͲRenyi)�random�graph�degree�distribution�

follows�Poisson�distribution
� Degrees�in�real�networks�are�heavily�skewed�to�the�

right
� Distribution�has�a�long�tail�of�values�that�are�far�above�g

the�mean
� PowerͲlaw�[Faloutsos et�al],�Zipf’s law,�Pareto’s�law,�

Long�tail,�HeavyͲtailg , y
� Many�things�follow�PowerͲlaw:

� Amazon�sales,
� word�length�distribution,�g ,
� Wealth,�Earthquakes,�…

Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ27



�  Many real world 
networks contain hubs: 
highly connected nodes  

�  We can easily 
distinguish between 
exponential and power‐
law tail by plotting on 
log‐lin and log‐log axis  

�  Power‐law is a line on 
log‐log plot  

Degree distributions (2)  

For statistical tests and estimation see 
Clauset‐Shalizi‐Newman 2007  



�  Power law degree exponent is typically 2 < α < 3  
¡  Web graph [Broder et al. 00]:  

÷ αin = 2.1, αout = 2.4  
¡  Autonomous systems [Faloutsos et al. 99]:  

÷ α = 2.4  

¡  Actor collaborations [Barabasi- Albert 00]:  
÷ α = 2.3  

¡  Citations to papers [Redner 98]:  
÷ α ≈ 3  

¡  Online social networks [Leskovec et al. 07]:  
÷ α ≈ 2  

Power Law degree expoents 



Poisson vs. Scale‐free network  
62 

Poisson network 

Function is 
scale free if: 
f(ax) = c f(x) 

(Erdos-Renyi random graph) 

Degree distribution is Poisson 

Degree 
distribution 
is Power-law 

Scale-free (power-law) network 



�  The basic role of triadic closure in social networks 
has motivated the formulation of simple social 
network measures to capture its prevalence.  

�  The clustering coefficient of a node A is defined as 
the probability that two randomly selected friends of 
A are friends with each other. In other words, it is 
the fraction of pairs of A’s friends that are connected 
to each other by edges.  



�  Em uma rede social, nós são pessoas 
e as arestas são os relacionamentos; 

�  Sabe-se que se A é amigo de B que é 
amigo de C, há uma grande chance 
de A ser/se tornar amigo de C. 

�  A transitividade significa a presença 
de um alto número de triângulos 
(D(vi)) na rede. 

Triângulos 
64 



�  indicar quão próximo o grafo está de ser um grafo 
completo 

�  Do nó 

�  Da rede 

Coeficiente de Clusterização 
65 



�  Além do grau do nó os triângulos também seguem 
uma lei de potência 

Triângulos 
66 

Epinions 
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Tsourakakis, C. E. 
Fast Counting of Triangles in 
Large Real Networks without 
Counting: Algorithms and 
Laws 
ICDM '08, IEEE Computer 
Society, 2008, 608-617 



�  We observe how the 
connectivity (length of the 
paths) of the network changes 
as the vertices get removed 
[Albert et al. 00; Palmer et al. 
01]  

�  Vertices can be removed: 
¡  Uniformly at random 
¡  In order of decreasing degree  

�  It is important for 
epidemiology  
¡  Removal of vertices corresponds to 

vaccination  

Network resilience (1)  
CMU�SCS

Network resilience (1)Network�resilience�(1)

� We�observe�how�the�
connectivity (length�of�the�
paths)�of�the�network�
changes�as�the�vertices�get�
removed�[Albert�et�al.�00;�
Palmer�et�al.�01]

� Vertices can be removed:Vertices�can�be�removed:
� Uniformly�at�random
� In�order�of�decreasing�degree

� It is important for� It�is�important�for�
epidemiology
� Removal�of�vertices�

corresponds to vaccinationcorresponds�to�vaccination

Leskovec&Faloutsos,�WWW�2008 Part�1Ͳ30



�  Real‐world networks 
are resilient to random 
attacks 
¡  One has to remove all web‐

pages of degree > 5 to 
disconnect the web  

¡  But this is a very small 
percentage of web pages  

�  Random network has 
better resilience to 
targeted attacks  

Network resilience (2)  

letters to nature

380 NATURE | VOL 406 | 27 JULY 2000 | www.nature.com

are believed to have a diameter of around six21. To compare the two
network models properly, we generated networks that have the same
number of nodes and links, such that P(k) follows a Poisson
distribution for the exponential network, and a power law for the
scale-free network.

To address the error tolerance of the networks, we study the
changes in diameter when a small fraction f of the nodes is removed.
The malfunctioning (absence) of any node in general increases the
distance between the remaining nodes, as it can eliminate some
paths that contribute to the system’s interconnectedness. Indeed, for
the exponential network the diameter increases monotonically with
f (Fig. 2a); thus, despite its redundant wiring (Fig. 1), it is increas-
ingly difficult for the remaining nodes to communicate with each
other. This behaviour is rooted in the homogeneity of the network:
since all nodes have approximately the same number of links, they
all contribute equally to the network’s diameter, thus the removal of
each node causes the same amount of damage. In contrast, we
observe a drastically different and surprising behaviour for the
scale-free network (Fig. 2a): the diameter remains unchanged under
an increasing level of errors. Thus even when as many as 5% of

the nodes fail, the communication between the remaining nodes
in the network is unaffected. This robustness of scale-free net-
works is rooted in their extremely inhomogeneous connectivity
distribution: because the power-law distribution implies that the
majority of nodes have only a few links, nodes with small
connectivity will be selected with much higher probability. The
removal of these ‘small’ nodes does not alter the path structure of
the remaining nodes, and thus has no impact on the overall network
topology.

An informed agent that attempts to deliberately damage a net-
work will not eliminate the nodes randomly, but will preferentially
target the most connected nodes. To simulate an attack we first
remove the most connected node, and continue selecting and
removing nodes in decreasing order of their connectivity k. Measur-
ing the diameter of an exponential network under attack, we find
that, owing to the homogeneity of the network, there is no
substantial difference whether the nodes are selected randomly or
in decreasing order of connectivity (Fig. 2a). On the other hand, a
drastically different behaviour is observed for scale-free networks.
When the most connected nodes are eliminated, the diameter of the
scale-free network increases rapidly, doubling its original value if
5% of the nodes are removed. This vulnerability to attacks is rooted
in the inhomogeneity of the connectivity distribution: the connec-
tivity is maintained by a few highly connected nodes (Fig. 1b),
whose removal drastically alters the network’s topology, and
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Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters 〈s〉 (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in
Fig. 2. The size S is defined as the fraction of nodes contained in the largest cluster (that is,
S ¼ 1 for f ¼ 0). a, Fragmentation of the exponential network under random failures
(squares) and attacks (circles). b, Fragmentation of the scale-free network under random
failures (blue squares) and attacks (red circles). The inset shows the error tolerance curves
for the whole range of f, indicating that the main cluster falls apart only after it has been
completely deflated. We note that the behaviour of the scale-free network under errors is
consistent with an extremely delayed percolation transition: at unrealistically high error
rates ( f max ! 0:75) we do observe a very small peak in 〈s〉 (〈smax〉 ! 1:06) even in the
case of random failures, indicating the existence of a critical point. For a and b we
repeated the analysis for systems of sizes N ¼ 1;000, 5,000 and 20,000, finding that the
obtained S and 〈s〉 curves overlap with the one shown here, indicating that the overall
clustering scenario and the value of the critical point is independent of the size of the
system. c, d, Fragmentation of the Internet (c) and WWW (d), using the topological data
described in Fig. 2. The symbols are the same as in b. 〈s〉 in d in the case of attack is
shown on a different scale, drawn in the right side of the frame. Whereas for small f we
have 〈s〉 ! 1:5, at f w

c ¼ 0:067 the average fragment size abruptly increases, peaking at
〈smax〉 ! 60, then decays rapidly. For the attack curve in d we ordered the nodes as a
function of the number of outgoing links, kout. We note that while the three studied
networks, the scale-free model, the Internet and the WWW have different g, 〈k〉 and
clustering coefficient11, their response to attacks and errors is identical. Indeed, we find
that the difference between these quantities changes only fc and the magnitude of d, S
and 〈s〉, but not the nature of the response of these networks to perturbations.
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Figure 4 Summary of the response of a network to failures or attacks. a–f, The cluster
size distribution for various values of f when a scale-free network of parameters given in
Fig. 3b is subject to random failures (a–c) or attacks (d–f). Upper panels, exponential
networks under random failures and attacks and scale-free networks under attacks
behave similarly. For small f, clusters of different sizes break down, although there is still a
large cluster. This is supported by the cluster size distribution: although we see a few
fragments of sizes between 1 and 16, there is a large cluster of size 9,000 (the size of the
original system being 10,000). At a critical fc (see Fig. 3) the network breaks into small
fragments between sizes 1 and 100 (b) and the large cluster disappears. At even higher f
(c) the clusters are further fragmented into single nodes or clusters of size two. Lower
panels, scale-free networks follow a different scenario under random failures: the size of
the largest cluster decreases slowly as first single nodes, then small clusters break off.
Indeed, at f ¼ 0:05 only single and double nodes break off (d). At f ¼ 0:18, the network
is fragmented (b) under attack, but under failures the large cluster of size 8,000 coexists
with isolated clusters of sizes 1 to 5 (e). Even for an unrealistically high error rate of
f ¼ 0:45 the large cluster persists, the size of the broken-off fragments not exceeding
11 (f).
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Poisson vs. Scale‐free network  



Exemplo 

427 Nós na GCC 

22 nós 

301 nós GCC 

574 nós GCC 

20% nós 



�  ShatterPlots 
¡  A simple and powerful algorithm to tease out patterns of real graphs, 

helping us to spot fake/masked graphs  
¡  Force a graph to reach a critical (“Shattering”) point, randomly 

deleting edges, and study its properties at that point.  

ShatterPlots (1) 



�  Node Shattering Ratio, which presents the relation of 
nodes at the Shattering point Nsp versus total 
number of nodes N of a graph.  

ShatterPlots (2) 



Arestas 

Appel & Hruschka - SBBD 2010 
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� Remoção de arestas 
¡  bond percolation: cada aresta é removida com 

probabilidade p 
÷ Falhas aleatória dos links 

¡  Ataque: causa grandes danos na rede com a remoção de 
poucas arestas 
÷ Estratégias: remover arestas que são mais suscetíveis a quebrar a 

rede ou aumentar os menores caminhos àbetweenness 



ShatterPlots 
74 

Medidasà Diâmetro, autovalores, triângulos, 
componente conexas, pares alcançáveis 



Shattering Point 
75 

Grande componente conexa e pares 
alcançáveis apresentam ponto 
critico mas APENAS o diâmetro 
tem um pico. 



Experimentos 
76 

�  19 redes reais; 
¡  AS-Oregon, AS-Caida, Enron, AuthorToPaper, Gnutella, Web-

Google, Berkley-Stanford, Epinions, etc. 

�  Redes sintéticas - triângulos; 
¡  Preferencial Attachment, Small-World, 2D Grid, Hierarchical; 
¡  ER à Validar resultados; 

�  Média de 10 Execuções; 



Perguntas 
77 

�  Todas as redes reais tem Shattering point? 
 

�  Quão próximas estão as redes reais do Shattering 
point? 

�  As redes sintéticas tem comportamento parecido ou 
não com as redes reais quanto ao Shattering Point? 

Todas as redes testadas possuem um Shattering Point. 

As redes reais estão longe do Shattering Point 



30% 
78 



NodeShatteringRatio 
79 

Muitos nós 



TriangleRatio 
80 



TreeGcc 
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Comportamento de 
uma árvore 



RootDegree 
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Eigenvalue 
83 



Escalabilidade 
84 

�  ER à variar o tamanho e mesmo comportamento; 

Esp ≥ Et*1/λ1 

SP Eigenvalue 

SP Proporcional 

SP Proporcional 

SP Eigenvalue 



�  Conventional wisdom/intuition: 
¡  Constant average degree: the number of edges grows linearly 

with the number of nodes  

�  Slowly growing diameter: as the network grows the 
distances between nodes grow  

What about evolving graphs?  



�  A simple question: What is the relation between the 
number of nodes and the number of edges in a network 
over time?  

�  Let: 
¡  N(t) ... nodes at time t  
¡  E(t) ... edges at time t  

�  Suppose that:  
¡  N(t+1) = 2 * N(t)  

�  Q: what is your guess for  
¡  E(t+1) =? 2 * E(t)  

�  A: over‐doubled! 
¡  But obeying the Densification Power Law [KDD05]  

Networks over time: Densification  

x



�  Networks are denser over 
time  

�  The number of edges grows 
faster than the number of 
nodes – average degree is 
increasing  

 
 

¡  a ... densification exponent  
�  1 ≤ a ≤ 2:  

¡  a=1: linear growth – constant 
out‐ degree (assumed in the 
literature so far)  

¡  a=2: quadratic growth – clique  

Networks over time: Densification  
CMU�SCS

Networks over time: DensificationNetworks�over�time:�Densification

� Networks are denser over time
Internet
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�  Intuition and prior work 
say that distances 
between the nodes slowly 
grow as the network 
grows (like log n):  
¡  d ~ O(log N)  
¡  d ~ O(log log N)  

�  Diameter Shrinks/
Stabilizes over time  
¡  as the network grows the 

distances between nodes 
slowly decrease [KDD 05]  

Shrinking diameters  

CMU�SCS

Shrinking diametersShrinking�diameters

� Intuition and prior work say
Internet

Intuition�and�prior�work�say�
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� d ~ O(log N)

size of the graph
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Citations
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�  How does densification affect 
degree distribution?  

�  Densification:  
�  Degree distribution: pk=kγ  
�  Given densification exponent a, 

the degree exponent is [TKDD 
‘07]:  
¡  (a) For γ=const over time, we obtain 

densification only for 1<γ<2, and then it 
holds: γ=a/2  

¡  (b) For γ<2 degree distribution evolves 
according to:  

Densification & degree distribution  

CMU�SCS

Densification & degree distributionDensification�&�degree�distribution

� How�does�densification�affect�degree�
Case (a): Degree exponent 
Ȗ is constant over time. The 

net ork densifies 1 2
g

distribution?
� Densification:
� Degree distribution: kȖ

Ȗ(t)

network densifies, a=1.2

� Degree�distribution:�pk=kȖ
� Given�densification�exponent�a,�the�
degree�exponent�is�[TKDD�‘07]: time tg p [ ]
� (a)�For�Ȗ=const over�time,�we�obtain�
densification�only�for�1<Ȗ<2,�and�then�it�
holds:�Ȗ=a/2

Case (b): Degree exponent 
Ȗ evolves over time. The 
network densifies, a=1.6

� (b)�For�Ȗ<2 degree�distribution�evolves�
according�to:

Ȗ(t)

time t
Given: densification a, number of nodes n

Leskovec&Faloutsos,�WWW�2008
Given: densification a, number of nodes n  
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� Degree distribution: kȖ
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� Degree�distribution:�pk=kȖ
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� (a)�For�Ȗ=const over�time,�we�obtain�
densification�only�for�1<Ȗ<2,�and�then�it�
holds:�Ȗ=a/2

Case (b): Degree exponent 
Ȗ evolves over time. The 
network densifies, a=1.6

� (b)�For�Ȗ<2 degree�distribution�evolves�
according�to:

Ȗ(t)

time t
Given: densification a, number of nodes n

Leskovec&Faloutsos,�WWW�2008



�  Compare diameter of a:  
¡  True network (red)  
¡  Random network with the same degree distribution (blue)  

Diameter of a rewired network 

Compare diameter of a:
� True network (red)
� Random network with 

the same degree 
distribution (blue)

47
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Densification + degree sequence 
give shrinking diameter

6/14/2009 Jure Leskovec, ICML '09

Densification + 
degree sequence 

give shrinking 
diameter  



�  These patterns can be observed in many real world 
networks:  
¡  World wide web [Barabasi] 
¡  On‐line communities [Holme, Edling, Liljeros] 
¡  Who call whom telephone networks [Cortes] 
¡  Internet backbone – routers [Faloutsos, Faloutsos, Faloutsos]  
¡  Movies to actors network [Barabasi] 
¡  Science citations [Leskovec, Kleinberg, Faloutsos] 
¡  Click‐streams [Chakrabarti] 
¡  Autonomous systems [Faloutsos, Faloutsos, Faloutsos] 
¡  Co‐authorship [Leskovec, Kleinberg, Faloutsos] 
¡  Sexual relationships [Liljeros]  

Properties hold in many graphs  



�  Most social networks show 
community structure 
¡  groups have higher density of edges 

within than across groups 
¡  People naturally divide into groups based 

on interests, age, occupation, … 
�  How to find communities: 

¡  Spectral clustering (embedding into a low-
dim space) 

¡  Hierarchical clustering based on 
connection strength 

¡  Combinatorial algorithms (min cut style 
formulations) 

¡  Block models 
¡  Diffusion methods 

Community structure 

Leskovec&Faloutsos ECML/PKDD 2007 

Part 
1-92 

Friendship network of 
children in a school 



�  Detecção de cluster divisivo e hierarquico baseado na 
noção de betweenness: 

�  Número de caminhos mínimos que passam por cada 
aresta. 

�  Remover as aresta de modo decrescer o betweenness 

Girvan-Newman 
93 

Girvan, M. & Newman, M. E. J. 
Community structure in social and 
biological networks 
Proc. Natl. Acad. Sci. USA, 2002, 99 



Spectral Partition 

Appel & Hruschka - SBBD 2010 

94 



CrossAssociation 

Appel & Hruschka - SBBD 2010 

95 

Chakrabarti, D.; Papadimitriou, S.; Modha, D. S. & Faloutsos, C. 
Fully automatic cross-associations KDD 2004, 79-88 



NCP - Plot 

Appel & Hruschka - SBBD 2010 
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�  Maioria das comunidade à cerca de 100 nós 
(número de Dunbar) 

�  Estrutura redes complexas grandes diferente das 
pequenas 

NCP - Plot 

Appel & Hruschka - SBBD 2010 
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�  The timeline of graph models: 
¡  (Erdos-Renyi) Random graphs (1960s) 
¡  Exponential random graphs 
¡  Small-world model 
¡  Preferential attachment 
¡  Edge copying model 
¡  Community guided attachment 
¡  Forest fire 
¡  Kronecker graphs (today) 

Models: Outline 



�  What is the simplest way to generate a graph?  
�  Random graph model (Erdos‐Renyi model, Poisson 

random graph model):  
¡  Given n vertices connect each pair i.i.d. with probability p  

�  How good (“realistic”) is this graph generator?  

Graphs and networks  



Grafos vs. Redes Complexas 

Appel & Hruschka - SBBD 2011 
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�  Difere dos grafos tradicionais: 
¡  Grafos regulares (lattice) 

�  Novos grafos: Estrutura Complexa 
�  Grafos à Rede Complexa 
�  Modelo de grafo randômico: 

¡  Modelo Erdos-Renyi ou Poisson random graph model: 
¡  Dado n nós conectar cada par de nó com probabilidade p 

�  Não é um gerador muito realista.. Mais detalhes a 
seguir!! 



� Also known as Poisson random graphs or Bernoulli 
graphs [Erdos&Renyi, 60s] 
¡  Given n vertices connect each pair i.i.d. with probability p 

� Two variants: 
¡  Gn,p: graph with m edges appears with probability pm(1-

p)M-m, where M=0.5n(n-1) is the max number of edges 
¡  Gn,m: graphs with n nodes, m edges 

� Does not mimic reality  
� Very rich mathematical theory: many properties 

are exactly solvable 

(Erdos-Renyi) Random graph 



Fase de Transição 

Appel & Hruschka - SBBD 2010 
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Média do Grau 

Ta
m

an
ho

 G
C

C
 

av deg = 0.99 av deg = 1.18 av deg = 3.96 

Fase de transição (Percolation threshold): 
Quantas arestas devem ser inseridas até a 
maior componente conexa aparecer? 
Média do grau z = 1, a GCC aparece 
z<1 rede desconexa e z> 1 rede fortemente 
conexa 



�  Seja A a matriz de adjacência do grafo 
�  O autovalor λ é: 
�  A v = λ v, na qual v é um vetor qualquer 
�  Os autovalores são fortemente relacionados a 

topologia do grafo 
�  Por exemplo, ajudam a responder: 

¡  Quão importante é um nó? 

Autovalores e autovetores 

Appel & Hruschka - SBBD 2010 
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�  Dependende se o grafo é representado com uma 
matriz de adjacência ou a Laplaciana os autovalores 
tem diferente significado. 

 
�  Laplaciana: 

¡  A multiplicidade do valor zero entre os autovalores de L(G) é 
igual ao número de componentes conexas. 

¡  O segundo menor autovetor é usado para detectar 
comunidades 

Autovalores e autovetores 

Appel & Hruschka - SBBD 2010 
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�  Autovalores 

�  Se a rede não possui ciclos 

�  A soma do quadrado dos autovalores é igual ao 
número de arestas da rede 

Propriedades 

Appel & Hruschka - SBBD 2010 
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Page Rank 
106 

�  PR é um vetor com o valor do PageRank da 
matriz A 

�  d  é o fator de “pulo” e esta entre 0 < d < 1, 
usualmente é 0.85 

PRt+1 = (1-d)/n + d*A*PRt 

PageRank é a distribuição de probabilidade usada para 
representar a verossimilhança que uma pessoa clica 
randomicamente em um link que  vai para um determinada 
página 

Número de  links saindo de uma página que aponta para a sua 
página. Quanto menos melhor 
Número de links entrando. Quanto mais melhor. 
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Page, L.; Brin, S.; Motwani, R. & Winograd, T. The PageRank Citation Ranking: 
Bringing Order to the Web Stanford Digital Library, 1998 



�  Gives insight into the graph formation process:  
¡  Anomaly detection – abnormal behavior, evolution  
¡  Predictions – predicting future from the past  
¡  Simulations of new algorithms where real graphs are hard/

impossible to collect  
¡  Graph sampling – many real world graphs are too large to 

deal with  
¡  “What if” scenarios  

Why should we care?  



�  Part 1: Statistical properties of static and evolving 
networks.  
¡  Power law degree distributions found in static networks  
¡  Small world phenomena and six degrees of separation  
¡  Densification of time evolving networks  
¡  Shrinking diameters of growing networks  
¡  Communities and clusters in networks  

�  Part 2: Link predictions in complex networks.  
¡  Link Prediction 

÷ Link existence 
÷ Link weight 
÷ Link type 
÷ Link cardinality 

¡  Applications 

Outline 



¡  Rich social structure in online 
computing applications 

¡  Such structures are modeled  
by networks 

¡  Most social network analyses 
view links as positive 
§  Friends 
§  Fans 
§  Followers 

¡  But generally links can convey 
either friendship or antagonism 

Social Interaction on the Web 
109	  



� Link prediction in a evolving network:  

¡ Task: Given G[t0,t0’] a graph on edges up to time 
t0’ output a ranked list L of links (not in G[t0,t0’]) 
that are predicted to appear in G[t1,t1’]  

¡ Evaluation: n=|Enew|: # new edges that appear 
during the test period [t1,t1’] 
Take top n elements of L and count correct edges  

Link Prediction via node distance 



�  Network modeling is all about predicting links but so 
far we have not tackled this problem directly  

�  Task: predict missing links in a network  
¡  In a evolving network  
¡  In a static network 

�  2 types of approaches:  
¡  Node distance approaches: 

÷ define a distance function, closer nodes are more likely to link  

¡  Statistical approaches: 
÷ Design a model of link creation and fit to data  

Link Prediction in Networks 



�  Take the input graph during a training period 
[G0=(V,E)] 

�  Pick a pair of nodes (u,v) 
�  Assign a connection weight score (u,v) 
�  Make a list in descending order of score  
�  Verify the prediction on the future graph 

[G1=(V,Enew)]  

Methods for Link Prediction     

score is a measure of proximity / similarity 



�  Node similarity can be defined by using the essential 
attributes of nodes:  
¡  two nodes are considered to be similar if they have many 

common features.  

�  The attributes of nodes are generally hidden 
�  Thus structural similarity is used, which is based 

solely on the network structure.  

Methods for Link Prediction  



�  If two people in a social network have a friend in 
common, then there is an increased likelihood that 
they will become friends themselves at some point in 
the future   

Reminder 



Link Prediction Task 

Link 
Prediction 

Link Type 

Link 
Existence 

Link Weight 

Link 
Cardinality 
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�  Unsupervised measurements could rely on different 
structural property:  

�  Neighborhood measures 
¡  Common Neighbors, Adamic Adar, Jaccard, Preferential 

Attachment 

�  Path-based measures  
¡  Graph distance, Katz  

�  Ranking  
¡  Sim Rank, Hitting time, Page Rank  

Unsupervised Link Prediction  



�  “How many friends we have to share in order to 
become friends?”  

�  Common Neighbors: the more friends we share, the 
more likely that we will become friends  

Neighborhood Measures  

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs 〈x, y〉 by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
〈x, y〉 is more likely to form if edges 〈x, z〉 and 〈z, y〉 are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.

5



�  Jaccard: the more similar our friends circles are, the 
more likely that we will become friends  

Neighborhood Measures  

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs 〈x, y〉 by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
〈x, y〉 is more likely to form if edges 〈x, z〉 and 〈z, y〉 are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.

5



�  Adamic Adar: the more selective our mutual friends 
are, the more likely that we will become friends  

Neighborhood Measures  

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs 〈x, y〉 by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
〈x, y〉 is more likely to form if edges 〈x, z〉 and 〈z, y〉 are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.

5



�  Preferential Attachment: more friends we have, the 
more likely that we will become friends  

Neighborhood Measures  

discuss them in more detail. We note that some of these measures are designed only for connected
graphs; since each graph Gcollab that we consider has a giant component—a single component
containing most of the nodes—it is natural to restrict the predictions for these measures to this
component.

Perhaps the most basic approach is to rank pairs 〈x, y〉 by the length of their shortest path in
Gcollab . Such a measure follows the notion that collaboration networks are “small worlds,” in which
individuals are related through short chains [18]. (In keeping with the notion that we rank pairs
in decreasing order of score(x, y), we define score(x, y) here to be the negative of the shortest path
length.) Pairs with shortest-path distance equal to 1 are joined by an edge in Gcollab , and hence
they belong to the training edge set Eold . For all of our graphs Gcollab , there are well more than n
pairs at shortest-path distance two, so our shortest-path predictor simply selects a random subset
of these distance-two pairs.

Methods based on node neighborhoods. For a node x, let Γ(x) denote the set of neighbors
of x in Gcollab . A number of approaches are based on the idea that two nodes x and y are more
likely to form a link in the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this
follows the natural intuition that such nodes x and y represent authors with many colleagues in
common, and hence are more likely to come into contact themselves. Jin et al. [11] and Davidsen
et al. [5] have defined abstract models for network growth using this principle, in which an edge
〈x, y〉 is more likely to form if edges 〈x, z〉 and 〈z, y〉 are already present for some z.

• Common neighbors. The most direct implementation of this idea for link prediction is to define
score(x, y) := |Γ(x) ∩ Γ(y)|, the number of neighbors that x and y have in common. Newman [17]
has computed this quantity in the context of collaboration networks, verifying a correlation between
the number of common neighbors of x and y at time t, and the probability that they will collaborate
in the future.

• Jaccard’s coefficient and Adamic/Adar. The Jaccard coefficient—a commonly used similarity
metric in information retrieval [24]—measures the probability that both x and y have a feature f ,
for a randomly selected feature f that either x or y has. If we take “features” here to be neighbors
in Gcollab , this leads to the measure score(x, y) := |Γ(x)∩Γ(y)|/|Γ(x)∪Γ(y)|. Adamic and Adar [1]
consider a related measure, in the context of deciding when two personal home pages are strongly
“related.” To do this, they compute features of the pages, and define the similarity between two
pages to be ∑

z : feature shared by x, y

1
log(frequency(z))

.

This refines the simple counting of common features by weighting rarer features more heavily. This
suggests the measure score(x, y) :=

∑
z∈Γ(x)∩Γ(y)

1
log |Γ(z)| .

• Preferential attachment has received considerable attention as a model of the growth of net-
works [16]. The basic premise is that the probability that a new edge involves node x is proportional
to |Γ(x)|, the current number of neighbors of x. Newman [17] and Barabasi et al. [2] have further
proposed, on the basis of empirical evidence, that the probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x and y. This corresponds to the
measure score(x, y) := |Γ(x)| · |Γ(y)|.

Methods based on the ensemble of all paths. A number of methods refine the notion of
shortest-path distance by implicitly considering the ensemble of all paths between two nodes.

5



�  ”How distant we are?”  
�  Graph Distance: (negated) length of shortest path 

between u & v  
�  Katzβ: weighted sum over all the paths between u & v  

�  where: paths⟨l⟩
u,v ={paths of length exactly l from u to 

v}  

Path-based Measures  

Web Mining & Social Network Analysis

Unsupervised Link Prediction

Path-based Measures

Path-based Measures

”How distant we are?”

Graph Distance: (negated) length of shortest path between u & v

Katz�: weighted sum over all the paths between u & v

score(u, v) =
P1

l=1 �
l

���pathshli
u,v

���

where: pathshli
u,v ={paths of length exactly l from u to v}



�  “Two nodes are similar to the extent that they are 
joined by similar neighbors”  

SimRank  

Web Mining & Social Network Analysis

Unsupervised Link Prediction

Ranking

SimRank

”Two nodes are similar to the extent that they are joined by similar
neighbors”

similarity(u, v) = � ⇤
P

a2�(u)

P
n2�(v) similarity(a,b)

|�(u)|⇤|�(v)|

score(u, v) = similarity(u, v)
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Figure 5: Relative average performance of various predictors versus random predictions. The value
shown is the average ratio over the five datasets of the given predictor’s performance versus the
random predictor’s performance. The error bars indicate the minimum and maximum of this
ratio over the five datasets. The parameters for the starred predictors are: (1) for weighted Katz,
β = 0.005; (2) for Katz clustering, β1 = 0.001, ρ = 0.15, β2 = 0.1; (3) for low-rank inner product,
rank = 256; (4) for rooted Pagerank, α = 0.15; (5) for unseen bigrams, unweighted common
neighbors with δ = 8; and (6) for SimRank, γ = 0.8.
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�  How to learn to predict new friends 
in networks?  

�  Facebook’s People You May Know  
�  Looking at the data:  

¡  92% of new friendships on FB are 
friend-of-a-friend  

¡  More common friends helps  

Supervised Link Prediction 
125 

� How to learn to predict new friends in 
networks?
� Facebook’s People You May Know
� Let’s look at the data:
� 92% of new friendships on 

FB are friend-of-a-friend
� More common friends helps

u
w

v

3/29/2011 12Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)

[WSDM ‘11]



�  How do characteristics of users (e.g., age, gender, home 
town) interact with the creation of new edges?  

�  In a social network, there can be many reasons exogenous to 
the network for two users to become connected:  
¡  it could be that they met at a party, and then connected on it.  

÷  Same age, Same town 
¡  this link might also be hinted at by the structure of the network:  

÷  two people are more likely to meet at the same party if they are “close”  

�  A pair of people likely has friends in common, and travel in 
similar social circles.  

�  Despite the exogenous event (i.e., a party) there are clues in 
social networks which suggest a high probability of a future 
friendship.  

Supervised Link Prediction 



�  Supervised Random Walks  
¡  combines the network structure   
¡  the characteristics (attributes, features) of nodes  
¡  edges strengths of the network.  

�  Supervised way learns how to bias a PageRank-like 
random walk on the network  
¡  Visits given nodes (i.e., positive training examples) more often 

than the others.  
¡  Positive nodes are nodes to which new edges will be created in 

the future 
¡  Negative are all other nodes 

Supervised Link Prediction 



�  Recommend a list of possible 
friends  

�  Supervised machine learning 
setting:  
¡  Training example: 

÷ For every node s have a list of nodes that 
will create links to {v1, ..., vk}  

¡  Problem:  
÷ For a given node s learn to rank nodes 

{v1, ..., vk} higher than other nodes in the 
network  

�  Supervised Random Walks based on 
word by Agarwal&Chakrabarti  

Supervised Link Prediction � Recommend a list of possible friends
� Supervised machine learning setting:
� Training example:
� For every node s have a list of nodes 

she will create links to {v1, …, vk}
� Problem:
� For a given node s learn to rank

nodes {v1, …, vk} higher than other 
nodes in the network

� Supervised Random Walks based 
on word by Agarwal&Chakrabarti
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v1 v2

s

positive examples
negative examples

3/29/2011 Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)



�  Can computers learn to read? We think so.  
�  "Read the Web" is a CMU research project that attempts 

to create a computer system that learns over time to read 
the web.  

�  Since January 2010, the computer system called NELL 
(Never-Ending Language Learner) has been running 
continuously, attempting to perform two tasks each day: 
¡  First, it attempts to "read," or extract facts from text found in 

hundreds of millions of web pages (e.g., 
playsInstrument(George_Harrison, guitar)). 

¡  Second, it attempts to improve its reading competence, so that 
tomorrow it can extract more facts from the web, more accurately. 

Prophet + NELL 



�  Inputs:  
¡  initial ontology  
¡  handful of examples of each predicate in ontology  
¡  the web  
¡  occasional interaction with human trainers 

�  The task: 
¡  run 24x7, forever 
¡  each day:  

1.  extract more facts from the web to populate the initial ontology 
2.  learn to read (perform #1) better than yesterday 

NELL: Never-Ending Language Learner 



�  Today... 
�  Running 24 x 7, since January, 2010 
�  Input:  

¡  ontology defining ~500 categories and relations  
¡  10-20 seed examples of each  
¡  500 million web pages (ClueWeb – Jamie Callan) 

�  Result:  
¡  continuously growing KB with ~440,000 extracted beliefs 

NELL: Never-Ending Language Learner 



NELL 



�  http://rtw.ml.cmu.edu 

Read The Web Project 





New Categories 



New Relations 



� first order, probabilistic horn clause 
constraints 
¡  connects previously uncoupled relation predicates 
¡  infers new beliefs for KB 

Discover New Coupling Constraints 



�  How can NELL learn new relations?  
�  Specially the hidden ones ? 

Problem 



� NELL knowledge base is an ontology 
� A ontology can be mapped as a graph (rtwgraph) 
� Thus we can apply graph mining techniques 

Solution 



�  A link prediction component coupled to NELL to 
help the automatic ontology extension that predicts 
new rules and relations with a higher accuracy. 

�  The goal is to extend the traditional link prediction 
task to be applied in complex network data that 
represents knowledge extracted from the Web and 
thus predicts (infer) new relations and rules that are 
presented by edges.  

�  The results show that the use of a common 
neighboring measure with some heuristics helps 
NELL learn more and better. 

Prophet (DaMNet 2011) 



�  During the extraction phase there are some 
knowledge that NELL is not be able to learn.  

�  “Milwaukee Bucks is a basketball sport team which 
plays for NBA league.”  

�  NELL will be able of extract only  
¡  rules SportTeam and TeamPlaysInLeague in its beliefs.  

÷ SportTeam(Basketball,Milwaukee Bucks) 

÷ TeamPlaysInLeague(Milwaukee Bucks, NBA)  

Motivation 
141 



�  Two Graphs 
¡  RTWGRAPH à instanced graph 
¡  Rule graph à rules 

�  Which one should we use? à Both 
¡  RTWGRAPH à redundancy 
¡  Rules à few information 

Data 
142 



1.  Extend the KB by predicting new relations 
(edges)that might exist between pairs of nodes; 

2.  Predict new rules that might help NELL learn more 
and better; 

3.  Identify misplaced edges which can be used by 
NELL as hints to identify wrong connections 
between nodes (wrong knowledge); 

Goals 
143 



�  New relations à just close triangles ??? 

New Relations 
144 



Wrong combinations 

Google Belo Horizonte Vitória 

Brasil 

145 



Different Categories 

Terminator Governor 

Arnold Schwarzenegger 

politician actor 

146 



Redundancy 

Football NFL 

Panters 

147 



�  First all open triangles are found 
¡  Combining both graphs RTWGRAPH+Rules 

÷ Avoid combine instances from different categories 

Prophet 
148 



�  Compute the number of 
common neighbors 

�  For instanced nodes u and v and  
�  The cumulative number for the 

categories nodes 

Prophet 

u w 

?v 

Category u Category w 

ΣN(u,w) 

149 



Example 
150 



�  Problem 
¡  Rules with more instances have high probability of have more 

common neighbors 

 

Prophet 
151 



Prophet 

U	   V	   W	   vizinhos	   total	  

awardtrophytournament	  
coach	  

athlete	   5	   5	  
sportsteam	   1190	   1162	  

awardtrophytournament	   sportsteam	   sport	   217	   47	  

awardtrophytournament	  
coach	  

sportsleague	   4	   3	  
sportsteam	   236	   53	  

awardtrophytournament	   sportsteam	   stadiumoreventvenue	   164	   122	  
city	   company	   economicsector	   205	   178	  

company	   city	   newspaper	   2225	   2212	  

company	  
city	  

stateorprovince	   738	   669	  
country	   233	   233	  

currency	   country	   stateorprovince	   201	   138	  
economicsector	   company	   city	   190	   165	  

sport	   sportsteam	   awardtrophytournament	   234	   55	  

sport	  
athlete	  

coach	   12	   12	  
sportsteam	   127	   116	  

sport	  
athlete	  

sportsleague	  
716	   12	  

sportsteam	   249	   17	  
stadiumoreventvenue	   5	   4	  

sportsleague	  
coach	  

awardtrophytournament	   4	   3	  
sportsteam	   243	   58	  

sportsleague	  
athlete	  

sport	  
716	   12	  

sportsteam	   244	   13	  
stadiumoreventvenue	   5	   4	  

stadiumoreventvenue	   sportsteam	   awardtrophytournament	   170	   127	  

stateorprovince	  
city	  

company	   859	   780	  
country	   193	   193	  

152 



�  Normalize the cumulative number of neighbors 

�  Nc(uc,wc)=0 à all instanced rule only one neighbor 

�  Nc(uc,wc)>ξ à select rules 

Prophet 
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Prophet 

U	   V	   W	   vizinhos	   total	   diferença	  vizinhos	  

awardtrophytournament	  
coach	  

athlete	   5	   5	   0	  
sportsteam	   1190	   1162	   28	  

awardtrophytournament	   sportsteam	   sport	   217	   47	   170	  

awardtrophytournament	  
coach	  

sportsleague	   4	   3	   1	  
sportsteam	   236	   53	   183	  

awardtrophytournament	   sportsteam	   stadiumoreventvenue	   164	   122	   42	  
city	   company	   economicsector	   205	   178	   27	  

company	   city	   newspaper	   2225	   2212	   13	  

company	  
city	  

stateorprovince	   738	   669	   69	  
country	   233	   233	   0	  

currency	   country	   stateorprovince	   201	   138	   63	  
economicsector	   company	   city	   190	   165	   25	  

sport	   sportsteam	   awardtrophytournament	   234	   55	   179	  

sport	  
athlete	  

coach	   12	   12	   0	  
sportsteam	   127	   116	   11	  

sport	  
athlete	  

sportsleague	  
716	   12	   704	  

sportsteam	   249	   17	   232	  
stadiumoreventvenue	   5	   4	   1	  

sportsleague	  
coach	  

awardtrophytournament	   4	   3	   1	  
sportsteam	   243	   58	   185	  

sportsleague	  
athlete	  

sport	  
716	   12	   704	  

sportsteam	   244	   13	   231	  
stadiumoreventvenue	   5	   4	   1	  

stadiumoreventvenue	   sportsteam	   awardtrophytournament	   170	   127	   43	  

stateorprovince	  
city	  

company	   859	   780	   79	  
country	   193	   193	   0	  
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Mechanical Turkey 
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�  Another restriction to create the instances 
¡  Number of independent paths 

�  If the number of independent path is less than the 
original number of paths à the number of common 
neighbors (>ξ) is taken into account 

Prophet 
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Example 

En@ty	   U	   rela@on	   V	   rela@on	   En@dty	  	   W	   Neighbors	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   major_league_baseball	   sportsleague	   13	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   mlb	   sportsleague	   429	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   mlb	   sportsleague	   40	  
baseball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   mlb	   sportsleague	   1	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   nfl	   sportsleague	   1	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nfl	   sportsleague	   2	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nhl	   sportsleague	   1	  
soccer	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   1	  
basketball	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   44	  
basketball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nba	   sportsleague	   58	  
basketball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   nba	   sportsleague	   1	  
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Example 

En@ty	   U	   rela@on	   V	   rela@on	   En@dty	  	   W	   Neighbors	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   major_league_baseball	   sportsleague	   13	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   mlb	   sportsleague	   429	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   mlb	   sportsleague	   40	  
baseball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   mlb	   sportsleague	   1	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   nfl	   sportsleague	   1	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nfl	   sportsleague	   2	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nhl	   sportsleague	   1	  
soccer	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   1	  
basketball	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   44	  
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basketball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   nba	   sportsleague	   1	  
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Example 

En@ty	   U	   rela@on	   V	   rela@on	   En@dty	  	   W	   Neighbors	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   major_league_baseball	   sportsleague	   13	  
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baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nhl	   sportsleague	   1	  
soccer	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   1	  
basketball	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   44	  
basketball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nba	   sportsleague	   58	  
basketball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   nba	   sportsleague	   1	  
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Example 

En@ty	   U	   rela@on	   V	   rela@on	   En@dty	  	   W	   Neighbors	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   major_league_baseball	   sportsleague	   13	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   mlb	   sportsleague	   429	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   mlb	   sportsleague	   40	  
baseball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   mlb	   sportsleague	   1	  
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baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nhl	   sportsleague	   1	  
soccer	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   1	  
basketball	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   44	  
basketball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nba	   sportsleague	   58	  
basketball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   nba	   sportsleague	   1	  
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Example 

En@ty	   U	   rela@on	   V	   rela@on	   En@dty	  	   W	   Neighbors	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   major_league_baseball	   sportsleague	   13	  
baseball	   sport	   players	   athlete	   athleteplaysinleague	   mlb	   sportsleague	   429	  
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baseball	   sport	   players	   athlete	   athleteplaysinleague	   nfl	   sportsleague	   1	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nfl	   sportsleague	   2	  
baseball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nhl	   sportsleague	   1	  
soccer	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   1	  
basketball	   sport	   players	   athlete	   athleteplaysinleague	   nba	   sportsleague	   44	  
basketball	   sport	   sporHeam	   sportsteam	   teamplaysinleague	   nba	   sportsleague	   58	  
basketball	   sport	   sportusesstadium	   stadiumoreventvenue	   stadiumhometoleague	   nba	   sportsleague	   1	  
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Outlier 

Soccer NBA 

Cristiano Ronaldo 
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�  R1a(AwardTrophytournament, Athlete):- 
trophywonbycoaches(AwardTrophytournament, 
Coach), coachesathlete(Coach, Athlete), 
numberof(Coach) ≥ 10;  

�  R1b(AwardTrophytournament, Athlete):- 
trophywonbyteam(AwardTrophytournament, 
SportsTeam), teammember(SportsTeam, Athlete), 
numberof(SportsTeam) ≥ 10; 

�  R1c(AwardTrophytournament, Athlete):- 
trophywonbycoaches(AwardTrophytournament, 
Coach), coachesathlete(Coach, Athlete), 
trophywonbyteam (AwardTrophytournament, 
SportsTeam), teammember(SportsTeam, Athlete) 

Rules 
165 
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�  Graphs and corresponding hierarchies:  

Hierarchical Link Prediction (1) 

� Graphs and corresponding hierarchies:

6/14/2009 Jure Leskovec, ICML '09 66

[Clauset et al. Nature ‘08]



1.  Given a network generate a set of hierarchical 
random graphs that fit its structure.  

2.  Evaluate pairs of vertices with a high probability of 
connection within the sampled hierarchical 
random graphs.  

3.  Rank the results by sorting based on the probability 
of their occurrence.  

Hierarchical Link Prediction (2) 



�  Link prediction is an estimate of the likelihood or probability 
of the future occurrence of a link in a graph. 
¡  A maximum likelihood approach is used in missing link prediction based 

on a model of how links are organized in a network.  
�  This model considers all the possible arrangements of a given 

network and the distribution of such arrangements across a 
range of possible network structures [17].  

�  A maximum likelihood approach can also be used to predict 
false positives, which are links that are present but should not 
be present in a network.  

�  This is accomplished by looking at the minimum likelihood 
(lowest probability) of a link in a graph.  

�  A defining element of link prediction (as in [38], [17] and [13]) 
is that prediction methods are based purely on graph 
structure and focus on network evolution.  



�  Inferring hierarchical structure from network data 
that can be used in the prediction of missing links.  

�  Hierarchical structure is represented by a tree or 
dendrogram in which closely related pairs of vertices 
have lowest common ancestors that are lower in the 
tree than those of more distantly related pairs  

�  The prediction of missing links is then calculated as 
the probability that two nodes are connected over all 
the sampled dendograms.  

Hierarchical Link Prediction (3) 



� The number of user communities to which a user 
belongs to 

� The transitivity à number of triangles 

�  Fraction of suicidal neighbors in the social 
network, contributed the most to suicide ideation 

Identify suicide ideation in social network 

Naoki Masuda, Issei Kurahashi, Hiroko Onari Suicide ideation of individuals in online 
social networks 



Link Prediction Task 

Link 
Prediction 

Link Type 

Link 
Existence 

Link Weight 

Link 
Cardinality 



�  In Social Media users interact with one another and 
the content they both crate and consume  

�  Traditional social network analysis only 
distinguishes between pairs of people that are 
linked vs. not-linked  

�  But, user interactions in social media are much 
richer  

Social Media: Interaction (1) 



�  How to learn to recommend/predict links in social 
networks?  

�  User interactions in social media:  
¡  Strength: strong vs. weak ties  
¡  Friends vs. Foes  
¡  Trust vs. Distrust  
¡  Predict the directions 

Social Media: Interaction (2) 



�  So far we viewed links as positive 
but links can also be negative  

� Question: 
¡  How do edge signs and network 

interact?  
¡  How to model and predict edge signs?  

� Applications: 
¡  Friend recommendation  

÷ Not just whether you know someone 
but what do you think of them  

Friends vs. Foes 
� So far we viewed links as positive but links 

can also be negative

� Question:

� How do edge signs and network interact?

� How to model and predict edge signs?

� Applications:

� Friend recommendation

� Not just whether you know someone 

but what do you think of them
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�  Consider edges as undirected  
�  Start with intuition [Heider ’46]:  

¡  Friend of my friend is my friend 
¡  Enemy of enemy is my friend 
¡  Enemy of friend is my enemy  

�  Look at connected triples of nodes:  

Theory of Structural Balance 

Consider edges as undirected
� Start with intuition [Heider ’46]:
� Friend of my friend is my friend
� Enemy of enemy is my friend
� Enemy of friend is my enemy

� Look at connected triples of nodes:
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UnbalancedBalanced
Consistent with “friend of a friend” or 

“enemy of the enemy” intuition
Inconsistent with the “friend of a friend” 

or “enemy of the enemy” intuition
3/29/2011 Jure Leskovec: Analytics & Predictive Models for Social Media (WWW '11 tutorial)



� Each link AàB is explicitly tagged with a sign:  
¡  Epinions: Trust/Distrust 

÷ Does A trust B’s product reviews? (only positive links 
are visible) 

¡  Wikipedia: Support/Oppose  
÷ Does A support B to become Wikipedia administrator?  

¡  Slashdot: Friend/Foe 
÷ Does A like B’s comments?  

Networks with Explicit Signs 

� Each link AlB is explicitly tagged with a sign:
� Epinions: Trust/Distrust
� Does A trust B’s product reviews?

(only positive links are visible)

� Wikipedia: Support/Oppose
� Does A support B to become

Wikipedia administrator?

� Slashdot: Friend/Foe
� Does A like B’s comments?
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� Each link AlB is explicitly tagged with a sign:
� Epinions: Trust/Distrust
� Does A trust B’s product reviews?

(only positive links are visible)

� Wikipedia: Support/Oppose
� Does A support B to become

Wikipedia administrator?

� Slashdot: Friend/Foe
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�  For each edge (u,v) create 
features:  

�  Triad counts (16): 
¡  Counts of signed triads edge uàv 

takes part in  
�  Degree (7 features):  

¡  Signed degree:  
÷ d+

out(u), d-
out(u), d+

in(v), d-
in(v)  

¡  Total degree:  
÷ dout(u), din(v)  

¡  Embeddedness of edge (u,v)  

Networks with Explicit Signs 
For each edge (u,v) create features:
� Triad counts (16):
� Counts of signed triads 

edge ulv takes part in
� Degree (7 features):
� Signed degree: 
� d+

out(u), d-
out(u), 

d+
in(v),  d-

in(v)
� Total degree: 
� dout(u), din(v)

� Embeddedness
of edge (u,v)
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�  Edge sign prediction problem 
¡  Given a network and signs on all but one edge, predict the 

missing sign  

�  Machine Learning formulation:  
¡  Predict sign of edge (u,v)  
¡  Class label:  

÷ +1: positive edge  
÷  -1: negative edge 

¡  Learning method:  
÷ Logistic regression  

Networks with Explicit Signs 

Edge sign prediction problem
� Given a network and signs on all but 

one edge, predict the missing sign
Machine Learning formulation:
� Predict sign of edge (u,v)
� Class label: 
� +1: positive edge
� -1: negative edge

� Learning method:
� Logistic regression

� Dataset:
� Original: 80%  +edges
� Balanced:  50%  +edges

� Evaluation:
� Accuracy and ROC curves

� Features for learning:
� Next slide
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Link Prediction Task 

Link 
Prediction 

Link Type 

Link 
Existence 

Link Weight 

Link 
Cardinality 



�  Weighted common neighbors 

�  Weighted Adamic/Adar 

 
�  Weighted Preferential Attachment 

Weighted Link Prediction 

more “open” than academic co-authorship networks, 
and they are therefore more dynamic. In this paper, we 
would like to investigate 1) whether the predictors 
based on graph proximity measures are appropriate for 
predicting links of open and dynamic online social 
networks and 2) whether the predictors can be 
improved by taking weights into consideration.  
 
3. Weighted Graph Proximities 

As described above, link prediction based on graph 
proximity measure relies solely on structural properties 
of given network. The basic approach for predicting 
links is to rank all node pairs based on proximities in 
their graph. A connection weight score(x,y) is assigned 
to each pair of nodes x and y, and then produce a 
ranked list in decreasing order of score(x,y). For a node 
x, let )(xΓ  and w(x,y) denote the set of neighbors of x 
in a social network, and the weight of link between x 
and y respectively.  

Several definitions of score(x,y) are proposed. 
Common neighbors [8] define score(x, y) as the 
number of neighbors that x and y have in common:  

)()(),( yxyxscore Γ∩Γ=  
This is based on an assumption that the more neighbors 
are in common, the more likely that nodes x and y will 
be connected. Adamic and Adar [1] refine the common 
neighbors by taking rarer neighbors more heavily. In 
other words, common neighbors of low degrees are 
taken more seriously in the following Adamic/Adar 
score: 

¦
Γ∩Γ∈ Γ

=
)()( )(log

1),(
yxz z

yxscore  

Preferential attachment is based on an assumption that 
the probability that a new link involves node x is 
proportional to the number of its neighbors. The idea is 
famous as the growth model of the Web network [2]. 

)()(),( yxyxscore Γ×Γ=  
In this paper, we propose new scores that take 

weights of links into account. Figure 1 shows an 
example of weighted common neighbors. Definition of 
the score of weighted common neighbor is given as 
follows: 

¦
Γ∩Γ∈

+=
)()( 2

),(),(),(
yxz

zywzxwyxscore  

In Figure 1, each node represents a user, and a link 
between two nodes represents encounter(s) on QABB. 
Each number indicates the weight of nearby link, and a 
thick link represents more than one encounters on 
QABB. According to the definition of original 
common neighbors, score(x,y) is 2 (the number of 
intermediate nodes between x and y). For the 
calculation of weighted common neighbors, the upper 

intermediate node is weighted rather than the lower 
one because of the weight of the link between x and 
upper intermediate node. The score of weighted 
common neighbor is 2.5. 

 
Figure. 1 Weighted common neighbors 

 
Weighted Adamic/Adar and weighted preferential 

attachment are introduced in the same manner. Their 
definitions are given as follows: 

¦¦
Γ∈Γ∩Γ∈

×+=
)(')()( )),'(log(

1
2

),(),(),(
zzyxz zzw

zywzxwyxscore

¦ ¦
Γ∈ Γ∈

×=
)(' )('

),'(),'(),(
xx yy

yywxxwyxscore  

4. QABB Data 
The service of Yahoo! Chiebukuro (Japanese 

Yahoo! Answers, http://chiebukuro.yahoo.co.jp/) 
started on April 2004, and it is one of the most popular 
question and answering sites in Japan. A bulletin board 
is generated for each submitted question, and answers 
to the questions follow on the board.  

The data we used for our experiments were 
recorded from September 1, 2005 to September 30, 
2005.  The data are divided into two groups, and the 
former (September 1 - 15) is used for training and the 
latter (September 16 - 30) is for testing. The total 
number of questions or answers is 1,081,104, and the 
number of users during the period is 58,755. The data 
is composed of encrypted user ID, message ID, 
categories, contents of the questions or answers, date, 
time, and so on. We have used encrypted user ID, 
categories, date and time in our experiments.  A social 
network is generated by putting links to all the pairs of 
the answerers in each question. Contents of questions 
or answers are not used in our experiments.  

Links between users who already exist in training 
period are the target for link prediction, which is the 
same as Liben-Nowell’s experiments. For link 
prediction, proximities between all the pairs of users 
have to be calculated. We divide the whole QABB data 
into categories, and generate a social network for each 
category. This is because the whole social network is 
too big to analyze, and because more than 1/3 of users 
submit questions or answers to only one category. 

8686868686

more “open” than academic co-authorship networks, 
and they are therefore more dynamic. In this paper, we 
would like to investigate 1) whether the predictors 
based on graph proximity measures are appropriate for 
predicting links of open and dynamic online social 
networks and 2) whether the predictors can be 
improved by taking weights into consideration.  
 
3. Weighted Graph Proximities 

As described above, link prediction based on graph 
proximity measure relies solely on structural properties 
of given network. The basic approach for predicting 
links is to rank all node pairs based on proximities in 
their graph. A connection weight score(x,y) is assigned 
to each pair of nodes x and y, and then produce a 
ranked list in decreasing order of score(x,y). For a node 
x, let )(xΓ  and w(x,y) denote the set of neighbors of x 
in a social network, and the weight of link between x 
and y respectively.  

Several definitions of score(x,y) are proposed. 
Common neighbors [8] define score(x, y) as the 
number of neighbors that x and y have in common:  

)()(),( yxyxscore Γ∩Γ=  
This is based on an assumption that the more neighbors 
are in common, the more likely that nodes x and y will 
be connected. Adamic and Adar [1] refine the common 
neighbors by taking rarer neighbors more heavily. In 
other words, common neighbors of low degrees are 
taken more seriously in the following Adamic/Adar 
score: 
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Preferential attachment is based on an assumption that 
the probability that a new link involves node x is 
proportional to the number of its neighbors. The idea is 
famous as the growth model of the Web network [2]. 

)()(),( yxyxscore Γ×Γ=  
In this paper, we propose new scores that take 
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Links between users who already exist in training 
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same as Liben-Nowell’s experiments. For link 
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have to be calculated. We divide the whole QABB data 
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�  The fundamental task of link prediction in weighted 
networks, namely to predict the existence of links 
with the help of not only the observed links but also 
their weights 

�  How to properly exploit the information of weights 
to improve the prediction accuracy is still an 
unsolved problem.   

Weighted Link Prediction 
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Not predict the weight of new 
edge!!! 



 
� A harder problem is to predict the weights of 

links 
 
� Which is relevant to the traffic prediction for 

urban transportation and air transportation 
systems 

Weighted Link Prediction 



Link Prediction Task 

Link 
Prediction 

Link Type 

Link 
Existence 

Link Weight 

Link 
Cardinality 



�  Each edge has a different 
meaning: 
¡  Social interaction 

÷ E-mail 
÷ Phone calls 
÷ Co-author 

�  Not only predict new link for 
disconnected node 
¡  New links for nodes connected 

÷ Different interaction 

Multidimensional Network 

Multi-edge or 
multigraph 
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Abstract—Complex networks have been receiving increasing

attention by the scientific community, thanks also to the increas-

ing availability of real-world network data. In the last years, the

multidimensional nature of many real world networks has been

pointed out, i.e. many networks containing multiple connections

between any pair of nodes have been analyzed. Despite the

importance of analyzing this kind of networks was recognized

by previous works, a complete framework for multidimensional

network analysis is still missing. Such a framework would enable

the analysts to study different phenomena, that can be either the

generalization to the multidimensional setting of what happens in

monodimensional network, or a new class of phenomena induced

by the additional degree of complexity that multidimensionality

provides in real networks. The aim of this paper is then to give the

basis for multidimensional network analysis: we develop a solid

repertoire of basic concepts and analytical measures, which takes

into account the general structure of multidimensional networks.

We tested our framework on a real world multidimensional

network, showing the validity and the meaningfulness of the

measures introduced, that are able to extract important, non-

random, information about complex phenomena.

I. INTRODUCTION

In recent years, complex networks have been receiving
increasing attention by the scientific community, also due to
the availability of massive network data from diverse domains,
and the outbreak of novel analytical paradigms, which pose
relations and links among entities, or people, at the center
of investigation. Inspired by real-world scenarios such as
social networks, technology networks, the Web, biological
networks, and so on, in the last years, wide, multidisciplinary,
and extensive research has been devoted to the extraction of
non trivial knowledge from such networks. Predicting future
links among the actors of a network ([13], [2]), detecting
and studying the diffusion of information among them ([5]),
mining frequent patterns of users’ behaviors ([4], [8]), are
only a few examples of problems studied in Complex Network
Analysis, that includes, among all, physicians, mathematicians,
computer scientists, sociologists, economists and biologists.

Most of the networks studied so far are monodimensional:
there can be only one link between two nodes. In this context,
network analytics has focused to the characterization and
measurement of local and global properties of such graphs,
such as diameter, degree distribution, centrality, connectivity -
up to more sophisticated discoveries based on graph mining,
aimed at finding frequent subgraph patterns and analyzing the
temporal evolution of a network.

friends
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colleagues
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same

team

2004

2005
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2005

2009

2010

Fig. 1. Examples of multidimensional networks

However, in the real world, networks are often multi-
dimesional, i.e there might be multiple connections between
any pair of nodes. Therefore, multidimensional analysis is
needed to distinguish among different kinds of interactions, or
equivalently to look at interactions from different perspectives.

Dimensions in network data can be either explicit or im-
plicit. In the first case the dimensions directly reflect the vari-
ous interactions in reality; in the second case, the dimensions
are defined by the analyst to reflect different interesting quali-
ties of the interactions, that can be inferred from the available
data. This is exactly the distinction studied in [12], where
the authors deal with the problem of community discovery.
In their paper, our conception of multidimensional network
is referred as multislice, networks with explicit dimensions
are named multiplex, and the temporal information is used to
derive dimensions for the network.

Examples of networks with explicit dimensions are social
networks where interactions represent information diffusion:
email exchange, instant messaging services and so on. An
example of network with implicit dimensions is an on-line
social network with several features: in Flickr, while the social
dimension is explicit, two users may be connected implicitly
by the sets of their favorite photos.

Moreover, different dimensions may reflect different types
of relationship, or different values of the same relationship.
This is exactly the distinction reported in Figure 1, where on
the left we have different types of links, while on the right we
have different values (years) for one relationship (for example,
co-authorship).

To the best of our knowledge, however, the literature still
misses a systematic definition of a model for multidimensional
networks, together with a comprehensive set of meaningful
measures, that are capable of characterizing both global and
local analytical properties and the hidden relationships among
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�  Multidimensional Common Neighbors 

�  Multidimensional Adamic Adar  

Multidimensional Predictors 

score : V ⇥ V ⇥ L ! [0,+1[ of scores measuring the
likelihood that any two pairs of nodes will connect in a
specific dimension, in the future.
We now present several possible solutions for MLP, intro-
ducing a list of functions to use as scores. It is clear how,
in analogy with the LP problem in the monodimensional
case, there can be a taxonomy of solutions, divided in
supervised or unsupervised approaches, based on structural
analysis or on the extraction of frequent patterns of evolu-
tion, based on statistical analysis of temporal series, and
so on. In the rest of this section we present solutions
based on the structural analysis of the network. We start
from the multidimensional reformulation of two classical
approaches based on neighborhood (Common Neighbors
and Adamic-Adar), then we introduce other measures to
be taken into account in the final list of scoring functions.
Our resulting solutions are then combinations of supervised
and unsupervised approaches, aimed at capturing all the
possible strong and weak signals of the non-trivial interplay
of multidimensionality and temporal evolution.

B. Predictive models based on structural analysis
We now combine all the available theoretical basic

bricks to build our set of predictors for MLP. For con-
venience, in this section we use the notation N(�, •)
for Neighbors(�, •), and, in analogy, NXOR(�, •) for
NeighborsXOR(�, •) .

1) Base predictors: We wanted to have basic predictors
for our experiments, and we choose Common Neighbors
[5] and Adamic-Adar [4], as they are among the best w.r.t
predictive performances [8]. We can introduce a multidimen-
sional version of them by using our function Neighbors:

Definition 12 (Multidimensional Common Neighbors):
Let G = (V,E, L, T, ⌧) be a network and (u, v, d) /2 E be
a candidate future edge. We define:

Multidimensional Common Neighbors(u, v, d) =
| N(u, d) \N(v, d) |

Hereafter, we often use M-CN to refer to this predictor.
Definition 13 (Multidimensional Adamic Adar): Let G =

(V,E, L, T, ⌧) be a network and (u, v, d) /2 E be a candidate
future edge. We define:

Multidimensional Adamic Adar(u, v, d) =P
z2{N(u,d)\N(v,d)}

1
log(|N(z,d)|)

Hereafter, we often use M-AA to refer to this predictor.
In the following, instead, we replace Neighbors with

NeighborsXOR, by following the intuition that more so-
phisticated multidimensional information may lead to better
predictive performance. As we see in Section IV, this
intuition was proved to be incorrect in the networks used.

Definition 14 (Multidimensional Common NeighborsXOR):
Let G = (V,E, L, T, ⌧) be a network and (u, v, d) /2 E be
a candidate future edge. We define:
Multidimensional Common NeighborsXOR(u, v, d) =

| NXOR(u, d) \NXOR(v, d) |

Definition 15 (Multidimensional Adamic AdarXOR): Let
G = (V,E, L, T, ⌧) be a network and (u, v, d) /2 E be a
candidate future edge. We define:

Multidimensional Adamic AdarXOR(u, v, d) =P
z2{NXOR(u,d)\NXOR(v,d)}

1
log(|NXOR(z,d)|)

As for above, we use M-CNXOR and M-AAXOR hereafter
to refer to these two predictors, respectively.

2) Multidimensional scores: In principle, it is possible to
define several scores on the basis of the multidimensional
measures presented above. For example, it is possible to
multiply the NeighborsXOR of two nodes in one dimension
to obtain a score, ending up with a Preferential-Attachment
like model [6]. We tried several combinations, but, due
to extremely poor predictive performances as tested during
our experimental stage, we do not report their definition.
According to our experiments, in fact, the multidimensional
information gathered by our measures in the networks used
is not enough to predict new edges. This negative result
is analog to the one obtained by the authors of [7], who
reported that their supervised model was not performing
well when used alone for prediction. In analogy with their
strategy, we tried then to combine the information learned
from the data, with unsupervised model, as we see in 4).

3) Temporal scores: It is possible to define temporal
scores based on modifications of the above measures. We
tried a few of them but, in analogy with the multidimensional
scores, their predictive power when used alone was very poor
on our networks.

4) Combinations: Finally, we can define a scoring func-
tion by combining all the basic bricks presented in our the-
ory. In particular, we can aggregate the information provided
by the baseline models with the information provided by
the multidimensional measures or the temporal ones. This
is exactly the line followed in [7], where the authors combine
the information provided by the model defined by the com-
plete set of frequent evolution rules mined from the network
with the information provided by the baseline models. In
analogy with their paper, we tried several combinations of
our proposed measures. Table I shows the non-XOR versions
of all the solutions we tested. Each line represents which
basic bricks we used for building one scoring function, for
a total of 26 predictors. The basic bricks were combined
by multiplying their scores. Clearly, other aggregates or
combinations are possible and we tried some of them, but,
due to poor predictive power and to lack of space, here we
only report the best ones.

5) Implementation and complexity: All the measures
defined, and the predictors presented, may be implemented
by trivially scanning the list of edges linearly, thus making
the approach scalable (see Section IV for an empirical eval-
uation of scalability). We omit the implementation details
due to lack of space.
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Consider only one dimension at time 
NOT the relation among them!! 



�  Open problems 
¡  Predict new edges and their direction or weight  
¡  Predict new edges for nodes already linked 

�  How weighted can improve accuracy is still not 
solved 
¡  Adapt or create new specific methods 

�  Bipartite graph 
¡  Change the graph to unipartite  

Reflections 



�  Community structures can also help improving 
prediction accuracy  
¡  Same social circles 

�  In social networks, since one person may play 
different roles in different communities 
¡  The prediction in one domain can be inspired by the 

information in others.  
÷ Prediction the collaborations between authors can consider their 

affiliations to improve the accuracy.  

Reflections 



�  Evolutions of link occurrences, which is more 
appropriate for dealing with the link prediction 
problem in evolving networks, such as online social 
networks 
¡  For now, it is impossible to predict whether and when two 

authors will collaborate again in co-authorship network 

�  Another way to involve time information is inspired 
by the fact that older events are less likely to be 
relevant to future links than recent ones.  
¡  For example, author’s interests may change over time and thus 

old publications might be less relevant to his currents research 
area. 

Reflections 
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