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Outline

O

» Part 1: Statistical properties of static and evolving
networks.
o Power law degree distributions found in static networks
o Small world phenomena and six degrees of separation
o Densification of time evolving networks
O
O

Shrinking diameters of growing networks
Communities and clusters in networks

o Part 2: Link predictions in complex networks.
o Link Prediction
= Link existence
« Link weight
x Link type
x Link cardinality
o Applications




Outline
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e Part 1: Statistical properties of static and evolving
networks.
o Power law degree distributions found in static networks
o Small world phenomena and six degrees of separation
o Densification of time evolving networks
®
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Shrinking diameters of growing networks
Communities and clusters in networks

e Part 2: Link predictions in complex networks.

o Link Prediction
x Link existence
« Link weight
x Link type
x Link cardinality
o Applications
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What do the following things
have in common?
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The Network




O

» Behind each such system there is an
intricate wiring diagram, a network, that
defines the interactions between the
components

* We will never understand these systems
unless we understand the networks behind it




Networks: Social

Facebook social graph
4-degrees of separation [ Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]




Networks: Communication

Graph of the Internet (Aufonomous Systems)
Power-law degrees [Faloutsos-Faloutsos-Faloutsos, 1999]
Robustness [ Doyle-Willinger, 2005]




Networks: Media

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]




Networks:Technology
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Seven Bridges of Konigsberg [Euler, 1735]
Return to the starting point by traveling each link of the graph once and only once.




Networks: Information

Chemistry

Social Sciences

*  overlap

overl:p o b
wit ' ; witl
right side \) left side

Humanities

Earth Sciences

Citation networks and Maps of science
[Borner et al., 2012]




Networks: Knowledge
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Network: Organizations

2i Bin al-Shibh Cole Bomhing Suspects

alid Ba' Attash [Khallad]

wd Atta

ahad al Quso

Aziz Aloma}t "‘,L kS azmi
4
Tviro O |g|nayél da Suspects
Ahme amdi
o .
Hamza Algy af Alhazmi lid Almihdhar

|
Saeed Alghamdj

Ahmed Alnami ;
Majed Moged Ahmed Al-Hada
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Networks: Economy
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Networks: Brain

Human brain has between 10-100 billion neurons [Sporns, 2011]




Network: Biology

Protein-Protein Interaction Networks:

Nodes: Proteins
Edges: ‘physical’ interactions
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Nodes: Metabolites and enzymes
Edges: Chemical reactions




Reasoning about Networks

O

e How do we reason about networks?

o Empirical: Study network data to find organizational
principles

o Mathematical models: Probabilistic, graph theory

o Algorithms for analyzing graphs

» What do we hope to achieve from studying
networks?
o Patterns and statistical properties of network data
o Design principles and models

o Understand why networks are organized the way they are
(Predict behavior of networked systems)




Motivation

O

* How do large network “look like”?
o Empirical: statistical tools to quantify structure networks
o Models: mechanisms that reproduce such properties (models
also make “predictions” about other properties)
» 3 parts/goals:
o Large scale statistical properties of large networks
o Models that help understand these properties

o Predict behavior of networked systems based on measured
structural properties and local rules governing individual
nodes




Motivation

O

» What do we study in networks?

o Structure and evolution:

= What is the structure of a network?

x Why and how did it became to have such
structure?

» Processes and dynamics:

o Networks provide “skeleton” for
spreading of information, behavior,
diseases

x How do information and diseases spread?

FIEN!




Why Networks? Why Now?

O

» Why is the role of networks expanding?
o Data availability
= Rise of Mobile, Web 2.0 and Social media
o Universality

« Networks from science, nature, and technology are more similar
than one would expect

o Shared vocabulary between fields

« Computer Science, Social science, Physics, Economics, Statistics,
Biology

o Impact!
= Social networking, Social media, Drug design




Networks: Size Matters

O

» Network data: Orders of magnitude

0 436-node network of email exchange at a corporate research
lab [Adamic-Adar, SocNets ‘03]

0 43,553-node network of email exchange at an university
| Kossinets-Watts, Science ‘06]

O 4.4-million-node network of declared friendships on a
blogging community [Liben-Nowell et al., PNAS ‘05]

o0 240-million-node network of communication on Microsoft
Messenger [ Leskovec-Horvitz, WWW "08]

o 800-million-node Facebook network [Backstrom et al. ‘11]




Networks Really Matter

O

» If you were to understand the spread of diseases, can
you do it without social networks?

e If you were to understand the WWW structure and
information, hopeless without invoking the Web’s
topology.

» If you want to understand dissemination of news or
evolution of science, it is hopeless without
considering the information networks




Networks — Social and Technological

O

 Social network analysis: sociologists and computer
scientists — influence goes both ways

o Large-scale network data in “traditional” sociological domains
x Friendship and informal contacts among people

x Collaboration/influence in companies, organizations, professional
communities, political movements, markets, ...

o Emerge of rich social structure in computing applications

= Content creation, on-line communication, blogging, social
networks, social media, electronic markets, ...

x People seeking information from other people vs. more formal
channels: MySpace, del.icio.us, Flickr, LinkedIn, Yahoo Answers,
Facebook, ...




Como tudo comecou...

* Leonhard Euler, 1875
» As pontes de Konigsberg:

o “Pode alguém caminhar pelas 7
pontes SEIN nunca cruzar a mesma &
ponte duas vezes?”

* A resposta: nao é possivel,
pois o grafo precisa ter no

maximo dois nos com grau

impar; Aoes _
e Surgimento Teoria dos Grafos tj&b%

Appel & Hruschka - SBBD 2011



Examples of Networks

= Sexual network (d)
= Dating network(e)

= Internet (a)

= Citation network (b)

ide Web (c)

= World W




Networks of the Real-world (1)

o Information networks:
o World Wide Web: hyperlinks
o Citation networks
o Blog networks AN R

 Social networks: people + G
1nteractions S

o Organizational networks Florence families  arate club network
o Communication networks .
o Collaboration networks R T »

o Sexual networks . e ' . y
. T T e e N =
» Technological networks: RN £ % -

Z . e ...
o Power grid aEat e e, e éE}..:h":il'- |
- . — iR e W 23t w
o Airline, road, river networks AT TR e st oS, Ya e
o Telephone networks ‘1?34..-_ AR & 7l
e b ..:m: wm ,,-!;“ 2 _ll  om- = - 3 [}
O Internet = "{{i_fﬁ;‘-'ﬁ; T M %%_”tﬂ D
o Autonomous systems v e T Dy T
Friendship network Collaboration network




Networks of the Real-world (2)

* Biological networks
o metabolic networks
o food web
o neural networks

Yeast protein

o gene regulatory networks _ _
interactions

» Language networks
o Semantic networks

o Software networks

Languagg nétwgrk
Software network




Networks as Phenomena

O

The emergence of ‘cyberspace’ and the World Wide
Web is like the discovery of a new continent.

» Jim Gray, 1998 Turing Award address

» Complex networks as phenomena, not just designed
artifacts

* What are the common patterns that emerge?




Models and Laws of Networks

O

We want Kepler’s Laws of Motion for the Web.
o Mike Steuerwalt, NSF KDI workshop, 1998

» Need statistical methods and tools to quantify large
networks

* What do we hope to achieve from models of
networks?
o Patterns and statistical properties of network data
o Design principles and models

o Understand why networks are organized the way they are
(predict behavior of networked systems)




Mining Social Network Data

O

* Mining social networks has a long history in social sciences:

o Wayne Zachary’s PhD work (1970-72): observe social ties and rivalries in a
university karate club

o During his observation, conflicts led the group to split
o Split could be explained by a minimum cut in the social network




Networks: Rich Data

O

e Traditional obstacle:

» Can only choose 2 of 3:
o Large-scale
o Realistic
o Completely mapped

» Now: large on-line systems leave detailed records of
social activity
o On-line communities: MyScace, Facebook, LiveJournal
o Email, blogging, electronic markets, instant messaging
o On-line publications repositories, arXiv, MedLine




Scale Matters

O

» How does massive network data compare to small-
scale studies?

» Massive network datasets give you both more and
less:

o More: can observe global phenomena that are genuine, but
literally invisible at smaller scales

o Less: don’t really know what any node or link means. Easy to
measure things, hard to pose right questions

o Goal: Find the point where the lines of research converge




Structure vs. Process

O

 What have we learned about large networks?

» We know about the structure: Many recurring
patterns

o Scale-free, small-world, locally clustered, bow-tie, hubs and
authorities, communities, bipartite cores, network motifs,
highly optimized tolerance

* We know about the processes and dynamics

o Cascades, epidemic threshold, viral marketing, virus
propagation, threshold model




Structure of Networks

» What is the structure of a large network?
» Why and how did it became to have such structure?

Nucleo-
cytoplasmic

synihesis

Chraomosome
segregation




Diffusion in Networks

O

* One of the networks is a spread of a disease, the
other one is product recommendations

e Which is which? ©




Traditional approach

O

 Sociologists were first to study networks:

o Study of patterns of connections between people to understand
functioning of the society

o People are nodes, interactions are edges

o Questionnaires are used to collect link data (hard to obtain,
inaccurate, subjective)

o Typical questions: Centrality and connectivity

» Limited to small graphs (~100 nodes) and properties
of individual nodes and edges




Motivation: New approach (1)

O

» Large networks (e.g., web, internet, on-line social
networks) with millions of nodes

» Many traditional questions not useful anymore:
o Traditional: What happens if a node u is removed?

o Now: What percentage of nodes needs to be removed to affect
network connectivity?

* Focus moves from a single node to study of
statistical properties of the network as a whole




Motivation: New approach (2)

O

» How the network “looks like” even if I can’t look at
it?

» Need statistical methods and tools to quantify large
networks

e 3 parts/goals:
o Statistical properties of large networks
o0 Models that help understand these properties

o Predict behavior of networked systems based on measured
structural properties and local rules governing individual
nodes




Small-world effect (1)

O

brokers in Boston

o Only 25% letters reached the goal
o But they reached it in about 6 steps

NUMBER OF CHAINS

20

 Six degrees of separation [Milgram 60s]
o Random people in Nebraska were asked to send letters to stock

o Letters can only be passed to first-name acquaintances

[T =

NUMBER

| | | | |
5 6 7 8 9
OF INTERMEDIARIES




Small-world effect (2) : 1
1 10
O T
» Microsoft Messenger network . o
o 180 million people 5 3,209,252
o 1.3 billion edges 6 28,395,849
. ) 7 79,059,497
o Edge if two people exchanged at least one message in one 8 52,995,778
month period _ 9 10,321,008
8 [Leskovec&Horvitz,07] 10 1,955,007
10 | : 11 518,410
AVeI'age path 107? Pick a random 12 149,945
. ol node, count 13 44,616
length is 6.6 . how many z
g 0% nodes are at - 15 4,476

0) 3 s dist -
90% of nodesis | <« , Sitance >
5 e 17 536
reachable <8 £ ?
t Z 102% . 19 71
S eps 101; 20 29
21 16
& 5 10 1 20 2 30 22 10
Distance (Hops) 23 3
24 2




Measuring diameter

O

» Measuring path lengths:
o Diameter (longest shortest path): max dij

o Effective diameter: distance at which 90% of all
connected pairs of nodes can be reached

o Mean geodesic (shortest) distance [
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Diametro Efetivo

o Diametro Efetivo:

o E o menor niimero de “arestas” em que no minimo 90% de
todos os n6s da maior componente conexa do grafo podem ser
alcancados entre si

o E um valor mais robusto que o diametro tradicional
x somente os pares de nds conexos sao considerados

« a direcao das arestas (no caso de grafos direcionados) sao
ignoradas

x experimentos mostram que o diametro efetivo exibe
comportamento qualitativamente similar ao diametro tradicional

o Principal algoritmo é o ANF que calcula o diametro efetivo em

O(N) Palmer, C. R.; Gibbons, P. B. & Faloutsos, C. ANF: A Fast and Scalable

Tool for Data Mining in Massive Graphs KDD 2002, 1, 81-90




Gratico Hop-Plot
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Degree distributions (1)

O

» Let pk denote a fraction of nodes with degree k

» We can plot a histogram of pk vs. k

* In a (Erdos-Renyi) random graph degree distribution .
follows Poisson distribution

» Degrees in real networks are heavily skewed to the right

 Distribution has a long tail of values that are far above
the mean

» Power-law [Faloutsos et al], Zipf’s law, Pareto’s law, Long
tail, Heavy-tail

» Many things follow Power-law:
o Amazon sales,
o word length distribution,
o Wealth, Earthquakes, ...




Degree distributions (2)

O

o Many real world Degree distribution in a blog network
. (plot the same data using different scales)
networks contain hubs: — SR

highly connected nodes lin-lin

wie

Q.' 2

* We can easily t
distinguish between

a
107

e
Q,
OD 10"
Q

L]

exponential and power-

law tail by plotting on - Power-law:

log-lin and log-log axis op o~ k@

108~ e
* Power-law is a line on 0
log-log plot ~

For statistical tests and estimation see - >
Clauset-Shalizi-Newman 2007 log k




Power Law degree expoents

O

» Power law degree exponent is typically 2 < a < 3

o Web graph [Broder et al. 00]:
X Q= 2.1, Ay = 2.4

o Autonomous systems [Faloutsos et al. 99]:
Q=24

o Actor collaborations [Barabasi- Albert 00]:
xa=2.3

o Citations to papers [Redner 98]:
x (= 3

o Online social networks [Leskovec et al. 07]:
Q2




Poisson vs. Scale-free network

Poisson network
(Erdos-Renyi random graph) Scale-free (power-law) network

Degree Function i

distribution unction 1s

‘s Power-law scale free if:
flax) = c f(x)

Degree distribution is Poisson




O

» The basic role of triadic closure in social networks
has motivated the formulation of simple social
network measures to capture its prevalence.

» The clustering coefficient of a node A is defined as
the probability that two randomly selected friends of
A are friends with each other. In other words, it is
the fraction of pairs of A’s friends that are connected
to each other by edges.




Triangulos

 Em uma rede social, n6s sao pessoas e
e as arestas sao os relacionamentos; %ﬁf
» Sabe-se que se A é amigo de B que ¢
amigo de C, ha uma grande chance l
de A ser/se tornar amigo de C.

Ce C e N &4
o A transitividade significa a presenca AN

de um alto niimero de triangulos
(D(vi)) na rede.




Coeficiente de Clusterizacao

* indicar quao proximo o grafo esta de ser um grafo
completo
* Donod
2 % A(V,‘)
C(v;) =
Vi) = o s @) = 1)
» Darede

1 N
:N;




Triangulos

» Além do grau do n6 os triangulos também seguem
uma lei de poténcia

1 n
AG=_ A3 10"
@134

10 |

Tsourakakis, C. E.

Fast Counting of Triangles in
Large Real Networks without
Counting: Algorithms and
Laws W w e awa
ICDM '08, IEEE Computer T S
Society, 2008, 608-617 Degree

Mean #Triangles

-
o]




Network resilience (1)

O

* We observe how the
connectivity (length of the

A A

paths) of the network changes ) 0
as the vertices get removed ane i/’/c 0

[Albert et al. 00; Palmer et al.
01]

e Vertices can be removed:

o Uniformly at random
o In order of decreasing degree

e Itis important for
epidemiology

o Removal of vertices corresponds tc
vaccination




Network resilience (2)

e Real-world networks
are resilient to random
attacks

o One has to remove all web-
pages of degree > 5 to
disconnect the web

o But this is a very small
percentage of web pages

e Random network has
better resilience to
targeted attacks

O
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Poisson vs. Scale-free network

O
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Exemplo

. 574n6sGCC - ]

;
20% nos

427 No6s na GCC 301 n6s GCC



Effective Diameter

ShatterPlots (1)

O

o ShatterPlots

o A simple and powerful algorithm to tease out patterns of real graphs,

helping us to spot fake/masked graphs

o Force a graph to reach a critical (“Shattering”) point, randomly

80

10
70 — ] 10 T T TTTTIT T |||||||| T |||||||| T T TTTTIT 105 : T T T l|||l||| T Illllel'l/el T TTTT
60 [ = I | -
50 — — S_Ts - . g i
40 - +4 2 10° |- 4 Zidk : 5
30 £ o 1 8. ot
| — 5 4| _| © 2 [ —
oo L | g0 — g 10° | 5
o - 1 < L
10 | A 4 10 E E
O L Ll L IIIIl L IIIIIIIl L L 0 I 1 llllllll il |lll|ll| 1 llllllll 1 ll]llll_ 0 i 1 l|||l|l| 1 lIIIlIll 1 IIIIIIII 1 I
102 10° 10* 10° 100 10 e g a0t i 1 10t 10

deleting edges, and study its properties at that point.

Remaining edges Remaining edges Remaining edges

108




ShatterPlots (2)

O

* Node Shattering Ratio, which presents the relation of
nodes at the Shattering point N versus total
number of nodes N of a graph.

@ N, =N
(b) N, = 0.63*N
10° } (¢) N,, = 0.37*N

’/
'
e




Arestas

* Remocao de arestas

o bond percolation: cada aresta é removida com
probabilidade p

« Falhas aleatoria dos links
o Ataque: causa grandes danos na rede com a remocao de
poucas arestas

« Estratégias: remover arestas que sao mais suscetiveis a quebrar a
rede ou aumentar os menores caminhos > betweenness

Appel & Hruschka - SBBD 2010
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Shattering Point

alcancaveis apresentam ponto
critico mas APENAS o diametro
tem um pico.

Grande componente conexa e pares
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Experimentos

* 19 redes reais;

o AS-Oregon, AS-Caida, Enron, AuthorToPaper, Gnutella, Web-
Google, Berkley-Stanford, Epinions, etc.

» Redes sintéticas - triangulos;
o Preferencial Attachment, Small-World, 2D Grid, Hierarchical;
o ER - Validar resultados;

» Média de 10 Execucoes;




Perguntas

» Todas as redes reais tem Shattering point?

Todas as redes testadas possuem um Shattering Point.

* Quao proximas estao as redes reais do Shattering
point?

As redes reais estao longe do Shattering Point

» Asredes sintéticas tem comportamento parecido ou
nao com as redes reais quanto ao Shattering Point?
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NodeShatteringRatio
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TriangleRatio
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Escalabilidade

» ER - variar o tamanho e mesmo comportamento;
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What about evolving graphs?

O

» Conventional wisdom/intuition:

o Constant average degree: the number of edges grows linearly
with the number of nodes

 Slowly growing diameter: as the network grows the
distances between nodes grow




Networks over time: Densification

O

» A simple question: What is the relation between the
number of nodes and the number of edges in a network
over time?

o Let:

o N(t) ... nodes at time t
o E(t) ... edges at time t

» Suppose that:
o N(t+1) = 2 * N(t)
* QQ: what is your guess for
o E(t+1) =? X* E(t)
» A: over-doubled!
o But obeying the Densification Power Law [KDDo5]




Networks over time: Densification

O

e Networks are denser over
time

e The number of edges grows
faster than the number of

nodes — average degree is
increasing

E(t) oc N(t)°
O a ... densification exponent

e l1<<acs<2a:

O a=1: linear growth — constant
out- degree (assumed in the
literature so far)

O a=2: quadratic growth — clique

Internet

+ Edges
—=0.87x

Citations

iog N(t)

Apr 2003

+ Edges

—=00113x"%¥R%=10

log N(f) Part 1-361 5

'




Shrinking diameters
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Densification & degree distribution

O

e How does densification affect
degree distribution?

» Densification:

» Degree distribution: pk=ky

» Given densification exponent a,
the degree exponent is [TKDD
‘07]:

o (a) For y=const over time, we obtain
densification only for 1<y<2, and then it
holds: y=a/2

o (b) For y<2 degree distribution evolves
according to:

dne—t —1

fn —
2ne—1 1
Given: densification a, number of nodes n

Case (a): Degree exponent
vy 1s constant over time. The

network densifies, a=1.2
18] - eemgsamrresnssn

1.6+
.,

1.2r

—e—Data
== =Theorem 5.1

1
0 1

2 3 4
time ¢

Case (b): Degree exponent
v evolves over time. The

network densifies, a=1.6

3.5

3 \'\
Yy |
* \\\\

—e—Data
===Theorem 5.2




Diameter of a rewired network

» Compare diameter of a:
o True network (red)

Densification +
degree sequence
give shrinking
diameter

O

diameter

o Random network with the same degree distribution (blue)

12 | |

RN
o
[

1992 1994 1996 1998 2000 2002
size of the graph




Properties hold in many graphs

O

» These patterns can be observed in many real world
networks:
o World wide web [Barabasi]
o On-line communities [Holme, Edling, Liljeros]
© Who call whom telephone networks [Cortes]
o Internet backbone — routers [Faloutsos, Faloutsos, Faloutsos]
o Movies to actors network [ Barabasi]
o Science citations [ Leskovec, Kleinberg, Faloutsos]
O Click-streams [Chakrabarti]
o Autonomous systems [Faloutsos, Faloutsos, Faloutsos]
o Co-authorship [Leskovec, Kleinberg, Faloutsos]
o Sexual relationships [Liljeros]




Community structure

e Most social networks show

community structure

o groups have higher density of edges
within than across groups

o People naturally divide into groups based
on interests, age, occupation, ...
 How to find communities:

o Spectral clustering (embedding into a low-
dim space)

o Hierarchical clustering based on
connection strength

o Combinatorial algorithms (min cut style
formulations)

o Block models
o Diffusion methods

Leskovec&Faloutsos ECML/PKDD 2007



Girvan-Newman

» Deteccao de cluster divisivo e hierarquico baseado na
nocao de betweenness:

* Numero de caminhos minimos que passam por cada
aresta.
* Remover as aresta de modo decrescer o betweenness

Girvan, M. & Newman, M. E. J.
Community structure in social and

biological networks
Proc. Natl. Acad. Sci. USA, 2002, 99




Spectral Partition

n =247342

Appel & Hruschka - SBBD 2010




CrossAssociation

Chakrabarti, D.; Papadimitriou, S.; Modha, D. S. & Faloutsos, C.
Fully automatic cross-associations KDD 2004, 79-88
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NCP - Plot

Collaborations between scientists in Networks
[Newman, 2005]
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Appel & Hruschka - SBBD 2010



NCP - Plot

e Maioria das comunidade = cerca de 100 nods
(nimero de Dunbar)

» Estrutura redes complexas grandes diferente das

Appel & Hruschka - SBBD 2010



Models: Outline

O

e The timeline of graph models:
o (Erdos-Renyi) Random graphs (1960s)
o Exponential random graphs
o Small-world model
o Preferential attachment
o Edge copying model
o Community guided attachment
o Forest fire
o Kronecker graphs (today)




Graphs and networks

O

» What is the simplest way to generate a graph?

 Random graph model (Erdos-Renyi model, Poisson
random graph model):
o Given n vertices connect each pair i.i.d. with probability p

 How good (“realistic”) is this graph generator?




Grafos vs. Redes Complexas

» Difere dos grafos tradicionais:
o Grafos regulares (lattice)

» Novos grafos: Estrutura Complexa

» Grafos > Rede Complexa

* Modelo de grafo randomico:
o Modelo Erdos-Renyi ou Poisson random graph model:
o Dado n nos conectar cada par de n6 com probabilidade p

e Nao € um gerador muito realista.. Mais detalhes a
seguir!!

Appel & Hruschka - SBBD 2011




(Erdos-Renyi) Random graph

O

» Also known as Poisson random graphs or Bernoulli
graphs [Erdos&Renyi, 60s]

o Given n vertices connect each pair i.i.d. with probability p

e Two variants:

o G, : graph with m edges appears with probability p”(i-
p)"m where M=0.5n(n-1) is the max number of edges

o G,,: graphs with » nodes, m edges
* Does not mimic reality

» Very rich mathematical theory: many properties
are exactly solvable




Fase de Transicao

Tamanho GCC

Média do Grau

7 ay deg = 0.99

Appel & Hruschka - SBBD 2010

Fase de transicao (Percolation threshold):
Quantas arestas devem ser inseridas até a
maior componente conexa aparecer?

Média do grau z = 1, a GCC aparece

z<1rede desconexa e z> 1 rede fortemente
conexa

1
D \
.
-~




Autovalores e autovetores

* Seja A a matriz de adjacéncia do grafo
» O autovalor A é:
* Av =Av, na qual v é um vetor qualquer

e Os autovalores sao fortemente relacionados a
topologia do gratfo

» Por exemplo, ajudam a responder:
o Quao importante € um no?

Appel & Hruschka - SBBD 2010



Autovalores e autovetores

» Dependende se o grafo é representado com uma
matriz de adjacéncia ou a Laplaciana os autovalores
tem diferente significado.

» Laplaciana:

o A multiplicidade do valor zero entre os autovalores de L(G) é
igual ao namero de componentes conexas.

o O segundo menor autovetor € usado para detectar

comunidades ’
d, 1fu=nw,

L(u,v) =< —1 if v and v are adjacent,
0  otherwise.

Appel & Hruschka - SBBD 2010




Propriedades

» Autovalores /’LI > /'].2 > .=/

n
 Se a rede nao possui ciclos Al ] J
_ Max

* A soma do quadrado dos autovalores € igual ao

numero de arestas da rede
n n
2
=1 =1

Appel & Hruschka - SBBD 2010



Page Rank

PageRank é a distribuicao de probabilidade usada para
representar a verossimilhanca que uma pessoa clica
randomicamente em um link que vai para um determinada

0
0
0

pagina 3
PR,., = (1-d)/n + d*A*PR,
* PR é um vetor com o valor do PageRank da 4
matriz A ) )
» d éofator de “pulo” e estaentreo <d < 1, 0 0 1/2 1/2
usualmente é 0.85 wo|l 0 0
0 1 0
Numero de links saindo de uma pagina que aponta para a sua 1/2 1/2 0

pagina. Quanto menos melhor
Numero de links entrando. Quanto mais melhor.

Page, L.; Brin, S.; Motwani, R. & Winograd, T. The PageRank Citation Ranking:
Bringing Order to the Web Stanford Digital Library, 1998




Why should we care?

O

» Gives insight into the graph formation process:
o Anomaly detection — abnormal behavior, evolution
o Predictions — predicting future from the past

o Simulations of new algorithms where real graphs are hard/
impossible to collect

o Graph sampling — many real world graphs are too large to
deal with

o “What if” scenarios




Outline

O

» Part 1: Statistical properties of static and evolving
networks.
o Power law degree distributions found in static networks
o Small world phenomena and six degrees of separation
o Densification of time evolving networks
®
®

Shrinking diameters of growing networks
Communities and clusters in networks

e Part 2: Link predictions in complex networks.

o Link Prediction
x Link existence
« Link weight
x Link type
x Link cardinality
o Applications




Social Interaction on the Web

Rich social structure in online
computing applications

Such structures are modeled
by networks

Most social network analyses
view links as positive

- Friends

- Fans

- Followers

But generally links can convey
either friendship or antagonism

tall’ S
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Link Prediction via node distance

O

» Link prediction in a evolving network:

o Task: Given G[t_,t_ ] a graph on edges up to time
to’ output a ranked list L of links (not in G/t ,t,’])
that are predicted to appear in G/t ,t,’]

o Evaluation: n=|E , |: # new edges that appear

during the test period [t ,,t,’]

Take top n elements of L and count correct edges




Link Prediction in Networks

O

» Network modeling is all about predicting links but so
far we have not tackled this problem directly

» Task: predict missing links in a network
o In a evolving network
o In a static network

* 2 types of approaches:
o Node distance approaches:
« define a distance function, closer nodes are more likely to link
o Statistical approaches:
« Design a model of link creation and fit to data




Methods for Link Prediction

O

» Take the input graph during a training period
[Go=(V,E)]

 Pick a pair of nodes (u,v)
» Assign a connection weight score (u,v)
» Make a list in descending order of score

 Verify the prediction on the future graph
[G1=(V,Enew)]

score 1s a measure of proximity / similarity




Methods for Link Prediction

O

» Node similarity can be defined by using the essential
attributes of nodes:

o two nodes are considered to be similar if they have many
common features.

» The attributes of nodes are generally hidden

» Thus structural similarity is used, which is based
solely on the network structure.




Reminder

O

» If two people in a social network have a friend in
common, then there is an increased likelihood that
they will become friends themselves at some point in
the future




Link Prediction Task

Link Link Link
Cardinality Prediction Existence

Link Weight




Link Prediction Task

Link Link Link
Cardinality Prediction Existence

Link Weight




Unsupervised Link Prediction

O

» Unsupervised measurements could rely on different
structural property:

» Neighborhood measures

o Common Neighbors, Adamic Adar, Jaccard, Preferential
Attachment

e Path-based measures
o Graph distance, Katz
» Ranking
o Sim Rank, Hitting time, Page Rank




Neighborhood Measures
O

* “How many friends we have to share in order to
become friends?”

» Common Neighbors: the more friends we share, the
more likely that we will become friends

score(z,y) := [I'(z) N T'(y)]




Neighborhood Measures
O

» Jaccard: the more similar our friends circles are, the
more likely that we will become friends

score(x,y) := |T'(z) NT'(y)|/|T(z) UT(y)]




Neighborhood Measures
O

o Adamic Adar: the more selective our mutual friends
are, the more likely that we will become friends

SC_Ore(w ) _y) ‘= Z;ergx)mr(y)_log |_1rgz)| -




Neighborhood Measures
O

o Preferential Attachment: more friends we have, the
more likely that we will become friends

score(z, y) := [T(x)| - [T(y)|




Path-based Measures
O

e "How distant we are?”

e Graph Distance: (negated) length of shortest path
between u & v

* Katzs: weighted sum over all the paths between u & v
score(u,v) = >.72, B ‘pathsf,{z,

* where: paths?®  ={paths of length exactly 1 from u to
v}




SimRank

O

» “Two nodes are similar to the extent that they are
joined by similar neighbors”

T o D> acr(u) 2oner(v) Similarity(a,b)
similarity(u, v) = 7 * O]

score(u, v) = similarity(u, v)




random predictor
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Supervised Link Prediction

» How to learn to predict new friends
in networks?

» Facebook’s People You May Know
» Looking at the data:

0 92% of new friendships on FB are
friend-of-a-friend
o More common friends helps

E
o

1668

Friendship by Number of Hope

N
No Path




Supervised Link Prediction

» How do characteristics of users (e.g., age, gender, home
town) interact with the creation of new edges?

» In a social network, there can be many reasons exogenous to

the network for two users to become connected:
o it could be that they met at a party, and then connected on it.
= Same age, Same town
o this link might also be hinted at by the structure of the network:
x two people are more likely to meet at the same party if they are “close”
A pair of people likely has friends in common, and travel in

similar social circles.

» Despite the exogenous event (i.e., a party) there are clues in
social networks which suggest a high probability of a future
friendship.




Supervised Link Prediction

O

» Supervised Random Walks
o combines the network structure
o the characteristics (attributes, features) of nodes
o edges strengths of the network.

» Supervised way learns how to bias a PageRank-like
random walk on the network

o Visits given nodes (i.e., positive training examples) more often
than the others.

o Positive nodes are nodes to which new edges will be created in
the future

o Negative are all other nodes




Supervised Link Prediction

O

* Recommend a list of possible
friends

» Supervised machine learning
setting:
o Training example: s

x For every node s have a list of nodes that
will create links to {v1, ..., vk}

o Problem:

« For a given node s learn to rank nodes
{v1, ..., vk} higher than other nodes in the
network
» Supervised Random Walks based on

word by Agarwal&Chakrabarti

() positive examples
(_negative examples




Prophet + NELL

O

» Can computers learn to read? We think so.

» "Read the Web" is a CMU research project that attempts
to create a computer system that learns over time to read
the web.

 Since January 2010, the computer system called NELL
(Never-Ending Language Learner) has been running
continuously, attempting to perform two tasks each day:

o First, it attempts to "read," or extract facts from text found in
hundreds of millions of web pages (e.g.,
playsInstrument(George_Harrison, guitar)).

o Second, it attempts to improve its reading competence, so that
tomorrow it can extract more facts from the web, more accurately.




NELL: Never-Ending Language Learner

O

e Inputs:
o initial ontology
o handful of examples of each predicate in ontology
o the web
o occasional interaction with human trainers

e The task:

O run 24x7, forever

o each day:
1. extract more facts from the web to populate the initial ontology
o. learn to read (perform #1) better than yesterday




NELL: Never-Ending Language Learner

O

 Running 24 x 7, since January, 2010

» Today...

e Input:
o ontology defining ~500 categories and relations
0 10-20 seed examples of each
o 500 million web pages (ClueWeb — Jamie Callan)

* Result:
o continuously growing KB with ~440,000 extracted beliefs




NELL

O

Knowledge Base

Data

1 1
1 1
Resources | f—— | // Knowledge
(e.g., corpora) : ‘bellefs‘—‘ﬁ \ integrator

: :

1 1

Y !

I | candidate| |

1

! facts |

l l

| 1

Subsystem Components




Read The Web Project

* http://rtw.ml.cmu.edu
Recently-Learned Facts “witter
instance iteration date learned confidence
gasparilla_island beach is a beach 427 27-sep-2011 100.0 @
&
abstract strategy games is a board game 430 07-oct-2011 98.6 %
&
visual thinking seminar is a cognitive action 430 07-oct-2011 100.0 %
&
senescent fish is a mollusk 431 08-oct-2011 96.6 23
&
andrew cockburn is a person 428 29-sep-2011 95.0 @
&
english is a language used in the university harvard college 430 07-oct-2011 99.2 {5
&
dorothy chandler pavilion is a stadium or event venue located in the city 430 07-oct-2011 96.9 @
los angeles &
hitachi has acquired ibm 428 29-sep-2011 93.8 {5
&
randy walker coaches the team northwestern oklahoma state university 431 08-oct-2011 93.8 &
&
kusf is a radio station in the city san francisco 427 27-sep-2011 96.9 fg@




wledge Base Browser

leb Project log in | preferences | help/instruct

Srosll | nba (sportsleague)

literal strings: NBA, nba, Nba

ibutedtocreativework

Help NELL Learn!

NELL wants to know if these beliefs are correct.
If they are or ever were, click thumbs-up. Otherwise, click thumbs-down.

e nba is a sports league s &

e chuck daly coaches in the league nba (sportsleague) s &
e doc sadler coaches in the league nba (sportsleague) 5 &
e jay triano coaches in the league nba (sportsleague) ‘s &
® pat riley coaches in the league nba (sportsleague) s &

categories

e sportsleaque(100.0%)

e CPL @155 (100.0%) on 28-sep-2010 [ "favorite player with _""_'s New Jersey Nets" "watch featuring _" "undesirable
such as _""_'s Dallas Mavericks" "_ rebounding title" "_"'s Orlando Magic" "only winless team in _""_'s Eastern Conf
shooting guards" "product is officially licensed by _""_"'s Western Conference" ] using nba

e Seed

e MBL @215 (75.0%) on 02-mar-2011 [ Promotion of "sportsleague:nba" leaguestadiums "attraction:us_bank_arena" |
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Discover New Coupling Constraints

O

» first order, probabilistic horn clause
constraints

o connects previously uncoupled relation predicates
o infers new beliefs for KB

| 0.93 athletePlaysSport(?x,?y) € athletePlaysForTeam(?x,?7z)
teamPlaysSport(?z,?y)




Problem

O

» How can NELL learn new relations?
» Specially the hidden ones ?

Sport Team

Santos

Athlete Sport




O

» NELL knowledge base is an ontology

» A ontology can be mapped as a graph (rtwgraph)
» Thus we can apply graph mining techniques




Prophet (DaMNet 2011)
O

A link prediction component coupled to NELL to
help the automatic ontology extension that predicts
new rules and relations with a higher accuracy.

» The goal is to extend the traditional link prediction
task to be applied in complex network data that
represents knowledge extracted from the Web and
thus predicts (infer) new relations and rules that are
presented by edges.

e The results show that the use of a common
neighboring measure with some heuristics helps
NELL learn more and better.




Motivation

» During the extraction phase there are some
knowledge that NELL is not be able to learn.

» “Milwaukee Bucks is a basketball sport team which
plays for NBA league.”

» NELL will be able of extract only

o rules SportTeam and TeamPlaysInLeague in its beliefs.
x SportTeam (Basketball,Milwaukee Bucks)
x TeamPlaysInLeague (Milwaukee Bucks, NBA)




» Two Graphs
o RTWGRAPH - instanced graph
o Rule graph - rules

e Which one should we use? = Both
o RTWGRAPH - redundancy
o Rules = few information




1. Extend the KB by predicting new relations
(edges)that might exist between pairs of nodes;

o. Predict new rules that might help NELL learn more
and better;

3. Identify misplaced edges which can be used by
NELL as hints to identify wrong connections
between nodes (wrong knowledge);




New Relations

» New relations - just close triangles ???

Milwaukee Bucks

Basketball NBA




Wrong combinations




Different Categories

actor politician

\/

Arnold Schwarzenegger




Redundancy

Milwaukee Bucks

Panters




Prophet

o First all open triangles are found
o Combining both graphs RTWGRAPH +Rules

x Avoid combine instances from different categories




Prophet

» Compute the number of
common neighbors

e For instanced nodes u and v and

XN(u,w)

* The cumulative number for the
categories nodes

R(u, w)

Category u Category w




Example




Prophet

e Problem

o Rules with more instances have high probability of have more
common neighbors




Prophet

U Vv W vizinhos total |
coach 5 g
awardtrophytournament athlete
sportsteam 1190 1162
awardtrophytournament sportsteam sport 217 47
coach
awardtrophytournament sportsleague 4 3
sportsteam 236 53
awardtrophytournament sportsteam stadiumoreventvenue 164 122
city company economicsector 205 178
company city newspaper 2225 2212
city , 738 669
company stateorprovince
country 233 233
currency country stateorprovince 201 138
economicsector company city 190 165
sport sportsteam awardtrophytournament 234 55
athlete 12 12
sport coach
sportsteam 127 114
athlete 716 12
sport sportsteam sportsleague 249 17
stadiumoreventvenue 5
coach
sportsleague awardtrophytournament 4 3
sportsteam 243 58
athlete 716 12
sportsleague sportsteam sport 244 13
stadiumoreventvenue 5 4
stadiumoreventvenue sportsteam awardtrophytournament 170 127
. city 859 780
stateorprovince company
country 193 193




» Normalize the cumulative number of neighbors

Nc(uc, 'wc) - Z N(’U., w) o NAc (Ue,we)

* N.(u.,w_,)=0 - all instanced rule only one neighbor

* N.(u.,w,)>& = select rules




Prophet

U V W vizinhos total iferenca vizinhos
coach
awardtrophytournament athlete > >
sportsteam 1190 1162
awardtrophytournament sportsteam sport 217 47
coach
awardtrophytournament sportsleague 4 3
sportsteam 236 53
awardtrophytournament sportsteam stadiumoreventvenue 164 122
city company economicsector 205 178
company city newspaper 2225 2212
city . 738 669
company stateorprovince
country 233 233
currency country stateorprovince 201 138
economicsector company city 190 165
sport sportsteam awardtrophytournament 234 55
athlete 12 12
sport coach
sportsteam 127 116
athlete 716 12
sport sportsteam sportsleague 249 17
stadiumoreventvenue 5 4
coach
sportsleague awardtrophytournament 4 3
sportsteam 243 58
athlete 716 12
sportsleague sportsteam sport 244 13
stadiumoreventvenue 5 4
stadiumoreventvenue sportsteam awardtrophytournament 170 127
. city 859 780
stateorprovince company
country 193 193




Prophet

Cumulative Number of Rules vs.
Number of Neighbors

Cumulative Number of

0O 1 2 4 5 11 13 25 27 28 37 42 43 63 69 79 170179183185231232704

Number of Extra Neighbors




Mechanical Turkey

Mechanical Turk of rules found by Prophet

100% -

80%

70% -

60% -

50% -

40% -

30% -

20%

Percentage of valid and invalid rules

10% -

0% -

E<N(u, w)

Number of common neighbors vs. threshold

m Valid

EN(u, w)

® Invalid




Prophet

e Another restriction to create the instances
o Number of independent paths

o If the number of independent path is less than the
original number of paths - the number of common
neighbors (>€) is taken into account




Example

Madison Square Garden

Sport Sport League




Example

Entity U relation Vv relation Entidty w Neighbors
| baseball sport players athlete athleteplaysinleague major_league_baseball sportsleague 13
baseball sport players athlete athleteplaysinleague mlb sportsleague 429
baseball sport sportteam sportsteam teamplaysinleague mlb sportsleague 40
baseball sport sportusesstadium stadiumoreventvenue stadiumhometoleague mlb sportsleague 1
baseball sport players athlete athleteplaysinleague nfl sportsleague 1
baseball sport sportteam sportsteam teamplaysinleague nfl sportsleague 2
baseball sport sportteam sportsteam teamplaysinleague nhl sportsleague 1
soccer sport players athlete athleteplaysinleague nba sportsleague 1
basketball sport players athlete athleteplaysinleague nba sportsleague 44
basketball sport sportteam sportsteam teamplaysinleague nba sportsleague 58
basketball sport sportusesstadium stadiumoreventvenue stadiumhometoleague nba sportsleague 1




Example

Entity U relation Vv relation Entidty w Neighbors

baseball sport players athlete athleteplaysinleague major_league_baseball sportsleague 13
baseball sport players athlete athleteplaysinleague mlb sportsleague 429
baseball sport sportteam sportsteam teamplaysinleague mib sportsleague 40
baseball sport sportusesstadium stadiumoreventvenue stadiumhometoleague mlb sportsleague 1
baseball sport players athlete athleteplaysinleague nfl sportsleague 1
baseball sport sportteam sportsteam teamplaysinleague nfl sportsleague 2
baseball sport sportteam sportsteam teamplaysinleague nhl sportsleague 1
soccer sport players athlete athleteplaysinleague nba sportsleague 1
basketball sport players athlete athleteplaysinleague nba sportsleague 4

basketball sport sportteam sportsteam teamplaysinleague nba sportsleague 52|
basketball sport sportusesstadium stadiumoreventvenue stadiumhometoleague nba sportsleague 1




Example

Entity U relation Vv relation Entidty w Neighbors

baseball sport players athlete athleteplaysinleague major_league_baseball sportsleague 13
baseball sport players athlete athleteplaysinleague mlb sportsleague 429
baseball sport sportteam sportsteam teamplaysinleague mib sportsleague 40
baseball sport sportusesstadium stadiumoreventvenue stadiumhometoleague mlb sportsleague 1
baseball sport players athlete athleteplaysinleague nfl sportsleague 1
baseball sport sportteam sportsteam teamplaysinleague nfl sportsleague 2
baseball sport sportteam sportsteam teamplaysinleague nhl sportsleague 1
soccer sport players athlete athleteplaysinleague nba sportsleague 1
basketball sport players athlete athleteplaysinleague nba sportsleague 44
basketball sport sportteam sportsteam teamplaysinleague nba sportsleague 58
basketball sport sportusesstadium stadiumoreventvenue stadiumhometoleague nba sportsleague 1




Example

Entity U relation Vv relation Entidty w Neighbors
baseball sport players athlete athleteplaysinleague major_league_baseball sportsleague 13
baseball sport players athlete athleteplaysinleague mlb sportsleague 429
baseball sport sportteam sportsteam teamplaysinleague mib sportsleague 40
baseball sport sportusesstadium stadiumoreventvenue stadiumhometoleague mlb sportsleague 1
baseball sport players athlete athleteplaysinleague nfl sportsleague 1
baseball sport sportteam sportsteam teamplaysinleague nfl sportsleague 2
Ibaseball sport sportteam sportsteam teamplaysinleague nhl sportsleague 1
soccer sport players athlete athleteplaysinleague nba sportsleague 1
basketball sport players athlete athleteplaysinleague nba sportsleague 44
basketball sport sportteam sportsteam teamplaysinleague nba sportsleague 58
basketball sport sportusesstadium stadiumoreventvenue stadiumhometoleague nba sportsleague 1




Example

Entity U relation \Y relation Entidty w Neighbors
baseball sport players athlete athleteplaysinleague major_league_baseball sportsleague 13
baseball sport players athlete athleteplaysinleague mib sportsleague 429
baseball sport sportteam sportsteam teamplaysinleague mlb sportsleague 40
baseball sport sportusesstadium stadiumoreventvenue stadiumhometoleague mlb sportsleague 1
baseball sport players athlete athleteplaysinleague nfl sportsleague 1
baseball sport sportteam sportsteam teamplaysinleague nfl sportsleague 2
baseball sport sportteam sportsteam teamplaysinleague nhl sportsleague 1
|soccer sport players athlete athleteplaysinleague nba sportsleague 1]
basketball sport players athlete athleteplaysinleague nba sportsleague 44
basketball sport sportteam sportsteam teamplaysinleague nba sportsleague 58
basketball sport sportusesstadium stadiumoreventvenue stadiumhometoleague nba sportsleague 1




Outlier

Cristiano Ronaldo




* Rla (AwardTrophytournament, Athlete) :-
trophywonbycoaches (AwardTrophytournament,
Coach), coachesathlete (Coach, Athlete),
numberof (Coach) =2 10;

Rl1b (AwardTrophytournament, Athlete) :-
trophywonbyteam (AwardTrophytournament,
SportsTeam), teammember (SportsTeam, Athlete),
numberof (SportsTeam) = 10;

Rlc (AwardTrophytournament, Athlete) :-
trophywonbycoaches (AwardTrophytournament,
Coach), coachesathlete (Coach, Athlete),
trophywonbyteam (AwardTrophytournament,
SportsTeam), teammember (SportsTeam, Athlete)




RGN

Analyze the number of edges created by the
selected rules

100%

80% —

60% —

40% —

20% —

e B i=10

R1 R2 R3 R4 R5 R6 R7 R8 R9g Rio Ri1 Ri2R13 R14 R15R16
Rules Name

Percentage of edges
created

¥ Correct @ Uncertain




Hierarchical Link Prediction (1)

 Graphs and corresponding hierarchies:

1T T T T S S ] =]




Hierarchical Link Prediction (2)

O

1. Given a network generate a set of hierarchical
random graphs that fit its structure.

o. Evaluate pairs of vertices with a high probability of
connection within the sampled hierarchical
random graphs.

3. Rank the results by sorting based on the probability
of their occurrence.




O

» Link prediction is an estimate of the likelihood or probability
of the future occurrence of a link in a graph.
A maximum likelihood approach is used in missing link prediction based
on a model of how links are organized in a networl%.
» This model considers all the possible arrangements of a given
network and the distribution of such arrangements across a
range of possible network structures [17].

* A maximum likelihood approach can also be used to predict
false positives, which are links that are present but should not
be present in a network.

e Thisis accomglished by looking at the minimum likelihood
(lowest probability) of a link in a graph.

» A defining element of link prediction (as in [38], [17] and [13])
is that prediction methods are based purely on graph
structure and focus on network evolution.




Hierarchical Link Prediction (3)

O

 Inferring hierarchical structure from network data
that can be used in the prediction of missing links.

» Hierarchical structure is represented by a tree or
dendrogram in which closely related pairs of vertices
have lowest common ancestors that are lower in the
tree than those of more distantly related pairs

» The prediction of missing links is then calculated as
the probability that two nodes are connected over all
the sampled dendograms.




Identify suicide ideation in social network

O

e The number of user communities to which a user
belongs to

e The transitivity 2 number of triangles

 Fraction of suicidal neighbors in the social
network, contributed the most to suicide ideation

Naoki Masuda, Issei Kurahashi, Hiroko Onari Suicide ideation of individuals in online
social networks




Link Prediction Task

Link Link Link
Cardinality Prediction Existence

Link Weight




Social Media: Interaction (1)

O

* In Social Media users interact with one another and
the content they both crate and consume

» Traditional social network analysis only
distinguishes between pairs of people that are
linked vs. not-linked

e But, user interactions in social media are much
richer




Social Media: Interaction (2)

O

* How to learn to recommend/predict links in social
networks?

» User interactions in social media:
o Strength: strong vs. weak ties
o Friends vs. Foes
o Trust vs. Distrust
o Predict the directions




Friends vs. Foes

O

» So far we viewed links as positive
but links can also be negative

* Question:

o How do edge signs and network
interact?

o How to model and predict edge signs?
» Applications:
o Friend recommendation

x Not just whether you know someone
but what do you think of them




Theory of Structural Balance

o Friend of my friend is my friend
o Enemy of enemy is my friend
o Enemy of friend is my enemy

s

;+ Balanced y

Consistent with “friend of a friend” or

O

e Consider edges as undirected
o Start with intuition [Heider ’46]:

» Look at connected triples of nodes:

— Dnbalanced- S

Inconsistent with the “friend of a friend”
or “enemy of the enemy” intuition

“enemy of the enemy” intuition




Networks with Explicit Signs

O

» Each link A-> B is explicitly tagged with a sign:
o Epinions: Trust/Distrust

x Does A trust B’s product reviews? (only positive links
are visible)

o Wikipedia: Support/Oppose
x Does A support B to become Wikipedia administrator?
o Slashdot: Friend/Foe

x Does A like B’s comments?
Epinions | Slashdot | Wikipedia

Nodes 119,217 82,144 7,118
Edges 841,200 [ 549,202 103,747
+ edges 85.0% 17.4% 18.7%

— edges 15.0% 22.6% 21.2%




Networks with Explicit Signs

» For each edge (u,v) create
features:

» Triad counts (16):

o Counts of signed triads edge u>v
takes part in

» Degree (7 features):
o Signed degree:

x d* (W), (), d*,(v), dyp(v) is E
o Total degree:

x dye(0), diy (V)

> YIn

o Embeddedness of edge (u,v)




Networks with Explicit Signs

O

» Edge sign prediction problem
o Given a network and signs on all but one edge, predict the
missing sign
* Machine Learning formulation:

o Predict sign of edge (u,v)
o Class label:

x +1: positive edge

x -1: negative edge
o Learning method:

= Logistic regression

1
1+ e—(bo+227 51':1?1')

P(+]z) =




Link Prediction Task

Link Link Link
Cardinality Prediction Existence

Link Weight




Weighted Link Prediction

O

* Weighted common neighbors

Z w(x,z)+w(y,z)

zeT'(x)NI(y) 2
» Weighted Adamic/Adar

w(x,z)+w(y,z) 1
2 “ToaS .
zeT(x)AC(y) 2 log( ZeT() w(z',2))

» Weighted Preferential Attachment

score(x,y) =

score(x,y) =

score(x,y) = Z w(x', x) X ZW(J/'»J’)

x'el’(x) vel'(y)




Weighted Link Prediction

O

» The fundamental task of link prediction in weighted
networks, namely to predict the existence of links
with the help of not only the observed links but also
their weights

» How to properly exploit the information of weights
to improve the prediction accuracy is still an
unsolved problem.

« T. Murata, S. Moriyasu, Link prediction of social networks based on weighted
proximity measure, In Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, ACM Press, New York, 2007.

L Lu,T.Zhou, Link prediction in weighted networks: The role of weak ties, EPL
89 (2010) 18001.




Weighted Link Prediction

O

* Weighted common neighbors

Z w(x,z)+w(y,z)

score(x,y) =

Not predict the weight of new

edge!!!

score(x,y) = Z w(x', x) X Z w(y', )

x'el’(x) yel(y)




Weighted Link Prediction

O

» A harder problem is to predict the weights of
links

* Which is relevant to the traffic prediction for

urban transportation and air transportation
systems




Link Prediction Task

Link Link Link
Cardinality Prediction Existence

Link Weight




Multidimensional Network

O

» Each edge has a different
meaning:
o Social interaction
= E-mail
= Phone calls
x Co-author

* Not only predict new link for
disconnected node

o New links for nodes connected
= Different interaction

Q

same
name
colleagues

friends

colleagues

relatives
same
team

Multi-edge or
multigraph




Multidimensional Predictors

O

» Multidimensional Common Neighbors

Consider only one dimension at time

NOT the relation among them!!

Multidimensional Adamic Adar(u,v,d) =

1
2 2e{N(u,d)nN(v,d)} Tog(IN =D




Reflections

e Open problems

o Predict new edges and their direction or weight
o Predict new edges for nodes already linked

» How weighted can improve accuracy is still not
solved
o Adapt or create new specific methods

 Bipartite graph
o Change the graph to unipartite




Reflections

O

o Community structures can also help improving
prediction accuracy
o Same social circles

 In social networks, since one person may play
different roles in different communities

o The prediction in one domain can be inspired by the
information in others.

= Prediction the collaborations between authors can consider their
affiliations to improve the accuracy.




Reflections

O

o Evolutions of link occurrences, which is more
appropriate for dealing with the link prediction
problem in evolving networks, such as online social
networks
o For now, it is impossible to predict whether and when two

authors will collaborate again in co-authorship network

» Another way to involve time information is inspired
by the fact that older events are less likely to be
relevant to future links than recent ones.

o For example, author’s interests may change over time and thus
old publications might be less relevant to his currents research
area.
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