Exploiting Structured Data in Textual Content from the Web: Methods, Techniques and Applications

Altigran Soares da Silva (alti)

alti@icomp.ufam.edu.br Instituto de Computação Universidade Federal do Amazonas

Acknowledgments

Joint Work with people from the BDRI Group at UFAM and InWeb at UFMG

Industrial cooperation

Þ

Where is the data?

Data of interest is no longer only in databases

- They are, though, available in on-line sources
- In particular: textual sources
 - ▶ Social networks, Wikis, Blogs, Web of Data, RSS, e-mail, ...
- Search engines are effective and popular tools
- Consensus:
 - its possible to better exploit them

How to deal with it?

Textual Sources

- The structure is only implicit
- Meta-data is a luxury
- Constraints are a utopia
- We do need semantics!
- Multiple proposals to increase the expressive power
 - Syntactically: e.g., XML technology, RDF, etc.
 - Semantically: e.g., Semantic Web, Linked Data, etc.
- Challenge: adoption of standards
 - Governance is needed, and it is good!!
 - But, the web was born messy and its is likely to remain like that

Any alternative ?

Possible alternative perspective:

 Methods & Techniques for "automatically" gathering, extracting , enriching and exploiting data available in textual Web sources

By no means new!

It has been out there for more than a decade!

New impulse: Industrial needs

- Advances in Data Management, Information Retrieval, Machine Learning, Data Mining, Artificial Intelligence, ...
- Research on this subject is immediately applicable
 - Motivates a continuous feedback between industry and academia

Many Problems ...

It is Big Data !

The Big Data Analysis Pipeline H.V. Jagadish – ACM SIGMOD Blog - 05/06/2012 Challenges & Opportunities w/ Big Data – Online report

e-Shopping Aggregation

- e-Shopping Aggregators receive and/or crawl hundreds of thousands unstructured product offers from thousands of stores
- Available as ordinary unstructured textual descriptions
- Different "styles" depending on the source and on the type of product

Apple iPad 2 Wi-Fi + 3G 64 GB - Apple iOS 4 I GHz - Black \$589 LG - 32LE5300 - 32" LED-backlit LCD TV - 1080p (FullHD) - \$400 Samsung - UN55D7000 - 55" Class (54.6" viewable) LED-backlit LCD ... \$2,048 Mixter Max Accessory Plasma TV Rack Tilt Bracket 248-A05 \$65 HP Deskjet 3050 All-in-One Color Ink-jet - Printer / copier / scanner \$50

e-Shopping Aggregation

8

e-Shopping Aggregation

Main Tasks/Services

- Crawl product offers over the Web
- Product aggregation: cluster offers of a same product
- Categorization: put offers in the right category
- Structured search: e.g., search by brand
- Product comparison: e.g., give me the cheapest 3D 40" TV

Easier if data in offers is correctly segmented and labeled

Live showcase: neemu.com by neemu

	N			
	5		Ordenar por: Similarid	lade 🔻
Mega Filtro	Grupo 1			
Marcas	▼ TV 46 [™] LED Full HD (1920x1080 pixels) Bravia - KDL-46EX525 - c/ Conversor Digital Integrado	AMERICANAS.com	R\$ 3459,004	ir à Loja 🔿
Sony LG Philips Samsung AOC	TV 46`` LED Full HD (1920x1080 pixels) Bravia - KDL-46EX525 - c/ Conversor Digital Integrado (DTV), Internet Video, Skype, Interatividade com emissoras (DTVi), DLNA, 2 Entradas USB, 4 Entradas HDMI, Bravia Sync, Sensor de presença e Track ID - Sony		R\$ 3459, Compartilhar Oter	00 🕹
Smart Toshiba	TV 46 LED SONY BRAVIA KDL-46EX525	bemol	R\$ 3599,00	lr à Loja 🔿
Semp Toshiba	TV LED 46** FULL HD SONY KDL-46EX525 COM CONVERSOR	fnac	R\$ 3679,10t	ir à Loja 🔿
Philco	> TV LED 46 Polegadas Full HD 1080p 4 HDMI DLNA - Conversor Integrado - Bravia KDL-	magazineluiza	R\$ 3999,00	ir à Loja 🔿
Entradas HDMI	TV 46" LED BRAVIA Full HD c/ 4 HDMI, Conversor Integrado, Entrada USB e PC KDL-46EX525	Ricarda	R\$ 3999,00t	lr à Loja 🔿
1 HDMI 2 HDMI	Grupo 2	órico de preços	Veja todas as	s 10 ofertas
3 HDMI	▼ Tv/Monitor LED LCD 21,5 ^{**} - T2242WE - AOC	maniaVirtual	R\$ 599,90 +	lr à Loja 🔿
4 HDMI 5 HDMI	Tv/Monitor LED LCD 21,5 ^{**} - T2242WE - AOC			

Þ

Also powered by **neemu**

Entity recognition by **O** zunnit

📋 21/3/2011 às 20:42

Delegado solicita imagens de acidente que decepou dedo de idosa em ônibus

Mario Campagnani

Tamanho do texto A A A

O delegado Sandro Caldeira da 13ª DP Copacabana), afirmou que já solicitou as imagens do circuito interno da Viação Saens Peña, empresa do ônibus que protagonizou o acidente com uma idosa de 77 anos na tarde desta segunda-feira.O motorista Marcelo da Silva da linha 125, já prestou esclarecimentos e disse que o veículo estava parado quando o senhora caiu.O acidente aconteceu na Avenida Nossa Senhora de Copacabana, na altura do número 819. Socorrida por guardas municipais, a idosa teve um pedaço do dedinho decepado e foi levada ao Hospital Miguel Couto, no Leblon e deve passar por uma cirurgia reconstrutora.O delegado ainda não tem informações exatas sobre como o acidente aconteceu. Assim que tiver alta do hospital, a vítima prestará esclarecimentos na 13ª DP.

🖪 Imprimir 🐹 Enviar por e-mail 🔲 Comentar (27) 📑 Compartilhar 🔺 Ir ao topo

Entity Disambiguation at Winweb

Eleições 2010

Þ

observatóriodaseleições

Management of Bib. References in **SHINE**

			Salance FED	430 DADE FEDERAL DO TA	
HOME	FEATURES ABOUT	CONTACT US	UFAM		
SPIRE -	Symposium on String	g Processing and Information	Retrieval	1	
		Papers from 2000	to 2012		
SPIRE	- Symposium on String Process	ing	2012	ubmit	
SP 1	RE has 28 papers wit A Survey of Longest Com Lasse Bergroth, Harri Hak Year: 2000. Cited by: 218	th 28 or more citations betwee mon Subsequence Algorithms ionen, Timo Raita	n 2000 and 2012	:	
2	Inferring Query Performand Ben He, Iadh Ounis Year: 2004. Cited by: 103	ce Using Pre-retrieval Predictors			
3	The DBLP Computer Scie Michael Ley Year: 2002. Cited by: 97	nce Bibliography: Evolution, Research Is	sues, Perspectives		
4	Distributed Query Process Claudine Santos Badue, R Year: 2001. Cited by: 97	sing Using Partitioned Inverted Files Ricardo A. Baeza-Yates, Berthier A. Ribe	iro-Neto, Nivio Ziviani		
	The Intention Behind Web	Oueries			

| |4

Structured Data in Textual Content

We have studied, developed, published and applied methods and techniques for all of these problems

Structured Data in Textual Content

In this talk, focus on 3 specific results for two problems

In this talk

- Information Extraction
 - ONDUX [SIGMOD'10] and JUDIE [SIGMOD'11]

- Filling of Web Forms
 - IForm [VLDB'11]
- Complex Schema Matching
 - EvoMatch [IS'I3]

IETS

D

Information extraction by text segmentation (IETS)

- Extracting semi-structured data records by identifying attribute in continuous text
- bibliographic citations, product descriptions, classified ads, etc

Regent Square \$228,900 1028 Mifflin Ave.; 6 Bedrooms; 2 Bathrooms. 412-638-7273

Ungrammatical text – not suitable for NLP methods

Supervised Methods

- Current IETS methods use probabilistic frameworks such as HMM or CRF
- Learn a model for extracting data related to a domain
- Supervised IETS methods
 - Require training data from each source

<Neighboorhood>Regent Square </Neighboorhood> <Price> \$228,900 </Price>

<No>1028 </No><Street>Mifflin Ave, </Street> <Bed>6 Bedrooms </Bed> <Bath> 2

Bathrooms </Bath> <Phone>412-638-7273 </Phone>

Supervised IETS

Þ

Supervised IETS

Supervised IETS

Unsupervised IETS methods

- Learn from datasets
 - Dictionaries, knowledge bases, references tables, etc.
- No need for manual training for each input
- Source Independent
- IETS methods

D

- Unsup. CRF (Zhao et al. @SIAM ICDM'08)
- ONDUX (Cortez et al. @SIGMOD'10)

• JUDIE (Cortez et al. @SIGMOD'II)

Unsupervised IETS - ONDUX & JUDIE

Unsupervised IETS - ONDUX & JUDIE

Features

- IETS methods rely on two types of features:
- Content (or state) features:
 - Related to the contents of the tokens/strings
- Structure (or transition) features:
 - Related to the location of tokens/strings in a sequence

Content Features we use

Vocabulary:

 Similarity betweew strings in the input and values of an attribute from the KB

Value Range:

How close a numeric string in the input is from the mean value of a set of numeric values of an attribute in the KB

Format:

D

- Common style often used to represent values of some attributes
- URLs, e-mails, telephone numbers, etc

Structure Features we use

Features

- Positioning:
 - position of the values of a given attribute within the input

Sequencing:

relative order of attribute values within the input

• Assumption:

Some regularity in the appearance of attribute values within the input texts

Does not necessarily mean assuming a fixed order of appearance

Content x Structure Features

Content Features

- Domain-dependent but input-independent
- For a given attribute A, can be computed from a any representative set of values in domain of A
 - e.g., from a previous existing dataset

Structure Features

- Dependent of the placement of attributes values on the input
- Thus, they are input-dependent

Unsupervised IETS methods

Method	Content Features	Structure Features
Mansuri@ICDE'06	Dictionaries	Seed instances
Agichtein@SIGKDD'04	Reference Tables	Sample, assumed to have a fixed order
Zhao@SICDM'08	Reference Tables	Sample, assumed to have a fixed order
Cortez@JASIST'09	Bibliographic Files	Heuristics for the bibliographic domain
Cortez@SIGMOD'10	Knowledge Bases	Automatically Induced
Cortez@SIGMOD'11	Knowledge Bases	Automatically Induced – multiple records

ONDUX

General View

Features – Content Related

Features Considered:

Adding Structure Related Features

ONDUX

Reinforcement

• Once the PSM is built, we combine the matching, positioning and sequencing evidences using the Bayesian operator OR.

$$FS(B, a_i) = 1 - ((1 - M(B, a_i)) \times (1 - t_{j,i}) \times (1 - p_{i,k}))$$
Matching Result Sequence Positioning
Experimental Results

U-CRF presented a poor performance (very heterogeneous dataset)

Due to the Matching Phase and the PSM that is learned *On-Demand*, ONDUX achieve very high quality results

Reinforcement

37

JUDIE

Chocolate Cake Recipe

1/2 cup butter 2 eggs 4 cups white sugar ground cinnamon 2 tablespoons dark rum 6 chopped pecans 1/2 cup milk 1 1/2 cups applesauce 2 cups all-purpose flour 1/4 cup cocoa powder 2 teaspoons baking soda 1/8 teaspoon salt 1 cup raisins 1/4 cup dark rum

Quantity	Unit	Ingredient
1/2	сир	butter
2		eggs
4	cups	white sugar
		ground cinnamon
2	tablespoons	dark rum
6		chopped pecans

JUDIE

- Joint Unsupervised Structure Discovery and Information Extraction
 - Detects the structure of each individual record being extracted without any user intervention
 - Looks for frequent patterns of label repetitions or cycles
- Integrates this algorithm in the IE process
 - Accomplished by successive refinement steps that alternate information extraction and structure discovery.

The SD Algorithm

Comparison with baselines – Attribute Level

Attribute	JUDIE	ONDUX	U-CRF	Attribute	JUDIE	ONDUX	U-CRF
Author	0.88	0.922	0.87	Bedroom	0.82	0.86	0.79
Title	0.70	0.79	0.69	Living	0.89	0.90	0.72
Booktitle	0.86	0.89	0.56	Phone	0.87	0.92	0.75
Journal	0.84	0.90	0.55	Price	0.92	0.93	0.78
Volume	0.90	0.96	0.43	Kitchen	0.83	0.84	0.78
Pages	0.86	0.84	0.50	Bathroom	0.77	0.79	0.81
Date	0.87	0.89	0.49	Others	0.73	0.79	0.71
Average	0.86	0.88	0.58	Average	0.84	0.85	0.76
	COR	4			Web	Ads	

- Results very close to ONDUX and even better than U-CRF
- Recall: JUDIE faces a harder task.

More details

- Cortez, Silva, Gonçalves & Moura. ONDUX: on-demand unsupervised learning for information extraction. SIGMOD 2010
- Cortez, Oliveira, Silva, Moura & Laender: Joint unsupervised structure discovery and information extraction. SIGMOD 2011

One more ...

The Form Filling Problem

Goal:

To automatically fill out the fields of a given form-based interface with values extracted from a data-rich free text document.

- Extracting values from the input text;
- 2. Filling out the fields of the target form using them.

Example

Form-based interface

Vehicle Info	Text Box	
Туре	- Please Select -	Chook hox
Year		Uneck-box
Make	Features	
Model		Power Steering Air Cond. (Rear) Roof Rack
VIN		Power Brakes Cruise Control Fog Lamps
Mileage		Power Windows Air Bags (Driver) Sliding Rear Win
Transmission	- Please Select - 🛛 💙	Power Locks Air Bags (Passgr) Running Boards
Engine		Power Mirrors Security System Bed Liner
Drivetrain	- Please Select - 🛛 💙	Power Seat (Driver) Rear Defroster Custom Bumper
Body style	- Please Select - 🛛 💙	Power Seat (Passgr) Int wheel Grin Guard
Color		Antilock Brakes Rear Wipers Winch
Int color		Air Conditioning Tinted Windows Opt. Fuel Tank
Int material		
Section	Cloth Leather	Towing Package Cup Holder
Wheels	Discuss Collect	
Times		Underbody Hoist Trailer Hitch
Tires	- Please Select -	Hydraulic Lift Dual Rear Wheels
	- Please Select - 🛛 🗹	Rear Spoiler AM/FM
Truck bed	- Please Select - 🛛 💌	Pickup Shell D D Player
Stereo	- Please Select - 🛛 💌	Tachometer D.A.B
Dealer code		Kevless Entry
Stock code		Digital Clock
MSRP Sele	ection List	
NADA		
КВВ		
Warranty	- Please Select -	

Example

Data-rich free text document

2005 Honda new Accord Ex,Extra Clean, very low Mileage, Maintained By Dealer! Vechicle Located in Stockton, Ca. Ad Id# 28147

This is a brand new car with automatic transmission

Car with Air Conditioning, clock, **Cruise Control** Digital Info Center, Dual Zone Climate Control, Heated Seats, Leather Steering Wheel, Memory Seat Position, Power Driver's Seat, **Power Steering, Power Breaks**, Power Passenger Seat, **Power Windows**, **Cup Holder**, **Rear Air Conditioning, Sunroof**, Tilt Steering Wheel, Original Owner, **Alloy Wheels**.

Am/fm, Cd Changer, Mp3, Satellite

Contact Us At XXX-XXXX-XXXX For More Information

Visit xxx xxx Motors

Example

Form Filling

Vehicle Info

Туре	- Please Select - 🛛 💙				
Year	2005				
Make	Honda	Features 🥅			
Model	Accord	X	Power Steering	💢 Air Cond. (Rear)	Roof Rack
VIN		X	Power Brakes	Cruise Control	Fog Lamps
Mileage	low	X	Power Windows	Air Bags (Driver)	Sliding Rear Win
Transmission	Automatic		Power Locks	🛄 Air Bags (Passgr)	Running Boards
Engine			Power Mirrors	Security System	Bed Liner
Drivetrain			Power Seat (Driver)	Rear Defroster	Custom Bumper
Bady style			Power Seat (Passgr)	Tilt Wheel	Grill Guard
Body style	- Please Select - 💌		Antilock Brakes	Rear Wipers	Winch
Color			Air Conditioning	Tinted Windows	📃 Opt. Fuel Tank
Int color					
Int material	📃 Cloth 📃 Leather				
Seating			Towing Package	🗙 Cup Holder	
Wheels	Alloy Wheels		Utility	🔤 Toolbox	
Tires	- Please Select -		Underbody Hoist	Trailer Hitch	
Roof	- Please Select - 💙		Hydraulic Lift	Dual Rear Wheels	
Truck bed	- Please Select -		Rear Spoiler	X AM/FM	
Stereo	- Please Select -		Pickup Shell	CD Player	
Dealer code			Tachometer	D.A.B	
Stock code			Keyless Entry		
SLOCK CODE			Digital Clock		
MSRP					
NADA					
КВВ					
Warranty	- Please Select -		~		

Common usage of Web Forms

A user manually fills each form field

- Text-box, selection list, check-box and radio button
- Tedious, error prone and repetitive process

Our Aproach

- IForm: Information Extraction + Form Filling
- A Probabilistic Approach for Automatically Filling Form-Based Web Interfaces
 - Appeared in PVLBD 2010 / VLDB 2011
 - With Guilherme Toda, Eli Cortez and Edleno Moura

iForm

Information Extraction + Form Filling

iForm

- A probabilistic approach for automatically filling form-based interface
- Relies on a model that estimates the probability of each field in the form given the input text based on the values previously used for filling the form.
- Exploits features related to the content and style, which are combined through a Bayesian framework
 - tokens (words) composing each segment
 - wording style of each segment

Related Work – Information Extraction

- CRF (Conditional Random Fields): state-of-the-art information extraction approach
- Lafferty, J. et al [ICML,2001]
- Peng and McCallum [IPM, 2006]
- Mansuri and Sarawagi [ICDE, 2006]
- Kristjansson et al [IAAA, 2004]
- Usually requires training instances manually labeled
- Extracts all segments in a input text
 - Iform extracts only relevant segments

Related Work – Form Filling

• Chen et al. [ICDE, 2010]

- USHER, a system used to automatically **adapt the form design** according to user experience.
- M.AI-Muhammed e Embley D. [ICDE,2007]
 - An approach that relies on a **manually built** ontology to guide the user in the form filling process.

• iCRF - Kristjansson et al [IAAA, 2004] - Baseline

- CRF approach for the task of automatically filling web forms.
- Relies on content and positioning features extracted from training instances
- Model requires training instances to be manually labeled.

iForm - Overview

iForm - Scenario

Shutter Island is a 2010 American psychological thriller film directed by Martin Scorsese. The film is based on Dennis Lehane's 2003 novel of the same name . Starring Leonardo DiCaprio, Mark Ruffalo and Ben Kingsley.

Movie Review - Data-rich text

	Web Form Movie TV Sho
Title:	
Directo	or:
Actors	:
Gende	r •

Web Form

iForm – Selecting plausible segments

• What is the probability of a form field given each text segment?

iForm – Token Similarity

Shutter Island

• Likelihood of each **token** present in the segment occurring in each field $TAF(F_j, S_{ab}) = \eta \sum_{\tau \in tokens(S_{ab})} \frac{\operatorname{freq}(\tau, F_j)}{\sum_{F_i \in \mathcal{F}} \operatorname{freq}(\tau, F_i)}$

$$\eta = \frac{1}{k + |avg(F_j) - k|}$$

Average number of words of each field

	Actors	Title	Director	Genre
	Joshua Jackson	Shutter	Masayuki	Terror
Previous	Mark Man	Shutter Bug	Paul J.	Animation
Submissions	Mark Rufallo	•••		•••
	Leonardo DiCaprio	The Departed	Martin	Thriller
	Ewan Mcgregor,	The Island	Michael B.	Action
	Marlon Brando	The Island of Dr	John Frank	Terror

iForm – Value Similarity

Mark Ruffalo

Likelihood of the value present in the segment occurring in each field

$$VAF(F_j, S_{ab}) = \frac{\operatorname{freq}(S_{ab}, F_j)}{\sum_{F_i \in \mathcal{F}} \operatorname{freq}(S_{ab}, F_i)}$$

Previous Submissions						
Actors		Title	Director	Genre		
Seth Rogen		Kung Fu Panda	Mark Osborne	Animation		
Ben Affleck		Daredevil	Mark S. Johson	Action		
Jim Carrey,		•••				
Zooey Deschanel		Yes Man	Peyton Reed	Comedy		
Ethan Hawke		What Doesn't	Brian Goodma	Action		
Mark Ruffalo		Zodiac	David Fincher	Thriller		

iForm – Style Similarity

D

 Given a text segment, we encode it according to a taxonomy of symbols.

Ben Kingsley

[A-Z][a-z]+ [A-Z][a-z]+

Verifies the likelihood of the sequence following the same wording style of the known values for each field

$$\frac{\sum_{(n_x,n_y)\in path(\mathbf{p})} w(SM(F_J), n_x, n_y)}{|path(\mathbf{p})|}$$

iForm – Combining all probabilities

 iForm models the computation of the probability of a field given a segment using a Bayesian network.

iForm – Mapping Segments to Fields

- Given the set of text segments such that theirs probability $P(f_j | S_{ab})$ is above a threshold \mathcal{E}
 - iForm aims at finding a *mapping* between candidate values and form fields with a maximum aggregate probability
 - Select non-overlaping segments.
- Accomplished by means of a two-phase procedure

iForm – Mapping Segments to Fields

- In the first phase, we begin by computing the candidate values for each field based only on content-based features (token + value).
 - The initial mapping is composed by the set of all candidate values C_j for all fields and contains **segment-field** pairs.
- Goal: To find a subset of segment-field pairs $\langle S_{ab}, F_j \rangle$ in the mapping whose probabilities are maximum.
 - iForm relies on a simple greedy heuristic to find an approximate solution.

iForm – Mapping Segments to Fields

- Extracts the pair $\langle S_{ab}, F_j \rangle$ with the **highest probability** from the initial mapping and verifies if the current field was already filled with a text segment.
- To deal with fields that were not mapped to a segment, we use the probabilities derived from the style-related features, in the second phase.
 - We adopt the two phase mapping after verifying through experiments that the style-related feature is less precise than the other two features adopted.

iForm – Filling Form-based interfaces

Uses the final mapping to fill out the form fields

Text Boxes: Mapped text segments as a field values.

• Check boxes: Set true for mapped fields.

iForm – Filling Form-based interfaces

Selection list

Form aims at finding an item such that its similarity with the extracted value is maximum – "softTF-IDF"

$$soft(A,B) = \frac{\sum\limits_{(a,b)\in close(\theta,A,B)} w(a,A) \cdot w(b,B) \cdot s(a,b)}{\sqrt{\sum\limits_{a\in A} w(a,A)^2} \cdot \sqrt{\sum\limits_{b\in B} w(b,B)^2}}$$

iForm - Overview

Evaluation – Multi-typed web forms

	Movies				
Type of Field	# Fields	Р	R	F	iForm achieved high
Text Box	4	0.74	0.69	0.71	quality results in
Submission-Level		0.73	0.67	0.69	all datasets

Cars

Type of Field	# Fields	Р	R	F
Text Box	5	0.78	0.73	0.76
Check Box	30	0.79	0.79	0.79
Average		0.79	0.78	0.79
Submission-Level		0.77	0.73	0.75

The quality of iForm was almost the same for the text box and the check box fields.

Evaluation – Multi-typed web forms

Type of Field	# Fields	Р	R	F
Text Box	2	0.89	0.69	0.78
Check Box	35	0.94	0.94	0.94
Average		0.94	0.93	0.93
Submission-Level		0.96	0.94	0.95

Cellphones

Filling quality above 0.90. In fact, more than 90% of each submission was correctly entered in the web form interface.

Books 1

Type of Field	# Fields	Ρ	R	F
Text Box	4	0.88	0.67	0.76
Drop Down	I	0.96	0.96	0.96
Average		0.90	0.73	0.80
Submission-Level		0.89	0.67	0.76

Þ

Precision levels are above 0.8 in all cases, and submission-level f-measure results for this dataset is above 0.7.

Evaluation – Comparison with iCRF

Field	iForm	iCRF				
Application	0.82	0.37				
Area	0.18	0.23				
City	0.70	0.65				
Company	0.41	0.17				
Country	0.77	0.87				
Desired Degree	0.57	0.37				
Language	0.84	0.69				
Platform	0.47	0.38				
Recruiter	0.44	0.22				
Req. Degree	0.31	0.59				
Salary	0.22	0.25				
State	0.85	0.81				
Title	0.72	0.49				

Jobs

iForm had superior F-measure levels in nine fields.

The lower quality obtained by iCRF is explained by the fact that segments to be extracted from typical free text inputs, such as jobs postings, may not appear in a regular context.

iForm was designed to conveniently exploit these field-related features from previous submissions

Previous Submissions Impact

For the Movies and Books 1 datasets, the quality achieved by iForm increases proportionally with the number of previous submissions
Previous Submissions Impact

Notice that F-measure values stabilize at around 3000 previous submissions and remain the same until 10000. Besides, even starting with a small number of submissions, iForm is able to help decrease the human effort in the form lling task.

Conclusions

- A probabilistic approach for automatically filling form-based interface
- Relies on a model that estimates the probability of each field in the form given the input text based on the values previously used for filling the form.
- Achieved good results in comparison with iCRF
 - Our experiments demonstrate that our approach is able to properly deal with different types of input fields, such as text boxes, pull-down lists and check boxes
- More in
 - Toda, Cortez, Silva & Moura: A Probabilistic Approach for Automatically Filling Form-Based Web Interfaces. VLDB 2011

The last one ...

Complex Schema Matching

A group of elements from a given schema match a group of elements from another schema.

given name	surname	street numbe	r address 1	address 2	suburb
rose	leslie	26	coranderrk street	rowethorpe	hill end
katheri	hand	18	derrington crescent	homewood	kingsthorpe
mary	white	23	prescott street		bonbeach
full name		age	address		area
leslei rose		43 (coranderrk 26, rowethorpe		hi end
katherine	hand	33 (derrington crescent 18, homewood		kingsthorpe
mary wite		39	prescott str	bonbeach	

Complex Schema Matching

A group of elements from a given schema matches a group of elements from another schema.

Características do Produto		
GARANTIA FABRICANTE: 01 AN Nível econômico: Classe E	10	
Posição: Horizontal	Caracteristica	
Revestimento: Aco zincado	Refência	H160
N° de portas: 1	Tipo de freezer:	Horizontal
Tensão: 110v	Tipo de degelo:	Manual
Peso aproximado: 43.5kg	Portas:	1
Dim. (AxLxP): 90x65,3x73cm	Puxadores:	1 ergonômico
	Pés:	Pés niveladores
	Altura:	90,00 Centimetros

Largura:

Peso:

Profundidade:

66,00 Centimetros

73,00 Centimetros

44,00 Quilos

Our approach

- An Evolutionary Approach to Complex Schema Matching
 - Just accepted to Information Systems to appear in 2013
 - With Moises Carvalho, Alberto Laender & Marcos Gonçalves
- Given two input schema, use an evolutionary process to generate Schema Matching Solutions for them
- Start from an initial set of possible spurious/meaningless schema matching solution
- Hopefully reach a final meaningful schema matching solution
- Use a fitness function to evaluate and refine the solutions been generated

Requirements and Assumptions

Schemata are known, but we can't rely on attribute names

- Different labels, noisy label extraction
- Instances are known, we rely on them
 - Assumed to be abundant

given name	surname	street numbe	r address 1	address 2	suburb
rose	leslie	26	coranderrk street	rowethorpe	hill end
katheri	hand	18	derrington crescent	homewood	kingsthorpe
nary	white	23	prescott street		bonbeach
	ł		Ì		
full	name	age	address		area
leslei rose		43 0	oranderrk 26, rowetho	orpe	hi end
katherine	hand	33 (derrington crescent 18 , homewood		kingsthorpe
mary wite		39 J	prescott str		bonbeach

Características do Produto		
GARANTIA FABRICANTE: 01 ANC Nível econômico: Classe E Capacidade total (L): 154		
Posição: Horizontal	Caracteristica	
Revestimento: Aço zincado	Refência	H160
Nº de portas: 1	Tipo de freezer:	Horizontal
Tensao: 110v	Tipo de degelo:	Manual
Dim $(A \times I \times P) \cdot 90 \times 65 3 \times 73 \text{ cm}$	Portas:	1
Dini. (AXEXF): 70X03,3X73Cin	Puxadores:	1 ergonômico
	Pés:	Pés niveladores
	Altura:	90,00 Centimetros
	Largura:	66,00 Centimetros
	Profundidade:	73,00 Centimetros
	Peso:	44,00 Quilos
	1.0	

Schema Matching Solutions (SMS)

79

SMS Evolution

K evolutionary steps

SMS Evolution: A Single Step

SMS Evolution: Crossover

SMS Evolution: New Solution

Setup

- Similarity Functions (e.g., Jaro, Consine, Prob. Density, etc.)
- Data types with operators
 - STRING: concatenation, insertion, substitution, etc.
 - DATE: sum, sub, conversion (e.g., year to days), etc
 - NUMBER: sum, mult, etc.

Next Generation

 \blacktriangleright k individuals with the fitness value above a threshold ε is selected for mutation and crossover

- Fitness: which solutions are good?
- General idea
 - Given a SMS, evaluate its matches
 - In good matches, similarity functions must give high values

$$f(S) = \frac{\sum_{i=1}^{n} eval(m_i)}{n} \qquad m_i = \prod_{i=1}^{1A} \prod_{i=1}^{1B} \prod_{i=1}^{1B}$$

- Two different entities
- Entity-oriented Strategy:
 - Assumes a non-negligible overlap between the instances
 - First, use similarity functions to look for similar entities
 - > Then, verify if the match can detect these entities

Value-oriented Strategy

- > Assumes an empty or negligible overlap between the instances
- First, use similarity functions to look for similar attributes
- Then verify if the match can detect these entities

Constraints

- For a given match, all attributes, operations, similarity functions should be of same data type
- The set of possible similarity functions can be select by a specialists

These are practical constraints

- The evolutionary process could be carried out without them
- But using them we narrow the solution space and save some time

Experiments - Datasets

Characteristic	Synthetic 1, 2, 3	Real State	Inventory
Total of Elements in File A	12	32	44
Total of Elements in File B	7	19	38
Total of 1-1 Matches	7	7	27
String Matches	3	6	11
Numerical Matches	4	1	16
Total of Complex Matches	2	12	11
String Matches	2	5	4
Numerical Matches	0	7	7

Characteristic	Real Estate	Car Dealers	Restaurants
Total of Elements in Table A	7	28	6
Total of Elements in Table B	6	8	9
Total of 1-1 Matches	6	5	2
String Matches	3	5	2
Numerical Matches	3	1	0

Experiments - Results

Overlap

Partial (ST1)

Matches	Accuracy
All 1-1 Matches	57%
String 1-1 Matches	100%
Numeric 1-1 Matches	24%
All Complex Matches	75%
String Complex Matches	75%

Full (ST2)

Matches	Accuracy
All 1-1 Matches	100%
Strings 1-1 Matches	100%
Numeric 1-1 Matches	100%
All Complex Matches	100%
String Complex Matches	100%

Non-Overlap

Matches	Accuracy
RS All 1-1 Matches	85%
RS String 1-1 Matches	100%
RS Numeric 1-1 Matches	0%
RS All Complex Matches	25%
RS String Complex Matches	60%
RS Numeric Complex Matches	0%
INV All 1-1 Matches	40%
INV String 1-1 Matches	100%
INV Numeric 1-1 Matches	0%
INV All Complex Matches	20%
INV String Complex Matches	56%
INV Numeric Complex Matches	0%
ST3 All 1-1 Matches	42%
ST3 String 1-1 Matches	100%
ST3 Numeric 1-1 Matchings	0%
ST3 All Complex Matches	100%
ST3 String Complex Matches	100%

Experiments – Examples of Matches

- Inventory dataset:
 - ship-address = (ship-address + ship-postal-code) + (ship-city + ship-country)
- Real State dataset:
 - house-address = (house-street + house-city) + house-zip-code
- Synthetic 3 dataset:
 - fullname = forename + surname

Conclusions and Remarks

- Data of interest is no longer in databases, although they are in on-line sources
- In particular: Textual Sources
 - The structure is only implicit
 - Meta-data is a luxury
 - Constraints are a utopia

Other areas can help a lot

- Information Retrieval
 - IR models, text indexing, relevance metrics, language models, etc.

- Data/Text Mining
 - Rule Mining, Learning, Categorization, Graph Models
- Artificial Intelligence
 - Ontologies, Automated Reasoning

An expanded set of CS foundations is helpful!

Computer Science Theory for the Information Age

Upcoming book by John Hopcroft and Ravindran Kannan

From the TOC

- High-Dimensional Space
- Random Graphs
- Singular Value Decomposition (SVD)
- Markov Chains
- Learning and VC-dimension
- Algorithms for Massive Data Problems
- Clustering
- Graphical Models and Belief Propagation

This is the theory for the next 30 years !!

Many other approaches

- Named Entity Recognition (NER)
 - E.g. Sarawagi@FTD'08, Ratinov@CoNLL'09
- Open Information Extraction
 - Unsupervised NER over massive text collections, e.g., the Web
 - Oren Etzioni (e.g., EMNLP-CoNLL'12, WWW'08, IJICAI'07)

Hidden Web

Juliana Freire (e.g., WWW'07, ICDE'07, WebD'10)

Web Tables

Alon Halevy, Mike Cafarela (e.g., PVLDB'08, CIDR'07)

NoDB – Scientific Data!

Anastacia Ailamaki (e.g., SIGMOD'12)