MAT01352 - Cálculo para Funções de uma Variável Real II

Lista 3 - 13/09/2018

Parte 1 - Integrais Impróprias

1. Verifique se as seguintes integrais divergem ou convergem. Neste caso determine seu valor:

(a)
$$\int_{a}^{\infty} \frac{1}{x \ln x} dx$$
 onde $a > 1$

(b)
$$\int_1^\infty \frac{1}{x^p} dx$$
 onde $p > 0$

(c)
$$\int_0^\infty \frac{\arctan x}{x^2 + 1} dx$$

(d)
$$\int_0^\infty \frac{\sin x}{x^3} dx$$

(e)
$$\int_{1}^{\infty} \frac{x+1}{\sqrt{x^3}} dx$$

$$(f) \int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 2} dx$$

(g)
$$\int_0^1 \frac{1}{x^3 - 5x^2} dx$$

$$\text{(h)} \int_{-1}^{2} \frac{1}{x} dx$$

2. Demonstrar que a integral de Euler de 1^a espécie

$$\int_0^1 x^{p-1} (1-x)^{q-1} dx$$

é convergente se p > 0 e q > 0.

3. (a) Mostre que a integral de Euler de 2ª espécie (Função Gama)

$$\Gamma(\alpha) \int_0^\infty x^{\alpha-1} e^{-x} dx$$

é convergente se $\alpha > 0$.

- (b) Use integração por partes para mostrar que se n é um número natural então $n! = \Gamma(n+1)$
- 4. Prove que a integral de Dirichlet

$$I = \int_0^\infty (\sin x/x) dx$$

converge, mas não é absolutamente convergente.

5. Determine se as seguintes integrais convergem ou não usando integração por partes:

(a)
$$\int_0^\infty x e^{-x} dx$$
(b)
$$\int_0^\infty e^{-ax} \cos(hx) dx$$

(b)
$$\int_0^\infty e^{-ax} \cos(bx) dx$$
 onde $a > 0$

Parte 2 - Aplicações do Cálculo

- 1. Determine o volume do sólido obtido girando-se em torno do eixo x a região limitada pelas funções $y = x^2 4x + 5$ e $y = -x^2 + 6x 3$.
- 2. Gire a região do exercício 1 em torno do eixo y e encontre seu volume.
- 3. Um sólido tem como base a elipse $\frac{x^2}{4} + y^2 = 1$ e cada secção ortogonal ao semi eixo maior é um semi círculo. Ache seu volume.
- 4. Considere a região limitada pela hipérbole y=1/ax e pelas retas x=1/a e x=a para $a \ge 1$. Para que valor de a o volume do sólido obtido pela rotação em torno do eixo x é máximo?
- 5. Determine o volume do sólido obtido girando-se em torno do eixo x a região limitada por $y = (x-2)^2$ e $y = (x-2)^2/2 + 2$.
- 6. Encontre o volume do sólido obtido pela intersecção do cilindro $y^2+z^2=R^2$ com o cilindro $x^2+z^2=R^2$

- 7. Determine o comprimento das curvas:
 - (a) $y = x^4/4 + 1/8x^2$ onde $1 \le x \le 3$
 - (b) $y = \ln(\cos x)$ para $0 \le x \le \pi/4$
 - (c) $y = x^{n+1}/(n+1) + 1/4(n-1)x^{n-1}$ para $a \le x \le b$ onde a > 0
 - (d) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$
- 8. Determine a área da superfície de revolução girando-se as curvas abaixo em torno do eixo indicado:
 - (a) $y = x^3$ onde $0 \le x \le a$ e eixo x
 - (b) $y = x^2$ onde $0 \le x \le 2$ e eixo y
 - (c) $y = \sqrt{x}$ onde $1 \le x \le a$ e eixo x
 - (d) $y = x^4/4 + 1/8x^2$ onde $1 \le x \le 2$ e eixo y
- 9. Sejam a < b. Calcule o centro de massa do semi-anel limitado pelas circunferências:

$$x^2 + y^2 = a^2$$
 e $x^2 + y^2 = b^2$

- 10. Mostre, usando centro de massa, que as medianas de um triângulo se interceptam num ponto e este divide cada uma delas na razão de 2 : 1.
- 11. Determine o centro de massa da região limitada pelas parábolas:

$$y = \frac{x^2}{4} \ e \ x = \frac{y^2}{4}$$

12. Determine o centro de massa do arco da parábola:

$$y = x^2; -a \le x \le a$$

- 13. Determine o centro de massa de um setor circular de raio R e ângulo α .
- 14. Respostas : 1) 63π , 2) 45π , 3) $4\pi/3$, 4) $\sqrt{3}$, 5) $256\pi/15$, 8) $(x_c, y_c) = \frac{4\pi(b^3 a^3)}{3(b^2 a^2)}$, 10) $(x_c, y_c) = (9/5, 9/5)$, 11) $(x_c, y_c) = (\frac{4R\sin(\alpha/2)}{3\alpha}, 0)$