Exerc. MAE 5748

- 1. Seja X_1, \ldots, X_n a.a. da $N(\theta, \theta^2)$.
 - i) Encontre EMV para θ e verifique consistência.
 - ii) Encontre $I_F(\theta)$ e IC para grandes amostras.
- iii) Se n = 20, $\sum_{i=1}^{n} X_i = 27.9$, $\sum_{i=1}^{n} X_i^2 = 252.2$, Estime θ por ponto e por intervalo.
- 2. Considere uma a.a. de $(X_1, X_2) \sim N_2(0, 0, 1, 1, \rho)$.
 - i) Obtenha a IF de ρ .
- ii) Verifique que o estimador $\hat{\rho}_c = S_{12}/\sqrt{S_{11}S_{22}}$ é consistente para ρ , com $S_{12} = \sum_{i=1}^n (X_{1i} \bar{X}_1)(X_{2i} \bar{X}_2)/n$ e similarmente para S_{11} e S_{22} . Encontre a distribuição assintótica de $\hat{\rho}_c$. Compare EAR dos estimadores ρ_c e EMV.
 - iii) Usando $\hat{\rho}_c$ encontre IC para ρ para uma a.a. com n=10 e $\hat{\rho}_c$ = .19.
- iv) Escreva porograma em R para maximizar a verossimilhança de ρ . Teste o programa em uma amostra simulada da normal N_2 com parâmetros $(0,0,1,1,\rho)$ com n=20.
- 3. Considere uma a.a. da distribuição com densidade

$$f(x|\theta_1, \theta_2) = \frac{1}{\theta_1 + \theta_2} e^{-S_1/\theta_1 - S_2/\theta_2},$$

com $\theta_1 > 0$, $\theta_2 > 0$, $S_1 = X.I(X > 0)$, $S_2 = -X.I(X < 0)$.

- i) Encontre EMV para θ_1 e θ_2 .
- ii) Encontre matriz de I.F. e então a distribuição assintótica do EMV para θ_1 e $\theta_2.$
- 4. Considere a.a. de tamanho n de $(X,Y) \sim N_2(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho)$. Encontre a distrbuição assintotica para o EMV de $\beta = \sigma_{xy}/\sigma_x^2$.