Exercícios de Álgebra Linear - Lista 1

- 1. Seja $M_n(\mathbb{C})$ o espaço vetorial das matrizes complexas $n \times n$. Seja $sl(n,\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid trA = 0\}$. Prove que $sl(n,\mathbb{C})$ é um subespaço de $M_n(\mathbb{C})$. Ache uma base e a dimensão de $sl(n,\mathbb{C})$.
- 2. Sejam n = 2p e $S = \begin{bmatrix} 0 & I_p \\ -I_p & 0 \end{bmatrix}$, onde I_p é a matriz identidade $p \times p$. Seja $sp(p, \mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid AS = -SA^t\}$. Prove que $sp(p, \mathbb{C})$ é um subespaço de $sl(n, \mathbb{C})$. Ache uma base e a dimensão de $sp(p, \mathbb{C})$.
- 3. Mostre que o corpo dos números reais \mathbb{R} considerado como um espaço vetorial sobre o corpo dos números racionais Q tem dimensão infinita. Determine a dimensão de \mathbb{R} considerado como espaço vetorial sobre si mesmo.
- 4. Mostre que se U é um subespaço de dimensão p de um espaço vetorial V de dimensão n, com 0 , então para cada <math>k com $0 \le k < p$ existe uma base de V contendo exatamente k vetores de U.
- 5. **Teorema do Completamento**. Seja V um espaço vetorial sobre um corpo F, e suponhamos que $V \neq \{0\}$. Seja G um conjunto de geradores de V e seja S um subconjunto de G que é linearmente independente. Prove que existe uma base B de V tal que $S \subset B \subset G$.
- 6. Seja $\mathcal{C}(\mathbb{R})$ o espaço vetorial das funções contínuas de \mathbb{R} em \mathbb{R} . Mostre que $\mathcal{C}(\mathbb{R})$ tem dimensão infinita. [Sugestão: Prove que $\{e^{ct} \mid c \in \mathbb{R}\}$ é linearmente independente.]
- 7. Seja θ um número real. Prove que as matrizes $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ e $\begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$ são semelhantes.
- 8. Uma sequência de espaços vetoriais e transformações lineares

é denominada exata se $Im \phi_i = \ker \phi_{i+1}$ para i = 1, ..., n-1. Mostre que se $\dim V_i < \infty$ (i = 1, ..., n) e a sequência

é exata, então $\sum_{i=1}^{n} (-1)^{i} \text{dim} V_{i} = 0.$

- 9. Sejam V e W espaços vetoriais sobre um corpo F tais que pelo menos um deles tem dimensão finita. Sejam T e U transformações lineares de V em W. Mostre que $posto(T+U) \leq posto(T) + posto(U)$.
- 10. Sejam V um espaço vetorial de dimensão n e T um operador linear tal que $T^2 = I$. Se $U = \{v \in V \mid T(v) = v\}$ e $W = \{v \in V \mid T(v) = -v\}$, mostre que $V = U \oplus W$ e posto(T I) + posto(T + I) = n.
- 11. Sejam V um espaço vetorial de dimensão n e T, U operadores lineares de V tais que T+U=I. Prove que $n \leq posto(T) + posto(U)$. Mostre que se vale a igualdade, então $T^2 = T$, $U^2 = U$ e TU = UT = 0.
- 12. Mostre que se T é um operador linear de posto 1 então existe um escalar c tal que $T^2 = cT$.
- 13. Sejam U, V espaços vetoriais sobre um mesmo corpo K e sejam $f: U \to V$ e $g: V \to U$ transformações lineares tais que $gf = I_U$. Prove que:
 - (i) se $\dim_K V$ é finita, então $\dim_K U$ também é finita e vale $\dim_K U \leq \dim_K V$;
 - (ii) em qualquer caso, tem-se que $V = Imf \oplus Kerg$.
- 14. Sejam V um F-espaço vetorial, U e W subespaços de V. Prove que $(U+W)/W \cong U/U \cap W$.
- 15. Sejam V um F-espaço vetorial e V_1, \ldots, V_n subespaços vetoriais de V. Dizemos que a soma $V_1 + V_2 + \cdots + V_n$ é direta se $V_j \cap (V_1 + \cdots + V_{j-1} + V_{j+1} + \cdots + V_n) = \{0\}$ para todo $j = 1, \ldots, n$, neste caso indicaremos $V_1 \oplus V_2 \oplus \cdots \oplus V_n = \bigoplus_{i=1}^n V_i$. Prove que as seguintes afirmações são equivalentes:
 - (a) a soma $V_1 + V_2 + \cdots + V_n$ é direta,
 - (b) todo vetor $u \in V_1 + V_2 + \cdots + V_n$ se escreve de modo único da forma $u = v_1 + v_2 + \cdots + v_n$, onde $v_i \in V_i, i = 1, \dots, n$,
 - (c) Se $0 = v_1 + v_2 + \cdots + v_n$, onde $v_i \in V_i$, $i = 1, \dots, n$, então $v_i = 0$ para todo $i = 1, 2, \dots, n$.
- 16. Sejam V um F-espaço vetorial, $p_j: V \longrightarrow V$, j = 1, ..., n operadores lineares tais que $p_1 + \cdots + p_n = id_V$, $p_i p_j = 0$ se $i \neq j$. Prove que $V = V_1 \oplus ... \oplus V_n$ onde $V_j = p_j(V)$.
- 17. Sejam V um F-espaço vetorial de dimensão finita e V_1, \ldots, V_n subespaços de V tais que $V = V_1 + \cdots + V_n$ e dim $V = \dim V_1 + \cdots + \dim V_n$. Prove que $V = V_1 \oplus \cdots \oplus V_n$.
- 18. Sejam V um F-espaço vetorial de dimensão finita e $T: V \longrightarrow V$ um operador linear não nulo.

- a) Se T é inversível prove que, para todo V_1 , V_2 subespaços de V tais que $V=V_1\oplus V_2$, então $V=T(V_1)\oplus T(V_2)$;
- b) Se T é tal que para todo subespaço vetorial V_1 , V_2 de V tais que $V=V_1\oplus V_2$, enão $T(V)=T(V_1)\oplus T(V_2)$, prove que T é inversível.
- 19. Seja $f: M_n(\mathbb{R}) \to \mathbb{R}$ um funcional linear com a propriedade de que f(AB) = f(BA) para todo $A, B \in M_n(\mathbb{R})$. Prove que f é um múltiplo escalar da função traço.
- 20. Sejam V um espaço vetorial de dimensão finita e L(V,V) o espaço dos operadores lineares de V. Mostre que se f é um funcional linear de L(V,V) então existe um único $U \in L(V,V)$ tal que $f(T) = tr(TU) \ (\forall T \in L(V,V))$.
- 21. Sejam V um espaço vetorial sobre um corpo F de dimensão n, c_1, \ldots, c_n elementos arbitrários de F e g_1, \ldots, g_n funcionais lineares de V linearmente independentes. Prove que existe um único $v \in V$ tal que $g_i(v) = c_i$ $(i = 1, \ldots, n)$.
- 22. Seja V um espaço vetorial com base $(v_i)_{i\in I}$. Para cada $i\in I$, seja f_i o funcional linear de V definido por $f_i(v_i)=1$ e $f_i(v_j)=0$ se $j\neq i$. Mostre que $F=(f_i)_{i\in I}$ é linearmente independente. Mostre que F gera V^* se e somente se I é um conjunto finito.
- 23. Seja V um espaço vetorial real de dimensão ímpar n. Seja $T:V\to V$ um operador linear.
 - (i) Mostre que T possui pelo menos um autovalor real.
 - (ii) Mostre que se det(T) > 0 (respectivamente, det(T) < 0) então T possui pelo menos um autovalor positivo (respectivamente, negativo).
- 24. Seja V um espaço vetorial real de dimensão finita. Seja $T:V\to V$ um operador linear tal que $T^3=I$ e $T(v)\neq v$ para todo $v\in V,\,v\neq 0$. Mostre que a dimensão de V é par.
- 25. Seja $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$. Calcule A^n , onde n ém inteiro não-negativo.
- 26. Seja $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ o operador linear que leva uma matriz em sua transposta.
 - (i) Mostre que T é diagonalizável.
 - (ii) Determine os autovalores de T, as dimensões dos autoespaços e uma base de $M_n(\mathbb{R})$ formada por autovetores de T.

27. Seja
$$P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
. Calcule $\lim_{n \to \infty} P^n$.

- 28. (a) Sejam T um operador linear de \mathbb{R}^3 com três autovalores distintos e S um operador linear de \mathbb{R}^3 que comuta com T. Prove que se B é uma base de \mathbb{R}^3 tal que $[T]_B$ é diagonal, então $[S]_B$ também é diagonal.
 - (b) Dada a matriz $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, ache uma base do espaço das matrizes 3×3 que comutam com A.
- 29. Prove que as seguintes matrizes reais $n \times n$ são semelhantes:

$$A = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix} \quad e \quad B = \begin{bmatrix} n & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}.$$

30. Um sistema homogeneo de n equações diferenciais lineares de primeira ordem com coeficientes constantes é um sistema da forma:

$$\begin{cases} x'_1 &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ x'_2 &= a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ & \dots \\ x'_n &= a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

onde $a_{ij} \in \mathbb{R}$ e cada x_j é uma função de \mathbb{R} em \mathbb{R} de classe \mathcal{C}^1 . Se $A = (a_{ij})$ e $u: \mathbb{R} \to \mathbb{R}^n$, $u(t) = (x_1(t), \dots, x_n(t))$, então o sistema acima pode ser escrito na forma u'(t) = Au(t). O conjunto das soluções do sistema é um subespaço vetorial do espaço das funções de \mathbb{R} em \mathbb{R}^n de classe \mathcal{C}^1 . Suponhamos que A possui n autovetores linearmente independentes v_1, v_2, \dots, v_n e seja c_j o autovalor correspondente a v_j . Pode-se provar então que $u_j(t) = e^{c_j t} v_j$ é uma solução do sistema e que $\{u_1(t), \dots, u_n(t)\}$ é uma base para o espaço das soluções do sistema.

Utilizando este resultado resolva o sistema u'(t) = A u(t) onde $A = \begin{bmatrix} 8 & 3 & -12 \\ 6 & 5 & -12 \\ 6 & 3 & -10 \end{bmatrix}$

31. Uma equação diferencial homogenea linear de ordem n com coeficientes constantes é uma equação do tipo $y^{(n)} + a_{n-1}y^{(n-1)} + ... + a_2y^{(2)} + a_1y^{(1)} + a_0y = 0$, onde $y^{(n)}$ denota a n-ésima derivada de y. Se $x_i(t) = y^{(i-1)}$ então

$$x_1' = x_2, x_2' = x_3, \dots, x_{n-1}' = x_n$$

$$x_n' = -a_0 x_1 - a_1 x_2 - \dots - a_{n-1} x_n$$

Verifique que cada solução deste sistema fornece uma solução para a equação e vice-versa.

Resolva a equação $y^{(3)} - 3y^{(2)} + 4y^{(1)} - 2y = 0$.

32. Encontre, se possível, condições necessárias e suficientes envolvendo coeficientes da matriz abaixo para que ela seja diagonalizável.

$$\begin{bmatrix} a & 0 & 0 & 0 \\ \alpha & a & 0 & 0 \\ \beta & 0 & b & 0 \\ 0 & \gamma & b & b \end{bmatrix}$$
 $(a \neq b)$

33. Seja $T \in L(\mathbb{R}^4)$ um operador cuja matriz em relação a uma base B é

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ b & d & 2 & 0 \\ c & e & f & 2 \end{array}\right]$$

Determine o polinomio minimal de T. Determine condições para que T seja diagonalizável.

- 34. Seja V um espaço vetorial complexo de dimensão finita. Prove que as seguintes afirmações são equivalentes:
 - (i) T é diagonalizável e $T^{2n} = T^n$.
 - (ii) $T^{n+1} = T$.
- 35. Consideremos a matriz real $A = \begin{bmatrix} -1 & 0 & -2 \\ -1 & 0 & -2 \\ 1 & 0 & 2 \end{bmatrix}$.

Usando o fato de que $e^x = \lim_{m \to \infty} \sum_{k=0}^m \frac{x^k}{k!}$ calcule $\lim_{m \to \infty} \sum_{k=0}^m \frac{A^k}{k!}$.

- 36. Seja $T\in L(\mathbb{C}^2)$ um operador com apenas um valor próprio. Suponhamos que $T^k=I$ para algum $k\neq 0$. Mostre que T é diagonalizável.
- 37. Seja $A = (a_{ij}) \in M_n(\mathbb{R})$ uma matriz tal que $a_{ij} = a \neq 0$ para todo i, j. Ache o polinômio minimal de A e mostre que A é diagonalizável.
- 38. Sejam $V = M_2(\mathbb{C})$ e A uma matriz fixada em V. Considere o operador linear $T: V \to V$ definido por T(X) = AX. Calcule a matriz de T em relação a base canônica de V. Calcule o posto de T. Determine os autovalores e autovetores de T.

- 39. Seja $A = \begin{bmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{bmatrix}$. Achar o polinomio característico de A^7 .
- 40. Mostre que se uma matriz $n \times n$ complexa A tem somente 0 como autovalor então A é nilpotente (isto é, $A^k = 0$ para algum inteiro positivo k).
- 41. Suponhamos que $V = W_1 \oplus W_2$ onde $\dim W_1 = n$ e $\dim W_2 = m$. Seja T a projeção de V em W_1 . Determine os autovalores, os autovetores, o polinomio característico e o polinomio minimal de T.
- 42. Seja A uma matriz complexa $n \times n$ tal que, para todo inteiro positivo k, tem-se $tr(A^k) = 0$. Prove que A é nilpotente.
- 43. Seja V um espaço vetorial sobre $\mathbb R$ de dimensão finita e suponhamos que T é um operador linear de V tal que $T^2=-I$.
 - a) Mostre que V possui uma base da forma

$$\{u_1, u_2, \dots, u_k, T(u_1), T(u_2), \dots, T(u_k)\}.$$

- b) Mostre que a operação $(a+ib)u=au+bT(u)\quad (a,b\in\mathbb{R})$ define, juntamente com a adição de V, uma estrutura de \mathbb{C} -espaço vetorial em V.
- c) Se $\dim_{\mathbb{R}} V = n$, qual é a $\dim_{\mathbb{C}} V$?