1. Mostrar que as três equações

$$x^{2} - y\cos(uv) + z^{2} = 0$$

$$x^{2} + y^{2} - \sin(uv) + 2z^{2} = 2$$

$$xy - \sin u \cos v + z = 0$$

definem unicamente x, y, z como funções de u, v numa vizinhança de $(u, v) = (\pi/2, 0)$ a valores numa vizinhança de (x, y, z) = (1, 1, 0), e calcular as derivadas parciais $\partial x/\partial u$, $\partial x/\partial v$, $\partial y/\partial u$, $\partial y/\partial v$, $\partial z/\partial u$, $\partial z/\partial v$ nesse ponto.

2. Mostre que as raízes simples de um polinomio real

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \quad (a_n \neq 0)$$

de grau n>0 dependem suavemente dos coeficientes do polinômio. Mais precisamente, se x_0 é uma raiz simples de p então x_0 é uma função suave, localmente definida, dos coeficientes de p. O que acontece com raízes múltiplas?

- 3. Identificamos o espaço $M_n(\mathbf{R})$ das matrizes reais $n \times n$ com \mathbf{R}^{n^2} , onde $n \ge 1$.
 - a. Mostre que a função $f: M_n(\mathbf{R}) \to M_n(\mathbf{R})$ dada por $f(A) = A^2$ é de classe \mathcal{C}^1 .
 - b. Calcule Df(I) onde I denota a matriz identidade.
 - c. Deduza que toda matriz B suficientemente próxima de I admite pelo menos duas raiz quadradas, cada uma das quais sendo uma função de classe C^1 de B. Podem existir mais de duas raízes quadradas?
- 4. Seja $f:[0,2]\to(0,+\infty)$ uma função contínua tal que

$$\int_0^1 f(t) \, dt = \int_1^2 f(t) \, dt = 1.$$

Mostre que existe uma função $g:[0,1]\to [0,2],$ de classe \mathcal{C}^1 em (0,1), tal que

$$\int_{x}^{g(x)} f(t) \, dt = 1.$$

1