
Combining Numerical Iterative Solvers

Alfredo Goldman, Yanik Ngoko, Denis Trystram

Abstract

Given a linear system there are several solvers which can be used to solve it. However,
according to the properties of the linear system different solvers may have different conver-
gence speeds, or may even not converge at all. Nevertheless, it can be difficult to verify
these properties in practice, mainly due to rounding errors, and there are also some cases
where no direct property can be used. In this special situations there is no easy choice on
the best solver, so instead of determining it, we are interest in finding good combinations
of the solvers.

We are interested by the resolution of sparse systems with three solvers based on three
different iterative methods. The numerical methods used are the Conjugate Gradient (CG)
method, the BiConjugate Gradient Stabilized (BiCGSTAB) method and the Transpose Free
Quasi Minimal Residual Method (TFQMR).

To combine numerical solvers, we use an approach based on algorithm portfolio. The
basic idea is to interleave iterations of numerical solvers in cycles which are executed until
one solver finds a solution. We first study the combination of numerical solvers in an
offline setting. In this setting we suppose that a representative set of all linear systems
is available. The goal is to combine the set of numerical solvers in order to minimize the
average completion time.

Then, we study the combination in an on-line setting. In this setting, we do not suppose
any previous knowledge. Some heuristics are presented. The first heuristic periodically
executes a same cycle of iterations for each numerical solvers. The other heuristics adapts
their cycles of iterations from convergence informations gathered from previous cycles. The
main difficulty in these latter cases is to define metrics and rules that will be used to evaluate
the convergence of previous cycles and to define next cycles.

We experiment our approaches using the SPARSKIT library. We present comparisons
among heuristics and solvers, and we also study the impact of the cycle size on the execution
times.


