Scheduling communications on a multi-cluster network

Alfredo Goldman*
Department of Computer Science
University of Sdo Paulo
Rua do Matao, 1010 CEP 05508-900
Séao Paulo — Brazil
e-mail: gold@ime.usp.br

Abstract

Nowadays, with the introduction of clusters of computers
the notion of interprocessor communication is of growing
interest. Inside a dedicated cluster the communication times
were generally modeled in the same way, independently of
which processors communicate. In a network where the
links among the computers are heterogeneous this might not
be true anymore. Computers that have faster links, or are
closer with each other should be able to exchange messages
faster. These differences on communication times should
be considered, not only for attributing tasks to the proces-
sors but also in global synchronization/communication. The
goal of this paper is to study the global communication in a
network of dedicated clusters. We propose new communica-
tion algorithms based on known algorithms and we present
simulations on their expected performances.

keywords: Scheduling of communication, BSP-like
synchronization, global communication.

1 Introduction

Several parallel computing applications can be viewed
as a succession of steps composed of computation followed
by communication among all, or subsets, of the processing
nodes. One of the main parallel computing models today,
BSP [10], is based on this principle.

Among the applications, we can cite, for illustration,
parallel domain decomposition and numerical resolution of
partial differential equations. In these applications, the ad-
jacent nodes (in the problem context) exchange information
after computation with local data, before the next computa-
tion phase.

The first works which addressed the communication
problem were either too specific, or not realistic. For exam-

*Supported by Fapesp, proc. 98/06138-2.

ple, the works [1] and [9] were based on specific intercon-
nection networks. Other papers dealt with messages of uni-
tary, or equal size [7, 8]. Two works assumed more general
models, with messages of different sizes and totally con-
nected networks. In [3], Coffman et al studied the problem
of exchanging messages of different sizes, but they did not
allow preemption on messages sending. In [2], Choi and
Hakimi studied the same problem, allowing transmissions
of messages on several, not necessary consecutive, sends.
But they assumed a synchronous model. Finally, in [5] the
authors studied a more realistic model with the exchange
of messages of different sizes in an asynchronous network
where preemption was allowed.

In the three last works, the communication times were
modeled by the linear cost model. This fits well for most
of interprocessors communication. In this model, to send
a message, there is a startup («) and the transmission time
depends inversely on the bandwidth (). The parameters «
and -y were the same for all processors pairs.

In this work we intend to introduce another parameter in
the model, the main idea being that communication does not
have to behave similarly for all processor pairs. The main
motivation of this work is the increasingly more popular use
of computers clusters, as one easy way to obtain larger clus-
ters is to interconnect already existing clusters or parallel
computers [4]. Generally, the communication time inside
a computer cluster does not depend on the involved pro-
cessors, and if it does depend the influence is not very im-
portant. However, if we connect computer clusters among
them, the communication of computers from different clus-
ters tends to be slower. We intend to provide algorithms for
this case.

Among the main applications of this work are: efficient
support to redistribute, verify and synchronize distributed
data on heterogenous network, support for executing several
concrete problems for which parallel or distributed algo-
rithms alternate periods of computing with periods of data
exchange, and support for BSP-like [10] environments or

applications.
1.1 Paper organization

This paper is organized as follows, in the next section
we detail the problem and the adopted model. In Section
3 we present the already known algorithms for a uniform
environment. The algorithms for dedicated multi-clusters
are presented in Section 4. Simulations are presented in
Section 5. We close this paper with ideas for a future work.

2 Problem and Model
2.1 Problem

In order to model a multi-cluster network (MCN), we
will introduce a simplified model. We suppose that there are
two connection levels. The clusters are connected among
them to obtain the MCN. There will be two different kinds
of communications, the local ones and the distant ones. The
local communications will model the communications in-
side a same cluster, and the distant communications the ex-
change of data between different clusters. See an example
of the assumed MCN model in Figure 1.

-l
-

Figure 1. An example of a MCN composed by
four clusters, with 2, 3, 4 and 5 computers.

Given a MCN composed by C'L clusters, each clus-
ter L; is composed by n;,0 < ¢ < CL computers,

L; = {pi,... ,pfu}. We define the set of processors by

{p07 B ;pn—l} where n = Ziczl(/)_l

topg, k = Z;;é n; + j. Computer p; has a message of size
m;,;j to send to computer p; (if there is no message from p;
to pj, then mi; = 0).

If several messages are to be sent from p; to p;, then m; ;
corresponds to the sum of all these messages. We assume

n;,and pz corresponds

that all the messages are known before the algorithms start-
ing time. We represent the problem by a communication
matrix M = (mj; ;). We assume that there is no interpro-
cessor communication, thatis m;; = 0,0 < ¢ < n.

An algorithm that solves the message exchange problem
guarantees the transmission of all messages to their desti-
nation. The total time for such algorithms is the difference
between the starting time and the time at which all proces-
sors have received all their addressed messages. The goal is
to minimize the total time.

2.2 Model

We assume that each computer in the system has a lim-
ited capacity of communication, that is, each machine can
transmit at most one message and receive at most one mes-
sage simultaneously. This limitation is well known in the
literature as one-port full-duplex. There are computers
where the transmission/reception capacity is not limited to
one, but the one-port full-duplex hypothesis is interesting
because it can also be useful to limit the congestion. With
this hypothesis, the number of simultaneous messages in the
network is limited to the number of processors.

The communication times will be approximated by the
linear model where a transmission of a message of size L
takes time 3 + L+, where /3 is the start-up time and 7 is
the inverse of the bandwidth. We will have different start-
ups and bandwidths for the communications. We denote 3;
and f3,, the start-ups time for transmissions inside the same
cluster and between clusters, respectively. We use the same
notation -y; and 7, for the inverse of the bandwidths. As
doing the communications inside a cluster is more efficient
than doing inter-cluster communication, we can assume that
Bi < Bwand vy < v

We also introduce a slowdown factor for communication
among clusters. Generally, there exist exclusive communi-
cation channels among the processors in a cluster, this is not
true for the communication among clusters. If two proces-
sors from the same cluster send messages to another cluster,
they will share the same communication channel between
these two clusters. So the bandwidth of this channel will
be smaller than 1/+,,. If m messages are exchanged simul-
taneously between the two clusters, the slowdown factor .S
can be up to m. We do not consider any slowdown for the
start-up times.

All the algorithms in this paper describe the communi-
cation schedule by a sequence of communication phases. A
communication phase is a set of communications such that
each processor sends/receives at most one message. When
all the messages size are the same, the involved proces-
sors send/receive messages during the whole communica-
tion phase. Otherwise, there can exist processors which are
not involved in communication all the time. The differences

on the message sizes can be more explicit depending on the
existence of global synchronizations.

In a synchronous mode, all processors start each commu-
nication phase at the same time. So, the next communica-
tion phase can start only after the reception of the last mes-
sage from the previous phase. In an asynchronous model,
transmissions from different processors do not have to start
at the same time. However, all processors start the algo-
rithm simultaneously.

Below we give examples of schedules for a message
exchange problem. We provide one on each model, syn-
chronous and asynchronous, for the following communica-
tion matrix:

=~ =~ O
O ot O ©
O W N
OO OO

We represent the sending of messages by a Gantt chart. The
x axis represents the time, and the y axis represents the dif-
ferent processors. We could have a similar representation,
using the message receptions. In Figure 2 we show the fol-
lowing communication phases:

0 900 0 0 2 0 0 0 0O
00 3 0 0 0 0 6 4 0 0 O
0 0 0O 7 0 00 0 5 00
1 0 0 0 0 0 0O 0 0 80

In the schedules of figure 2 we assumed both start-up and
bandwidth equals to one. It is interesting to observe that
even if processor p3 is ready to send the second message to
processor p2, from the time instant 2, it cannot send it before
because p, receives a message from py until the instant 13.

Synchronous
B 9 [2]
A 3 \ 6 | | 4|
B \ 7 \ 5]
B L1 f T 8 T
10 18 27
Asynchronous
B 9 [2]
P. 3| 6 | 4]
A \ 7 \ 5]
B 1]) 8
10 16 »

Figure 2. Communication phases in the syn-
chronous and asynchronous models.

An algorithm for exchanging messages can be classi-
fied according to the way that the messages transmission is
done. There exist two main classifications: message for-
warding and message splitting. If each message is sent

directly from the source to the destination, without be-
ing stored on intermediate processors, there is no message
forwarding. When the messages are sent within just one
transmission, without cutting the message in smaller pieces,
there is no message splitting.

3 Scheduling of communication on a uniform
environment

The goal of this section is to give an overview of the
known algorithms to schedule communications on a uni-
form environment. A detailed description of these algo-
rithms can be found in [5].

3.1 FP - Fixed Pattern Algorithm

We present a simple algorithm that does neither message
forwarding nor message splitting.

for t=1 ton—1 do
do in parallel for all j (0<j<mn)

pPj sends Mj j4+t mod n to Pj+t mod n
Pj receives mj j—t mod n from Pj—t mod n

Each processor executes n — 1 communication phases in
this algorithm. In each communication phase ¢, processor
p; sends its message to processor Pit¢ mod n -

3.2 HL - Hypercube-like Algorithm

This algorithm was first proposed for hypercubes. This
algorithm does message forwarding and does not split the
messages. For ease of description, we first present the algo-
rithm assuming that the number of processors is a power of
2 (n = 2"). Each processor is labeled with a binary string
and we use pg to denote the processor whose label differs
from the label of processor p; only in the ;" bit position.

for t=1 to [do
do in parallel for all ¢ (0<i<m)
p; exchanges messages with p!

An extension of the previous algorithm for an even num-
ber of processors can be found in [6].

3.3 Matrix Algorithms

The main idea of the matrix algorithms is to provide the
knowledge of the whole communication matrix on each pro-
cessor, and then to apply an algorithm which provides bet-
ter communication phases. We expect that the extra cost to
provide the global knowledge can be recovered by doing the
communication faster. The algorithms can be written as:

all-to-all exchange of the message sizes
global strategy determination
strategy execution

The last two stages can be merged in order to overlap the
strategy determination processing time by the communica-
tion on the strategy execution.

3.3.1 MM - Max-Min algorithm

The Max-Min algorithm computes communication phases
where the smallest message size is maximized. The algo-
rithm works by steps. In the first step a max-min communi-
cation phase is found in the original communication matrix.
In the next steps the communication phases are computed
on the updated communication matrix, that is, the messages
that appear on the previous communication phases are con-
sidered as zero size messages.

all-to-all exchange of the message sizes
while the comm. matrix M is not done
find a Max-Min communication phase P
send the messages on P
subtract the messages on P from M

3.3.2 MS - Max-Sum algorithm

The Max-Sum algorithm is similar to the Max-Min algo-
rithm, on both an optimization criterion is used on the com-
munication phases. Neither MM nor MS does message for-
warding or message splitting. On the Max-Sum algorithm
the sum of the messages size is maximized on each commu-
nication phase.

3.3.3 Unif - Uniform algorithm

The main idea of the uniform algorithm is to obtain commu-
nication phases where all the messages have the same size.
This algorithm requires a pre-processing phase to obtain a
special communication matrix.

Let a be the largest sum among the elements in the
same row, or in the same column of the communication ma-
trix. First a communication matrix, (), where all rows and
columns have the same sum value « is computed. The ma-
trix () is obtained from the original communication matrix
by adding dummy messages. Note that in this new matrix,
all nodes have to transmit (and also receive) messages for
which the sizes sum to «.

We compute a sequence of communication phases on ()
such that on each one, the messages have the same size.
This can be done finding a communication phase where the
smallest message is minimized, and then normalizing it by
assuming all the messages with this smallest size. The ob-
tained communications are then subtracted from the com-
munication matrix. Obviously, there is no need to do the

transmissions corresponding to the added dummy messages
when the algorithm is executed.

all-to-all exchange of the message sizes

find a quasi-doubly stochastic matrix @

while the comm. matrix (is not done
find a Max-Min communication phase P
normalize P by the smallest message
send the ‘‘real’’ messages on P
subtract the messages on P from

3.4 Differences on the performance of the algo-
rithms

In Figure 3 we present the schedules generated by the
uniform algorithms for the matrix M given at the end of
Section 2. The schedule generated by FP was already pre-
sented in Figure 2. In the Gantt chart of HL the messages
which are forwarded are denoted with an f.

MM and MS
B 9 [2]
n 6 | | a [3]
B 7 | 5]
g 8 lﬂ 1‘ i i
10 13 17
HL
B 9 | 2.3 |
P 3-f,4 \ \ 6 \
B, 5—f \ 1,7 \
p, 1,8 L 5 l i
10 19
Unif
B 69 | 2]
n 60 | 3@li@ [203][103)
B 6 | 35 [20[10)
B 6(8) ; L2<8>l (1) i
7 11 19

Figure 3. Uniform algorithms schedules.

The choice of the most suitable algorithm first depends
on the parallel processing support. In an environment based
on the message exchange paradigm, like MPI or PVM, there
are primitives like send and receive. On these primitives,
there is a parameter that is the message size. So, in this
case, the first step before any communication algorithm is
to exchange the size of the messages to be exchanged, and
the overhead to provide the global knowledge can be ig-
nored. In other kind of environments, like the one with read

and write functions, this cost is already included in the com-
munication primitives. So, in this case, we have to consider
the overhead to provide the global knowledge.

In a given environment the choice depends on the param-
eters of the communication cost model (8 and 7), and on
the message sizes. HL minimizes the number of start-ups,
and Unif minimizes the bandwidth waste. When neither the
start-up is too big nor to small, the choice of MM, MS or
FP depends on the variance on the messages size. If this
variance is small it is not worthwhile to provide the global
knowledge (which involves communication) in order to find
more efficient communication phases. Otherwise, the total
time of MM or MS is usually better that the time of FP.

It is not easy to distinguish between MM and MS strat-
egy performances. Both algorithms were implemented on
a parallel computer, and MS performed slightly better than
MM in experiments [5]. The differences in performance de-
pend not only on the variance on the message size, but also
on the message sizes distribution.

4 Scheduling of Communications on MCN

Obviously, the algorithms of the previous section can be
used, without any change for a MCN. Unfortunately, due
the differences on the local and distant communications, the
algorithms performance will be degraded. In this section
we propose two strategies for scheduling MCN communi-
cations, the first one is to adapt the previous algorithms to
the new environment. The second one proposes an algo-
rithm which perform first a scheduling on each cluster, then
perform the scheduling among them.

Among the algoritms of this section, only the last one
considers the slowdown factor implicitly.

4.1 Adapting the algorithms

4.1.1 FPand HL

As the fixed pattern and hypercube like algorithms do not
use the information on the message sizes, they cannot be
adapted to the new environment. As the notion of distant
communications introduces a new heterogeneity, one could
expect that the performance of these algorithms will be in-
fluenced by the differences between local and distant com-
munication.

4.1.2 MM and MS

On the other side, the other algorithms can be adapted. To
do that, we have to introduce additional costs for the mes-
sages to be transmitted between clusters. To implement this
cost, we have to consider the differences on the communica-
tion parameters. Instead of using the communication matrix

we will use the expected time matrix. If a message of size L
has to be send inside a cluster, the communication cost will
be represented by 3; + Ly, on the time matrix. Otherwise,
if this message involves a distant communication it should
be represented by 3., + L.

The communication phase is found using the time ma-
trix, but only the information on the communication pattern
(the pairs of processors involved on transmission-reception)
is used. The algorithm is given below:

build from M the expected time matrix T
while the comm. matrix M is not done
find a communication phase Cr on T
use the comm. pattern Cr to construct Cu
send the messages on Cu
subtract from M the messages on Cyu

41.3 Unif

The substitution of the communication matrix by a time ma-
trix can be applied directly to MM and MS, but in order to
use Unif we have to search a more complicated strategy. To
be able to use the same idea we should know the number of
times that each message will be split before the beginning
of the algorithm.

We propose a different way to solve this problem. The
main idea is to reconstruct the time matrix after each com-
munication phase. In each communication phase, each
transmission inside a cluster uses a local communication,
the transmissions between clusters use a distant communi-
cation. The differences on these communications have to be
considered in a normalization phase. Let ¢ be the smallest
time on a communication phase, there are two upper bounds
on the messages size, m; and m,, for local and distant com-
munication, such that t = 5+ m;y; = Bw + MywYw- So the
local messages size is limited to m;, and the distant mes-
sages size limited to m,,.

We use the following algorithm:

build from M the expected time matrix T
while the comm. matrix M is not done
find a communication phase Cr on T
use Cr comm. pattern to construct Cyu
normalize Cu
send the messages on Cyu
subtract from M the messages on Cy
reconstruct T from C

4.2 Two level algorithms

The main idea is to solve the problem level by level,
first the messages are exchanged on each cluster, and mes-
sages to each other cluster are centralized on one node.
Then the nodes that received the messages for other clusters
exchange the messages on the MCN. Finally these nodes
broadcast the messages to the final destinations.

message exchange on each cluster
message exchange among clusters
message distribution on each cluster

Any of the algorithms of Section 3 can be used in the
first two steps. The best choice depends on the parameters
for local and distant communication. A two-level algorithm
does message forwarding, it does message splitting depend-
ing on the choice of the algorithm. For each phase of the
two-level algorithm we choose the algorithm with the best
expected performance.

In order to improve the third phase, we assume that in
each cluster L;, composed by the processors {p,...,p'},
the processor pj- is the one that performs communication
with the cluster L ;. In this way, after the message exchange
among clusters, the messages to be distributed on each clus-
ter will be located on min{|L;|, CL} nodes.

5 Simulation

We divide the simulation section into several subsec-
tions. First we show for a given example the degradation
of the performance of the uniform algorithms as the ratio
distant communication over local communication increases.
Then we analyze the performance of the new algorithms on
the same example. Finally we compare the performance of
the algorithms in several situations. The influence of the
slowdown factor will be analyzed only in the fourth subsec-
tion.

The initial costs for the exchange of the messages size
are not considered to compute the total time of the algo-
rithms. The difference between this initial cost and the
cost to provide global knowledge on the messages size, is
usually very small, for example this difference is less than
[logs n] % (n — 2)s7, using HL in a message passing envi-
ronment, where n is the number of processors, and s is the
number of bytes used to store the message size.

5.1 Performance of uniform algorithms on MCNs

We show below the behavior of the uniform algorithms
on a cluster, the parameters used for the start-up and band-
width were obtained from a Myrinet network. Start-up is
equal to 800 microseconds and the inverse of the bandwidth
is 0.28 microseconds. We assumed messages given from
a Gaussian distribution where the average message size is
100000 and the variance is 100000. The first simulation
was done with 12 nodes divided into clusters of size 3.

The total times in milliseconds for the uniform algo-
rithms are given on the next table.

FP | HL | MM | MS | Unif
569 | 859 | 610 | 542 | 508

=

Figure 4. Communication phases of Unif on
an uniform network.

For this given example as the start-up time is small, the
best performances were obtained with Unif. In the follow-
ing figures each line corresponds to the transmissions of a
processor, the rectangles correspond to the messages send-
ing, the different phases can be viewed on the rectangle bor-
ders.

In Figure 4 the behavior of Unif is depicted. It is easy to
see that when there is communication, the communication
phases have messages of similar sizes.

Now we assume with the same communication matrix as
in the previous example that the distant communication is
10 times slower than the local communication, that is 5,, =
105; and ~y,, = 10~y;. The total times in milliseconds for the
uniform algorithms are:

FP HL | MM | MS | Unif
5043 | 8591 | 5233 | 4915 | 4711

We can easily notice that the total time of the algorithms
was up to 10 times larger, that is having faster local commu-
nication just provide a small improvement (up to 15%). The
communication phases of FP and Unif are shown in the Fig-
ures 5 and 6. We can notice that the communication phases
of Unif do not have messages of similar size.

In the next table we present the total time for the uniform
algorithms when the distant communication is 100 times
and 1000 times slower than the local communication. The
times are given in seconds.

s I
0 1000

Figure 5. Communication phases of FP on a
MCN where the local communication is ten
times faster than the distant one.

0
2000

T
3000

prmms

= T
0 500 1000 15

Figure 6. Communication phases of Unif on
a MCN where the local communication is ten
times faster than the distant one.

¥

|
5000

LA o R
00 2000 2500 3000 3500 4000 4500 5000

|
6000

FP HL MM MS Unif
5043 | 8591 | 51,46 | 49,12 | 47,11
5043 | 859,1 | 513,7 | 4913 | 471.,1

From these results we can observe that when the distant
communications become more time costly, having fast lo-
cal communications did not improve the algorithms perfor-
mance.

5.2 Performance of uniform algorithms on MCNs

In the next table we can see the performances of the
adapted algorithms on the communication matrix of pre-
vious subsection. Again, as the start-up cost is relatively
small the Unif algorithm, which splits messages, has the
best performances. When the distant communication cost
up to 10 times the local communication, the times are given
in milliseconds. In the other two cases the cost is given in
seconds. For these simulations the slowdown factor was not
considered.

Y/ Vi MM | MS | Unif | Two level
1 - (ms) 610 542 508 1767
10 - (ms) | 4657 | 4277 | 4027 9875
100-(s) | 47,1 | 419 | 399 92,6
1000 -(s) | 471,5 | 4182 | 3983 919,7

The better performance of the adapted algorithms is due
to more uniform communication phases. These algorithms
take advantage of the faster local communication by do-
ing phases where there are only local communications, only
distant communications, or large local messages and small
distant messages. In Figure 7 we can see that the phases
have messages of similar sizes, which is not the case of Fig-
ure 6.

The bad performance of the two-level algorithm can be
explained by the small influence of the start-up, which is
small, which favors the algorithms that split messages in-
stead of the message forwarding algorithms. When the in-
fluence of the start-up is more important, the two level al-
gorithm performs better.

The example below uses the communication parame-
ters of the IBM-SP2 for the local communication: start-up
equals to 1.3 milliseconds and the inverse of the bandwidth
0.035 microseconds. For the distant communication we just
assume a larger start-up time, which is 10 times larger. The
messages are obtained from a Gaussian distribution with av-
erage size 10000 and variance 10000. We use 20 processors
divided into five clusters of size four. The algorithms per-
formance in milliseconds is:

FP | HL | MM | MS | Unif | 2-level
uniform | 259 | 88 | 271 | 258 | 1270
adapted 258 | 224 | 574 113

Even in this example, the performance of the two level
algorithm is not as good as HL, which performs very well
for big start-up times. The reason for this can be seen

il | 0 [|
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 7. Communication phases of adapted
Unif ona MCN where the local communication
is ten times faster than the distant one.

comparing Figures 8 and 9. In Figure 8 we can see in
the first communication phase the exchange of messages in
each cluster, in the second phase the exchange of messages
among clusters. Finally, the third phase distributes the mes-
sages inside each cluster.

In the second phase of the two-level algorithm as the ex-
change is composed of big messages, the message forward-
ing is costly. In this example, MM was used in the second
phase (it performed slightly better than HL).

5.3 Performance of the algorithms

In order to analyze performance of the algorithms, we
will simulate several situations: small, medium and big
clusters; medium and large number of processors; small,
medium and big messages. In order to eliminate particu-
lar situations, for each situation we compute the average of
20 experimentations. As we do not intend to compare the
algorithms among them, we use fixed parameters for the
start-up and bandwidth. For local communication we use
the Myrinet parameters (the start-up is 800 microseconds
and the inverse of the bandwidth is 0.28 microseconds). We
assume distant communications 10 times slower.

5.3.1 Small clusters

In this subsection the simulations are done with clusters
composed by three processors. For 12 processors and small

! T T 1 T
0 20 40 60 80 100 120

Figure 8. Macro communication phases of
two-level algorithm.

messages (average 1000, and variance 1000) we obtained
the following results (in milliseconds):

FP | HL | MM | MS | Unif | 2-level
uniform | 140 | 131 | 138 | 139 | 430
adapted 127 | 122 | 540 133

As expected the best algorithms for small messages are
those which minimize the number of phases, or use message
forwarding. Both versions of Unif have bad performances.
In the following table the only difference from the previous
example are messages 10 times larger (medium messages).

FP HL | MM | MS | Unif | 2-level
uniform | 615 | 1025 | 609 | 585 | 943
adapted 571 | 542 | 945 1087

It is not worthwhile anymore to do message forwarding in
order to minimize the number of phases. The best perfor-
mance is obtained with adapted MS. For the next example
the 20 instances were obtained with message average and
variance equals to 100000 (big messages). The following
results are given in seconds.

FP HL | MM | MS | Unif | 2-level
uniform | 540 | 996 | 535 | 507 | 5,34
adapted 502 | 4,75 | 486 | 10,57

In this case the algorithms with a good balance on the
communication phases have good performances, even if
they have several communication phases as the uniform al-
gorithm.

Figure 9. Communication phases of HL.

5.3.2 Medium clusters

In this subsection the simulation is done in clusters of 8
computers. The number of nodes is 64. Here even for small
messages the best performances were obtained with adapted
MM. The following two tables are in milliseconds.

FP | HL | MM | MS | Unif | 2-level
uniform | 831 | 741 | 747 | 739 | 2176
adapted 714 | 678 | 1309 1588

For medium and big messages the results are (in seconds):

FP HL MM | MS | Unif | 2-level
uniform | 1,66 | 1,61 | 143 | 142 | 430
adapted 124 | 1,17 | 1,82 | 10,17
uniform | 7,54 | 15,6 | 595 | 5,79 | 945
adapted 530 | 494 | 599 101
uniform | 66,5 | 1553 | 51,6 | 49,6 | 51,5
adapted 46,0 | 42,5 | 40,1 1004

FP HL | MM | MS | Unif | 2-level
uniform | 3,82 | 6,98 | 3,25 | 3,09 | 4,80
adapted 3,12 1291 | 3,78 | 1522
uniform | 338 | 694,1 | 284 | 26,7 | 26,8
adapted 272 1252|239 | 1500

5.3.3 Big clusters

We also simulate a MCN with 4 clusters of 32 nodes. The
obtained results for small, medium and big messages are (in
seconds):

The best algorithms are those which have better commu-
nication phases. When the messages size increase, the start-
up time becomes less important, so for small and medium
messages the best results are obtained with MM, and for
big messages Unif provides the smallest message exchange
time.

54 Slowdown factor

The slowdown factor can be important when the number
of processors in each cluster is big. With the same param-
eters as in the previous subsection we assumed a maximal
slowdown factor. That is, if more than one message share
the same link between LANs, the bandwidth is divided by
the number of messages sharing the link. The times in sec-
onds are:

adapted | MM | MS | Unif | 2-level
small 146 | 133 | 137 10,2
medium | 139 126 115 101
big 1403 | 1275 | 1119 | 1004

As we can see in the previous results, when the slow-
down factor is big the best results are given by two-level
algorithms.

6 Conclusion

The algorithms proposed for the exchange of messages
on MCNs provide performances up to 20% better than the
usual algorithms.

The MS provides good performances even in a hetero-
geneous environment, so as we could expect adapted MS
is the algorithm which provides the best results when the
start-up time is important.

For future works it would be interesting to generalize the
MCN model to consider more than two kinds of communi-
cations, each one whit its own start-up and bandwidth. It
would also be interesting to find more realistic slowdown
functions, which should reflect the behaviour of actual net-
works of computers.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

S.H. Bokhari. Multiphase complete exchange on a cir-
cuit switched hypercube. In Proceedings of the 1991
International Conference on Parallel Processing, vol-
ume I, pages 525-529, 1991.

H. Choi and S.L. Hakimi. Data transfer in networks.
Algorithmica, 3:223-245, 1988.

E.G. Coffman, M.R. Garey, D.S. Johnson, and A.S.
Lapaugh. Scheduling file transfers. SIAM J. Comput.,
14(3):744-780, August 1985.

I. Foster and C. Kesselman, Globus: A Metacomput-
ing Infrastructure Toolkit. Intl J. Supercomputer Ap-
plications , 11(2):115-128,1997.

A. Goldman, J. Peters, and D. Trystram. Exchange
of messages of different sizes. In IRREGULAR’98,
Lecture Notes in Computer Science 1457, Springer-
Verlag, pages 194-205, 1998.

A. Goldman. Impact des modeles d’exécution pour
I’ordonancement en calcul parallele. Thesis, Institut
National Polythecnique de Grenoble, 1999.

T.F. Gonzales. Multi-message multicasting. In IR-
REGULAR’96, Lecture Notes in Computer Science
1117, Springer-Verlag, pages 217-228, 1996.

S. Ranka, R.V Shankar, and K.A. Alsabti. Many-to-
many personalized communication with bounded traf-
fic. In The Fifth Symposium on the Frontiers of Mas-
sively Parallel Computation, pages 20-27,Feb., 1995.

R. Tahkur and A. Choudhary. All-to-all communica-
tion on meshes with wormhole routing. In IPPS’94,
pages 561-565,1994.

L.G. Valiant. A bridging model for parallel compu-
tation. Communications of the ACM, 33(8):103-111,
August 1990.

10

