
Optimal Journeys and Trade-offs on DTNs

Alfredo Goldman
Instituto de Matemática e

Estatística
Universidade de São Paulo

São Paulo - SP - Brazil
gold@ime.usp.br

Paulo Henrique Floriano
Instituto de Matemática e

Estatística
Universidade de São Paulo

São Paulo - SP - Brazil
floriano@ime.usp.br

César Gamboa Machado
Instituto de Matemática e

Estatística
Universidade de São Paulo

São Paulo - SP - Brazil
csrgm@ime.usp.br

ABSTRACT
This article describes algorithms to compute optimal jour-
neys in predictable DTNs. We combine the algorithms to
compute the shortest, fastest and foremost journeys in order
to provide intermediate optimal journeys which can be used
according to the environment characteristics. We also pro-
pose a preliminary empirical study on the number of data
mules needed to provide connectivity in sparse scenarios on
several environments. We present in the article several ex-
periments that show the importance of the proposed ap-
proach.

1. INTRODUCTION
Delay Tolerant Networks (DTNs) are dynamic networks,

with mobile nodes, transient connections and transmission
delays. Despite of this fact, in some cases, it is possible to
know the whole topology in advance. Using this information,
optimal routings can be provided. We are not particularly
interested on the routes provided by these optimal routings,
indeed the topology complete knowledge can be unrealistic.
However, these optimal values can be used as bounds to
provide useful information on how close to the optimal a
routing algorithm is.

To model a DTN, a structure capable of representing the
transient connections is needed. We use evolving graphs,
which were initially proposed in [Ferreira 2002]. In this ap-
proach, each edge has a list of activity intervals. In an evolv-
ing graph, finding a route between two nodes corresponds to
finding a path with non-decreasing and valid time instants.

The size of a journey can be measured by three different
parameters: The instant on which the message is delivered,
the number of hops and the transit time (the difference be-
tween the arrival time and the starting time). The journeys
which optimize these parameters are called, respectivelly,
foremost, shortest and fastest.

The algorithms to compute these three optimal journeys
were proposed in [Xuan et al. 2003]. However, maybe this is
not enough. Imagine an example where the foremost journey

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExtremeCom 2010 Dharamsala, India
Copyright 2010 ACM 978-1-4503-0300-2 ...$10.00.

takes too many hops, on the other side the shortest journey
takes too much time. So, there was a need to provide bounds
for other situations. The insight for these problems was first
presented on [Monteiro et al. 2007].

The simultaneous optimization of independent parame-
ters of a given problem was already well explored on Game
Theory. In this context, we search for trade offs where it
is not possible to improve a parameter without degrading
the other. We will show how to use this techniques to build
intermediate journeys.

We also present in this work a preliminary study on the
influence of the number of data mules on the connectivity
and on the optimal journeys on sparse scenarios. We hope to
provide insights on the minimal number of mules to provide
reasonable connectivity.

The remaining of the text is organized in the following
way, on Section 2 we briefly present the evolving graphs
model, we also present the basis used on the next section.
On Section 3 we show how to optimize more than one pa-
rameter simultaneously. We provide some experiments using
the ONE simulator on Section 4.

2. JOURNEYS AND EVOLVING GRAPHS
We formally define an evolving graph in the following way:

Definition 1 (Evolving Graph). Let G = (VG, EG) be a
graph and SG = G0, G1, . . . , Gτ (τ ∈ N) an ordered set of
subgraphs of G such that

Sτ
i=1Gi = G. The system G =

(G,SG) is denoted evolving graph.

Let VG =
S
Vi and EG =

S
Ei. We define N = |VG | and

M = |EG |.
Two vertices are adjacent in G if, and only if, they are

adjacent in any Gi. The time spent to send a packet through
an edge e of the graph is given by ζ(e).

Additionally, for each edge e of EG , we can define its ac-
tivity period P (e) which corresponds to the time intervals
when the edge can be traversed.

We define δE = max{|P (e)|, e ∈ EG}, the greater among
the interval sets on the graph and M =

P
e∈EG

|P (e)|, the

number of intervals on the graph. We assume that all inter-
vals in P (e) are greater than ζ(e).

In the implementation, and also on the algorithm anal-
ysis, it is convenient to define f(e, t), with e ∈ EG and
t ∈ [1, τ], as the function that, given an edge and a time
instant, returns the next time instant in which the edge can
be traversed (min{t′ | t′ ∈ P (e) e t′ ≥ t}) or ∞, if this edge
does not exist. Using binary search on the time intervals it
is possible to find the value of F (e, t) in time O(log δE).

Definition 2 (Journey). Let R = e1, e2, . . . , ek (ei ∈ EG)
be a path in G, and Rσ = σ1, σ2, . . . , σk (σi ∈ [1, τ], σi ≤ σj
∀i < j) a valid schedule which says when each edge of R is
traversed. We define J = (R,Rσ) as a journey in G.

We also define, for a journey J , arrival(J) as the arrival
time instant on the destination (σ|R|+ζ(e|R|)), departure(J)
as the time the first edge is used (σ1) and transit(J) as the
time in transit of the Journey (arrival(J)− departure(J)).

For each intermediary node in a journey, we define as wait-
ing time, the time between the arrival at the node and the
instant when the next edge is used (σi − σi−1).

2.1 Optimal Journeys
We can define three different kinds of journeys from a node

s to a node t in an evolving graph, considering the following
parameters: the arrival time, the number of hops and the
time in transit.

2.1.1 Foremost journey
We denote as foremost journey the one where the arrival

time (arrival(J)) is minimal. To compute this journeys we
consider that even if the prefix of a foremost journey is not
always a foremost journey it is possible to find a prefix which
respects this property.

We can proceed in a similar way as Dijkstra’s algorithm to
compute minimum cost paths in usual graphs. We construct
the set C of vertices for which the foremost journey was
already computed, and the set Q of vertices already visited
but whose foremost journey was not yet computed.

At each step we find a vertex u ∈ Q, such that its arrival
time is minimum. Then we remove u from Q and add it to
C, all the neighbours of u are added to Q and their arrival
time is updated. When Q becomes empty all the reachable
vertices of V will be in C. This algorithm was proposed
in [Xuan et al. 2003] and has complexity O(M log δE +
N logN).

2.1.2 Shortest journey
We name shortest journey the one with the minimal

number of edges (|R|). To compute the shortest journeys
from a node s, we compute at each iteration, the paths with
smaller arrival time with k hops from the paths of size k−1.
Doing that, we obtain a prefix tree where each node can
appear more than one time, but with no duplications on
the same level of the tree. This algorithm was proposed in
[Xuan et al. 2003] and has complexity O(N(M log δE +N)).

2.1.3 Fastest journey
We call fastest journey the one that has minimal transit

time (transit(J)). In this case, the journey’s prefix is not
relevant for the problem.

To compute these journeys we use the fact that a fastest
journey with starting time t is always a foremost journey
among the journeys that begin at time t. So, we have to
compute all the relevant foremost journeys. This algorithm
was also proposed in [Xuan et al. 2003] and has complexity
O(M(M log δE +N2)).

From these ideas it is possible to consider the Space-Time
network R [Pallottino and Scutella 1998] given by the evolv-
ing graph G.

We stress that in this network it is possible to compute dif-
ferent optimal journeys just providing weights for the edges

in an appropriate way. However, the complexity is not in-
teresting when we look for trade offs between shortest and
foremost journeys. So, we introduce another way to com-
pute trade offs in the next section.

3. HOW TO COMPUTE INTERMEDIARY
OPTIMAL JOURNEYS

We now discuss how to implement the Pareto points based
on the shortest and the foremost journeys.

We use the algorithm for shortest journeys proposed in [Xuan
et al. 2003] as a base to compute Pareto optimal solutions.
On the original algorithm, on iteration k, all the journeys
with origin s and at most k hops are computed, when a node
u is found for the first time a foremost journey between s
and u is found. However, for the original algorithm only the
ones that arrived earlier were used.

From this step, it is easy to see that, all the intermediary
optimal journeys with up to k edges can be found at each
iteration. The algorithm follows:

OptimalJourneys(G, s)
1 for v ∈ VG
2 do tLBD[v]←∞
3 J [v]← ∅
4 Joptimal[v]← ∅
5 tLBD[s]← 0
6 k ← 0
7 while k < N
8 do k ← k + 1
9 (emin, tmin)← Edges-Times-Selection(G, tLBD)

10 for v ∈ VG such that emin[v] 6= nil
11 do Let (u, v) = emin[v]
12 Let (R,Rσ) = J [u]
13 J [v]← (R ∪ emin[v], Rσ ∪ tmin[v])
14 Joptimal[v]← (Joptimal[v] ∪ J [v])
15 tLBD[v]← tmin[v] + ζ(emin[v])
16 return Joptimal

Edges-Times-Selection(G, tLBD)

1 for v ∈ VG
2 do emin[v]← nil
3 tmin[v]←∞
4 tarrival[v]← tLBD[v]
5 for (u, v) ∈ EG
6 do t← f ((u, v), tLBD[u])
7 if t+ ζ(u, v) < tarrival[v]
8 then emin[v]← (u, v)
9 tmin[v]← t

10 tarrival[v]← t+ ζ(u, v)
11 return (emin, tmin)

From the previous algorithm we can also compute the op-
timal journeys with weights on the parameters. We just
have to iterate the list of optimal journeys looking for the
one with the minimal cost.

3.1 Experiments
We divide the experiments in two, first we study the be-

havior of the trade off journeys and then we provide exper-
iments on the number of data mules.

3.2 Tradeoff Experiments
We use the simulator Opportunistic Network Environment

(ONE) [Keränen et al. 2009]. We use the optimal journeys
and the optimal intermediary journeys. On the figures we
can see the MiddleHop routing which uses the average of
the number of hops on the shortest and foremost journeys.
Similarly, QuarterHop and 3QuarterHop use the first and
third quarter, respectively. On the MiddleRnd, one of the
intermediate optimal journeys is randomly chose 1.

Figure 1: Number of Nodes x Average Latency in
seconds

The nodes’ transmission radius was fixed in 15m, their
speed in between 20 and 100m/s. The packet size was fixed
in 5kb, the transmission speed in 250kbps and the nodes’
buffer size in 100kb. The transmission speed is much larger
than the packet size to ensure that each transmission lasts
less than 1s. Since ONE only uses discrete time intervals,
each transmission actually lasts exactly 1s in the simula-
tions. Besides that, each simulation lasts 3000s and a new
message is created every 10s. The nodes’ movement is de-
termined by shortest paths in the map of Helsinki.

Figure 2: Number of Nodes x Average Hopcount

As we can see, on Figures 1 and 2 the intermediary optimal
1More details can be found in http://www.linux.ime.usp.
br/~catita/dtn/

journeys provide a clear trade off between the shortest and
foremost journeys.

Figure 3: ONE representation of the map used in
the scenario described

3.3 Mules experiments
We also conducted some experiments on an isolated en-

vironment with several fixed nodes and we varied the num-
ber of data mules. The representation of the scenario can
be seen in Figure 3. In this scenario, there are 29 fixed
nodes scattered in a pattern that resembles villages con-
nected by roads in a remote place. We ran experiments
in which the mules only move through the roads (simulating
cars or buses), some experiments where the mules may move
anywhere, with the Random Waypoint model, (simulating
helicopters) and mixed scenarios.

In Figure 4 we can see the influence of the number of
mules on the message delivery probability when the mules
move through the roads only. As expected, the delivery
probability grows with the number of mules, but when we
have over 10 mules, the growth rate falls drastically and
the value barely exceeds 85% after that. These results show
that we have little almost no gain if we add even more mules.
The different routing strategies wield similar results in this
scenario.

So, interestingly, the routing algorithms somehow followed
the behavior of the bounds.

In Figure 5 we see a scenario in which the mules move
randomly in the map, the delivery probability is significantly
smaller.

Additionally, the probability grows steadily as the number
of mules increase, even when 20 mules are reached. This
suggests that if more mules are added, the probability may
grow further. Also, the routing protocols with knowledge
of the network seem to do better in this scenario than the
traditional algorithms, which is expected.

Comparing the previous figures we can notice that when
the mules have to follow the roads, the delivery probability
increases rapidly, even with few mules (Figure 4), however
after a certain point, the additional mules do not provide
further connectivity. On the other side, when the mules do
not follow any specific route, we have a slow increase on the
delivery probability when more mules are added and this
tendency continues beyond 20 mules.

In the next experiment we try a mixed approach, with two
kinds of mules.

Figure 4: Influence of number of mules on the delivery probability.

Figure 6 shows another experiment in which 2 mules move
through the roads, 2 move in RWP and the transmit radius
varies. We can see that even with a small transmit radius,
the delivery probability is above 40%. This value is equiva-
lent to having over 8 RWP mules or over 3 map mules. So,
the mixed scenario can achieve better results than only one
kind of mule.

On the Figure 7 we can see the influence of the number
of mules on the number of hops found for different routing
algorithms in a scenario where the mules may only move
on the roads of the map. In the Figure we also show the
classical routing algorithms such as epidemic, Maxprop and
Prophet.

For the shortest and MiddleHop journeys the average num-
ber of hops is always close to 2, even when there are only few
mules. For the other algorithms the number of hop counts
grows proportionally to the number of mules. However, on
the experiment with latency (Figure ??) we notice that with
more data mules, the Epidemic, Maxprop and foremost rout-
ings obtained better performance. We can also notice that
the latency decreases as the number of mules grow. With
zero mules, no messages arrive at their destination, so the
average latency is shown as zero.

4. ACKNOWLEDGEMENT
The authors would like to thank CNPq (Conselho Na-

cional de Desenvolvimento Cient́ıfico e Tecnológico) and FAPESP
(Fundação de Amparo à Pesquisa do Estado de São Paulo)
for the financial support.

5. CONCLUSION

Figure 8: Influence of number of mules on the aver-
age latency.

In this paper we could see the practical issues involving the
implementation of trade off optimal journeys. We presented
an easy way to implement trade offs between the shortest
and the foremost journeys.

The intermediary journeys can be used in situations where
both the shortest and foremost journeys do not provide sat-
isfactory results, on the journey length or in the journey
duration.

We also presented some initial results on the influence of
the number of mules on the routing algorithms. We pre-
sented results evidencing the diference between using mules

Figure 5: Influence of number of mules on the delivery probability.

restricted to the paths or mules free to move using the RWP
model. An experiment with a combination of both kind of
mules were also presented. We also studied the impact of
the number of mules on the average hop count and on the
latency.

With this work we provided more tools to analyse the
quality of routing protocols and some insights on the num-
ber of data mules needed. As future research, we intend to
better understand the influence of the number and type of
the mules on different scenarios. We also intend to change
the mules speed and storage capacity.

6. REFERENCES
[Ferreira 2002] Ferreira, A. (2002). On models and

algorithms for dynamic communication networks: the
case for evolving graphs. In In Proc. ALGOTEL.

[Keränen et al. 2009] Keränen, A., Ott, J., and
Kärkkäinen, T. (2009). The ONE Simulator for DTN
Protocol Evaluation. In SIMUTools ’09: Proceeding of
the 2nd International Conference on Simulation Tools
and Techniques, New York, NY, USA. ICST.

[Monteiro et al. 2007] Monteiro, J., Goldman, A., and
Ferreira, A. (2007). Using Evolving Graphs Foremost
Journey to Evaluate Ad-Hoc Routing Protocols. In In
Procedings of 25th Brazilian Symposium on Computer
Networks (SBRC’07), Belem, Brazil.

[Pallottino and Scutella 1998] Pallottino, S. and Scutella,
M. (1998). Shortest path algorithms in transportation
models: classical and innovative aspects. Equilibrium
and advanced transportation modelling, pages 245–281.

[Xuan et al. 2003] Xuan, B., Ferreira, A., and Jarry, A.
(2003). Computing shortest, fastest, and foremost

journeys in dynamic networks. International Journal of
Foundations of Computer Science, 14:267–285.

Figure 6: Mixed scenario with 2 RWP mules and 2 map mules.

Figure 7: Influence of number of mules on the number of hops.

