
A Parallel Algorithm for Enumerating Combinations

Martha Torres Alfredo Goldman
Junior Barrera

Departamento de Ciência da Computação
Instituto de Matemática e Estatı́stica - Universidade de São Paulo

Rua do Matão, 1010 05508-900 São Paulo, Brazil
{mxtd, gold, jb} @ime.usp.br

Abstract

In this paper we propose an efficient parallel algorithm
with simple static and dynamic scheduling for generating
combinations. It can use any number of processors (NP ≤
n−m + 1) in order to generate the set of all combinations
of C(n,m). The main characteristic of this algorithm is
to require no integer larger than n during the whole com-
putation. The performance results show that even without
a perfect load balance, this algorithm has very good per-
formance, mainly when n is large. Besides, the dynamic
algorithm presents a good performance on heterogeneous
parallel platforms.1

1. Introduction

The enumeration of combinatorial objects occupies an
important place in computer science due to its many appli-
cations in science and engineering [10][11]. Our special
motivation for this topic is in genetic applications, in those
applications, the generation of all combinations of m out of
n objects (where m and n are genes) is necessary to ana-
lyze the interaction of genes in distinct conditions [6]. Due
to the combinatorial behavior of this problem it is highly ap-
propriated to develop parallel algorithms for it. In fact, there
are many parallel solutions to generate the set of combina-
torial objects (e.g., those in [1] [2][8][14]). These parallel
algorithms can be divided in two classes. The algorithms
which require a constant number of processors: [2][8][14],
and the adaptive algorithms that use an arbitrary number of
independent processors [1]. Usually, it is reasonable to as-
sume that the number of processors on a parallel computer
is not only fixed but also smaller than the size of a typical
problem, in order to take advantage of the total capacity of

1This research was supported by Brazilian FAPESP, process number
00/10660-8 and CAPES.

platform.
The best adaptive algorithm is described in [1]. This

algorithm can use any number of processors (NP ≤
C(n,m)) and is optimal when uses k processors, where
1 ≤ k ≤ C(n,m)

n . However, it requires arbitrary-precision
arithmetic, moreover it is necessary to schedule the combi-
nations, that is, to decide when each combination will be
computed, before the moment where each processor can in-
dependently generate its combinations subset.

The aim of this paper is to present an efficient and sim-
ple parallel algorithm, using static and dynamic scheduling,
in order to generate all combinations of m out of n objects
in a distributed memory parallel machine using the message
passing paradigm. This algorithm does not present the lim-
itations of the previous algorithm [1]. In order to evaluate
the performance of the proposed algorithm, we compared it
with the algorithm of [1], and also with our algorithm using
largest-processing-time (LPT) scheduling [3]. Those algo-
rithms were implemented in C language and MPI library
[12].

The paper is organized as follows. Section 2 describes
the previous adaptive algorithm [1]. Section 3 explains
the proposed algorithm using static scheduling. Section 4
shows our algorithm using dynamic scheduling. Section 5
presents real tests and a performance evaluation. Some con-
cluding remarks are given in Section 6.

2. Classical Algorithm

Before the algorithm description, we present some def-
initions: an m-combination of an n-set is a subset with m
elements chosen from a set with n elements. The number
of m-combinations of an n-set is the binomial coefficient
C(n,m) = n!

(m!(n−m)!) . The parallel algorithm in [1] uses
an arbitrary number of independent processors (NP : num-
ber of processors ≤ C(n,m)). Each processor generates a
continuous interval of C(n,m)

NP combinations. In this algo-

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

rithm, each combination is associated with a unique integer.
By using those integers, a processor can easily determine
the first combination in the interval. After the first com-
bination is generated, the remaining combinations in that
interval can be easily obtained. The NP processors once
started execute independently the same algorithm and do
not communicate. Therefore, this algorithm requires:

1. to know the total number of combinations of m out of
n objects (C(n,m));

2. to have a numbering system for all combinations of
m out of n objects. More specifically to have a func-
tion that provides a k-combination for a distinct in-
teger. There are two functions called RANKC and
RANKC−1 [7] that realizes the combinatorial num-
bering system. Let x = x1x2 . . . xm be a combina-
tion of m integers. RANKC is a function which asso-
ciates with each such combination x a unique integer
RANKC(X). The function RANKC has the follow-
ing properties: (i) it preserves lexicographic ordering;
(ii) its range is the set 1, 2, . . . , C(n,m); (iii) it is in-
vertible such that if d = RANKC(X) then X can be ob-
tained from RANKC−1(d) [1].

3. to have an algorithm that sequentially generates all
combinations of m out of n objects in lexicographic
order.

In this paper, the value C(n,m), in the item 1, is computed
in O(m) time using the Algorithm 160 [13]. Algorithms
for ranking and unranking combinations are widely used in
solving combinatorial problems in parallel because they can
be applied for parallel generation of combinatorial objects
and also play an important role in the division of splitable
tasks and on the distribution of resulting subtasks among
cooperating processors [8].

Basically, unranking combinations algorithms can be
characterized by the method applied for binomial coeffi-
cient evaluation. In the original formulation, the binomial
coefficients were there derived by factorialing, in modern
algorithms the next consecutive binomial coefficient is ob-
tained by certain modifications of the previous one, it is
called ”restricted factorialing”. Other approaches were pro-
posed which binomial coefficients are picked up from a sup-
plementary table. In this paper, we use the algorithm called
UNRANKCOMB-D [8], which belongs to the ”restricted
factorialing” category. This algorithm is very efficient in
space and time. It presents only 0(n) time complexity.

The sequential combinations algorithm used in this paper
is based in the Algorithm 154 [9] whose running time is
O(mC(n,m)), which corresponds to an optimal algorithm
[2].

The classical algorithm can use any number of proces-
sors (NP ≤ (C(n,m)) and is optimal when uses k proces-

sors, where 1 ≤ k ≤ C(n,m)/n [1]. But, it requires arbitrary-
precision arithmetic because it has to deal with large inte-
gers during the computation of the total number of combi-
nations and in the execution of unranking algorithm.

Moreover, for this algorithm, it is necessary to execute
the routines for calculating C(n,m) and RANK-1 before each
processor can independently generate its interval of consec-
utive combinations.

3 The Algorithm with Static Scheduling

First we will divide all combinations in groups, whose
characteristic is the value of their “prefix”. For instance,
the combinations of C(5,3) are: 012, 013, 014, 023, 024,
034, 123, 124, 134 and 234. These combinations can be
divided in three groups: the “group0” which is composed by
the combinations whose “prefix” is 0 (012, 013, 014, 023,
034), the “group1” which is constituted by the combinations
whose ”prefix” is 1 (123, 124, 134) and the ”group2” which
is formed with the combinations whose ”prefix” is 2 (234).
The total number of groups of all combinations of C(n,m) is
n-m+1.

The proposed algorithm main idea is to divide all com-
binations in groups and to attribute the generation of com-
binations on each of these groups to the processors. In or-
der to balance load we choose a static scheduling algorithm
called reflexive wrap allocation. The distribution of groups
is directly done without additional calculations.

Our solution using reflexive wrap allocation consists in:
First, it attributes the correspondent group to the myid of
each processor. Example: If we have a machine with two
processors, the myid of processor 1 is 0 and the myid of
processor 2 is 1. Therefore, the processor 1 (myid=0) will
generate the combinations of the “group0” and the proces-
sor 2 (myid = 1) those of the “group1”.

It is important to point out the number of combinations
of the “groupi” is larger than the number of combinations
of the “groupi+1”. Therefore, due to initial distribution,
the processors with the lower myid will have to generate
combinations of larger prefix group. In order to compen-
sate the load imbalance, then in the following distribution,
the subsequent groups with smaller “prefixes” will be as-
signed to processors with the larger myid and in the follow-
ing distribution, the subsequent groups with smaller ”pre-
fixes” will be assigned to processors with the smaller myid
and so forth. Each processor stops generating combinations
when the following group is larger than n-m+1

Therefore, the first attribution is made by the myid of
each processor, the following designation (called “odd at-
tribution”) depends on the total number of processors (NP),
the myid of each processor and number of the previous
group (pg). Thus, the corresponding group (g) for each

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

processor is:

g = pg + 2 ∗ (NP − myid − 1) + 1 (1)

The following designation (called “even attribution”) de-
pends on the myid of each processor and the number of the
previous group (pg). Thus, the corresponding group (g) for
each processor is:

g = pg + 2 ∗ myid + 1 (2)

The next attribution acts according to the “odd attribution”
relationship and the next succeeds the “even attribution” re-
lationship, this repeats successively until the last group. The
Figure 1 shows the size of tasks (groups) in this algorithm.

Group0=C(n-1,m-1)=(n-1)/(n-m)C(n-2,m-1)
Group1=C(n-2,m-1)=(n-2)/(n-m-1)C(n-3,m-1)
Group2=C(n-3,m-1)=(n-3)/(n-m-2)C(n-4,m-1)
.
.
.
Group(n-m-1)=C(n-n+m,m-1)=(m)C(n-1,m-1)
Group(n-m)=C(n-1,m-1)

Figure 1. The size of the tasks in the static
algorithm

In our solution, the sequential algorithm used in each
processor is the same used in the classical algorithm. In
our solution, each processor knows which are the groups
that belong to them, it does not generate any communica-
tion among the processors and it does not need the routines
for calculating C(n,m) and RANK-1.

3.1. The Algorithm with LPT Scheduling

In order to compare the performance of our algorithm,
we implemented the LPT scheduling algorithm. In our so-
lution, the size of each task (group) is known besides all
tasks are currently independent of each other. Therefore, it
can use the simple LPT scheduling algorithm. This method
schedules the tasks (groups) one by one in decreasing order
of processing time and each task is scheduled on the pro-
cessor on which it finishes earliest. If tLPT denotes the time
for LPT schedule, topt the optimal time and m the number
of processors available, then

tLPT ≤ 4
3
− 1

3m
(3)

Thus, the generated schedule will never be worse than 4/3
of the optimal one. This type of scheduling provides a good

performance but requires arbitrary-precision arithmetic in
order to calculate the size of tasks as shown in the Figure 1.

It is obvious there are load balancing schemes better than
LPT, however, as shown later, for our examples, the LPT al-
gorithm presents a behavior very close to the optimal sched-
ule. Therefore, it represents a good algorithm for perfor-
mance comparison.

4. The Algorithm with Dynamic Scheduling

Though, the scheduling mechanism of static algorithm
tries to distribute the combinations in balanced form, the
load balance is not perfect. As the processors number in-
creases, the imbalance of computational load increases, be-
cause the processors with myid bigger has to generate a
smaller number of combinations. In order to improve the
load balance, we propose an algorithm that uses dynamic
scheduling. In this algorithm, a process is exclusively ded-
icated of distributing the groups for others processes. This
process is called “master process”. The distribution is done
on demand:

1. Initially each process, with the exception of “master
process”, generates the combinations corresponding to
the nominated group with its myid. For instance, the
process with myid=0 will generate the combinations
of the “group0” and so forth for the other processes;

2. As soon as the processes generate the corresponding
combinations, they will send a message to the master
process, requesting the name of the group of the fol-
lowing combinations to generate. For this to be possi-
ble, the process sends its myid and wait that the master
process sends to it, the name of the group;

3. The master process sends the groups to the processes,
in the sequence the messages are received. This pro-
cess sends a flag to each one of the other processes,
when there are not more groups to send.

Observations:
The “master process” almost does not demand CPU,

therefore this process can be executed together with other
process in the same processor, without efficiency loss.

Performance results show that the use of two processes
in one machine affects neither the execution time of the pro-
cess which generates the combinations, nor the distribution
of groups by the “master process”. The dynamic algorithm
can be used in heterogeneous clusters. To do so, for the
first allocation we have to order the nodes of the cluster in
non-decreasing order of speed.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

5 Performance Results

We implemented the algorithms in a Beowulf-style clus-
ter of 11 PCs. Each machine has a 1.2 GHz AMD Athlon
K-7 processor, 768 MB of RAM, 2 MB CPU cache, and
30 GB hard disk space. The machines are interconnected
with a 100 Mbps FastEthernet switch. The operating system
is Linux 2.4.20 and we use C language and MPICH 1.2.4
library. In order to compare the performance of our pro-
posed algorithm using static and dynamic scheduling, we
measured the execution time by MPI Wtime for enumerat-
ing C(100,6), C(50,10), C(100,8), C(1000,3) and C(2000,3)
combinations, using from two to eleven processors. The
GNU MP library [4] (a very efficient library for arbitrary
precision arithmetic on integers) was used on the LPT and
classical algorithms. Figures 2-5 show the normalized total
execution time (the total execution time of static algorithm
is 1). The Figure 2 shows the comparison of total execu-
tion time for enumerating of C(1000,3) combinations. This
Figure shows two different versions of the classical algo-
rithm: classical gmp which uses the GNU MP library and
classical lint that does not use it.

C(1000,3)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2 3 4 5 6 7 8 9 10 11

Processors Number

No
rm

al
ize

d
Ti

m
e

classical_lint
classical_gmp
static
dynamic
lpt

Figure 2. Comparison of total execution for
enumerating C(1000,3) combinations using
static, classical, LPT and dynamical algo-
rithms

This figure exhibits classical lint is more efficient than
other algorithms. The static algorithm presents an overhead
of 5% for 11 processors.

The classical gmp algorithm presents an overhead of
approximately 40% . And the dynamic and LPT algorithms
present an overhead of approximately 20% (the LPT algo-
rithm use the GNU MP library only when required).

It is important to stress that the dynamic algorithm is
sensible to the tasks size. In this specific case, this algorithm
will present contention because the task size in each pro-
cessor is small (fine grain). Based in the Figure 1, the size
of “group0” is C(999,2), the size of “group1” is C(998,2)
and so on. For this reason, the master process must pro-
vide groups to the processes almost simultaneously. Using

more than 3 processes, the demand for the scheduler process
will increase and its contention will affect the performance.
Therefore, we improve the dynamic algorithm for these sit-
uations increasing the task size for each process. In this
case, the master process sends out tasks with 100 groups at
once for each process.

The Figure 3 shows the comparison of total execution
time for enumerating of C(2000,3) combinations. In this
case as in the following examples, the classical int algo-
rithm is not present in the figures anymore, the generated
numbers can not be stored on long its. As shown in the
Figure 3, the static algorithm is more efficient than other
algorithms. This reduces the total execution time in approx-
imately 30% compared with the dynamic algorithm, and in
approximately 20% compared with the LPT algorithm.

C(2000,3)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2 3 4 5 6 7 8 9 10 11

Processors Number

No
rm

al
ize

d
Ti

m
e

classical_gmp

static

dynamic

lpt

Figure 3. Comparison of total execution for
enumerating C(2000,3) combinations using
static, classical, LPT and dynamical algo-
rithms

The dynamic algorithm presents a good performance but
as the number of processor increases, its execution time in-
creases, since it is affected by the overhead in communica-
tion operations.

In this case due to the size of the numbers, an arbitrary
precision library must be used. The GMP MP library affects
total execution time of the classical algorithm.

The Figure 4 shows the comparison of total execution
time for enumerating of C(100,6) combinations. In this ex-
ample, the static algorithm is more efficient than other al-
gorithms. Moreover, the LPT algorithm presents a good
performance mainly because it produces a good load distri-
bution and does not have communication overhead.

In this case, the behavior of dynamic algorithm is also
good because the task size for C(100,6) combinations is
large; based in the Figure 1, the size of “group0” is C(99,5),
the size of “group1” is C(98,5) and so on. Therefore the
scheduler process does its work without contention. More-
over the overhead of communication operations almost does
not affect the total execution time. As the processors num-
ber increases, the difference in total execution time for all

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

C(100,6)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2 3 4 5 6 7 8 9 10 11

Processors Number

No
rm

al
ize

d
Ti

m
e

classical_gmp
static
dynamic
lpt

Figure 4. Comparison of total execution
for enumerating C(100,6) combinations us-
ing static, classical, LPT and dynamical al-
gorithms

algorithms is reduced compared to the static algorithm. The
reason is the load balance provided by the static, it becomes
imbalanced as exemplified latter in the paper.

The Figure 5 shows the comparison of total execution
time for enumerating of C(100,8) combinations. In this
case, the static, dynamic and LPT algorithms reveal a simi-
lar behavior.

The scheduling mechanism of static algorithm tries to
distribute the combinations in balanced form, but the load
balance is not perfect. As the processors number increases,
the imbalance of computational load becomes larger, be-
cause the processors with larger myid have to generate a
smaller number of combinations.

In this case, the LPT algorithm is efficient mainly be-
cause it produces a good load distribution. For example,
the load balancing of LPT algorithm using NP = 11 proces-
sors exhibits a difference of 0.005% compared to the opti-
mal schedule. For this situation, the static algorithm has an
overhead of approximately 6% and the dynamic algorithm
of approximately 3% .

The dynamic algorithm shows a good load balancing be-
cause tasks are course grain and the communication over-
head does not affect the performance. Therefore, in situa-
tions like this where the static algorithm does not provide
a suitable load balancing, the dynamic algorithm can be an
option in order to provide a simple and efficient solution.

In order to illustrate the load balancing of static algo-
rithm, the Figures 6 - 9 show the distribution of groups
(tasks) for each processor, for numerating C(100,8) com-
binations in the static algorithm, using NP = 5 and 9 pro-
cessors, respectively. The y axis shows the size of tasks
(groups).

The Figure 6 shows the load balance is not perfect but
it is better than the load balance presented in the Figure 8.
Therefore, as the processors number increases, the imbal-
ance of computational load also increases and so the total

C(100,8)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2 3 4 5 6 7 8 9 10 11

Processors Number

No
rm

al
ize

d
Ti

m
e

classical_gmp
static
dynamic
lpt

Figure 5. Comparison of total execution
for enumerating C(100,8) combinations using
static, classical and dynamical algorithms

execution time of the static algorithm.
For comparison, the Figures 7 and 9 show the load bal-

ancing of LPT algorithm for the same cases. As shown, the
LPT algorithm presents an excellent load balancing.

Distribution of tasks (C(100,8))

0,00E+00
2,00E+09
4,00E+09
6,00E+09
8,00E+09
1,00E+10
1,20E+10
1,40E+10
1,60E+10
1,80E+10
2,00E+10
2,20E+10
2,40E+10
2,60E+10
2,80E+10
3,00E+10
3,20E+10
3,40E+10
3,60E+10
3,80E+10
4,00E+10

0 1 2 3 4

Processor myid

T
a
s

k
S

iz
e

Figure 6. Distribution of tasks by static algo-
rithm for enumerating C(100,8) combinations
using NP = 5 processors

LPT: Distribution of tasks (C(100,8))

0,00E+00
2,00E+09
4,00E+09
6,00E+09
8,00E+09
1,00E+10
1,20E+10
1,40E+10
1,60E+10
1,80E+10
2,00E+10
2,20E+10
2,40E+10
2,60E+10
2,80E+10
3,00E+10
3,20E+10
3,40E+10
3,60E+10
3,80E+10

4 3 2 1 0

Processor myid

Ta
sk

Si
ze

Figure 7. Distribution of tasks by LPT algo-
rithm for enumerating C(100,8) combinations
using NP = 5 processors

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Distribution of tasks (C(100,8))

0.00E+00
2.00E+09
4.00E+09
6.00E+09
8.00E+09
1.00E+10
1.20E+10
1.40E+10
1.60E+10
1.80E+10
2.00E+10
2.20E+10
2.40E+10

0 1 2 3 4 5 6 7 8

Processor myid

T
a
s
k

S
iz

e

Figure 8. Distribution of tasks by static algo-
rithm for enumerating C(100,8) combinations
using NP = 9 processors

LPT: Distribution of tasks (C(100,8))

0,00E+00

2,00E+09

4,00E+09

6,00E+09

8,00E+09

1,00E+10

1,20E+10

1,40E+10

1,60E+10

1,80E+10

2,00E+10

2,20E+10

2,40E+10

8 7 6 5 4 3 2 1 0

Processor myid

Ta
sk

Si
ze

Figure 9. Distribution of tasks by LPT algo-
rithm for enumerating C(100,8) combinations
using NP = 9 processors

5.1. Special Case

The Figure 10 shows the comparison of total execution
time for enumerating of C(50,10) combinations. In this ex-
ample, the total execution time is normalized for classical
algorithm.

C(50,10)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2 3 4 5 6 7 8 9 10 11

Processors Number

No
rm

ali
ze

d
Tim

e

classical_gmp
static
dynamic
lpt

Figure 10. Comparison of total execution time
for enumerating C(50,10) combinations using
static, classical and dynamical algorithms

In this case, the classical algorithm presents the best be-

havior for NP ≥ 8 processors. The figure 11 shows the dis-
tribution of groups (tasks) for each processor, for numerat-
ing C(50,10) combinations in the static algorithm, using NP
= 5 processors.

Distribution of Tasks (C(50,10))

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

1.40E+09

1.60E+09

1.80E+09

2.00E+09

2.20E+09

2.40E+09

2.60E+09

0 1 2 3 4

Processor myid

T
a
s

k
S

iz
e

Figure 11. Distribution of tasks by static algo-
rithm for enumerating C(50,10) combinations
using NP = 5 processor

As illustrated in the Figure 11, the static algorithm
presents a load imbalance which reduces its performance.
In this case, only a limited number of tasks (3) affects the
load balance for each processor, because the size of first task
is larger than the other tasks. Figure 12 shows the distribu-
tion of groups (tasks) for each processor, for numerating
C(50,10) combinations in the static algorithm, using NP =
6 processors. In this case, the load balance is even worse.

Distribution of Tasks (C(50,10))

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

1.40E+09

1.60E+09

1.80E+09

2.00E+09

2.20E+09

2.40E+09

0 1 2 3 4 5

Processor myid

T
a
s
k

S
iz

e

Figure 12. Distribution of tasks by static algo-
rithm for enumerating C(50,10) combinations
using NP = 6 processor

In the Figures 11 and 12, the horizontal line indicates
the total combinations number divided by number of pro-
cessors (NP = 5,6 respectively). The static algorithm pro-
vides a good performance when the “group0” size is minor
or equal to total combinations number divided by the num-
ber of processors used. In this situation, the additional tasks
on processor with myid=0 can affect in a small degree the
total execution time. If the “group0” size is larger than total
combinations number divided by the number of processors

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

used, it means the processor with myid=0 will have more
load and therefore its execution time is larger originating a
load imbalance affecting the total performance. The num-
ber of combinations corresponding to “group0” is:

Comb = C(n − 1,m − 1) =
m

n
xC(n,m) (4)

Therefore,

(
m

n
)(C(n,m) ≤ C(n,m)

NP
(5)

Then,
NP ≤ n

m
(6)

In the case of dynamical algorithm, the minimal exe-
cution time that can be obtained is the execution time of
“group0” by the processor with myid=0. Again, if the num-
ber of combinations corresponding to “group0” is smaller or
equal to the total combinations number divided by number
of processors. Then, as the number of processors increases,
the total execution time decreases.

On the opposite situation, as the number of processes in-
creases, the total execution time remains the same as the
execution time of “group0” by the processor with myid =0.
In this case, the classical algorithm can provide better per-
formance.

In the example illustrated in the Figure 10 , the dynami-
cal algorithm presents better performance until 7 processes,
though the total execution time of dynamic algorithm since
5 processes is the same, the overhead of classical algorithm
is only overcome using NP = 7 processors.

In the dynamic algorithm, the limit of performance is the
size of first task, in other words, the minimum total execu-
tion time in the dynamic algorithm is the execution time of
the first task.

The LPT algorithm presents similar behavior than dy-
namical algorithm therefore the same analysis may be ap-
plied to it.

Based in the Figure 1, the size of the last tasks (groups)
is negligible compared to the first tasks. Therefore, if n is a
large number, the size of tasks will be approximatelly equal,
therefore the load balance improves for the static algorithm.
If m is very small and n large, the size of tasks will also be
very close.

5.2. Heterogeneous Behavior

In order to show the behavior of these algorithms in a
heterogeneous platform, we simulated heterogeneous be-
havior loading five of eleven nodes with a program running
in background while the execution of the algorithms was
done. The Figure 13 shows the performance results.

The dynamical algorithm presents the best performance
because it takes advantage of the nodes with larger capacity
doing a good load balancing.

C(2000,3)

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

2 3 4 5 6 7 8 9 10 11

Processors Number

N
o

rm
a

li
z
e
d

T
im

e

classical

static

dynamical

Figure 13. Comparison of total execution time
for enumerating C(2000,3) combinations us-
ing static, classical and dynamical algorithms
in a heterogeneous platform.

6. Conclusions

We presented a parallel algorithm for enumerating com-
binations with very basic static and dynamic scheduling al-
gorithms that requires no integer larger than n during the
computation. Our algorithm is simpler than the classical al-
gorithm since it does not need to calculate the total number
of combinations (C(n,m)) neither to have a numbering sys-
tem for all combinations of m out of n objects (RANK-1).

Our algorithm can use any number of processors (NP ≤
n-m+1) in order to generate C(n,m) combinations.

The performance results show that our algorithm in its
static version provides an efficient solution when NP ≤ n/m.
It produces an excellent performance when n is large. Our
dynamic version is also very efficient especially with course
grained tasks.

Besides, a combination of static and dynamic algorithms
can be used in order to compensate the disadvantages of
each other. For example in situations where the static al-
gorithm does not provide a suitable load balancing, the dy-
namic algorithm can be used and in situations where the
communication overhead of dynamic algorithm is affected
then the static algorithm can be used.

Therefore, we considered our solution a good option be-
cause is simple and efficient.

The implementation of our algorithm using more elab-
orated scheduling mechanisms as LPT or bin packing [5]
will provide a better performance especially when the num-
ber of tasks is relatively small and the number of processors
is larger.

Also, the performance results show that the classical al-
gorithm is affected by the overhead of special library for
manipulating large integers.

The dynamic algorithm is also suitable for heteroge-
neous platforms.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

References

[1] S.G. Akl. Adaptive and optimal parallel algorithms
for enumerations permutations and combinations. The
comp. J., 30:433-436, 1987.

[2] S.G. Akl, D. Gries, and I. Stojmenovic. An optimal
parallel algorithm for generating combinations. Infor-
mation Processing Letters, 33:135-139, 1989.

[3] R.L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal Applied Mathematics,
17:416-429, 1969.

[4] T. Grandlund. Gnu mp. http://swox.org/gmp/.

[5] D.S. Johnson. Fast algorithms for bin packing. Jour-
nal of Computer and System Sciences, 8:272–314,
1974.

[6] S. Kim and et. al. Identification of combination gene
sets of glioma classifications. Mol. Cancer. Therapeu-
tics., 1:1229-1236, 2002.

[7] G.D. Knott. A numbering system for combinations.
Communications of the ACM, 17:45-46, 1974.

[8] Z. Kokosinski. Algorithms for unranking combina-
tions and their applications. In International Con-
ference Parallel and Distributed Computing and Sys-
tems, pages 216-224, 1995.

[9] C.S. Misfud. Combination in lexicographic order (al-
gorithm 154). Communications of the ACM, 6:103,
1963.

[10] A. Nijenhuis and H. Wilf. Combinatorial Algorithms
for Computers and Calculators. Academic Press, sec-
ond edition edition, 1978.

[11] F. Ruskey and C.A. Savage. A gray code for the com-
binations of a multiset. Eurepean Journal of Combi-
natorics, 17:493-500, 1996.

[12] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI: The Complete Reference. The MIT
Press, 1996.

[13] M.L. Wolfson and H.V. Wright. Combinatorial of m
thins taken n at a time (algorithm 160). Communica-
tions of the ACM, 6:106, 1963.

[14] B.B. Zhou, R. Brent, X. Qu, and W.F. Liang. A novel
parallel algorithm for enumerating combinations. In
International Conference on Parallel Processing, vol-
ume 2, pages 70-73, 1996.

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

