
Parallel applications in the 
cloud

Diana Naranjo Pomalaya

Computação Paralela e Distribuida



Agenda
● Introduction
● MapReduce
● Solutions

○ Haloop
○ iMapReduce
○ Pig



Global Data Center Traffic

Source: Cisco Global Cloud Index, 2013–2018



Data-intensive applications
● Sciences

○ Massive-scale 
simulations data 
analysis

○ Sensor deployments
○ High-throughput lab 

equipment

● Industry
○ Web-data analysis
○ Click-stream 

analysis
○ Network-monitoring 

log analysis



MapReduce

Map Local Sort

Local SortMap Combine

Combine

Shuffle

Combine/
Merge

Combine/
Merge Reduce

Reduce



MapReduce
○ Easy-to-use 

programming model 
(2 functions)

○ Scalability
○ Fault-tolerance
○ Load balancing
○ Data locality-based 

optimization

○ Designed for Batch-
oriented 
computations (N-step 
dataflows)

○ Low-level abstraction 
(combined data sets, 
primitive operations)



Solutions
Haloop

Loop-aware 
scheduler 

Caching 
mechanisms

iMapReduce

Persistent tasks

Input data loaded once

Asynchronous execution

Pig 

High-level data 
manipulation

Hadoop 
execution



Haloop
● Hadoop based framework

● Supports iterative programs

● Loop-aware scheduler and Caching 
Mechanisms



Hadoop
Client Master 

Node

Task 
Scheduler

Slave 
Node

Slave 
Node

Task 
Tracker

Slave 
Node

Slave 
Node

submits jobs

schedules
tasks

creates
tasks

manages tasks’ execution



Haloop
Client Master 

Node

Task 
Scheduler

Slave 
Node

Slave 
Node

Task 
Tracker

Slave 
Node

Slave 
Node

submits jobs

schedules
tasks

creates
tasks

manages tasks’ execution

Loop Control
Initiates map-
reduce steps until 
termination 
condition is met

Data locality
By the means of 
caching and 
indexing



Haloop - Loop control

● Goal: place on same physical machine map/reduce tasks 
that occur in different iterations but access same data

● How: 
○ Keep track of data partitions processed by each task 

on each physical machine
○ Map new tasks to slave nodes that have alreasy 

processed that data partition
○ If node full, then re-assign to other node



Haloop - Caching and indexing
● Reducer input cache: useful for repeated joins against 

large invariant data (wastes less time in shuffling)
● Reducer output cache: reduce cost of fixpoint 

termination condition avaliation
● Mapper input cache: useful in k-means similar 

applications (input data does not vary)
● Cache reloading: if node is full, copy all required data to 

new assigned node 



iMapReduce
● Based on Hadoop

● Framework for iterative algorithms

● Concept of persistent tasks, input data loaded to 
persistent tasks once and facilitates asynchronous 
execution of tasks within iteration



iMapReduce - Restrictions

● Map and reduce operations use 
same key (one-to-one mapping)

● Each iteration contains only one 
MapReduce job

Graph-based 
iterative 
algorithms



iMapReduce - Persistent tasks
● Tasks keep alive during whole 

iteration process (dormat as 
data is parsed/processed)

● Depends on available task slots 
(problem with balancing load - 
strangles/leaders nodes)

DFS

DFS

DFS

DFS

DFS

Map

Reduce

Map
.
.
.

Map

Reduce

Job 1

Job 2
.
.
.

Job 



iMapReduce - Data management
● Input data becomes: static data (invariant) and state 

data (variant)
● State data is passed from reduce to map tasks through 

socket connections 
● Static data is partitioned with the same hash function 

used to shuffle state data
● Map and reduce tasks (one-to-one due to key 

restriction) are scheduled to same worker



iMapReduce - Asynchronous 
execution
● Map tasks can start execution as soon as its state data 

arrives
● No need to wait for other map tasks
● Fault-tolerance problem: use buffer to save results from 

reduce tasks (return to last iteration)



Pig 
● Provides constructs that allow high-level data 

manipulation

● Allows employment of user-provided executables

● Compiles data-flow programs (pig latin) into sets of 
MapReduce jobs and coordinates its execution 
(Hadoop)



Pig - Compilation and 
execution stages

Parser
Logical 

optimizer
MapReduce 

Compiler
MapReduce 

Optimizer
Hadoop Job 

Manager

Type 
check

Schema 
inference

Ex. Filter 
pushdown 
(minimize 
amount of 
data 
scanned 
and 
processed)

Logical 
Plan 

(DAG)

Physical 
Plan 

(DAG)

Mapping 
from logical 
to physical

Distributive/
algebraic 
operations 
to map, 
combine 
and reduce 
steps

Monitor



Pig - Memory Management
● Pig is implemented in JAVA
● Memory overflow situations when large bags 

of tuples are materialized between and inside 
operators

● Solution: List of bags ordered in descending 
order (estimated size), spill bags when 
threshold is reached



iMapReduce - Streaming

● User-defined functions are supported in JAVA and are 
synchronous

● Streaming executables allow other languages to be used 
(scripts/compiled binaries)

● Streaming executables are asynchronous (queues)



Pig - Performance

Source: India Hadoop Summit - Feb, 2011

17 December, 2010

6 June, 2015: release 0.15.0 available



PigPen
● MapReduce language that looks and behaves like 

Clojure.core

● Supports unit tests and iterative development

● Used in Netflix



References
● Cisco and/or its affiliates. Cisco global cloud index: Forecast and methodology 20132018 white 

paper, 2014. 
● Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: Efficient iterative 

data processing on large clusters. 
● Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. C.: Imapreduce: a distributed 

computing framework for iterative computation. In In: Proceedings 8 of the 1st International 
Workshop on Data Intensive Computing in the Clouds (DataCloud, page 1112, 2011.

● Thilina Gunarathne, Bingjing Zhang, Tak lon Wu, and Judy Qiu. Portable parallel programming 
on cloud and hpc: Scientific applications of twister4azure,” presented at the portable. In Parallel 
Programming on Cloud and HPC: Scientific Applications of Twister4Azure, 2011.

● Jaliya Ekanayake, Xiaohong Qiu, Thilina Gunarathne, Scott Beason, and Geoffrey Fox. High 
performance parallel computing with cloud and cloud technologies.



Questions?


