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Global Data Center Traffic

Source: Cisco Global Cloud Index, 2013–2018



Data-intensive applications
● Sciences

○ Massive-scale 
simulations data 
analysis

○ Sensor deployments
○ High-throughput lab 

equipment

● Industry
○ Web-data analysis
○ Click-stream 

analysis
○ Network-monitoring 

log analysis
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MapReduce
○ Easy-to-use 

programming model 
(2 functions)

○ Scalability
○ Fault-tolerance
○ Load balancing
○ Data locality-based 

optimization

○ Designed for Batch-
oriented 
computations (N-step 
dataflows)

○ Low-level abstraction 
(combined data sets, 
primitive operations)



Solutions
Haloop

Loop-aware 
scheduler 

Caching 
mechanisms

iMapReduce

Persistent tasks

Input data loaded once

Asynchronous execution

Pig 

High-level data 
manipulation

Hadoop 
execution



Haloop
● Hadoop based framework

● Supports iterative programs

● Loop-aware scheduler and Caching 
Mechanisms
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Loop Control
Initiates map-
reduce steps until 
termination 
condition is met

Data locality
By the means of 
caching and 
indexing



Haloop - Loop control

● Goal: place on same physical machine map/reduce tasks 
that occur in different iterations but access same data

● How: 
○ Keep track of data partitions processed by each task 

on each physical machine
○ Map new tasks to slave nodes that have alreasy 

processed that data partition
○ If node full, then re-assign to other node



Haloop - Caching and indexing
● Reducer input cache: useful for repeated joins against 

large invariant data (wastes less time in shuffling)
● Reducer output cache: reduce cost of fixpoint 

termination condition avaliation
● Mapper input cache: useful in k-means similar 

applications (input data does not vary)
● Cache reloading: if node is full, copy all required data to 

new assigned node 



iMapReduce
● Based on Hadoop

● Framework for iterative algorithms

● Concept of persistent tasks, input data loaded to 
persistent tasks once and facilitates asynchronous 
execution of tasks within iteration



iMapReduce - Restrictions

● Map and reduce operations use 
same key (one-to-one mapping)

● Each iteration contains only one 
MapReduce job

Graph-based 
iterative 
algorithms



iMapReduce - Persistent tasks
● Tasks keep alive during whole 

iteration process (dormat as 
data is parsed/processed)

● Depends on available task slots 
(problem with balancing load - 
strangles/leaders nodes)
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iMapReduce - Data management
● Input data becomes: static data (invariant) and state 

data (variant)
● State data is passed from reduce to map tasks through 

socket connections 
● Static data is partitioned with the same hash function 

used to shuffle state data
● Map and reduce tasks (one-to-one due to key 

restriction) are scheduled to same worker



iMapReduce - Asynchronous 
execution
● Map tasks can start execution as soon as its state data 

arrives
● No need to wait for other map tasks
● Fault-tolerance problem: use buffer to save results from 

reduce tasks (return to last iteration)



Pig 
● Provides constructs that allow high-level data 

manipulation

● Allows employment of user-provided executables

● Compiles data-flow programs (pig latin) into sets of 
MapReduce jobs and coordinates its execution 
(Hadoop)



Pig - Compilation and 
execution stages
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Pig - Memory Management
● Pig is implemented in JAVA
● Memory overflow situations when large bags 

of tuples are materialized between and inside 
operators

● Solution: List of bags ordered in descending 
order (estimated size), spill bags when 
threshold is reached



iMapReduce - Streaming

● User-defined functions are supported in JAVA and are 
synchronous

● Streaming executables allow other languages to be used 
(scripts/compiled binaries)

● Streaming executables are asynchronous (queues)



Pig - Performance

Source: India Hadoop Summit - Feb, 2011

17 December, 2010

6 June, 2015: release 0.15.0 available



PigPen
● MapReduce language that looks and behaves like 

Clojure.core

● Supports unit tests and iterative development

● Used in Netflix
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