
Institute of Mathematics and Statistics

University of Sao Paulo

Scheduling in Grid Computing using Master-Slave Scheduling Model
Peter Ngugi Nyumu

Professor. Dr Alfredo Goldman
Mac-0461

1

1 Introduction

Master-Slave scheduling model, involves two sets of processors, the master processors
that are responsible of preprocessing and postprocessing of work orders and the slave
processors that are responsible for the actual execution of the orders. The number
of slave processors is no less than the number of work orders.

2 Description and Applications

Description

A set ofjob is to be processed by the sytem of master and slave processors. Each
job has three tasks associated with it. The first is a preprocessing task (ai), the
second is a slave task (bi), and the third a postprocessing task(ci). The available
processors are divided into two categories: master and slave. If n denotes the number
of jobs, then no schedule can use more than n slaves, Thus we can assume that there
are exactly n slaves. The makespan of finish time of a schedule is the earliest time
at which all tasks have been completed.

In this model we look at the following schedules;

A no-wait-in schedule, each slave task must be scheduled immediately after
the corresponding preprocessing task finishes and each postprocessing task must be
scheduled immediately after the corresponding slave task finishes. That means, once
a job starts, it will not stop until it finishes[5].

A canonical schedule, satisfies the following properties: (1) There are no pre-
emptions; (2) The preprocessing tasks begin on the master machine at time 0 and
complete at time

∑
ai ; (3) The slave tasks begin as soon as their corresponding

preprocessing tasks complete; (4) The postprocessing tasks are done in the same or-
der as the slave tasks complete and as soon as possible. If two slave tasks complete
at the same time, the postprocessing tasks are scheduled in the same order as the
preprocessing tasks[5].

Applications

In Parallel computing, the common paradigm involves the use of a single main
computational thread that employs the fork and join operations to spawn parallel
tasks or threads, and the synchronize following the completion of the tasks. Every
spawned thread involves, preprocessing by main thread, work done in the thread
and preprocessing by the main thread.

2

Another application is the semiconductor testing operation, use the master-slave
paradigm. the chips are subjected to thermal stress for a duration of time to bring
out latent defects leading to infanity mortality that might otherwise surface in the
operating enviroments.

Industrial applications is another application. It includes the case of consolida-
tors that receive orders to manufacture quantities of various items. The consolidator
needs to assemble the raw material needed for each task, load the trucks that will
deliver this material to slave processors and perform an inspection before the con-
signment leaves.

3 Single-Master Master-Slave Systems

As the name suggest, a single-master master-slave system is composed of one master
machine and n slaves to process n jobs.

3.1 Unconstrained Minimum Finish Time Problem (UMFT)

UMFT problem is NP-hard.

If schedule S is unconstrained, the we can rearrange the master tasks so that
all preprocessing tasks complete before any postprocessing task starts. This can be
done without increasing the makespan. In this case we apply the canonical schedule.
It is clear that for every unconstrained schedule S there is a corresponding canonical
schedule with better or same makespan.

The next theorem finds the worst case performance of an arbitrary canonical
schedule S. Let CS be the makespan of the canonical schedule S and C∗ the optimal
makespan of UMFT. We define i follows (precedes) j to mean i comes after (before)
j in the permutation that defines the schedule.

Theorem

For any canonical schedule S, CS

C∗ ≤ 2 and the bound is tight.

Proof

if CS =
∑

i(ai + ci) the S is optimal and the error bound of 2 is valid. Contrary
to that, it means that it exist idle time on the master processor and CS >

∑
i(ai +

ci). Lets ci0 be the last postprocessing task in S that starts immediately after its
corresponding slave task bi0 . i0 exists due to the fact we have an idle time on the
master, it follows that,

3

CS =
∑
ai(ai0 + bi0 + ci0) +

∑
ci ≤ 2C∗

Lets consider an instance with k + 1 jobs where k > 0, to see that the error
bound is tight. The processing requirement is (1, ε, ε) for the first k jobs, while the
one additional to the k jobs(the (k + 1)-st job) will require (ε, k, ε), ε < 1

k
. The

schedule S that process ak+1 = ε last among all preprocessing tasks has makespan
CS = 2k+2ε. The schedule S∗ that process ak+1 first among all preprocessing tasks
has a makespan C∗ = k + (k + 2)ε and hence CS

C∗ → 2 as ε→ 0.

Now we present a heuristic (H), whose error bound is 3
2
. The following are steps

to follow to execute this heuristic;

• Let S1 = {i : ai ≤ ci} and S2 = {i : ai > ci}

• Reorder the jobs in S1 according to nondecreasing order of bi.

• Reorder the jobs in S2 according to nonincreasing order of bi.

• Generate the cononical schedule in which the a tasks of S1 precede those of
S2.

Theorem
CH

C∗ ≤ 3
2

and bound is tight.

Proof

Let S∗ be an optimal schedule for UMFT with a makespan C∗, based on the
processing requirement on the processing requirements (ai, bi, ci) of job i, we define
an auxiliary problem P ′ with (a′i, b

′
i, c
′
i) as its processing requirements.

In P ′ all preprocessing tasks in S1 are zero and hence they can precede all nonzero
processing tasks, similarly to S2 but in this case follows the nonzero preprocessing
tasks. S ′ is the schedule generated in step 4 of H if applied on P ′. Let C ′ be the
makespan of S ′, by optimality of S ′ we can conclude that C ′ ≤ C∗. From S ′ and P ′

we generate a schedule SH for each original problem.

Consider an instance of k+ 1 jobs, where k > 0. The first k jobs require (1, ε, 1)
processing requirement, for the additional job, the processing requirement will be
(ε, 2k, ε). Jobs 1 to k, are processed in any order, lastly job k + 1, the makespan is
3k + 2ε, while an optimal solution with makespan is 2k + 2ε.

CH

C∗ = 3k+2ε
2k+2ε

→ 3
2
, whenε→ 0

4

3.2 Order Preserving Minimum Finish Time (OPMFT)

In this case we have same order of preprocessing and postprocessing. Some restric-
tions are considered in building the OPMFT algorithm, which include:

• the schedule are nonpremptive

• slave tasks begin as soon as their corresponding preprocessing tasks are com-
plete

• each postprocessing task begins as soon after the completion of its slave task
as is consistent with the order preserving constraint.

With the above restrictions, its possible to come up with O(nlogn) algorithm, by
defining a conical order preserving schedule (COPS) in an order preserving schedule
in which (1) the master processor completes the preprocessing tasks of all jobs before
beginning any of the postprocessing tasks, and (2) the processing tasks begin at time
zero and complete at time

∑n
i=1 ai.

Having the above information we can look at an OPMFT related Theorem which
state that:

There is an OPMFT schedule which is a COPS in which the preprocessing order
satifies the following:

• jobs with cj > aj come first.

• jobs with cj = aj come next.

• jobs with cj < aj come last.

These can be seen through a Lemma:

Considering the COPS defined by a permutation σ. Assume that job j is pre-
processed immediately before job j+1. If cj ≤ aj and cj+1 ≥ aj+1, then the schedule
length is no less than of the COPS obtained by interchanging j and j + 1 in σ.

Here follows the Proof of the Lemma:

Take a job j which start the preprocessing at time t, and it precedes job j + 1.
With A as the elapsed time between the completion of task aj+1 and the start of
the postprocessing of job j, the time between the start of cj and cj+1 is ∆ > 0, and
τ is cj+1 completion time.

5

Let σ′ be the permutation obtained by interchanging jobs j and j + 1 in σ.
Let t′ and τ ′ be the finishing time of cj+1 and cj respectively. If ∆ ≥ aj, then
t′ ≤ τ − aj. As a result, bj ≤ aj+1 + A ≤ cj+1 + A, hence, bj finishes by t′. We
have, τ ′ = t′ + cj ≤ τ − aj + cj ≤ τ , this shows that the preprocessing tasks of the
remaining jobs can be done so as to complete at or before the completion times in
σ and the interchanging of j and j + 1 does not increase the schedule length.

If ∆aj, then cj+1 starts at time t + aj+1 + aj + A in σ′. Then, t′ = t + aj+1 +
aj +A+ cj+1. The time bj finishes in σ′ is t+ aj+1 + aj + bj ≤ t+ 2aj+1 + aj +A ≤
t+aj+1+aj+A+cj+1 = t′. Hence, cj finishes at t′+cj = t+aj+1+aj+A+cj+1+cj ≤ τ .
As a result, the order preserving schedule defined by σ′ has a finish time that is ≤
that of the order preserving schedule defined by σ.

3.3 Canonical Reverse Order Schedules (CROS)

This happen in construction of reverse order processing. For any given preprocessing
permutation σ, this reverse order can be constructed in the following manner:

• the master preprocesses the n jobs in the order σ

• slave i begins the slave processing of job i as soon as the master completes its
preprocessing.

• the master begins the postprocessing of the last job in σ as soon as its slave
task is complete

• the master begins the postprocessing of job j 6= k at the later of the two times
(a) when it has finished the postprocessing of the succesor of j in σ, and (b)
when slave j has finished bj.

It is possible to construct an O(nlogn) algorithm of an ROMFT schedule which
is a CROS. The following Theorem help to construct this algorithm:

The CROS defined by the ordering b1 ≥ b2 ≥ · · · ≥ bn is an ROMFT schedule.

The proof follows the following Lemma:

Let σ = (1, 2, . . . , n) be a processing permutation. Let j < n be such that
bj < bj+1. Let σ′ be obtained from σ by interchaning jobs j and j + 1. Let τ and
τ ′, respectively, be the finish times of the CROSs S and S ′ corresponding to σ and
σ′. τ ′ ≤ τ .

Here follows the Proof of the Lemma above:

6

Let t be the time at which job j + 2 finishes in S and S ′. If j = n − 1, let
t = 0. Let sj(s

′
j) be the time at which task bj finishes in S(S ′). Let sj+1 and s′j+1

be similarly defined. From the defition of a CROS, it follows that:

sj =
∑j

1 ak + bj ; sj+1 =
∑j+1

1 ak + bj+1 (eq *)

s′j =
∑j+1

1 ak + bj ; s′j+1 =
∑j+1

1 ak − aj + bj+1

Let q(q′) be the time at which cj(cj+1) finishes in σ(σ′). It is sufficient to show
that q ≤ q′:

q = max{max{t, sj+1 +cj+1, sj}+cj = max{t+cj+cj+1, sj+1 +cj+cj+1, sj+cj}
(eq **)

and

q′ = max{max{t, s′j + cj, s
′
j+1}+ cj+1} = max{t+ cj + cj+1, s

′
j+1 + cj+1, s

′
j + cj +

cj+1}
From equations (eq *) and (eq **) and the inequality bj < bj+1, we obtain

s′j + cj + cj+1 = sj+1 + bj − bj+1 + cj + cj+1 < sj+1 + cj + cj+1 ≤ q

and

s′j+1 + cj+1 = sj+1 − aj + cj+1 < sj+1 + cj+1 < sj+1 + cj+1 + cj ≤ q

which shows that q′ ≤ q Like mentioned in the introduction there is another
category, No-Wait in Process :

• The Minimize Finish Time (MFTNW), subject to the no-wait-in-process con-
straint. It is NP-hard problem.

• The Order-Preserving version of MFTNW. It is subject to the no-wait-in-
process as well as order-preserving constraints. Its also NP-hard problem.

• The Reverse-Order version of MFTNW. It is subject to no-wait-in-process and
reverse-order constraints. It is a polynomial problem.

7

4 Appendix

Grid computing has unique characteristics such as, in resource distribution, archi-
tectural aspect, job processing enviroment, just to name a few. To explain this
unique characteristics we look at the taxonomies of grid computing.[1].

• Local vs. Global

The local scheduling use a single processor to allocate and execute the tasks,
while in global scheduling the the system allocate processes to multiple pro-
cessors to optimize a system wide performance objective. Grid scheduling falls
in the category of global scheduling.

• Static vs. Dynamic

Under global scheduling we have a choice between static and dynamic schedul-
ing, this choice indicates the time at which the scheduling or assignment de-
cisions are made. In static scheduling, information regarding all resources in
the grid as well as all the tasks in an application is assumed to be available by
the time the application is scheduled. On the other hand, dynamic scheduling
the basic idea is to perform task allocation as the application executes, which
is important in real-time mode applications as well as in situation where you
cannot determine the execution time.

• Optimal vs. Suboptimal

All information regarding the state of resources and the jobs is known in this
case, hence an optimal assignment could be made based on some criterion
function, such as minimum makespan and maximum resource utilization.The
NP-Complete nature of scheduling algorithms and the difficulty in Grid sce-
narios to make reasonable assumptions which are usually required to prove the
optimality of an algorithm, current research tries to find suboptimal solutions,
which can be further divided into the following two general categories.

• Approximate vs. Heuristic

Suboptimal approximate is a sufficiently ”good” solution taken, instead of
searching the entire solution space for an optimal solution. The factors which
determine whether this approach is worthy of pursuit include [2];

– Availability of a function to evaluate a solution.

8

– The time required to evaluate a solution.

– The ability to judge the value of an optimal solution according to some
metric.

– Availability of a mechanism for intelligently pruning the solution space.

The other branch in the suboptimal category is called heuristic. This branch
represents the class of static algorithms which make the most realistic assump-
tions about a priori knowledge concerning process and system loading char-
acteristics. It also represents the solutions to the scheduling problem which
cannot give optimal answers but only require the most reasonable amount of
cost and other system resources to perform their function. The evaluation
of this kind of solution is usually based on experiments in the real world or
on simulation. Not restricted by formal assumptions, heuristic algorithms are
more adaptive to the Grid scenarios where both resources and applications are
highly diverse and dynamic.

• Distributed vs. Centralized

The responsibility for making global scheduling decisions may lie with one
centralized scheduler, or be shared by multiple distributed schedulers. In a
computational Grid, there might be many applications submitted or required
to be rescheduled simultaneously. The centralized strategy has the advantage
of easy implementation, but suffers from the lack of scalability, fault tolerance
and the possibility of becoming a performance bottleneck. For example, Sabin
et al [3] propose a centralized meta-sheduler which uses backfill to schedule par-
allel jobs in multiple heterogeneous sites. Arora et al [4] present a completely
decentralized, dynamic and sender-initiated scheduling and load balancing al-
gorithm for the Grid environment. A property of this algorithm is that it uses
a smart search strategy to find partner nodes to which tasks can migrate.

• Cooperative vs. Non-cooperative

We considered whether the nodes involved in job scheduling are involved in
cooperation between the distributed components (cooperatively), this is when,
each grid scheduler has the responsibility to carry out its own portion of the
scheduling task, but all schedulers are working toward a common system-wide
goal. The other category occurs when the decision making process is done
independently of other processors (non- cooperatively), in this case, individual
schedulers act alone as autonomous entities and arrive at decisions regarding

9

their own optimum objects independent of the effects of the decision on the
rest of system[2].

10

References

[1] T. Casavant, and J. Kuhl, A Taxonomy of Scheduling in General-purpose Dis-
tributed Computing Systems, in IEEE Trans. on Software Engineering Vol. 14,
No.2, pp.141–154, February 1988.

[2] Handbook of Scheduling, Joseph Y-T. Leung, paper 17

[3] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan, Scheduling of Parallel
Jobs in a Heterogeneous Multi-Site Environment, in the Proc. of the 9th Inter-
national Workshop on Job Scheduling Strategies for Parallel Processing, Lecture
Notes In Computer Science; Vol. 2862, Washington, U.S.A, June 2003.

[4] M, Arora, S.K. Das, R. Biswas, A Decentralized Scheduling and Load Balancing
Algorithm for Heterogeneous Grid Environments, in Proc. of International Con-
ference on Parallel Processing Workshops (ICPPW’02), pp.:499 505, Vancouver,
British Columbia Canada, August 2002.

[5] Scheduling problems in master-slave model Joseph Y.-T. Leung Hairong Zhao

11

