
Tell Me Who Are You Talking to and I Will Tell
You What Issues Need Your Skills

Fabio Santos,1 Jacob Penney,1 João Felipe Pimentel,1 Igor Wiese,2 Igor Steinmacher,1 Marco A. Gerosa1

1Northern Arizona University, Flagstaff, AZ, USA,
2Universidade Tecnológica Federal do Paraná, Campo Mourão, PR, Brazil

{fabio santos, jacob penney, joao.pimentel}@nau.edu, igor@utfpr.edu.br, {igor.steinmacher, marco.gerosa}@nau.edu

Abstract—Selecting an appropriate task is challenging for
newcomers to Open Source Software (OSS) projects. To facilitate
task selection, researchers and OSS projects have leveraged
machine learning techniques, historical information, and textual
analysis to label tasks (a.k.a. issues) with information such
as the issue type and domain. These approaches are still far
from mainstream adoption, possibly because of a lack of good
predictors. Inspired by previous research, we advocate that label
prediction might benefit from leveraging metrics derived from
communication data and social network analysis (SNA) for issues
in which social interaction occurs. Thus, we study how these
“social metrics” can improve the automatic labeling of open issues
with API domains—categories of APIs used in the source code
that solves the issue—which the literature shows that newcomers
to the project consider relevant for task selection. We mined data
from OSS projects’ repositories and organized it in periods to
reflect the seasonality of the contributors’ project participation.
We replicated metrics from previous work and added social
metrics to the corpus to predict API-domain labels. Social metrics
improved the performance of the classifiers compared to using
only the issue description text in terms of precision, recall, and
F-measure. Precision (0.922) increased by 15.82% and F-measure
(0.942) by 15.89% for a project with high social activity. These
results indicate that social metrics can help capture the patterns of
social interactions in a software project and improve the labeling
of issues in an issue tracker.

Index Terms—Labels, Tags, Skills, Human Factors, Mining
Software Repositories, Social Network Analysis, Open Source
Software, Machine Learning

I. INTRODUCTION

Contributors to OSS projects struggle to select an appropriate
task from the issue tracker [1]. The information available in
a project’s open task lists can be too large [2]–[4]. Labeling
issues can facilitate task selection [5]. However, community
maintainers report that manually labeling issues is challenging
and time-consuming [6].

Recent studies that automatically label issues are limited
to classifying the type of the issue (e.g., feature, bug, etc.)
[7]–[14]. A notable exception is the work of Santos et al. [15],
which shows that labeling issues with API domains is feasible
and can benefit developers in choosing their tasks. APIs
typically encapsulate modules that offer functionality in a
specific domain (e.g., user interface, security, cloud, testing,
etc.), hiding functionality details. If the contributors know

which API domains are required to work on each issue, they
may choose tasks that better match their skillset.

In this paper, we replicate Santos et al.’s [15] work,
investigating how metrics derived from the communication
among developers (a.k.a. social metrics) can improve the
performance of the classifiers. Santos et al.’s [15] achieve
75% precision, and such a high number of false positives may
discourage practical adoption.

Given the sociotechnical nature of software engineering [16],
we hypothesize that social metrics capture communication
patterns that can help predict API-domain labels. Social
metrics have shown promising results in other contexts. For
example, Wiese et al. [17] evidenced the usefulness of the
communication context and communication roles to predict
co-changes. Zimmermann and Nagappan [18] predicted defects
using developer network metrics. Meneely et al. [19] used social
network analysis to predict software failures. The intuition
behind the research is that experts in a specific domain have a
greater chance to join the conversations where given expertise
is involved. Therefore, communication patterns might reveal
the importance of the commenters in the social structure
surrounding the software project, and conversations may help
predict API domains needed to solve open issues.

We aim to answer the following research questions:
RQ1. To what extent can social metrics improve the

prediction of API-domain labels?
RQ2. To what extent can we transfer learning among projects

using social metrics to predict the API-domain labels?
By understanding how communication context and social

network analysis play a role as predictors, we aim to improve
the API-domain label prediction model, increasing its precision,
recall, and F-measure. More broadly, we want to shed light
on how social aspects of software development relate to the
technical knowledge involved in the tasks.

II. RELATED WORK

We split the related work into issue labeling and social
metrics in prediction models.

a) Labeling issues: Labeling issues is a relevant strategy
to assist newcomers in finding a suitable issue to start [20].
It is not surprising that several studies have proposed ways
to automatically label issues [7], [9], [11]–[13], [21]. Zhou et

al. [13] used two-stage processing and a Naive Bayes (NB)
classifier to predict the priorities of bug reports. Kallis et al. [9]
mined the textual description of the issues to classify the issues
into bug, feature, or question. Xia et al. [12] mined text data
from information sites and tag questions using preexisting
labels. Recently, Santos et al. [15] explored labeling the issues
with API domains—high-level categories of APIs declared
in the source code (e.g., “User Interface” (UI), “Machine
Learning” (ML), “Test”, etc.). Santos et al. conducted a single-
project case study to investigate the feasibility of automatically
labeling issues with API domains to facilitate contributors’
task selection [15]. That study showed promising results, with
precision, recall, and F-measure of 0.755, 0.747, and 0.751,
respectively. The authors also analyzed how developers perceive
the API-domain labels. The study with developers showed that
API-domain labels are helpful in choosing tasks—developers
considered these labels more often than the existing project
labels and other pieces of information. In this study, we
replicate Santos et al.’s [15] work by adding social metrics to
the prediction models to potentially improve the performance
of the classifiers for issues in which social interaction occurs
(i.e., developers commenting on the issue).

b) Using social metrics in prediction models: Social
metrics have been the object of software engineering research
in different contexts. In previous work, researchers mined data
from discussions in issue trackers to predict co-changes [17],
categorized studies on how social networks impact software
quality [22], and explained software characteristics based on
the organization structure [23]. For example, Wiese et al. [17]
mined social data to build a model to predict co-changes of
source code files, obtaining low rates of false negatives and
false positives and accuracy from 0.89 to 1.00. The work of
Kikas et al. [24] predicted issue lifetime based on social metrics,
such as the number of comments and actors. They mined data
from 4000 projects and found that social metrics complement
the textual description of titles and bodies. Differently from
these studies, we propose to enrich the set of predictors used
in Santos et al.’s [15] study to improve label prediction.

III. DEFINITION OF SOCIAL METRICS AND HYPOTHESES

Following Wiese et al.’s [17] work, which leveraged social
metrics from systematic literature reviews [25]–[27], we
organized social metrics into three categories: Communication
Context, Developer’s Role in Communication, and Network
Properties. In this section, we discuss the metrics we used in
the paper. We bring more details on how we operationalized
these metrics later in Section IV-A3.

A. Communication context

The communication context category involves aspects from
the discussion around issues. For example, Meneely et al. [19]
used metrics from historical communication contexts to predict
software failures. In our study, following Wiese et al.’s work
[17], the communication context variables include the number
of issue comments, the number of commenters, and wordiness.
The intuition behind this idea is that comments, participants,

and words might be correlated with the nature of the tasks,
which can be a proxy for some API domains. For example,
issues that are more discussed or involve more people in an
approval process might be related to some complex aspect of the
software and, therefore, point to some architectural component
or domain [28]. The opposite may also be considered: issues
with few and short discussions may point to components that
use API domains that usually require less explanation and
discussion. We collected the communication context by issue
(see Section IV-A3).

B. Developer’s role in communication

The developer’s role in communication category includes the
betweenness centrality and closeness centrality metrics, which
we abbreviate as “betweenness” and “closeness.” These metrics
aim to capture the developers’ roles in communication [29].
Developers involved in a discussion have different values of
betweenness and closeness, and some have a more central role
while others have a more peripheral one [30]. The participation
of central developers in discussing an issue may also be a
proxy for the skill or relevance of the issue and may correlate
with certain API domains.

Betweenness, as expounded by sociologist Linton Freeman,
is defined as the sum of a point’s “partial betweenness values
for all unordered pairs of points where i ≠ j ≠ k”, where
“partial betweenness” is defined as “the probability that point
pk falls on a randomly selected geodesic linking pi with pj”
[31], [32]. In short, it is the “[n]umber of times that a node
acts as a bridge along the shortest path” between two other
nodes in a network [17]. Linton provides the formula

CB(pk) =
n

∑

n

∑

i<j
bij(pk) (i)

where bij(pk), the partial betweenness of point pk between
two nodes, is given by the formula

bij(pk) =
gij(pk)

gij

where gij(pk) is “the number of geodesics linking pi and
pj that contain pk” and gij is “the number of geodesics linking
pi and pj”.

Closeness refers to “the number of steps required to access
every other vertex from a given vertex” [33] and is given by
the formula

C ′c(pk) =
n − 1

∑
n
i=1 d(pi, pk)

(iii)

where d(pi, pk) is “the number of edges in the geodesic
linking pi and pk”, and ∑n

i=1 d(pi, pk) is the sum of “the
geodesic distances from that point to all other points in the
graph” [32].

Obtaining the metrics for developers’ roles relies upon a
matrix to represent the discussion in periods, as discussed in
Subsection IV-A3.

C. Communication Network properties

Finally, the communication network properties category
comprises communication graph metrics like the number
of nodes, edges, diameter, and density obtained upon the
communication network. The intuition behind using these
metrics is aligned with the Task-Level view of Conway’s Law,
which conceptualized a unit of work as one that developers are
engaged with, such as a task in the issue-tracking system [23].
In this case, the communication structure of an issue may map
to the solution.

Mathematician and graph theory scholar Frank Harary [34]
that “[t]he diameter d(G) of a connected graph G is the length
of any longest geodesic” [34, p. 14]. The formula, given by
West [35, p. 71], is

maxu,v∈V (G)d(u, v) (iv)
where d(u, v) is the distance between two vertices in G.
The density of a simple, directed graph G is “calculated

as the percentage of the existing connections to all possible
connections in the network” [17], a ratio with an antecedent
of the number of existing edges and a consequent of the total
possible edges. Diestel gives the formula [36, p. 164]:

∥G∥/(
∣G∣

2
) (v)

where ∥G∥ and ∣G∣ are the number of edges and vertices in
the graph, respectively.

D. Hypotheses

Based on the categories of metrics presented here, we
formulate the following hypotheses to complement our research
questions and guide our study:

H1
0 . There is no difference in adding communication context

metrics to predict API-domain labels.
Rationale: The communication context encapsulates infor-

mation about the issue. Commenters with specific skills are
more likely to participate in discussions where their skills are
required. API domains may correlate with specific skills and
knowledge.

H2
0 . There is no difference in adding the developer’s role in

communication metrics to predict API-domain labels.
Rationale: The role of each commenter within a social

network constructed from the comments on the issue may
reflect how much knowledge is needed to complete a task. API
domains may correlate with the complexity and relevance of
the issues.

H3
0 . There is no difference in adding communication network

metrics to predict API-domain labels.
Rationale: The communication network architecture corre-

lates with the software architecture [23], which in turn may
correlate with the presence of API domains that are required
to work on an issue.

IV. METHOD

We replicated Santos et al. [15]’s work according to the
following dimensions. We followed the same operationalization
as Santos et al. whenever possible with some slight adjustments

to support various projects as discussed in this section. In terms
of population, we included Santos et al.’s [15] case-study project
(JabRef) in our study to allow direct comparison and added
two other projects with different characteristics (Audacity and
PowerToys) (see Section IV-A). In terms of protocol, to allow
a fair comparison, we reproduced Santos et al.’s study as close
as possible, adding only the calculation of the social metrics
and the comparison of the results with and without it to the
protocol. We used the same performance metrics, statistical
tests, and thresholds as the original study. Finally, in terms
of experimenters, the study was run by a slightly different
experimenter team, with some intersection between the authors
of both studies.

As we replicated the work from Santos et al. [15], we
partially reproduced phases 1, 2, and 3 from that study. We
followed the method presented in Figure 1. In phases 1 and 2,
we collected and filtered closed issues and pull requests from
the project repositories. As we needed the source code that
solved each issue to identify the APIs and train the classifiers,
we filtered out all the issues not linked to pull requests (Section
IV-A). Then, we parsed the source code changed by each pull
request, looking for APIs used in each artifact. We parsed
the declarations based on the language of the projects. For
JabRef, which was written in Java, we looked for “import”
statements; for Audacity, written in C++, we parsed “include”
statements; and for PowerToys, written in C#, we looked for
“using” statements. Finally, we categorized all the APIs using
the process described in Section IV-B.

In phase 3, we built the corpus using TF-IDF as our baseline,
following the study by Santos et al. [15]. Finally, we split the
dataset into training and testing sets, using ten cross-validations.
Following Santos et al. [15], we employed MLS SMOTE to
improve the rare labels in the imbalanced dataset (Section
IV-D) and employed the Random Forest classifier to predict
the API domains (Section IV-E).

In phase 4, we created the dataset with the social metrics.
We mined the conversation data from the issues, as defined
in Section III and illustrated in Section IV-A3. Next, we
investigated how each metric impacted the predictions and
ran the Random Forest classifier with the newly gathered data.
Finally, we analyzed the performance considering groups of
predictors divided into hypotheses (Section IV-F).

Mine
Repositories Pull Requests

Link Issues
to Pull Requests

Filter out
Pull Requests

without source code

Classify
API-domains

Parse
APIs

Source code
Phase 1 Phase 2

Phase 3

Predict
Projects

Issues

Select
Classifiers

Split Data
Train/Test

Construct
Corpus

(TF-IDF)

Analyze and
Evaluate Best

Predictors

Phase 4

Build
Hypothesis

Datasets (H1-H3)

Mine
Social
Metrics

Predict
Projects

Fig. 1: Method Overview.

To answer RQ1 (To what extent can social metrics improve
the prediction of API-domain labels?), we predict the API-

domain labels with and without the social metrics to find
the best precision, recall, and F-measure outcomes. We built
datasets with the best social predictors ranked by feature
importance.

We sought to predict the API-domain labels by building
the datasets (Section IV-A) to evaluate the defined hypotheses
(Section III-D). Therefore, we included in the dataset the social
network and communication features related to H1

0 - commu-
nication context; H2

0 - developer’s role in communication;
and H3

0 - communication network properties. Finally, we ran
models configured with social metrics and one with Santos
et al.’s [15] features (baseline) and compared them using the
statistical tests mentioned in Section IV-F.

To answer RQ2 (To what extent we can transfer learning
among projects using social metrics to predict the API-domain
labels?), we ran a transfer learning experiment from the
project that obtained the best results for the others to verify
how transferable the predictions are. The projects’ metrics
(Section IV-F) were compared with the baseline.

A. Mining OSS Repositories

The mining stage was composed of the project selection,
mining the issues and pull requests, and mining the social
metrics.

1) Project Selection: We selected projects with different
programming languages, high levels of popularity (at least
6K GitHub stars), and diverse goals. We also sought active
projects with recently posted issues and solved pull requests
(average monthly number of created issues and updated PRs >
5). Therefore, besides JabRef (from Santos et al.’s [15] work),
we mined two other OSS projects: Audacity and PowerToys. We
limited the number of projects to three since our study involved
hiring experts to expand the API-domain labels adopted in the
previous work [15].

The first project we mined was JabRef [37], an open-source
bibliography reference manager. In Jan 2023, the project had
2.9k stars, 3.4k closed issues, 5.7k closed pull requests (PR),
17.7k commits, 37 releases, 2k forks, and 492 contributors.

Next, we mined Audacity and PowerToys. Audacity is an
audio editor written in C++, which had 8.7k stars, 1.5k closed
issues, 1.6k closed PRs, 16.5K commits, 31 releases, 2K forks,
and 166 contributors. PowerToys offers a set of utilities for
Windows and is written in C# and had 84.7k stars, 15k closed
issues, 4.1k closed PRs, 6.4k commits, 73 releases, 4.9k forks,
and 173 contributors.

2) Mining Issues and Pull Requests: We collected issues
and PRs from the projects using the GitHub API. Our dataset
includes title, description (body), comments, and submission
date. We also collected the name of the files changed in each
PR and the commit message associated with each commit
(Figure 2 - A and B).

To train the model, we kept only the data from issues linked
with merged and closed pull requests since we needed to
map issue data to source code APIs through the files changed
(Figure 2 - C and D). We searched for the symbol # followed
by an issue number (a set of numeric characters) in the pull

Calculate
communication

context metrics by
issue

Skills DB Mine PR/commits

Mine issues closed
including discussions

linked Issues/PR with
and commits source

code

Parse source code for
APIs

TF-IDF/Doc2Vec
Pipeline

Binary file
1s and 0s + corpus +

social metrics
Social

pipeline

Issue receives 1 or 0
if it touches each API

TF-IDF

Classifier

Issue, PR, corpus, UI, IO, ML, DB, #comments, wordiness, avg btw*

Binary file with social metrics example:

TF-IDF
 + social metrics

Calculate Devs Roles
and Network

Properties each 3
months slot

B

A

C

E

G

H

I

D

F

1, 6, BLA, 1, 1, 0, 0, 7, 500, 2

*avg btw: average betweenness

Fig. 2: Processing pipeline.

request title and body to identify the link between issues and
PRs. We also filtered out issues linked to PRs without at
least one source code file (e.g., those associated only with
documentation or config files) since they do not provide the
model with content related to any API.

3) Mining Social Metrics: For mining communication data,
we built an extractor toll1, which uses the PyGithub2 library
for interacting with the GitHub REST API v3 from Python
and mine data from new endpoints. We also used igraph3 and
NetworkX4 libraries for deriving the various social metrics.

All items in the communication context category refer to
quantities counted by issues. The number of issue comments
was gathered directly from the GitHub REST API. Issue
wordiness was measured by finding how many words there are
with a length greater than two in the aggregated text of the
issue body and all issue comment bodies for an issue, following
the example of Wiese et al. [17]. For issue commenters, we
are interested in the quantity, which is unique. To find this
value, we created a set of all commenter usernames, including
the username of the issue author.

Drawing upon previous work [24], [38], we employ temporal
periods and dynamic features, such as the evolving number
of comments on an issue, to improve prediction models. For
that purpose, we created directed, weighted graphs that map
issue discussants and their conversations for all issues in a
temporal period. A “temporal period” is an interval in which
we partitioned the repository’s history. For example, suppose
the repository has existed for one year, and the chosen interval
is three months. In that case, we separate the issues into four
distinct temporal periods. The work from Kikas et al. [24] uses
three months periods (slots) to measure the number of issues
created and closed and commits created by contributors and
by projects. In contrast, Wiese et al. [30] preferred six-month
periods to predict co-changes. We have chosen three months
as the duration for each temporal window to capture a period

1https://doi.org/10.5281/zenodo.7740450
2https://github.com/PyGithub/PyGithub
3https://github.com/igraph/python-igraph
4https://github.com/networkx/networkx

similar to the issue life cycle (90% of issues get closed in 96.4
days [24]).

For creating the communication network graphs, we used the
same rules that Wiese et al. [30] used: nodes are discussants in
an issue’s conversation, edges are responses from one discussant
to another, nodes and edges are added independently, and edges
have weights representing the number of responses given. The
original poster of the issue is not considered to have responded
to anyone by creating the issue, and any response in the lifetime
of the issue is considered a response to all prior discussants. We
also disallow nodes from having self-edges. Like in previous
work, the order or “directions” of discussants in a conversation
is crucial because it affects the resulting metrics derived from
a graph, such as betweenness and closeness.

We placed each issue in the repository’s history into a
temporal period. Then, we visited and processed each period
of issues into a matrix. In the resulting adjacency matrices,
each row represents a unique discussant, and each column
represents the number of responses by that discussant to the
discussant whose row index corresponds to the column index.
To illustrate, let issue 1 be one which discussant A opened
and to which discussant B responded once. Let issue 2 be in
the same period as issue 1. Assume that B opened the issue,
A responded twice to B, C responded once after (meaning
that they responded to both A and B), and B responded last
(meaning that they responded to both A and C).

Issue1 =

A B

[]
0 0 A
1 0 B

Issue2 =

B A C
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0 1 1 B
2 0 0 A
1 1 0 C

After all issues in a period have resulting matrices, we used
a method adapted from Yu et al. [39] to create a period matrix
representing the total communication that transpired in all issues
for the period combining all of the period’s issue matrices. The
resulting period matrix contains all discussants found in the
issues for that period and aggregates the number of responses
between them. In this scheme, each matrix corresponds to one
issue communication model, while the combination matrix
summarizes the communication model for the designated
period.

To conduct this process, each issue matrix is visited, and
the contents are merged with those of the period matrix. Like
with the issue matrices, nodes representing discussants are only
added if they are not already present. When merging edges from
an issue matrix, an edge is added if it is not found. Otherwise,
the weight of the edge, a whole number, is incremented by
the weight found for that edge in the issue matrix. In the
implementation, nodes are added by checking if the period
matrix contains the unique identifier for a row/discussant. After

all the discussants are integrated, all row contents, i.e., the
edge weights indicating the number of responses between two
developers, are integrated. Assuming that issues 1 and 2 are
the only issues in the period, the resulting period matrix and
the directed graph would be:

Issue1+2 =

A B C
⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

0 2 0 A
2 0 1 B
1 1 0 C

A

B C

22

1
1

1

Fig. 3: The communication history example (issue 1+2)

Using igraph and NetworkX libraries, we produced corre-
sponding graphs of these period matrices and retrieved metrics
of interest from available function calls (Figure 2 - E-F).

The developers’ roles, which include two centrality mea-
sures (betweenness and closeness) were collected by temporal
period, and we computed the average, sum, and max value [30].
For each period, once we had the metrics computed, we applied
those for each issue within the period, but only averaging,
summing, or computing the max value with the individual
betweenness and closeness for the discussants present on that
issue.

The communication network properties were computed
directly by counting the number of nodes and edges, in addition
to the graph’s diameter and density based on the matrix created
by period or by issues. The size of a network is the number of
nodes (unique discussants) in it. When it is computed by period,
nodes are distinct from “issue discussants” communication
context metric. The number of edges reflected the number of
unique responses in the network for the given time interval—
essentially, the sum of all weights in the aggregated adjacency
matrix for a period and, thus, it is different from “issue
comments”. In this study, we opted to model the network
properties by issues, and we removed the number of nodes from
the model since it has the same value as unique discussants.

B. Categorization of APIs

We grouped the APIs into high-level categories since labeling
the issues with dozens of APIs can harm the user interface and
cause information overload. The categories provided ground
truth to the supervised machine learning model. The categories
were related to APIs imported in files that were changed
in closed pull requests linked to closed issues. Santos et
al. [15] manually categorized and customized the APIs for

a single project (JabRef); therefore, it would not necessarily
fit other projects. To make the set more generalizable, we
recruited three experts—one specialized in each of the three
main programming languages adopted in the projects (Expert1:
25 Years of Java; Expert2: 22 Years of Java and 10 of C++;
Expert3: 18 years of Java and 12 Years of C#)—offering US$
25.00 gift cards as a token of appreciation.

The categorization started with proposals from the experts
to define generic API domain categories to encompass a broad
range of projects (e.g., “UI”, “IO”, “DB”, “ML”, etc.). A
card-sorting approach addressed disagreements via discussions
until a consensus was reached. After four rounds (8 hours) of
discussions, the experts reached an agreement and defined 31
API domains.

Next, we parsed the source code files to retrieve the
libraries declared in “import” (java), “include” (C++), and
“using” (C#) statements (Figure 2 - C). The intuition behind
the API classification method is that libraries’ namespaces
often reveal architectural information and, consequently, their
API domains [40], [41]. To identify the API domains for
each library, we split all the API namespaces into packages.
For instance, the API “com.oracle.xml .odbc.XMLDatabase”
derived “com”, “oracle”, “xml”, “odbc”, and “XMLDatabase”.
Next, we eliminated the business domain name extensions
(e.g., “org”, “com”), country code top-level domain (“au”,
“uk”, etc.), the project and company names (“microsoft”,
“google”, “facebook”, etc.). In the example, we kept the first
package “xml”, second package “odbc”, and the class name:
“XMLDatabase”. The class name XMLDatabase was split into
two words using the Python library wordninja 5, which
employs word frequency and can identify concatenated words
in texts. Therefore “XMLDatabase” was split into “XML” and
“Database.”

To facilitate the expert’s work, for each package and class
name, we identified how similar they were to the proposed
API domains using an NLP Python package spacy 6. Spacy
is a multi-use NLP package that uses a cosine similarity
function to compare the average of the word vectors to find
similarities between sentences and tokens and can be trained
with a software engineering vocabulary.

Next, the experts leveraged the NLP suggestions to classify
the APIs. A card-sorting approach addressed any disagreement
between the experts. We created lists. The first list contained
all the aggregated first packages. The second list contained
the aggregated second packages and so on. In addition to the
package name, the list showed the NLP suggestions with the
confidence levels (i.e., XML: IO=0.85; Lang=0.7; util=0.61).
The experts evaluated the lists and accepted one suggestion
or rejected all. In case of rejection, they evaluated the entire
namespace of the package/class. By aggregating per package,
we reduced the number of libraries evaluated by the experts.
In the JabRef project, where the experts had to evaluate 1,692
libraries manually, aggregating it by the first and second

5https://pypi.org/project/wordninja/
6https://spacy.io/api/doc#similarity

packages resulted in only 137 and 45 packages, respectively.
Two lists were sufficient to evaluate most libraries. Indeed,
the volume of evaluations dropped significantly (to 10.8% in
JabRef, 21.6% in PowerToys, and 45.1% in Audacity). In
case of evaluation discrepancy between the first and second
packages, the second package evaluation prevailed since it is
less generic. For example, in the case above, the package “xml”
may be evaluated as “IO” and “odbc” as “DB”. When the
experts accept both, “DB” prevails.

C. Dataset Setup

Our dataset has one row for each issue, and the columns
are composed of “1s” and “0s” for each API-domain column,
indicating whether an issue has that API in the source code
changed in the associated PR. The dataset also contains the
corpus column with the concatenated text from the title, body,
and comments on the issue.

The calculated metrics filled the columns of each issue. For
example, suppose issue #1 was closed by PR #6, which had
seven issue comments and 500 words, the average betweenness
of the developers present in the discussant in that period was
two. In addition, the files changed by PR #6 included libraries
categorized as “UI” and “IO” by the experts, and the issue
and PR text mined was “bib file does not load.” Suppose the
possible API domains are: “UI,” “IO,” “ML,” and “DB.” The
dataset row contained the following values: issue #: 1, pr linked
number #: 6, corpus: “bib file does not load”, #comments: 7,
#wordiness: 500, avg betweenness: 2, UI: 1, IO: 1, ML: 0, DB:
0 (Figure 2 - G). The same logic applies to the remaining API-
domain labels (31 possible) and metrics (described in Section
III).

To transform the corpus into a feature set, we followed
some studies [42]–[44] that applied TF-IDF—a technique for
quantifying word importance in documents by assigning a
weight to each word. To compute the TF-IDF weights, we
followed the cleaning process used in the original work [15],
which includes stemming and stop word removal. We also
converted each word to lowercase and removed URLs, source
code, numbers, templates, and punctuation. After applying TF-
IDF, we obtained a vector of TF-IDF scores for each issue’s
word. The vector length is the number of terms used to calculate
the TF-IDF, and each term was stored in a column with the
TF-IDF weight (Figure 2 - H).

Given the recent popularity of different ways to represent
documents for prediction models, we decided to evaluate
the API-domain label prediction by replacing TF-IDF with
Doc2Vec. Doc2Vec is a document representation method that
translates text into a vector of features. Like TF-IDF, Doc2Vec
was used in many studies where a corpus must be transformed
into features such as document classification or sentiment
analysis [45], [46]. Using the best setup found for RQ1,
Doc2Vec was outperformed by TF-IDF (p=0.03 precision,
p=0.00018 recall, and p=0.003 F-measure), and we kept TF-
IDF only in the analysis. Despite being a classic NLP technique,
TF-IDF usually overcomes newer techniques like Word2vec or
Doc2Vec when the corpus is small and unstructured. Doc2Vec

cannot identify the semantic and syntactic information of the
words [47] in these situations. Many issues have small titles and
unstructured or semi-structured bodies and comments. After
removing templates (since their repetitive structure introduced
noise and were not consistently used among the issues), code
snippets, and URLs, we may reduce the number of words and
lose the semantics and syntax in sentences.

D. Training and testing sets

To avoid overfitting, we ran each experiment ten times,
using ten different training and test sets to match 10-
fold cross-validation [48]. We used ShuffleSplit provided
by scikit-multilearn package [49], a model selection
technique that performs cross-validation for multi-label classi-
fiers. To improve the dataset’s balance, we used the SMOTE
algorithm for the multi-label approach [50]. In the baseline
study [15], SMOTE improved the F-measure by 6%.

E. Classifier

An issue may require the use of multiple APIs. Thus,
we applied a multi-label classification approach, which has
been used in software engineering for many purposes, such
as classifying questions in Stack Overflow (e.g., [12]) and
detecting types of failures (e.g., [51]) and code smells (e.g.,
[52]).

We used the Random Forest (RF) algorithm (Python
sklearn package) since it had the best results in the baseline
study [15]. We kept the following parameters: criterion =′

entropy′ ,max depth = 50, min samples leaf = 1,
min samples split = 3,n estimators = 50.RF has been
shown to yield good prediction results in software engineering
studies [53]–[56] (Figure 2 - I).

F. Data Analysis

Our analysis started verifying the amount of issues each
dataset has with num comments > 3 and num discussants > 2,
since we need some level of social interaction to prospect rele-
vant social metrics. We also tested for different thresholds (as
presented in the results section). After computing all the social
network metrics, the features’ influence was compared to derive
the best predictors. We used the feature importances function
present in the package sklearn to rank the features [49].

To evaluate the classifiers, we employed the following
metrics [49]:
● Precision measures the proportion between the number of

correctly predicted labels and the total number of predicted
labels.

● Recall measures the percentage of correctly predicted
labels among all correct labels.

● F-measure calculates the harmonic mean of precision and
recall. F-measure is a weighted measure of how many
correct labels are predicted and how many of the predicted
labels are correct.

Since we are computing the metrics for a multi-label problem,
we average the metrics above for the set of predicted labels
regarding the ground truth. The metrics for each label can be

calculated using different averaging strategies, for instance, the
macro or micro [57]. The macro average is the arithmetic mean
of all the per-label metrics. In contrast, the micro average,
adopted by Santos et al. [15], is the global average metric
obtained by summing TP, FN, and FP. We employed the micro
to follow the baseline.

We ran statistical tests to verify whether the observed
differences between groups of variables were statistically
significant. We employed the Mann-Whitney U test to compare
the classifier metrics, followed by Cliff’s delta effect size test.
The Cliff’s delta magnitude was assessed using the thresholds
provided by Romano et al. [58], i.e., ∣d∣ < 0.147 “negligible,”
∣d∣ < 0.33 “small,” ∣d∣ < 0.474 “medium,” otherwise “large.”

G. Data Availability

The source code and the data generated from our research
are publicly available in a repository to help reproducibility7.

V. RESULTS

This section presents the results by research questions.

A. RQ1. To what extent can social metrics improve the
prediction of API-domain labels?

TABLE I: Comparison - baseline X social metrics

Project/
Metric

Audacity JabRef PowerToys
Baseline Social Baseline Social Baseline Social

Precision 0.916 0.897 0.842 0.812 0.796 0.788
Recall 0.884 0.906 0.835 0.812 0.842 0.833
F-Measure 0.899 0.901 0.838 0.811 0.818 0.809

When looking at all the data together, the results seemed
not promising. We compared the baseline (dataset without the
social metrics) and the dataset with the social metrics. As can
be seen in Table I, only Audacity overperformed the baseline
in recall and F-measure with a small difference.

Next, we went deeper and verified the average number of
comments and, number of discussants, wordiness per issue,
among others (Table II), as discussed in the method. Filtering
Audacity and JabRef by num comments > 3 (issues with at least
some level of social interaction), our dataset was reduced to
only 16 and 20 rows, respectively, while in PowerToys resulted
in 207. The same occurred when filtering by wordiness > 300:
while for Audacity and Jabref, we kept only 11 and 3 rows,
respectively, for PowerToys, we kept 196. For num discussants
> 2 JabRef kept 20 rows, Audacity 18, and PowerToys
219. Since the social metrics require some developers to
debate the issues, we continued the study with only the
PowerToys dataset (PowerToys num comments, wordiness,
num discussants, betweenness avg, and betweenness sum
have normal distributions—Shapiro-Wilk test with p=1.83, 9.43,
3.45, 2.94, 3.04, respectively).

To understand the impact of each predictor in the predictions,
we evaluated the model only with the social metrics (without the
TF-IDF weights). We used the method “feature importances ”
from the package sklearn.ensemble [49] to rank the
importance of each metric. The three most important predictors

7https://doi.org/10.5281/zenodo.7740450

TABLE II: Averages from social metrics in the studied datasets

Metric AVG/Project Audacity JabRef PowerToys
Comments 1.41 1.73 3.83
Discussants 1.58 1.47 2.23
Wordiness 81.69 157.88 297.91
Edges 4.60 10.73 31.38
Density 0.73 0.58 1.52
Diameter 0.43 0.56 0.70
Betweenness avg 1077.72 2042.21 208451.44
Betweenness max 1418.27 2648.70 350726.26
Betweenness sum 1684.45 3304.60 418619.28
Closeness avg 0.56 0.64 0.56
Closeness max 0.60 0.68 0.61
Closeness sum 0.92 1.15 1.25

TABLE III: Feature Importances by Project

Feature PowerToys JabRef Audacity
num discussants 0.02908 0.04451 0.04451
num comments 0.05488 0.03591 0.03591
wordiness 0.26509 0.14283 0.57612
edges 0.04970 0.03200 0.03650
diameter 0.03479 0.03462 0.01299
density 0.06147 0.02540 0.01758
betweenness avg 0.08943 0.12441 0.04366
betweenness max 0.07232 0.11745 0.04077
betweenness sum 0.09793 0.11788 0.05049
closeness avg 0.08836 0.11094 0.06220
closeness max 0.06718 0.11440 0.04495
closeness sum 0.08977 0.09964 0.06166

in the PowerToys project are wordiness (W), betweenness sum
(BS), and closeness sum (CS). They also appear in the top
three rank for the other projects (Table III).

Next, we filtered out the issues based on the three best
PowerToys predictors (Table IV). We tested three different
filters: wordiness > {300, 500, 700}, betweennness sum >
{450K, 600K, 800K, 1000K}, and closeness sum > {1.5, 1.75,
2.0, 2.25}. We compared the baseline (“Non-Social”) and the
predictions without filtering (“Social”). Using the PowerToys
dataset, we start from a threshold close to the average of
the three mentioned metrics (Tables IV and V and Figure 4),
increasing the value and filtering to a point where it produced
a precision drop.

TABLE IV: Comparison - social metrics filtering - PowerToys

Filter Number of issues Precision Recall F-Measure
W300 196 0.904 0.938 0.920
W500 99 0.922 0.962 0.941
W700 56 0.909 0.978 0.942
BS450K 292 0.823 0.878 0.849
BS600K 243 0.834 0.895 0.863
BS800K 177 0.832 0.854 0.842
BS1000K 146 0.807 0.895 0.847
CS1.50 216 0.856 0.905 0.879
CS1.75 142 0.867 0.936 0.899
CS2.00 106 0.908 0.917 0.911
CS2.25 80 0.905 0.949 0.926

Table IV and Figure 4 show the results after filtering
by wordiness, betweennness sum, and betweennness sum.
Filtering with one feature, we obtained the best precision
with wordiness > 500 (W500). The best recall and F-Measure
were reached with wordiness > 700 (W700). Filtering with a
combination of best features (e.g., W700+BS600K+CS2.00)
reduced the dataset to a few rows, and, therefore, we discarded
the results. We tested different settings with two and three
filters, and we could not find better results.

Precision and F-measure tend to fall for PowerToys when

0.7 0.8 0.9 1.0
Precision

Non Social

Social

W300

W500

W700

BS450K

BS600K

BS800K

BS1000K

CS150

CS175

CS200

CS225

Ev
al

ua
tio

n
M

et
ric

s b
y

Se
tu

p
So

cia
l

0.7 0.8 0.9 1.0
Recall

0.7 0.8 0.9 1.0
F-Measure

Fig. 4: Social metrics setups comparison: TF-IDF - PowerToys

TABLE V: Cliff’s Delta for F-Measure and Precision: compar-
ison of corpus models by setup - TF-IDF.

Corpus Cliff’s delta
Comparison Precision F-measure
Non Social x Social 0.18 ’small’ 0.28 ’small’
Social: W300 x W500 -0.38 ’medium’ -0.68 ’large’ *
Social: W500 x W700 0.16 ’small’ -0.08 ’negligible’
Social: BS450K x BS600K -0.28 ’small’ -0.5 ’large’
Social: BS600K x BS800K 0.0 ’negligible’ 0.16 ’small’
Social: BS800K x BS1000K 0.3 ’small’ -0.12 ’negligible’
Social: CS1.50 x CS1.75 -0.22 ’small’ -0.48 ’large’
Social: CS1.75 x CS2.00 -0.5 ’large’ -0.22 ’small’
Social: CS2.00 x CS2.25 -0.02 ’negligible’ -0.36 ’medium’
Social x W500 -1.0 ’large’ *** -1.0 ’large’ ***
Social: W500 x BS600K 1.0 ’large’ *** 1.0 ’large’ ***
Social: W500 x CS200 0.23 ’small’ 0.64 ’large’ *
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001

the dataset reaches the lower bound (roughly below 100 issues),
except when the dataset reaches a point where the filters reduce
the feature space and ease the work of the machine-learning
algorithm. We reject the hypothesis that the distributions are
the same in precision and F-measure, using the Mann-Whitney
test comparing Social (dataset without filters) x W500, W500
x BS600K, and only in F-measure for W500 x CS2.00, and
W500 x W300 (Table V).

Next, we compared the different hypotheses in predicting
the API-domain labels using the PowerToys project.

Using the filter wordiness > 500 we predicted the API-
domain labels using sets of social metrics regarding the defined
hypotheses (Section III-D). Looking at Figure 5, we can see
the results of the model created with all social metrics (and
no filtering) had different distributions when compared to the
model with all social features (Social x W500 – p=0.00018
for precision and F-measure) with large effect size. When
comparing the model with all social metrics (W500) and the
models based on H1

0 (H1W500), H2
0 , and H3

0 had no statistical
difference.Observing Table VI, we can see that all models
created based on the hypotheses followed similar distributions.
H2

0 performed slightly better on precision, recall, and F-
measure. H2

0 model with six features conveyed almost the
same result as the model with all features (Table V), thus
should be preferred when the dataset is considerably large.

TABLE VI: Comparison of Hypotheses.

Hypotheses Precision Recall F-Measure
H1

0 0.913 0.957 0.934
H2

0 0.920 0.962 0.940
H3

0 0.909 0.961 0.934

0.7 0.8 0.9 1.0
Precision

Non Social

Social

W500

H1W500

H2W500

H3W500

Ev
al

ua
tio

n
M

et
ric

s b
y

Hy
po

th
es

es
So

cia
l

0.7 0.8 0.9 1.0
Recall

0.7 0.8 0.9 1.0
F-Measure

Fig. 5: Social metrics hypotheses setups comparison: Power-
Toys Project

RQ1 Summary. By using all features, it is possible to predict
the API-domain labels with the social metrics and TF-IDF,
filtering the dataset when wordiness > 500, with precision
= 0.922, recall = 0.962, and F-measure = 0.941.

B. RQ2. To what extent can we transfer learning among
projects using social metrics to predict the API-domain labels?

To answer RQ2, we verified whether it is possible to
transfer learning from PowerToys to Audacity and JabRef.
Transferring from PowerToys to Audacity and JabRef required
us to normalize the labels in common for each pair of projects
since we cannot predict for Audacity/JabRef what we cannot
find in the PowerToys dataset.

APM Interpreter
Logging Thread

Data Structure i18n
Setup Logic

Microservices Test
Search UI Parser

App OS

Network DB
Interpreter
Logging Data
Structure i18n
Setup
Microservices
Test IO UI App

Util APM Network DB
Error Handling Logging
Thread Lang Data
Structure i18n Setup
Logic IO Parser Event
Handling App GIS
Multimedia CG

Setup
App Network

DB Setup
 Logging App
i18n Data
Structure IO

Interpreter
Setup
Microservices
UI App

APM Thread
Setup Logic
Parser App

PowerToys JabRef

Audacity

Fig. 6: Labels intersections from the studied projects.
The training dataset was filtered with wordiness > 500,

repeating the best configuration found for RQ1. This makes

some labels disappear from the training dataset. For example,
although “i18n” is present in PowerToys and JabRef projects,
no issue in the dataset prevails after filtering (Figure: 6).

Table VII shows the result of the transfer learning. The
metrics are far behind the ones obtained by training and testing
with the same dataset (Table VII).
TABLE VII: Comparison of corpus models with transfer
learning.

Training Test Precision Recall F-Measure
PowerToys Audacity 0.392 0.434 0.412
PowerToys JabRef 0.328 0.643 0.434

RQ2 Summary. Transfer learning performed poorly and
resulted in precision = 0.392, recall = 0.643, and F-measure
= 0.434.

VI. DISCUSSION

Do Social Metrics Matter?
Our results showed the social metrics are relevant to

predict API-domain labels. The predictions using social metrics
improved the precision of the models up to 15.82% and the
F-measure up to 15.89% when filtering wordiness > 500).
We could not observe an increase in the performance of the
classifiers in the projects, with few comments and discussants
actively participating in the tasks. The results are coherent with
the intuition behind the research, as the predictions are based
on the presence of social interaction.

We observed the increase of the relative counts in some
labels after filtering—with emphasis on “Thread” from 0.02
to 0.12 and “APM” from 0.26 to 0.36. “Thread” issues have
approximately six comments, 18 discussants, and 947 words on
average, which is far above the PowerToys averages in Table
II. “Thread” labels are present when the discussions are more
protracted and might point to more specific characteristics of
the issues (Table VIII).
To what extent does the model transfer learning?

Transfer learning is paramount when projects do not have
enough data for training, not enough time to prepare the training

TABLE VIII: Labels distribution

Labels distribution Label counts Labels counts normalized

Label names Before
filtering

After
filtering

Before
filtering

After
filtering

Logging 6 1 0.008 0.01
Data Structure 13 1 0.01 0.01
Logic 14 7 0.01 0.07
Setup 337 49 0.46 0.49
Microservices 214 34 0.29 0.34
Test 6 1 0.008 0.01
App 502 75 0.69 0.75
Search 394 61 0.54 0.61
i18n 4 1 0.005 0.01
Parser 42 3 0.06 0.03
APM 201 36 0.26 0.36
UI 498 68 0.69 0.68
Thread 25 12 0.02 0.12
OS 521 75 0.71 0.75
Interpreter 22 4 0.02 0.04
rows 721 99

dataset, the infrastructure is unavailable to develop their models,
or the costs to run the models are prohibitive. Moreover, while
we can access features from projects in the OSS communities
to run API predictions, the same availability is not always
possible in the industry. The source code may be restricted,
and there is no way to prepare the ground truth with the
APIs declared. Besides, the conversations are often protected
by privacy laws. Therefore, despite the relevance of transfer
learning, the results are far from the regular training and testing,
and we should investigate ways to improve them. One possible
reason is the diverse domains of the projects that predicted
different API-domain labels.
How can software practitioners benefit from the results?

This approach can benefit developers who want to find an
appropriate issue, which is the case of newcomers who have
a hard time searching for a task [59]. Once the maintainers
foment the communication in the projects’ issue tracker, the
discussions around issues, which hold the project skills, may
be used to train our model to predict the API-domain labels
and, thus, assist newcomers in picking issues and helping them
learn about the tasks. Indeed, communication is a recipe for
newcomers to “Keep the community informed about decisions”
[5]. Reporting the advances on a task should attract comments
from core members in charge of the module and with the skillset
related to the task. Steinmacher et al. [5] guide newcomers to
“Do not be afraid of the community”. Reporting problems in
appropriate community channels may lead contributors with
the required skills to join the discussion. The expansion of
communication to produce better social metrics will assist
indirectly in breaking barriers defined by Steinmacher et
al. [5]. The communication strategy is second in primacy to
maintainers [20] and meets multi-teaming research whose hints
include improving communication to address the coordination
weakness, lack of member stability, and hierarchy in the highly-
dynamic OSS projects [60].

VII. THREATS TO VALIDITY AND LIMITATIONS

Categorizing the API domain is one of the threats to the
validity of this study. We recognize that different individuals
may create different categorizations, which may introduce
bias in our results. To mitigate this issue, we recruited three
experienced developers: one expert for each of the programming
languages used by the projects. A semi-automated approach
supported these experts. A limitation of this approach is that
NLP suggestions might not work as expected in languages like
C++, where the information about the API packages is not
present in the “include” declaration. For researchers interested
in extending our work for projects from these languages, we
recommend using another source of information beyond the
API namespace, such as comments and documentation, to
achieve proper library categorization.

Another concern is the number of issues in our dataset and
the link between issues and PRs. To add an issue to the dataset,
we need to link it to its solution submitted via pull request. By
linking them, we identify the APIs used to create the labels and
define our ground truth using the changed files. We manually

inspected a random sample of issues to verify that the data was
collected correctly and reflected what was shown in the issue
tracker interface. When an issue is closed without leaving a
trace on the ITS, we cannot track it using this method, and
therefore the issue is discarded. The need to have a solution to
the issue also introduces a bias to the generability of our results.
We only tested the predictions for issues that had a linked PR to
be able to establish the ground truth. When using our approach
in practice to label open issues, some issues may not be related
to code solutions or may have different characteristics than
those that have a linked PR and may receive incorrect labels,
decreasing the performance observed in our study.

We used the presence of an API in the file changed by a
PR to define the ground truth of the API domains. The API
may not necessarily affect the lines of code changed by a PR.
Future work can explore other ways to link issues and API
domains, increasing the accuracy of the labeling.

To avoid overfitting, we used a cross-validation method
to randomize the training and testing samples. Despite the
feature importance test pointing us to some features as the
best predictors, this was observed when we isolated the social
metrics as features. When mixing all the features (Social metrics
+ TF-IDF weights), the feature importance among the social
metrics decreased.

Generalization is also a limitation. Predictions may differ
for different projects and programming languages. In addition
to the JabRef case study used by Santos et al. [15], we mined
two other projects, improving the diversity of projects and
programming languages. However, different results can be
achieved when other projects and programming languages are
considered.

We produced a more general set of API domain labels
than Santos et al. [15]. These categories can potentially be
transferable to other projects using the same APIs across
multiple domains. Many projects adopt a typical architecture
and frameworks (Hibernate, Spring, etc.), which makes them
reuse similar sets of APIs. Creating more generic API-domain
labels should help to generalize to other projects because
standard APIs and third-party libraries account for up to 53%
and 35%, respectively, of the total APIs used in projects [61].
Therefore, the chances that most APIs in a project had been
previously categorized increase as our work is extended to new
APIs and projects.

VIII. IMPLICATIONS

Implications for Researchers. The implications are many-
fold. (i) Our work shows the importance of using social metrics
as prediction factors, which is aligned with the idea that
software engineering is a sociotechnical activity. Many studies
use prediction models based solely on technical attributes and
miss the opportunity to improve the results with social metrics.
We expect our results to inspire further investigation of social
metrics in other contexts and applications. (ii) Our results
illustrate the value of replicating previous work not only to
confirm previous findings but to extend with other ideas to
improve the state of the art. (iii) The scientific community

can extend our approach to predict contributors’ skills using
a similar approach as we used for issues. The community
can also build tools that use our approach to recommend
tasks according to contributors’ skills and career goals (e.g.,
as proposed in the literature [62]). Automatic matchmaking
can use the historical contributions data, when available, to
compare the skills of tasks and contributors. We published the
software, scripts, and data we used to facilitate replication, use,
and extension. (iv) We used just one source of information
to build our social metrics. We hope our results will inspire
the software engineering community to explore the multitude
of tools developers use to collaborate and use/propose new
metrics and communication channels as information sources to
calculate the metrics. Many prediction models end up not being
used in practice due to suboptimal performance. Exploring ways
to improve state of the art is paramount to transferring the
scientific results into practice.

We understand that further studies are necessary before
adopting our approach in practice. Our study is an essential
step toward improving the predictions and testing the approach
in different projects. In the following, we discuss some
implications assuming the practical adoption of the approach.

Implications to new contributors. The social metrics
can potentially improve label prediction, which increases the
chance of adopting our approach in practice to facilitate task
selection. The literature shows that newcomers find labels in the
issue tracker useful to help find their tasks [63]. Facilitating
the choice of a task—and consequently the onboarding of
newcomers—is crucial since the literature has shown that they
face various barriers and often give up contributing [5].

Implication for project maintainers. Our approach can be
used by maintainers to automatically label issues on the issue
tracker system of their projects. OSS maintainers are known to
be busy, and issues end up being poorly labeled due to the lack
of time to label them manually. Providing an approach that
can automatically label issues has the potential of supporting
their job, making the issues easier to find and enabling one to
shortlist the issues by filtering those that match their skills with
the tasks. Ultimately, this can facilitate the onboarding and
engagement of contributors, which is vital for the sustainability
of the projects [64], [65].

Educators. Educators often recommend their students con-
tribute to OSS projects or adopt this activity as a course
assignment. However, the literature has shown that students
struggle to find suitable tasks [5]. Improving the automatic
labeling of issues is a step toward improving task selection,
which is very important for these students. Our labels are
related to API domains, which map to skills students may want
to develop (e.g., ML, security, etc.) or are comfortable with.

IX. FUTURE WORK

Future work should focus on generalizing the results, includ-
ing more projects with different levels of social interactions.
Other metrics also should be explored, for example, the
Structural Holes [66]. Although PowerToys had better metrics
averages, we can note JabRef had some best metrics averages:

AVG and MAX Closeness (Table II). PowerToys project has a
betweenness SUM far superior from the other projects. The
network property features in PowerToys also are superior, but
they ranked low in feature importance. The network properties
should be better investigated to determine levels where they
increasingly predict the API-domain labels.

Future work can also investigate different temporal periods
to aggregate issues to calculate the social metrics derived
from the Social Network—in this work, we only tested
with three months intervals, following previous work [24].
To improve transfer learning predictions, future work can
investigate proxy techniques [67] used in the literature to predict
software engineering defects to conform source and target
datasets for transfer learning. Another exciting investigation is
identifying the contributor’s API-domain labels based on the
authors’ historical PRs submitted and approved. Hence, we
can automatically match contributors and tasks. To improve
matchmaking, the API domains and related skills can be
organized in a skill ontology [68]. Ontology matchers like
AML [69] can be integrated into the pipeline for this goal.

X. CONCLUSION

Newcomers have difficulty choosing an issue when joining
a new project. Several studies addressed this problem by
evaluating the developers’ expertise or the required skills
in tasks to inform and recommend issues for a contribution.
Towards this goal, APIs correlate to skills to update and fix
source code, and knowing which ones are involved in a possible
solution may assist a newcomer in picking an issue to unravel.

We investigated the performance of the social metrics
to improve the previously proposed API-domain labels. We
found a set of predictors able to enhance the model’s perfor-
mance. Subsequent studies should unravel ways to discover
when a project is sensible to a specific metric threshold
to avoid exhaustive possibilities. Our results suggest that
the conversations on issues convene discussants interested
or experts on those subjects. We substantially improve the
API-domain label predictions up to 0.922 (precision), 0.978
(recall), and 0.942 (F-measure) using the conversation data
when the project has enough participants and dialogs to create
a consistent dataset. The outcomes of this study compared
with Santos et al. [15] results reached an increase of 22.11%
in precision, 30.9% in recall, and 25.4% in F-measure. In
the PowerToys project, the results increased by 15.82% in
precision and by 15.89% in F-measure. With these results in
mind, maintainers and communities can encourage and leverage
project communication to calculate social metrics. Better
classifier performance can encourage the practical adoption of
automatic issue labeling tooling [70].

ACKNOWLEDGMENTS

This work is partially supported by the National Science
Foundation under Grant numbers 1815503, 1900903, and
2236198. CNPq/MCTI/FNDCT grant #408812/2021-4 and
MCTIC/CGI/FAPESP (grant #2021/06662-1)

REFERENCES

[1] I. Steinmacher, T. Conte, and M. Gerosa, “Understanding and supporting
the choice of an appropriate task to start with in open source software
communities,” in International Conference on System Sciences, USA,
2015.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiß, R. Premraj, and T. Zimmer-
mann, “Quality of bug reports in eclipse,” in 2007 OOPSLA workshop
on eclipse technology eXchange, 2007, pp. 21–25.

[3] L. Vaz, I. Steinmacher, and S. Marczak, “An empirical study on task doc-
umentation in software crowdsourcing on topcoder,” in 2019 ACM/IEEE
14th International Conference on Global Software Engineering (ICGSE),
IEEE. Sao Carlos, Brazil: ACM, 2019, pp. 48–57.

[4] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” IEEE Transactions on
Software Engineering, vol. 36, no. 5, pp. 618–643, 2010.

[5] I. Steinmacher, C. Treude, and M. Gerosa, “Let me in: Guidelines for
the successful onboarding of newcomers to open source projects,” IEEE
Software, vol. 36, 2018.

[6] A. Barcomb, K. Stol, B. Fitzgerald, and D. Riehle, “Managing episodic
volunteers in free/libre/open source software communities,” IEEE Trans-
actions on Software Engineering, vol. 48, no. 2, pp. 1–1, 2022.

[7] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement? a text-based approach to classify change
requests,” in CASCON. Markham, ON, Canada: ACM, 2008, pp. 304–
318.

[8] Q. Fan, Y. Yu, G. Yin, T. Wang, and H. Wang, “Where is the road for issue
reports classification based on text mining?” in International Symposium
on Empirical Software Engineering and Measurement (ESEM), IEEE.
IEEE, 2017, pp. 121– –130.

[9] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella, “Ticket tagger:
Machine learning driven issue classification,” in 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE.
Cleveland, USA: IEEE, 2019, pp. 406–409.

[10] A. F. Otoom, S. Al-jdaeh, and M. Hammad, “Automated classification
of software bug reports,” in 9th International Conference on Information
Communication and Management. ACM, 2019, pp. 17–21.

[11] N. Pingclasai, H. Hata, and K.-i. Matsumoto, “Classifying bug reports to
bugs and other requests using topic modeling,” in Asia-pacific software
engineering conference, vol. 2. IEEE, 2013.

[12] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Mining Software Repositories. USA: IEEE, 2013.

[13] Y. Zhou, Y. Tong, R. Gu, and H. Gall, “Combining text mining and data
mining for bug report classification,” Journal of Software: Evolution and
Process, vol. 28, no. 3, pp. 150–176, 2016.

[14] Y. Zhu, M. Pan, Y. Pei, and T. Zhang, “A bug or a suggestion? an
automatic way to label issues,” arXiv preprint arXiv:1909.00934, vol.
abs/1909.00934, 2019.

[15] F. Santos, I. Wiese, B. Trinkenreich, I. Steinmacher, A. Sarma, and M. A.
Gerosa, “Can I solve it? Identifying apis required to complete oss tasks,”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), IEEE. Madrid, Spain: IEEE, 2021, pp. 346–257.

[16] N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” Computer Supported Cooperative Work
(CSCW), vol. 14, no. 4, 2005.

[17] I. Wiese, R. Ré, I. Steinmacher, R. T. Kuroda, G. A. Oliva, C. Treude,
and M. Gerosa, “Using contextual information to predict co-changes,”
Journal of Systems and Software, vol. 128, pp. 220–235, 2017.

[18] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in 30th international conference on
Software engineering. ACM, 2008, pp. 531–540.

[19] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
failures with developer networks and social network analysis,” in
16th International Symposium on Foundations of software engineering.
Atlanta, Georgia, USA: ACM, 2008, pp. 13–23.

[20] F. Santos, B. Trinkenreich, J. Pimentel, I. Wiese, I. Steinmacher, A. Sarma,
and M. Gerosa, “How to choose a task? Mismatches in perspectives of
newcomers and existing contributors,” Empirical Software Engineering
and Measurement, 2022.

[21] F. El Zanaty, C. Rezk, S. Lijbrink, W. van Bergen, M. Côté, and
S. McIntosh, “Automatic recovery of missing issue type labels,” IEEE
Software, 2020.

[22] N. Bettenburg and A. E. Hassan, “Studying the impact of social
interactions on software quality,” Empirical Software Engineering, vol. 18,
no. 2, pp. 375–431, 2013.

[23] I. Kwan, M. Cataldo, and D. Damian, “Conway’s law revisited: The
evidence for a task-based perspective,” IEEE software, vol. 29, no. 1,
pp. 90–93, 2011.

[24] R. Kikas, M. Dumas, and D. Pfahl, “Using dynamic and contextual
features to predict issue lifetime in github projects,” in 2016 IEEE/ACM
13th working conference on mining software repositories (msr), IEEE.
Austin, TX, USA: ACM, 2016, pp. 291–302.

[25] I. Wiese, F. Côgo, R. Ré, I. Steinmacher, and M. Gerosa, “Social
metrics included in prediction models on software engineering: a mapping
study,” in International Conference on Predictive Models in Software
Engineering, 2014.

[26] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic
literature review on fault prediction performance in software engineering,”
IEEE Transactions on Software Engineering, vol. 38, no. 6, 2011.

[27] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software
fault prediction metrics: A systematic literature review,” Information and
software technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[28] J. Linåker, H. Munir, K. Wnuk, and C.-E. Mols, “Motivating the
contributions: An open innovation perspective on what to share as open
source software,” Journal of Systems and Software, vol. 135, pp. 17–36,
2018.

[29] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting
it all together: Using socio-technical networks to predict failures,” in
2009 20th International Symposium on Software Reliability Engineering.
Mysuru, Karnataka, India: IEEE, 2009, pp. 109–119.

[30] I. Wiese, R. Takashi, D. Nassif, R. Ré, G. Ansaldi, and M. Gerosa,
“Using structural holes metrics from communication networks to predict
change dependencies,” in International Workshop on Groupware, Chile,
2014.

[31] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, 1977.

[32] L. Freeman, “Centrality in social networks conceptual clarification,”
Social networks, vol. 1, no. 3, 1978.

[33] S. Biçer, A. B. Bener, and B. Çağlayan, “Defect prediction using social
network analysis on issue repositories,” in 2011 International Conference
on Software and Systems Process, 2011, pp. 63–71.

[34] F. Harary, Graph Theory. Boulder, CO, USA: Westview Press, 1994.
[35] D. B. West et al., Introduction to graph theory. Upper Saddle River,

NJ, USA: Prentice Hall, 2001, vol. 2.
[36] R. Diestel, Graph Theory, 3rd ed. Springer, 2005.
[37] JabRef, “JabRef project,” 2019. [Online]. Available: https://jabref.org/
[38] M. Rees-Jones, M. Martin, and T. Menzies, “Better predictors for issue

lifetime,” arXiv preprint arXiv:1702.07735, vol. 1702, no. 07735, 2017.
[39] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for

pull-requests in github: What can we learn from code review and bug
assignment?” Information and Software Technology, vol. 74, pp. 204–218,
2016.

[40] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Transactions on Software Engineering,
vol. 35, no. 4, 2009.

[41] A. Savidis and C. Savaki, “Software architecture mining from source
code with dependency graph clustering and visualization,” in IVAPP, 12
2021, pp. 179–186.

[42] J. Ramos, “Using tf-idf to determine word relevance in document queries,”
in Instructional Conference on Machine Learning, vol. 242. Canada:
iCML, 2003.

[43] D. Behl, S. Handa, and A. Arora, “A bug mining tool to identify and
analyze security bugs using naive bayes and tf-idf,” in ICROIT. India:
IEEE, 2014.

[44] S. Vadlamani and O. Baysal, “Studying software developer expertise and
contributions in stack overflow and github,” in International Conference
on Software Maintenance and Evolution. Australia: IEEE, 2020.

[45] D. Kim, D. Seo, S. Cho, and P. Kang, “Multi-co-training for document
classification using various document representations: Tf–idf, lda, and
doc2vec,” Information Sciences, vol. 477, pp. 15–29, 2019.

[46] M. Bilgin and İ. F. Şentürk, “Sentiment analysis on twitter data with
semi-supervised doc2vec,” in 2017 international conference on computer
science and engineering (UBMK). IEEE, 2017, pp. 661–666.

[47] D. Cahyani and I. Patasik, “Performance comparison of tf-idf and
word2vec models for emotion text classification,” Bull. Electr. Eng.
Inform., vol. 10, no. 5, 2021.

https://jabref.org/

[48] F. Herrera, F. Charte, A. Rivera, and M. del Jesus, Multilabel Classifica-
tion: Problem Analysis, Metrics and Techniques. Springer, 2016.

[49] scikit-learn, “scikit-learn,” https://scikit-learn.org/, accessed: 2022-06-27.
[50] F. Charte, A. J. Rivera, M. J. del Jesus, and F. Herrera, “Mlsmote:

approaching imbalanced multilabel learning through synthetic instance
generation,” Knowledge-Based Systems, vol. 89, pp. 385–397, 2015.

[51] Y. Feng, J. Jones, Z. Chen, and C. Fang, “An empirical study on soft-
ware failure classification with multi-label and problem-transformation
techniques,” in 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), IEEE. Västerås, Sweden:
IEEE, 2018, pp. 320–330.

[52] T. Guggulothu and S. A. Moiz, “Code smell detection using multi-label
classification approach,” Software Quality Journal, vol. 28, no. 3, pp.
1063–1086, 2020.

[53] D. Petkovic, M. Sosnick-Pérez, K. Okada, R. Todtenhoefer, S. Huang,
N. Miglani, and A. Vigil, “Using the random forest classifier to assess
and predict student learning of software engineering teamwork,” in 2016
IEEE Frontiers in Education Conference (FIE), IEEE. Eire, PA, USA:
IEEE, 2016, pp. 1–7.

[54] E. Goel, E. Abhilasha, E. Goel, and E. Abhilasha, “Random forest:
A review,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 7, no. 1, pp. 251–257, 2017.

[55] T. Pushphavathi, V. Suma, and V. Ramaswamy, “A novel method for
software defect prediction: hybrid of fcm and random forest,” in 2014
International Conference on Electronics and Communication Systems
(ICECS). Coimbatore, India: IEEE, 2014, pp. 1–5.

[56] S. Satapathy, B. Acharya, and S. Rath, “Early stage software effort
estimation using random forest technique based on use case points,” IET
Software, vol. 10, no. 1, 2016.

[57] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,”
Data mining and knowledge discovery handbook, pp. 667–685, 2009.

[58] J. Romano, J. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohen’sd for evaluating group differences on the NSSE and other
surveys?” in annual meeting of the Florida Association of Institutional
Research. Cocoa Beach, FL: FAIR, 2006, pp. 1–3.

[59] I. Steinmacher, T. U. Conte, and M. Gerosa, “Understanding and
supporting the choice of an appropriate task to start with in open source
software communities,” in 2015 48th Hawaii International Conference
on System Sciences, IEEE. Kauai, USA: IEEE, 2015, pp. 5299–5308.

[60] P. Gupta and A. W. Woolley, “Productivity in an era of multi-teaming: The
role of information dashboards and shared cognition in team performance,”
ACM on Human-Computer Interaction, vol. 2, no. CSCW, pp. 1–18, 2018.

[61] D. Qiu, B. Li, and H. Leung, “Understanding the API usage in Java,”
Information and software technology, vol. 73, pp. 81–100, 2016.

[62] A. Sarma, M. Gerosa, I. Steinmacher, and R. Leano, “Training the future
workforce through task curation in an OSS ecosystem,” in 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. Seattle, USA: ACM, 2016, pp. 932–935.

[63] J. W. D. Alderliesten and A. Zaidman, “An initial exploration of the
“good first issue” label for newcomer developers,” in 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 2021, pp. 117–118.

[64] H. Horiguchi, I. Omori, and M. Ohira, “Onboarding to open source
projects with good first issues: A preliminary analysis,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 501–505.

[65] I. Rehman, D. Wang, R. G. Kula, T. Ishio, and K. Matsumoto, “Newcomer
oss-candidates: Characterizing contributions of novice developers to
github,” Empirical Software Engineering, vol. 27, no. 5, p. 109, 2022.

[66] R. Burt, Structural Holes: The Social Structure of Competition. USA:
Harvard University Press, 1992.

[67] J. Nam, S. Pan, and S. Kim, “Transfer defect learning,” in International
Conference on Software Engineering, 2013.

[68] R. F. Calhau, C. L. Azevedo, and J. P. A. Almeida, “Towards ontology-
based competence modeling in enterprise architecture,” in 2021 IEEE
25th International Enterprise Distributed Object Computing Conference
(EDOC). IEEE, 2021, pp. 71–81.

[69] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto,
“The agreementmakerlight ontology matching system,” in International
Conferences On the Move to Meaningful Internet Systems, 2013.

[70] J. Vargovich, F. Santos, J. Penney, I. Steinmacher, and M. A. Gerosa,
“Givemelabeledissues: An open source issue recommendation system,”

in 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR - Data and Tool Showcase), 2023.

https://scikit-learn.org/

	Introduction
	Related Work
	Definition of Social Metrics and Hypotheses
	Communication context
	Developer's role in communication
	Communication Network properties
	Hypotheses

	Method
	Mining OSS Repositories
	Project Selection
	Mining Issues and Pull Requests
	Mining Social Metrics

	Categorization of APIs
	Dataset Setup
	Training and testing sets
	Classifier
	Data Analysis
	Data Availability

	Results
	RQ1. To what extent can social metrics improve the prediction of API-domain labels?
	RQ2. To what extent can we transfer learning among projects using social metrics to predict the API-domain labels?

	Discussion
	Threats to Validity and Limitations
	Implications
	Future Work
	Conclusion
	References

