
Designing for Cognitive Diversity: Improving the
GitHub Experience for Newcomers

Italo Santos∗, João Felipe Pimentel∗, Igor Wiese†, Igor Steinmacher∗, Anita Sarma‡ and Marco A. Gerosa∗
∗Northern Arizona University, Flagstaff, AZ, USA

†Federal University of Technology, Campo Mourao, PR, Brazil
‡Oregon State University, Corvallis, OR, USA

Email: italo santos@nau.edu, joao.pimentel@nau.edu, igor@utfpr.edu.br,
igor.steinmacher@nau.edu, anita.sarma@oregonstate.edu, marco.gerosa@nau.edu

Abstract—Social coding platforms such as GitHub have become
defacto environments for collaborative programming and open
source. When these platforms do not support specific cognitive
styles, they create barriers to programming for some populations.
Research shows that the cognitive styles typically favored by
women are often unsupported, creating barriers to entry for
woman newcomers. In this paper, we use the GenderMag method
to evaluate GitHub to find cognitive style-specific inclusivity bugs.
We redesigned the “buggy” GitHub features through a web
browser plugin, which we evaluated through a between-subjects
experiment (n=75). Our results indicate that the changes to the
interface improve users’ performance and self-efficacy, mainly
for individuals with cognitive styles more common to women.
Our results can inspire designers of social coding platforms and
software engineering tools to produce more inclusive development
environments.

General Abstract—Diversity is an important aspect of society.
One form of diversity is cognitive diversity—differences in
cognitive styles, which helps generate a diversity of thoughts.
Unfortunately, software tools often do not support different cog-
nitive styles (e.g., learning styles), disproportionately impacting
those whose styles are not supported. These individuals pay a
cognitive “tax” each time they use the tools. In this work, we
found “inclusivity bugs” in GitHub, a social coding platform. We
then redesigned these buggy features and evaluated them with
users. Our results show that the redesign makes it easier for the
group of individuals whose cognitive styles were unsupported in
the original design, with the percentage of completed tasks rising
from 67% to 95% for this group.

keywords: open source, diversity and inclusion, human
factors, cognitive styles, human-computer interaction.

I. INTRODUCTION

Open Source Software (OSS) projects play an important
role in improving inclusion in workforce development, where
contributors join projects to learn new skills [1], showcase their
skills [2], or improve their career paths [3]. Successful partic-
ipation in OSS projects also helps newcomers gain visibility
among their peers [4], [5], benefits society by developing a
product used by many users [6], and improves their chances
of achieving professional success [7], [5].

However, newcomers to OSS face several challenges [8],
and these challenges differently affect underrepresented pop-
ulations, including those whose cognitive styles are ill-
supported by the project’s information landscape [9], [10].
The consequences of these challenges to underrepresented

populations may include a steeper learning curve, lack of
community support, and obstacles to figuring out how to start
contributing, all of which add to the diversity imbalance in
OSS [11]. Social diversity has been shown to positively affect
productivity, teamwork, and quality of contributions [12], [13].
On the other hand, low diversity has unfortunate effects: (i)
OSS projects miss out on the benefits of a more expansive
set of contributors and the diversity of thought that these
potential contributors could bring; (ii) minorities miss out on
the learning and experience opportunities that OSS projects
provide; and (iii) minorities miss out on job opportunities
when recruiters use OSS contributions to make hiring deci-
sions [14], [15]. Although the lack of diversity in OSS has
been well-documented for years, there is limited progress in
closing this gap [11], [16], [17].

Past work [9], [10] has shown that the way information
is provided in OSS projects (e.g., documentation, issue de-
scription) benefits certain cognitive styles (e.g., those who
learn by tinkering) over others (e.g., process-oriented learners).
The information architecture of OSS project pages (e.g.,
project description pages and descriptions of issues in the
issue tracker) usually appeal to those who have high self-
efficacy and are motivated by individual pursuits such as
intellectual stimulation, competition, and learning technology
for fun. According to Burnett et al. [18], these pursuits cater to
characteristics associated with men, which can neglect women
and other contributors who may have different motivations
and personal characteristics (see also [19], [20]). This lack
of support for diverse user characteristics leads to inclusivity
bugs [21], [22]—software behaviors that disproportionately
disadvantage a particular group of users of that software.

In our study, we investigate inclusivity bugs in the GitHub
platform that affect newcomers to this platform. Inclusivity
bugs in the platform can have far-reaching impacts on thou-
sands of OSS projects (as of today, more than 200 Million
repositories are hosted on GitHub). The following research
questions guided our investigation:

Research Question 1
What inclusivity bugs does GitHub pose for newcomers
trying to make their first contribution?

Research Question 2
What are the effects of fixing those inclusivity bugs?

We analyzed four tasks newcomers often perform to make
their first pull request on GitHub and found inclusivity bugs in
all of them. We redesigned the impacted interface to address
the identified bugs and implemented a browser plugin to
change the platform interface based on our redesign (we do not
have access to change GitHub itself). We evaluated the original
and the redesigned interface through a between-subject user
study with 75 participants.

Our main goal is to mitigate cognitive barriers newcomers
face due to inclusivity bugs. As we show in this paper, GitHub,
a platform newcomers use to contribute to OSS, creates
barriers for users with different characteristics, disproportion-
ately impacting those from underrepresented groups. These
barriers may discourage newcomers and add to the existing
diversity gaps, as these tools and infrastructure are the main
channels through which OSS newcomers interact with the
community. This paper provides insights into how newcomers’
performance can be improved when their cognitive styles are
supported. Providing adequate support for diverse cognitive
styles can help improve the overall community diversity.

II. RELATED WORK

This section discusses work related to newcomers’ onboard-
ing in OSS, diversity and bias in OSS, and cognitive styles.

Newcomer’s Onboarding: Previous work has investigated
OSS contribution challenges [8], [23], [24], [25], [26]. Stein-
macher et al. [8] conducted a mixed-method study and iden-
tified 58 barriers faced by newcomers. Researchers have
also investigated specific types of challenges. For example,
toxic environments have been studied in the literature [27],
[28], [29], which evidenced situations in which OSS project
members were unfriendly, unhelpful, or elitist [30]. Jensen et
al. [25] analyzed the speed at which emails sent by newcomers
are answered, the role played by gender or nationality in
the kinds of answers newcomers receive, and the reception
newcomers face. A better understanding of the barriers enables
communities and researchers to design and produce tools and
conceive strategies to better support newcomers [31]. Our
work complements existing literature by focusing on making
social coding platforms more inclusive by supporting the
onboarding of newcomers with different cognitive styles.

Diversity/Bias in OSS: Low diversity in OSS is a concern
raised by different studies in the literature when considering
gender [11], [22], [27], [32], language [30], and location [30].
Past work has shown that diverse teams are more produc-
tive [13]. However, minorities face challenges in becoming
a part of an OSS community [11]. Most OSS communities
function as meritocracies [33], in which minorities report
experiencing “imposter syndrome” [13]. These competitive
settings have been known to discourage minorities such as
women in OSS [34], [35]. Participant observation of OSS
contributors found that “men monopolize code authorship
and simultaneously de-legitimize the kinds of social ties

necessary to build mechanisms for women’s inclusion” [36].
Generally, cultures that describe themselves as meritocracies
tend to be male-dominated ones that women experience as
unfriendly [37]. In our work, we aim to reduce the bias found
in social coding platforms used by a wide range of users
to support them regarding their different cognitive styles to
interact with OSS projects.

Cognitive styles: Research has shown that developers have
different cognitive styles [38] and motivation [1], and that
cognition plays an essential role in software engineering
activities [39]. For example, more women are task-oriented,
whereas more men are motivated to learn a new technology
for fun [9], [10], [40]. These differences in cognitive styles
may negatively impact how women and men contribute to
OSS, and it mainly happens when OSS projects and the
underlying infrastructure support certain cognitive styles (e.g.,
selective information processing or learning by tinkering) and
impede others (e.g., comprehensive information processing
or process-oriented learning). Our work considers a variety
of cognitive styles to propose changes to GitHub to support
diverse newcomers.

III. RESEARCH METHOD

We followed a three-step method, as illustrated in Figure 1:
(1) we conducted a GenderMag analysis, which has been
extensively used to detect gender biases in commercial and
OSS products [10], [41], [42], [43], [44]; (2) we proposed fixes
to the GitHub-related inclusivity bugs and developed a browser
plugin to implement these changes in the GitHub interface;
and (3) we conducted an experiment to compare the original
GitHub interface with the interface enriched by the plugin.

Step 1:
Identify GitHub
Inclusivity Bugs

Step 2:
Fix GitHub

Inclusivity Bugs

Step 3:
Assess Inclusivity

Bugs Fixes

Figure 1. Research method overview.

A. Step 1 - Identifying GitHub Inclusivity Bugs

To identify inclusivity bugs, we used GenderMag [38], a
systematic inspection method tool builders can use to evalu-
ate their software for inclusivity bugs. GenderMag is based
on research showing that individual differences in cognitive
styles (referred to as facets) cluster by gender. The method
encapsulates these facets into personas–Abi, Pat, and Tim. Abi
and Tim occupy the opposite spectrum of facet values, with
the Abi persona aligned with facet values that women tend
to favor and Tim embodying facet values typically favored by
men. The Pat persona includes a mix of these facet values.

The five facets that GenderMag uses are: (i) Motivation:
Abis are motivated to use technology for what they can
accomplish with it, whereas Tims are often motivated by
their enjoyment of technology per se [18], [45], [46]; (ii)

Information processing styles: Abis process new informa-
tion comprehensively—gathering fairly complete information
before proceeding—but Tims use selective information pro-
cessing—following the first promising information, then back-
tracking if needed [47], [48]; (iii) Computer self-efficacy:
relates with a person’s confidence about succeeding at a
specific task, which influences their use of cognitive strategies,
persistence, and strategies for coping with obstacles. Abis
have lower computer self-efficacy as compared to their peers;
(iv) Risk aversion: Abis are risk-averse when trying out new
features as compared to Tims [49], [50], which impact their
decisions about which feature sets to use; and (v) Learning:
by Process vs. by Tinkering: Abis prefer process-oriented
learning, whereas Tims like to playfully experiment (“tinker”)
with software features new to them [18], [51], [52]. Each
cognitive style has advantages, but either is at a disadvantage
when not supported by the software [53].

GenderMag is used by evaluation teams to walk through
a use case in the project they are evaluating using Abi, Pat,
or Tim personas. At each step of the walkthrough, the team
writes down the answers to three questions:

• SubgoalQ: Will Abi have formed this subgoal as a step to
their overall goal? (Yes/no/maybe, why, facets involved).

• ActionQ1: Will Abi know what to do at this step?
(Yes/no/maybe, why, facets involved).

• ActionQ2: If Abi does the right thing, will s/he know
s/he did the right thing and is making progress toward
their goal? (Yes/no/maybe, why, facets involved).

When the answer to any of these questions is negative,
the team identifies a potential bug; if the “why” relates to a
particular cognitive style, this shows a disproportionate effect
on people who have that cognitive style—i.e., an inclusivity
bug. Thus, a team’s answers to these questions become their
inclusivity bug report, which they can process and prioritize
the same way they would with any other type of bug report.

We selected the Abi and Tim personas [54] as they represent
opposite ends of the GenderMag facet ranges. We customized
the persona’s profile to represent our target users: newcomers
looking to make their first contribution using GitHub and have
never performed a pull request (PR) before. We identified four
use cases (i.e., edit a file, submit a pull request, fork repository,
upload a new file) as described in Table I.

Table I
GENDERMAG ANALYSIS USE CASE AND SUBGOALS

Use Case Subgoals

UC#1 - Submit a pull request #1.1 - Make a change to a README file
#1.2 - Submit the pull request

UC#2 - View changed files in
PR #2.1 - Find the changed files in the interface

UC#3 - Request help to solve
the pull request

#3.1 - Find an experienced contributor in
the project to ask for help to solve the PR

UC#4 - Upload file #4.1 - Discover how to upload a file
#4.2 - Request push access to upload file

Given these personas and use cases, 6 members of our
research group conducted the GenderMag walkthroughs on
GitHub-hosted projects using the procedures defined by Bur-
nett et al. [54]. The group had prior training and experience

in conducting GenderMag analysis. As a first step, the group
identified the subgoals and actions for each use case. We then
performed the GenderMag evaluations for each use case by
first using the Abi persona and then another set of evaluations
with the Tim persona. We identified 12 inclusivity bugs in
different parts of the GitHub interface.

B. Step 2 - Fixing GitHub Inclusivity Bugs

We redesigned the GitHub interface to support the Gender-
Mag facets that were previously unsupported and caused the
inclusivity bugs we identified in Step 1. As stated by Guizani
et al. [22], the outcomes of GenderMag analysis point not only
to inclusivity bugs but also to why the bugs might arise and
what specific problem-solving facet(s) are implicated.

As an example of redesign, for UC#1, we identified an
issue related to Abi’s process-oriented learning style and self-
efficacy facets that would affect her ability to edit a file
in an OSS project. The redesign focused on Abi’s process-
oriented learning facet to give explicit guidance on submitting
a pull request by leveraging the design principle of “visibility.”
We did so by: (1) presenting the README file information
to users more explicitly through a new tab called home
(Figure 2), which highlights the importance of the README
file, and (2) including a tooltip to explain that the user can
edit the file: To edit this file, go to the “code” tab above, and
select the file you want to edit. Our proposed solution also
addressed Abi’s self-efficacy facet by showing that she is on
the right track to completing the subgoal (#1.1, make changes
to README).

Pull requestsIssues . . .CodeHome Actions

About

No description, website,
or topics provided.

R l

README.md

Chrome extension to add tooltips on GitHub pages when
creating pull requests or creating an issue report in any

ResearchPlugin Readme

Tooltip

3 To edit this file, go to the
"code" tab above, and select

the file you want to edit.

?

Figure 2. GitHub interface modified by the developed plugin.

Once our research team agreed with the redesign solutions
proposed for each issue identified in Step 1, we started
the development of a plugin to change GitHub’s interface.
The plugin was developed as a Chrome extension to change
the original GitHub interface. The plugin is developed in
JavaScript and uses the GitHub API to collect data about a
user in JSON format. It is available on GitHub1 for anyone
interested in using it and making contributions, as well as in
the supplementary material2.

C. Step 3 - Assessing the Inclusivity Bug Fixes

Finally, we conducted an experiment to evaluate how the
modified interface changed the user experience for Abis. Even
though inclusivity bugs can be fixed in multiple ways, we

1https://github.com/NAU-OSL/ResearchPlugin
2https://figshare.com/s/4e7724bde0b1d47ecaeb

expected that we would reduce an eventual performance gap
between Abis and Tims who use the modified interface, since
the modifications were supported by the analytic/theory-based
method.

We follow the guidelines provided in [55] to report our
experiment. We conducted an experiment to analyze how the
proposed plugin supports newcomers with different cognitive
styles. We compared users using GitHub’s original version to
users using our GitHub plugin, for the purpose of evaluating,
with respect to their effectiveness in completing the use cases,
from the point of view of the researchers, in the context of the
GitHub environment when a newcomer attempts to make their
first contribution.

The participants interacted with a copy of a community-
based OSS project named JabRef3. Participants completed the
four use cases used for finding the bugs (Table I):

• UC#1 - Submit a pull request: The newcomer needs to
edit a file in the project and submit the changes via a pull
request (PR);

• UC#2 - View changed file. In this task, we asked par-
ticipants to analyze an open pull request and find which
files were changed when this pull request was created;

• UC#3 - Request help to solve the PR. The participant
needs to find an experienced project contributor and invite
them to work together to solve the pull request; and

• UC#4 - Upload a file: The participant should try to upload
a new file to the repository.

We conducted a pilot study with five researchers outside
our group to collect feedback about the instruments (ques-
tionnaires and use case definitions) and study design. The pilot
study helped to improve our instruments. We used an iterative
process to apply the necessary changes after each pilot session.
This resulted in more detailed scripts and documentation
about the use cases. We ran new pilot sessions until we
reached a consensus that the instruments were reliable enough
to start the actual study. A replication package with this
material is available online (see the previous subsection). The
replication package also includes the developed GitHub plugin
and installation instructions.

We recruited 75 undergraduate students from diverse STEM
majors from 5 distinct universities in the US and Brazil.
The majority of participants were pursuing Computer Science
majors. Our recruiting criteria were students who knew how
to program but had never opened a pull request on GitHub,
so previous experiences with the interface would not bias
them. We opted to recruit undergraduate students for our study
because the literature mentions that educators have been using
OSS to train students, and these students are potential OSS
project contributors [56]. We asked the students if they had
previous experience with GitHub and OSS. Some of them
responded that they had used GitHub once (Plugin = 10 and
Control = 7), but when we questioned about what they had
used GitHub for, they said that they just created the account but
never contributed to any project, so they fit our criteria (never

3https://github.com/JabRef/jabref

opened a pull request). We also asked about their experience
with OSS, and a few participants answered that they had some
experience (Plugin = 4 and Control = 3). When we asked what
kind of experience they had, they informed us that they had
studied OSS concepts in previous courses in college.

We used a between-subject design to balance participants
in the original version (Control group) and GitHub plugin
version (Plugin group) by GenderMag facets [57], [44]. We
used GenderMag’s questionnaire to assess participants’ facets
with 9-point Likert items [58]. We ended up with different
numbers of participants between the two treatments, as some
of the participants were a no-show, Table II).

Unfortunately, we had a small sample of women partici-
pants (18 vs. 57) due to the gender distribution of students
in the classes we recruited from. We attempted to balance
the participants in each treatment based on their cognitive
facets, achieving an almost equal distribution of Abis (37) and
Tims (38) across the treatment groups. Table II presents the
participants’ characteristics in each group.

In the beginning, we conducted each user session one
participant at a time with a facilitator and an observer. The
participants were asked to perform the four use cases described
in Table I. We collected audio recordings and observation
notes from the sessions and qualitatively analyzed participants’
data. We conducted those individual sessions with 50% of our
participants. Then we decided to optimize the data collection
by conducting the experiment with students from two classes
where we provided an online questionnaire with all the in-
structions they had to follow to participate in the experiment.
A researcher was present the whole time to assist the students
in case they needed help or had any questions.

We performed a quantitative analysis by collecting the per-
centage of use cases completed by participants in each group
and applied a self-efficacy survey to measure newcomers’
confidence in using GitHub.

Table II
NUMBER OF PARTICIPANTS IN THE EXPERIMENT

Facets GenderSubjects Tim Abi Man Woman
Control 36 18 18 30 6
Plugin 39 20 19 27 12
Total 75 38 37 57 18

We also administered a questionnaire in which participants
provided their self-perception about their ability to complete
use cases using GitHub, i.e., self-efficacy to complete spe-
cific tasks. The questionnaire was based on the work of
Bandura [59] and had 5 items. Participants answered those
questions before and after the experiment using a 5-point
Likert scale ranging from strongly disagree to strongly agree
(with a neutral option). The goal was to capture the students’
self-perceived efficacy about the use case before and after
they attempted executing it. The items were prefixed with “I
am confident that I can:” followed by: (i) . . . use GitHub to
contribute to projects; (ii) . . . open a pull request using the
GitHub web interface; (iii) . . . change a file and submit the
changes to the project using GitHub; (iv) . . . find someone to

Table III
GITHUB INCLUSIVITY BUGS AND PROPOSED FIXES

Use Case # Bugs Bug Description GenderMag Facets Bug Fixes

#1
Submit pull

request

1 Difficulty in finding Readme file to
edit;

- Learning: Process vs. Tin-
kering;
- Computer self-efficacy.

- Add “Home” link to the navbar to highlight the importance of the
Readme File in the repository hierarchy. This link presents this file’s
content and includes a tooltip to explain that the user can edit the file.

2
After clicking to edit the file, diffi-
culty in finding the options to edit
the file;

- Learning: Process vs. Tin-
kering;
- Computer self-efficacy;
- Attitude Towards Risk.

- Include a progress bar, to indicate the steps of the workflow related to
this task;
- Include a tooltip to explain what happens in case the user changes the
original filename.

3 Difficulty in understanding the
commit form;

- Learning: Process vs. Tin-
kering;
- Computer self-efficacy;
- Attitude Towards Risk.

- Put tooltips and field labels explaining form fields to help the user
understand the importance of informing a commit message.

4
Difficulty in understanding the
workflow after the file is edited;

- Motivations;
- Learning: Process vs. Tin-
kering;
- Information Processing
Style.

- We have the progress bar, to indicate that this step is important to
complete the task;
- Include a tooltip to explain the conflict message that appears;
- Include a tooltip to explain the code that is related to the changes.

5
Lack of feedback indicating if the
creation of the pull request was
successful;

- Learning: Process vs. Tin-
kering;
- Computer Self-Efficacy;
- Information Processing
Style.

- After the click on the create pull request button, redirect to a page with
a success message and a progress bar showing that the pull request is
completed;
- Include a tooltip to explain what does the “Close pull request” button
do.

#2 View
changed files 6

Difficulty in understanding the
workflow after the user opens a
pull request;

- Learning: Process vs. Tin-
kering;
- Computer Self-Efficacy.

- Include a tooltip to highlight the navbar that describes some actions
that can be made in the pull request.

#3
Request help to

solve the PR

7
Difficulty in finding the option to
mention another contributor;

- Learning: Process vs. Tin-
kering;
- Computer Self-Efficacy.

- Include a tooltip in the @ symbol icon to say ”Use it to mention a
contributor.”

8
Lack of feedback about the action
of mentioning another contributor;

- Information Processing
Style;
- Computer Self-Efficacy.

- Add a confirmation message to let the user know that the mentioned
contributor will receive a notification and may help the newcomer in this
issue.

#4
Upload file

9
Difficulty in understanding the
steps needed to upload a file;

- Information Processing
Style;
- Attitude Towards Risk;
- Motivations.

- Change the message to inform that it is necessary to fork;
- Make the fork button green to highlight that it is enabled.

10
Lack of feedback indicating if the
action of forking the repository is
completed;

- Information Processing
Style;
- Computer Self-Efficacy.

- Add a success message to the page that appears after the click on the
fork button.

11
Difficulty in understanding the
commit form;

- Learning: Process vs. Tin-
kering;
- Motivations.

- Include tooltips explaining the form fields to make the newcomer
understand the importance of informing a commit message.

12
Lack of feedback indicating if the
action of uploading the file is com-
pleted;

- Information Processing
Style;
- Learning: Process vs. Tin-
kering;

- Add a success message to the repository page that appears after the
click on the commits changes button.

help me using the GitHub web interface; and (v) . . . submit a
new file to a project using GitHub.

In addition to the quantitative analysis, we qualitatively
analyzed participants’ comments to the open questions of
the survey following open coding procedures [60]. We asked
participants after each use case to explain any difficulties
they experienced in accomplishing the task and what in
the interface helped them. Our goals were to understand (i)
students’ difficulties in using the original and the modified
interfaces; and (ii) what in the interfaces helped students the
most to complete each use case. The analysis was performed
by two authors and validated by a third author. The analysis
took around one month.

For our study, we considered the following variables: (i) the
dependent variables comprise the successful completion of
each use case by the participants (Y/N), and (ii) the indepen-
dent variables are the use of the Plugin and the GenderMag
facets (whether the participant is Tim- or Abi-like).

IV. RESULTS

A. Discovering and Fixing inclusivity bugs on GitHub

We answer RQ1 based on the results of the GenderMag
evaluation of the GitHub interface, which uncovered 12 in-
clusivity bugs. Table III summarizes the inclusivity bugs,
associated GenderMag facets, and how we fixed them. The
fixes leveraged the design principles of visibility and feedback,
along with the tenet of clarity of instructions and reduction
of information load where appropriate. The specific UI design
changes were inspired by successful fixes to inclusivity bugs as
compiled in the GenderMag design catalog4. The parts of the
GitHub interface where these bugs were found can be accessed
in the supplementary material5.

In UC#1 - Submit pull request, we investigated the GitHub
interface that an average user interacts with to edit a file and
open a pull request. This use case involved five inclusivity
bugs. Among the reported bugs, we found Abi would have dif-
ficulty understanding the workflow (what to do next) after the
file was edited (Bug #4). Abis are comprehensive information

4https://gendermag.org/dc/
5https://figshare.com/s/4e7724bde0b1d47ecaeb

processors and process-oriented learners; in this interface, they
would not have all the information needed to complete the task
and are unlikely to tinker to figure out how to complete it. To
address this bug, we proposed: (1) A progress bar indicating
the steps of the workflow (improved feedback), allowing Abis
to know upfront the process needed to complete the use case;
and (2) a tooltip (improved visibility) to explain what happens
when the file is edited to provide additional information if Abis
need it (Figure 3). Instructions as a tooltip reduce clutter and
do not disadvantage tinkerers like Tim.

Tooltip?

Home Code

Edit file Spaces Soft wrap2Preview changes

ResearchPlugin / README.md

Pull requests Actions Projects

Cancel

1

Edit File Confirm Pull Request Pull Request Opened

2 3

ResearchPlugin

Chrome extension to add tooltips on GitHub pages when creating pull requests, or

creating an issue report in any repository to help newcomers contribute to open

source projects.

1

2

. . .

Figure 3. UC#1 / Bugfix #2 - plugin interface: inclusion of progress bar and
tooltip.

UC#2, View changed files, included one inclusivity bug
(Bug #6), where Abi has difficulty understanding what to do
next after opening the pull request. In GitHub, after a user
opens a pull request, they are directed to a different page,
which does not inform what can be done on that page. On
reaching this page, Abis, who are process-oriented learners
with lower self-efficacy, would be lost, not knowing what to do
next. They would not know if they were progressing towards
their goal and would be unlikely to tinker around to figure out
how to close the pull request. Our solution adds a tooltip to
the navbar that describes some actions that can be made on
the pull request page (improved visibility) (Figure 4).

Edit File Confirm Pull Request Pull Request Opened

. . .

. . .

Reviewers

Suggestions

1 1 10

Edit

?

?

My first pull-request #110
Tooltip

Ka

SecWikiCodeHome

Conversation Commits Checks Files changed +

wants to merge 1 commit into

commented on Mar 24 First-time contributor

Open

The pull request was created successfully and will be reviewed shortly

Actions Projects40Pull requests

Feel free to explore this menu, you can
discuss with project contributors, see
the commits made, check the review

status and see the files changed.

Figure 4. UC#2 / Bugfix #6 - plugin interface: inclusion of tooltip to guide
users.

In UC#3 - Request help to solve the PR, we found 2
inclusivity bugs that could affect users’ performance with
Abi’s cognitive style. The pull request interface is not straight-
forward. Once the user opens the pull request, it is not clear
that it is possible to mention someone in the comment box
to ask for help. This lack of information affects users with
Abi’s facets of learning by process and computer self-efficacy.

To address this bug, we included a tooltip in the @ symbol
icon to display “Use @ to mention a contributor to help,” as
illustrated in Figure 5.

?

Write

Close pull request Comment

Preview

Leave a comment

Attach files by dragging & dropping, selecting or pasting them.

Use @ to mention a contributor to help

Figure 5. UC#3 / Bugfix #7 - plugin interface: inclusion of tooltip to guide
users.

Moreover, after the mention is made, the GitHub interface
does not give any feedback about what happens next, affecting
comprehensive information processors such as Abi. This can
impair Abis’ ability to continue with the pull request given
their lower self-efficacy, where such users are likely to blame
themselves and quit. Even if they asked for help, they would be
unsure if the mentioned developer would receive a notification
to help them. To fix this bug, we proposed the addition of
a confirmation message (improved feedback) to the top of
the page informing that: The mentioned user will receive a
notification and may help you to work on the pull request, as
illustrated in Figure 6.

Edit File Confirm Pull Request Pull Request Opened

. . .

. . .

Reviewers

Suggestions

1 1 10

Edit

?

?

My first pull-request #110
Ka

SecWikiCodeHome

Conversation Commits Checks Files changed +

wants to merge 1 commit into from Some-Patch

commented on Mar 24 First-time contributor

Open

The mentioned user will receive a notification and may help you work on the pull request.

Actions Projects40Pull requests

Figure 6. UC#3 / Bugfix #8 - plugin interface: inclusion of confirmation
message to provide feedback to users.

In UC#4 - Upload a file, to upload an image to an OSS
project, the user needs to have push access to it. For this
use case, we found 4 inclusivity bugs. The major bug is
related to the second subgoal: it is not possible to upload a
file because the newcomer does not have a repository fork
nor push access to the original repository. The interface only
presents the message that the user needs to have push access
to the repository but no direction about how to do it. This bug
impacts Abi’s facets of comprehensive information process-
ing style, risk averseness, and task-oriented motivations. We
proposed the following fixes to address this bug: we changed
the message to give better feedback informing the user that it
is necessary to fork the repository and made the fork button
green to highlight that it is enabled on the page. The new
message states In order to upload files, click the fork button
in the upper right (see Figure 7).

Watch Star Fork1 1 4

Code Actions52 Pull requestsIssuesHome

/

/

ResearchPlugin

ResearchPlugin

In order to upload files, click the fork button on the upper right

Uploads are disabled.

. . .

Figure 7. UC#4 / Bugfix #9 - plugin interface: change of message and color
of the fork button.

Research Question 1
What inclusivity bugs does GitHub pose for newcomers
trying to make their first contribution?

Answer: We found 12 inclusivity bugs after applying the
GenderMag inspection method in four use cases a new-
comer may perform. These bugs are generally correlated
with two or more GenderMag facets. We used the principles
of improving visibility, feedback, and reducing information
overload in designing the fixes.

B. Effects of removing GitHub inclusivity bugs

Impact on completion rates. In RQ2, we investigate how
our redesign in Step 1 impacted Abis and Tims. Table IV
presents the number of participants who correctly completed
the tasks, comparing the treatment groups and the different
persona facets. We evaluated the effectiveness of both groups
in completing the tasks using the Chi-Square test to check
the independent relationship between the two categorical vari-
ables [61] (see Table V).

For UC#1, there are no statistical differences between Abis
and Tims between the treatment groups (Control vs. Plugin).
All participants in both treatments had high success rates. Tims
had 100% completion rates in both treatments. Abis in the
Plugin group performed better than the Control group (94.7%
vs. 83.3%), but the difference is not statistically significant.
This reflects that UC#1 was a simple enough use case, with
the majority of Abis able to overcome the inclusivity bugs
(Bug #1 to Bug #5) to complete the task. Recall, inclusivity
bugs need not be show stoppers, but they add an additional
cognitive tax every time a user faces them.

For UC#2 and UC#3 in the Control group, Abis performed
worse than Tims by about 33%, with the difference being
statistically significant (p-value < 0.05). However, there is no
difference when we compare the Abis and Tims in the Plugin
group. Both Abis and Tims have a 100% completion rate for

Tim Abi
Control

1

2

3

4

5

Se
lf-

ef
fic

ac
y

m
ea

n

Tim Abi
Plugin

Pre
Post

Figure 8. Self-efficacy results.

UC#2 and 95% for UC#3. This suggests that our redesign
helped Abis overcome barriers to completing these tasks.

All participants struggled to complete UC#4 in the Con-
trol group; Abis’ completion rate was 27.7% as compared
to Tims’ 33.3%. The redesign helped both Abis and Tims,
with Abis’ improvements at 61.7% and Tims’ at 66.6%. The
improvements in the Plugin group compared with the Control
group were statistically significant (p-value < 0.001). This
result highlights that designing an interface to improve the
experience of one underserved population can help make the
software better for the larger population.

Impact on self-efficacy. Figure 8 presents the results of the
self-efficacy questionnaire that participants filled out at the
beginning (‘pre’) and end (‘post’) of the study, disaggregated
by treatment groups (‘Control’ and ‘Plugin’) and per persona
(‘Tim’ and ‘Abi’).

At the beginning of the experiment (‘pre’), Abis (2.9)
had a lower self-efficacy as compared the Tims (3.6). After
performing the experiment tasks (‘post’), both types of partic-
ipants gained confidence. Given these participants had never
interacted with GitHub to submit a pull request before, it is
expected that they were not confident in completing the tasks
at the start of the experiment. But, after completing use cases
(UC#1 to UC#3), their self-efficacy improved. It is heartening
to note that the failure to complete UC#4, the last use case,
did not dampen those participants’ starting self-efficacy.

The improvement in participants’ self-efficacy was larger
(‘pre’ vs. ‘post’) in the Plugin group for both Abis and Tims.
We calculated the Wilcoxon signed-rank test, a frequently used
nonparametric test for paired data (e.g., pre- and post-treatment
measurements) [62], which indicates that the difference in
improvement (‘pre’ vs. ‘post’) between the Control and Plugin
groups is significant for both types of participants; improve-

Table IV
NUMBER OF TASKS COMPLETED OR FAILED BY PARTICIPANTS

UC#1 UC#2 UC#3 UC#4 All Use Cases
Completed Failed Completed Failed Completed Failed Completed Failed Completed Failed

Control 33 3 34 2 28 8 11 25 106 38
Plugin 38 1 39 0 37 2 37 2 151 5
Abi - Control 15 3 17 1 11 7 5 13 48 24
Tim - Control 18 0 17 1 17 1 6 12 58 14
Abi - Plugin 18 1 19 0 18 1 17 2 72 4
Tim - Plugin 20 0 20 0 19 1 20 0 79 1

Table V
EFFECTIVENESS OF TASKS COMPLETED AND COMPARISON AMONG GROUPS.

Abi Tim DifferencesUC Control Plugin Control Plugin Abi-C x Tim-C Abi-P x Tim-P Abi-P x Abi-C Tim-P x Tim-C

#1 83.3% 94.7% 100% 100% - - - -
#2 61.1% 100% 94.4% 100% ⇓ -33.3% * - - -
#3 61.1% 94.7% 94.4% 95% ⇓ -33.3% * - ⇑ +36.6% * -
#4 27.7% 89.4% 33.3% 100% - - ⇑ +61.7% ** ⇑ +66.6% **
(* p≤0.05; ** p≤0.01)

ment for Abis has p-value = 0.005, and Tims has p-value
< 0.001. We calculated Cliff’s delta effect size measure [63] to
calculate the magnitude of these differences among the Plugin
group. The effect size of improvement for Tims ‘pre’ vs. ‘post’
is large (delta = 0.682), as well as for Abis ‘pre’ vs. ‘post’
improvements (delta = 0.542).

Impact of the proposed interface on participant experiences.
The questionnaire that participants filled out after every task
(Section III-C) confirms that the control group participants
faced more challenges. In the following, we discuss partici-
pants’ reflections on what their difficulties when performing
the experiment tasks and how the Plugin design helped them.

In UC#1, the main challenge Tims faced in the Control
group was the difficulty of finding the editor and the README
files (Bug #1 of Table III). P44 mentioned “Finding the
README file, definitely, because I didn’t know where to
look for all these files, I didn’t think it would be like in
the middle of those files.” The plugin solved this problem
by presenting the README file information to users more
explicitly (improving visibility) through a new tab called
home. None of the participants in the Plugin group mentioned
finding the README to be a problem.

The Abis in the Plugin group mentioned that the improved
visibility of features in the redesigned interface (button colors,
tooltips) helped them complete UC#1. The tooltips allowed
comprehensive information processors to gather the necessary
information before starting the task. It also improved their self-
efficacy by letting participants know they were on the right
path. Indeed, P29 mentioned that “the tooltip guides me into
the execution of the task”.

The redesigned interface, however, did not help Abi-like
participants in figuring out how to edit the file and save it
(Bug #4). P1 said, “Starting the Edit process was really hard.
And once you have a little computer knowledge and you
actually get into the Edit tab, you can look at the various
files you want to edit and then go through the process”. This
comment highlights Abi’s risk-averseness when having to use
new features.

In UC#2, a difficulty that both Abi- and Tim-like partic-
ipants faced in the Control group was finding the changed
files in the pull request interface (Bug #6). Tims and Abis
in the Plugin group mentioned that the changed files in
the navigation menu (improved feedback) and the tooltips
(improved visibility) helped them to complete the task. This
is an example of how a solution designed to help one class of
users (Abis) helps a broader population (also Tims).

The main difficulty in UC#3 was finding out how to request
help. Some participants reported that their first idea was

directly contacting the experienced user. P43 mentioned: “I
thought there would be a way that I could just like leave them
a personal message and ask for help rather than posting. It
[comment in the interface] looks like a public comment.” Other
participants tried to contact the user directly by going to their
GitHub profile page and looking for a direct message option,
which GitHub does not offer. A majority did not realize they
could use the ‘@’ button in the panel to direct their comments
to a specific contributor.

Participants in the Plugin group used the tooltip associated
with the mention icon (‘@’) to figure out this feature. The
improved visibility of the ‘@’ icon helps process-oriented
learners, who would be hesitant to tinker around the interface
to find and use the ’@’ button. With this fix, an Abi participant
mentioned that the task was intuitive (P40): “Once I recognized
that I needed to do this task as well, it was pretty intuitive.”.

In UC#4, participants in the Control group faced more
difficulty figuring out how to obtain push access: one Abi
participant and ten Tims mentioned having that difficulty.
Only three of these ten participants overcame this challenge
and successfully completed the task. None of the participants
mentioned this challenge in the Plugin group. Abis in the
Plugin group mentioned that the improved visibility afforded
by the green fork button and the feedback message was
helpful. P26 said: “interface messages when trying to upload
the file helps a lot”. Tims in the Plugin group said the same,
exemplified by P5: “So when I went back, I saw that the fork
was highlighted in like the same green color. (...) It really just
puts me back in the right direction”.

Research Question 2
What are the effects of fixing those inclusivity bugs?

Answer: A GenderMag-inspired redesign of the GitHub
interface removed the task completion gaps between Abi
and Tim participants for UC#2 and UC#3. For UC#4, the
redesign significantly improved task completion for both
Abi and Tim participants.

V. DISCUSSION

A decade of research on gender HCI has found that individ-
ual differences in how people problem solve—how they think
when interacting with a software—cluster by gender. Past
research has shown that current software and documentation
embed inclusivity bugs—bugs that disproportionately affect a
subset of users whose cognitive styles are unsupported by
the software. These inclusivity bugs result in an additional
cognitive tax every time a user faces the bug, which can add
up to create barriers to participation.

In our study, we investigated to what extent the GitHub
interface embedded inclusivity bugs and how these inclusivity
bugs impacted users’ performance with different cognitive
styles (i.e., Abis and Tims). After applying the GenderMag
method on GitHub, we found 12 inclusivity bugs that affect
the Abi persona.

Alignment with past research. Our findings are similar
to that of past GenderMag research identifying inclusivity
bugs in OSS projects. Padala et al. [9] found Information
Processing, Self-efficacy, and Learning Style facets favored
by Abi to be the most frequent facets that were not supported
by OSS projects, and the lack of support of these facets was
instrumental in causing the top reported barriers to contribute.
More specifically, they found that: (1) comprehensive informa-
tion processors would feel disoriented because of insufficient
upfront information provided in the project README. In
our study, Abi-like participants also reported feeling lost in
the Control group; (2) participants with lower computer self-
efficacy were worried about completing the task and described
a lack of knowledge of the technologies as a reason for it.
These findings also appear in our results—participants in the
Control group felt scared by the GitHub interface; (3) process-
oriented learners were hampered by a lack of clear instructions
on how to contribute. We observed that Abi-like participants
in the Control group also got stuck completing some of the
tasks because of a lack of instructions on how to use many of
the GitHub features.

Fixing these inclusivity bugs not only helps Abi-like users,
whose facets were used to redesign the software but can also
make the software better for the larger population. Vorvoreanu
et al. [44] in their work found that a redesign of their
software to fix the inclusivity bugs found via GenderMag
helped women do better (who had twice the failure rate as
men in ‘pre-fix’ version), removing the gender gap in the ‘post-
fix’ version. Moreover, both men and women participants had
fewer failures. We found similar results, where redesigning the
GitHub interface to accommodate Abi-like users also helped
the Tim-like participants in our study (66.67% improvement
among Tims in UC#4).

Cognitive diversity bugs can become gender-bias bugs. Past
research using GenderMag has shown that the inclusivity
bugs created when Abis’ cognitive styles are unsupported also
become gender-bias bugs because individual differences in
how people problem solve cluster by gender [51], [46], [18],
[38]. In our data set, we see that the distribution of Tim facets
aligned more closely with the distribution of men. We had 63%
men who had a majority of Tim facets compared to those who
had a majority of Abi facets. In our study, perhaps due to the
small sample size and our recruitment pool, we had an equal
distribution of Abis and Tims among the women participants.

The need to make OSS tools and technology inclusive. OSS
has a severe gender diversity imbalance, with the percentage
of women ranging around 10%. One of the challenges women
face is a lack of sense of belonging, which may make them
less inclined to share their opinions with the rest of the team.
We noticed such reticence among our women participants

in opining about their difficulties. In contrast, the men (the
majority comprised of Tim) in the study felt more empowered
to talk about the challenges they faced and suggest how
they would improve the GitHub interface. One reason for
this difference in behavior can be because women tend to
have lower computer self-efficacy than men within their peer
sets [9]. This can affect their behavior with technology [64],
[46], [19], [65], indicating that women feel less comfortable
sharing their opinions and are inclined to think that it is their
fault for not being able to use a certain technology. By making
the OSS tools and technology more inclusive, we can break
the barriers that Abi-like users, typically women, face when
using the tools and technology, which can add to their feelings
of not belonging [66] and impostor syndrome [11].

Making GitHub inclusive of varied cognitive skills is impor-
tant for OSS to attract newcomers. Making GitHub inclusive
will remove additional barriers newcomers face when their
cognitive styles are not supported by the tool [9]. When the gap
between newcomers’ skills and those needed to accomplish
the task is too broad, it demotivates newcomers, causing them
to drop out [67], [68]. This can particularly impact students
who are still developing their skills and have limited time and
experience when first contributing to an OSS project.

VI. IMPLICATIONS

Implications for social coding platforms. For the designers
and developers of GitHub and other social coding platforms,
our results highlight the importance of developing software
that encompasses the diversity of users. Social coding plat-
forms can insert inclusivity biases that are crosscutting to a
large number of projects. Social coding platform designers
should consider newcomers’ cognitive styles to understand
how they process information or use the technology itself and
how they can accomplish tasks to help them reach their main
goals. A more inclusive design means including more users
by making it easier for them to contribute to OSS projects.

Implications for Maintainers of OSS projects. Our work
reports inclusivity bugs newcomers can face and what part
of a task they can get stuck on. Maintainers can use this
information to consider how they could mitigate these chal-
lenges. One suggestion would be to provide more information
in the README/Contributing.md files. We also hope our
work can foster and ignite the interest in OSS communities to
investigate and remove inclusivity bugs in the different tools
and technology they use.

Implications for newcomers (Abis and Tims). Our results
are important for newcomers. We showed the difficulties they
face, where they struggle most, and how the interface can help
them. Abis, who notoriously have low self-efficacy, should be
aware that the interface was not designed for their cognitive
style, and poor performance is a reflection of the tool failing
them and not a reflection on their self-worth or capability.
Tims should be aware that developers with diverse cognitive
styles exist and respect the differences.

Implications for educators. Familiarizing students with the
OSS contribution process is becoming more common [69].

Contributing to a real project helps students gain real-life
experience and allows them to add this experience to their
resume, which aids them in securing jobs. Our results highlight
that based on their cognitive styles, some students can face
more challenges when interacting with the GitHub platform.
Educators should understand those challenges and teach stu-
dents how to overcome them. They can also explore other
ways to facilitate students’ learning of the GitHub platform.

VII. LIMITATIONS

Our investigation also has threats to validity and limitations.
We focused our analysis on finding inclusivity bugs for new-
comers based on GenderMag Abi’s persona. We followed the
guidelines suggested by Hilderbrand et al. [70] and focused
on this persona because its facet values tend to be more
undersupported in software than the other personas [22], [41].
However, fixing problems from only this persona’s perspective
could leave non-Abi newcomers less supported. This was a
clear trade-off that could impact Tims, for example. However,
the results from out experiment that include both Tim and Abi
personas, showed that the performance of the Tim participants
also improved for some tasks.

Despite our best efforts to recruit women for the experiment,
there is a gender imbalance in the sample. At the same time
that having more women would be important for the gender
balance perspective, we would lose in terms of representative-
ness of the population of interest. Still, although the number of
women is lower than men, we have almost the same amount of
Abi (37) and Tim (38) participants. Nevertheless, this paper
aims to investigate the cognitive facets, and some men also
present facets associated with Abi’s persona.

In the GenderMag analysis, we carefully conducted the
walkthroughs on GitHub following the procedures described
by Burnett et al. [38]. We had different meetings to review
the GenderMag analysis and solutions proposed to fix the
inclusivity bugs and the members of our research group
had previous experience in conducting GenderMag analysis.
Another concern is that the GenderMag method only relies on
participants’ gender, though that is not the case. Vorvoreanu
et al. [44] states that the keys to more inclusive software lie
not in someone’s gender but in the facet values themselves.
As this answer makes clear, GenderMag can be used to find
and fix inclusiveness issues without ever speaking of gender.

We recruited 75 undergraduate students from diverse STEM
majors from 5 different universities in the US and Brazil.
Most participants were pursuing Computer Science majors.
We acknowledge that the sample is not representative of
the population under analysis. But, we decided to not seek
for generalization, but to understand the phenomenon in a
controlled environment that would generate initial evidence to
be further investigate. Therefore, future studies may investigate
whether newcomers from different countries or with education
levels to compare the results.

Regarding the plugin development and evaluation, we ran
tests during the development to assert its usability and cor-
rectness. However, the plugin could have different behaviors

depending on the browser. To mitigate this threat, we made
available a pre-configured computer in case the plugin did not
behave as we expected during the experiment.

We collected the time participants spent completing the
tasks. However, the high number of participants that did
not complete the tasks made it hard to compare the time
differences between groups. Future studies with larger samples
may help to investigate time differences.

Concerning the qualitative analysis, we are aware that data
interpretation can lead to bias. To mitigate subjectivity, we em-
ployed two researchers who independently coded the answers
and conducted meetings to discuss and resolve conflicts. Still,
this qualitative piece was important to collect the feedback
from the users during their activity. We chose to provide this
more subjective understanding to complement and enrich our
results, instead of collecting only objective data.

VIII. CONCLUSION

Making software products usable to people regardless of
their differences has practical importance. If a project’s de-
velopment tools or products fail to achieve inclusiveness, not
only does its adoption fall but so does the involvement of
underrepresented populations in the teams themselves [71],
[10]. In this work, we found 12 inclusivity bugs in the GitHub
interface for four tasks that are common for OSS newcomers.
These bugs mainly affect users with cognitive styles that are
more common to women—defined in the Abi persona [38]. We
proposed fixes to the inclusivity bugs, implemented them in a
plugin that changed the GitHub interface, and evaluated them
through a between-subject experiment with 75 newcomers.

We found that Abi participants in the Control group (regular
GitHub) underperformed Tim participants in some use cases,
with Abis in the Control group completing only 67% of
the tasks. Implementing the fixes based on the GenderMag
analysis reduced these differences and improved the perfor-
mance of Abi participants to 95%, indicating that the redesign
improved GitHub’s usability and learnability. In one of our
use cases, both Tim and Abi participants faced challenges,
and the bug fixes implemented in the plugin significantly
helped both participants (66% improvement). We also noticed
an overall increase in the self-efficacy perception for both Abi-
and Tim-like participants in the Plugin group, highlighting
how solving inclusivity bugs for minorities can also help the
majority population.

In future work, we plan to use our results to continue
exploring the inclusivity barriers in tools and infrastructure to
improve newcomers’ performance and make tools and projects
more friendly for those who want to engage in OSS projects.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under grant numbers 1900903, 1901031, 2236198,
2235601, CNPq #313067/2020-1, CNPq/MCTI/FNDCT
#408812/2021-4, and MCTIC/CGI/FAPESP #2021/06662-1.
We also thank the students for participating in our study and
Zachary Spielberger for helping develop the plugin.

REFERENCES

[1] M. Gerosa, I. Wiese, B. Trinkenreich, G. Link, G. Robles, C. Treude,
I. Steinmacher, and A. Sarma, “The shifting sands of motivation:
Revisiting what drives contributors in open source,” in ICSE 2021.
IEEE, 2021.

[2] G. Von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots
and rainbows: motivation and social practice in open source software
development,” MIS Q, 2012.

[3] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration
in open source ecosystems,” in 19th ESEC/FSE 2011. ACM, 2011.

[4] Y. Cai and D. Zhu, “Reputation in an open source software community:
antecedents and impacts,” Decision Support Systems, 2016.

[5] D. Riehle, “How open source is changing the software developer’s
career.” Computer, 2015.

[6] E. Parra, S. Haiduc, and R. James, “Making a difference: an overview
of humanitarian free open source systems,” in ICSE 2016-Companion.
ACM, 2016.

[7] G. J. Greene and B. Fischer, “Cvexplorer: identifying candidate devel-
opers by mining and exploring their open source contributions,” in ASE
2016. ACM, 2016.

[8] I. Steinmacher, T. Conte, M. Gerosa, and D. Redmiles, “Social barriers
faced by newcomers placing their first contribution in open source
software projects,” in ACM CSCW 2015, 2015.

[9] S. H. Padala, C. J. Mendez, L. F. Dias, I. Steinmacher, Z. S. Hanson,
C. Hilderbrand, A. Horvath, C. Hill, L. D. Simpson, M. Burnett
et al., “How gender-biased tools shape newcomer experiences in OSS
projects,” IEEE TSE, 2020.

[10] C. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand, A. Horvath,
C. Hill, L. Simpson, N. Patil, A. Sarma, and M. Burnett, “Open source
barriers to entry, revisited: a sociotechnical perspective,” in ICSE 2018,
2018.

[11] B. Trinkenreich, I. Wiese, A. Sarma, M. Gerosa, and I. Steinmacher,
“Women’s participation in open source software: a survey of the litera-
ture,” ACM TOSEM, 2022.

[12] S. K. Horwitz and I. B. Horwitz, “The effects of team diversity on
team outcomes: a meta-analytic review of team demography,” Journal
of Management, 2007.

[13] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik,
P. Devanbu, and V. Filkov, “Gender and tenure diversity in GitHub
teams,” in ACM CHI Conference, 2015.

[14] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online
peer production: activity traces and personal profiles in GitHub,” in ACM
CSCW 2013. ACM, 2013.

[15] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, and
K. Schneider, “Mutual assessment in the social programmer ecosystem:
an empirical investigation of developer profile aggregators,” in ACM
CSCW 2013, 2013.

[16] D. Ford, A. Harkins, and C. Parnin, “Someone like me: how does peer
parity influence participation of women on stack overflow?” in VL/HCC
2017. IEEE CS, 2017.

[17] G. Robles, L. A. Reina, J. M. González-Barahona, and S. D. Domı́nguez,
“Women in free/libre/open source software: the situation in the 2010s,”
in OSS Conference 2016. Springer, 2016.

[18] M. Burnett, S. D. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Farooq,
V. Grigoreanu, and M. Czerwinski, “Gender differences and program-
ming environments: across programming populations,” in ESEM 2010.
ACM, 2010.

[19] A.-M. Cazan, E. Cocoradă, and C. I. Maican, “Computer anxiety and
attitudes towards the computer and the internet with romanian high-
school and university students,” Computers in Human Behavior, 2016.

[20] A. Singh, V. Bhadauria, A. Jain, and A. Gurung, “Role of gender,
self-efficacy, anxiety and testing formats in learning spreadsheets,”
Computers in Human Behavior, 2013.

[21] A. Chatterjee, M. Guizani, C. Stevens, J. Emard, M. E. May, M. Burnett,
I. Ahmed, and A. Sarma, “Aid: an automated detector for gender-
inclusivity bugs in OSS project pages,” in ICSE 2021. IEEE, 2021.

[22] M. Guizani, I. Steinmacher, J. Emard, A. Fallatah, M. Burnett, and
A. Sarma, “How to debug inclusivity bugs? a debugging process with
information architecture,” in ICSE-SEIS 2022, 2022.

[23] I. Santos, I. Wiese, I. Steinmacher, A. Sarma, and M. A. Gerosa, “Hits
and misses: Newcomers’ ability to identify skills needed for oss tasks,”
in 2022 SANER, 2022.

[24] C. Hannebauer and V. Gruhn, “On the relationship between newcomer
motivations and contribution barriers in open source projects,” in Open-
Sym’17. ACM, 2017.

[25] C. Jensen, S. King, and V. Kuechler, “Joining free/open source software
communities: an analysis of newbies’ first interactions on project mailing
lists,” in 44th HICSS. IEEE, 2011.

[26] I. Steinmacher, A. P. Chaves, T. Conte, and M. Gerosa, “Preliminary
empirical identification of barriers faced by newcomers to open source
software projects,” in SBES 2014. IEEE CS, 2014.

[27] A. Bosu and K. Z. Sultana, “Diversity and inclusion in open source
software (oss) projects: where do we stand?” in ESEM 2019, 2019.

[28] G. Prana, D. Ford, A. Rastogi, D. Lo, R. Purandare, and N. Nagap-
pan, “Including everyone, everywhere: understanding opportunities and
challenges of geographic gender-inclusion in oss,” IEEE TSE, 2021.

[29] M. Guizani, A. Chatterjee, B. Trinkenreich, M. E. May, G. J. Noa-
Guevara, L. J. Russell, G. G. Cuevas Zambrano, D. Izquierdo-Cortazar,
I. Steinmacher, M. Gerosa et al., “The long road ahead: ongoing
challenges in contributing to large OSS organizations and what to do,”
Proc. ACM Hum.-Comput. Interact., 2021.

[30] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and D. M.
German, “How social and communication channels shape and challenge
a participatory culture in software development,” IEEE TSE, 2016.

[31] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. Gerosa,
“Newcomers’ barriers... is that all? an analysis of mentors’ and new-
comers’ barriers in OSS projects,” Computer Supported Cooperative
Work (CSCW), 2018.

[32] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. R. Murphy-Hill, and
C. Parnin, “Gender bias in open source: pull request acceptance of
women versus men.” PeerJ Prepr., 2016.

[33] J. Feller and B. Fitzgerald, “A framework analysis of the open source
software development paradigm,” in ICIS 2000. Association for
Information Systems, 2000.

[34] J. B. Miller, Toward a new psychology of women. Boston, USA: Beacon
Press, 2012.

[35] M. V. Vugt, D. D. Cremer, and D. P. Janssen, “Gender differences in co-
operation and competition: the male-warrior hypothesis,” Psychological
Science, 2007.

[36] D. Nafus, “‘patches don’t have gender’: what is not open in open source
software,” New Media & Society, 2012.

[37] S. Turkle, The second self: computers and the human spirit. Mit Press,
2005.

[38] M. Burnett, S. Stumpf, J. Macbeth, S. Makri, L. Beckwith, I. Kwan,
A. Peters, and W. Jernigan, “Gendermag: A method for evaluating
software’s gender inclusiveness,” Interacting with Computers, 2016.

[39] F. Fagerholm, M. Felderer, D. Fucci, M. Unterkalmsteiner, B. Mar-
culescu, M. Martini, L. G. W. Tengberg, R. Feldt, B. Lehtelä,
B. Nagyváradi et al., “Cognition in software engineering: A taxonomy
and survey of a half-century of research,” ACM Computing Surveys,
2022.

[40] C. Mendez, A. Sarma, and M. Burnett, “Gender in open source software:
what the tools tell,” in 1st Int. Workshop on Gender Equality in Software
Engineering. ACM, 2018.

[41] M. Burnett, A. Peters, C. Hill, and N. Elarief, “Finding gender-
inclusiveness software issues with gendermag: a field investigation,” in
ACM CHI Conference, 2016.

[42] S. J. Cunningham, A. Hinze, and D. M. Nichols, “Supporting gender-
neutral digital library creation: a case study using the gendermag toolkit,”
in Int. Conf. on Asian Digital Libraries. Springer, 2016.

[43] A. Shekhar and N. Marsden, “Cognitive walkthrough of a learning
management system with gendered personas,” in 4th Conf. on Gender
& IT. ACM, 2018.

[44] M. Vorvoreanu, L. Zhang, Y.-H. Huang, C. Hilderbrand, Z. Steine-
Hanson, and M. Burnett, “From gender biases to gender-inclusive
design: an empirical investigation,” in ACM CHI Conference, 2019.

[45] J. Margolis and A. Fisher, Unlocking the clubhouse: women in comput-
ing. MIT Press, 2002.

[46] M. M. Burnett, L. Beckwith, S. Wiedenbeck, S. D. Fleming, J. Cao,
T. H. Park, V. Grigoreanu, and K. Rector, “Gender pluralism in problem-
solving software,” Interacting with Computers, 2011.

[47] R. Riedl, M. Hubert, and P. Kenning, “Are there neural gender differ-
ences in online trust? an fmri study on the perceived trustworthiness of
ebay offers,” MIS Q, 2010.

[48] J. Meyers-Levy and B. Loken, “Revisiting gender differences: what we
know and what lies ahead,” Journal of Consumer Psychology, 2015.

[49] T. Dohmen, A. Falk, D. Huffman, U. Sunde, J. Schupp, and G. G.
Wagner, “Individual risk attitudes: measurement, determinants, and be-
havioral consequences,” Journal of the European Economic Association,
2011.

[50] G. Charness and U. Gneezy, “Strong evidence for gender differences in
risk taking,” Journal of Economic Behavior & Organization, 2012.

[51] L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook, “Tinkering and gender in end-user pro-
grammers’ debugging,” in ACM CHI Conference, 2006.

[52] J. Cao, K. Rector, T. H. Park, S. D. Fleming, M. Burnett, and S. Wieden-
beck, “A debugging perspective on end-user mashup programming,” in
2010 IEEE Symp. on Visual Languages and Human-Centric Computing,
IEEE. IEEE CS, 2010.

[53] A. Chatterjee, L. Letaw, R. Garcia, D. U. Reddy, R. Choudhuri, S. S.
Kumar, P. Morreale, A. Sarma, and M. Burnett, “Inclusivity bugs in
online courseware: A field study,” in ICER 2022, 2022.

[54] M. Burnett, S. Stumpf, L. Beckwith, and A. Peters, “The gendermag kit:
how to use the gendermag method to find inclusiveness issues through
a gender lens,” 2018.

[55] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[56] I. Steinmacher, T. Conte, C. Treude, and M. Gerosa, “Overcoming open
source project entry barriers with a portal for newcomers,” in ICSE 2016,
2016.

[57] A. K. Montoya, “Selecting a within-or between-subject design for medi-
ation: Validity, causality, and statistical power,” Multivariate Behavioral
Research, 2022.

[58] M. M. Hamid, A. Chatterjee, M. Guizani, A. Anderson, F. Moussaoui,
S. Yang, I. Escobar, A. Sarma, and M. Burnett, “How to measure
diversity actionably in technology.” Equity, Diversity, and Inclusion in
Software Engineering: Best Practices and Insights, 2023.

[59] A. Bandura, “Social cognitive theory of moral thought and action,” in
Handbook of Moral Behavior and Development. Psychology press,
2014.

[60] A. Strauss and J. Corbin, Basics of qualitative research techniques. Sage
Publications, 1998.

[61] O. Sureiman, “Conceptual model on application of chi-square test in
education and social sciences,” Educational Research and Reviews,
vol. 8, no. 15, 2013.

[62] B. Rosner, R. J. Glynn, and M.-L. T. Lee, “The wilcoxon signed rank
test for paired comparisons of clustered data,” Biometrics, 2006.

[63] N. Cliff, “Dominance statistics: ordinal analyses to answer ordinal
questions.” Psychological Bulletin, 1993.

[64] Z. Wang, Y. Wang, and D. Redmiles, “Competence-confidence gap:
a threat to female developers’ contribution on GitHub,” in ICSE-SEIS
2018. IEEE, 2018.

[65] A. H. Huffman, J. Whetten, and W. H. Huffman, “Using technology
in higher education: the influence of gender roles on technology self-
efficacy,” Computers in Human Behavior, 2013.

[66] B. Trinkenreich, K.-J. Stol, A. Sarma, D. German, M. Gerosa, and
I. Steinmacher, “Do i belong? modeling sense of virtual community
among linux kernel contributors,” in International Conference on Soft-
ware Engineering (ICSE 2023). IEEE, 2023.

[67] S. Balali, U. Annamalai, H. S. Padala, B. Trinkenreich, M. A. Gerosa,
I. Steinmacher, and A. Sarma, “Recommending tasks to newcomers in
OSS projects: how do mentors handle it?” in OpenSym’20. ACM, 2020.

[68] I. Steinmacher, T. Conte, and M. Gerosa, “Understanding and supporting
the choice of an appropriate task to start with in open source software
communities,” in HICSS 2015. IEEE CS, 2015.

[69] G. H. L. Pinto, F. F. Filho, I. Steinmacher, and M. Gerosa, “Training
software engineers using open-source software: The professors’ perspec-
tive,” in CSEE&T. IEEE, 2017.

[70] C. Hilderbrand, C. Perdriau, L. Letaw, J. Emard, Z. Steine-Hanson,
M. Burnett, and A. Sarma, “Engineering gender-inclusivity into soft-
ware: ten teams’ tales from the trenches,” in ICSE 2020. ACM, 2020.

[71] D. Ford, J. Smith, P. J. Guo, and C. Parnin, “Paradise unplugged:
identifying barriers for female participation on stack overflow,” in 24th
ESEC/FSE 2016, 2016.

