
Do CONTRIBUTING Files Provide Information about OSS
Newcomers’ Onboarding Barriers?

Felipe Fronchetti
Virginia Commonwealth University

Richmond, USA
fronchettl@vcu.edu

David C. Shepherd
Lousiana State University

Baton Rouge, USA
dshepherd@lsu.edu

Igor Wiese
Universidade Tecnologica Federal do

Parana
Campo Mourao, Brazil
igor@utfpr.edu.br

Christoph Treude
The University of Melbourne

Melbourne, Australia
christoph.treude@unimelb.edu.au

Marco Aurélio Gerosa
Northern Arizona University

Flagstaff, USA
marco.gerosa@nau.edu

Igor Steinmacher
Northern Arizona University

Flagstaff, USA
igor.steinmacher@nau.edu

ABSTRACT
Effectively onboarding newcomers is essential for the success of
open source projects. These projects often provide onboarding
guidelines in their ‘CONTRIBUTING’ files (e.g., CONTRIBUTING.md
on GitHub). These files explain, for example, how to find open tasks,
implement solutions, and submit code for review. However, these
files often do not follow a standard structure, can be too large, and
miss barriers commonly found by newcomers. In this paper, we
propose an automated approach to parse these CONTRIBUTING
files and assess how they address onboarding barriers. We manually
classified a sample of files according to a model of onboarding bar-
riers from the literature, trained a machine learning classifier that
automatically predicts the categories of each paragraph (precision:
0.655, recall: 0.662), and surveyed developers to investigate their
perspective of the predictions’ adequacy (75% of the predictions
were considered adequate). We found that CONTRIBUTING files
typically do not cover the barriers newcomers face (52% of the
analyzed projects missed at least 3 out of the 6 barriers faced by
newcomers; 84% missed at least 2). Our analysis also revealed that
information about choosing a task and talking with the community,
two of the most recurrent barriers newcomers face, are neglected in
more than 75% of the projects. Wemade available our classifier as an
online service that analyzes the content of a given CONTRIBUTING
file. Our approach may help community builders identify missing
information in the project ecosystem they maintain and newcomers
can understand what to expect in CONTRIBUTING files.

CCS CONCEPTS
• Software and its engineering→Open sourcemodel; •Human-
centered computing → Collaborative and social computing
systems and tools.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616288

KEYWORDS
novices, onboarding, FLOSS, open source, software engineering

ACM Reference Format:
Felipe Fronchetti, David C. Shepherd, Igor Wiese, Christoph Treude, Marco
Aurélio Gerosa, and Igor Steinmacher. 2023. Do CONTRIBUTING Files
Provide Information about OSS Newcomers’ Onboarding Barriers?. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3611643.3616288

1 INTRODUCTION
Newcomers to Open Source Software (OSS) projects encounter
several barriers to making their first contribution [73]. For example,
an overly complex codebase or a workspace that is challenging
to build saps newcomers’ motivation to contribute [76]. Research
shows that these barriers discourage newcomers, who often give
up before completing a single contribution [48].

To onboard, newcomers usually consult the project’s documen-
tation or contact the project team [22, 34, 41]. Yet project members
are busy making their own contributions, can only help a limited
number of newcomers at a time, and may not be able to manage
synchronous communication due to time zone differences [23, 35].
For onboarding newcomers, appropriate documentation is more
efficient and scalable [71, 74].

Unfortunately, most OSS projects’ existing documentation is
either low quality or non-existent [1, 41, 76]. Some studies point to
problems such as documentation files that are incorrect, incomplete,
and outdated [1, 48]. Other studies identified further documentation
barriers for newcomers, including unclear, and scattered documen-
tation, with information overload from unimportant information
sharply contrasting with missing necessary information [73]. These
and other documentation deficiencies impact all contributors but
have more impact on newcomers since they need to orient them-
selves in a new environment [34].

Previous work [74, 78] showed that newcomers found them-
selves more oriented and understood the process better when the
right information was provided in an organized way. However,
little work has specifically focused on enhancing newcomers’ doc-
umentation and identifying what information is missing from the

https://doi.org/10.1145/3611643.3616288
https://doi.org/10.1145/3611643.3616288

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Fronchetti et al.

contribution guidelines [74]. With the goal of improving this situa-
tion, we automatically analyze and classify the distinct information
types contained in existing CONTRIBUTING documentation aimed
at newcomers. In this study, we answer the following research
questions:
RQ1. How accurately can we automatically classify the content

of CONTRIBUTING files in GitHub projects?
RQ2. To what extent do OSS projects’ CONTRIBUTING files cover

content related to newcomers’ contribution barriers?
To answer these questions, we created an oracle by manually

annotating the CONTRIBUTING files from 500 software projects
according to the newcomers’ barriers model proposed by Stein-
macher et al. [73]. Then, we trained a machine learning classifi-
cation model that identifies Steinmacher et al.’s six categories of
barriers (precision: 0.655, recall: 0.662). The results were further
validated through a survey with experienced developers, where
the developers agreed that ≈75% of the categories predicted were
adequate. Finally, we used our model across 2,274 publicly available
projects to better understand to what extent contribution files cover
the information about the barriers faced by newcomers. We found
that CONTRIBUTING files are woefully inadequate for supporting
newcomers. Most contain four or fewer of the six expected cate-
gories of onboarding barriers, and thousands of projects (≈65%) do
not have a contribution file.

To facilitate researchers and practitioners to build upon our
work by accessing its categorization model, we developed an online
service that automatically analyzes the content of a given CON-
TRIBUTING file (http://contributing.streamlit.app/). Our tool offers
potential benefits for project maintainers and community managers
by allowing them to evaluate and enhance their CONTRIBUTING
files based on feedback from our classifier. This becomes espe-
cially significant in ecosystems comprising multiple projects, where
community managers oversee various distinct projects. Achieving
consistency across projects is crucial to reduce cognitive load and
promote smooth transitions between projects within a software
ecosystem. Adhering to the maintenance of CONTRIBUTING files
is a recognized best practice to assist newcomers in onboarding
open source software projects [71].

2 RELATEDWORK
In this section, we highlight related studies about documentation in
OSS, the automatic categorization of software engineering artifacts,
and barriers newcomers face in OSS projects.

Documentation issues in OSS repositories. Documentation
plays a crucial role in software projects, and deficiencies in docu-
mentation files can hinder their utility for developers [39, 49, 68].
Lethbridge et al. [42] identify that documentation files contain ex-
cessive information, are hard to maintain, and make it challenging
to locate helpful information. Such considerations are also present
in the context of OSS communities [1, 18, 77]. According to Dias et
al. [15], from the perspective of OSS developers and maintainers,
OSS contributors need to ensure the quality and consistency of doc-
umentation files. Our study helps to process existing documentation
files and classify content relevant for newcomers, helping maintain-
ers identify missing information in their contributing guidelines
and newcomers locate relevant information.

Automatic classification of software engineering artifacts.
Several studies have automated the categorization of artifacts in
software engineering [27, 43, 62]. For example, Prana et al. [61]
broke down the headers of README files in OSS repositories into
eight categories of information. Based on the manual annotation
of 4,226 README file sections, the authors implemented a classifi-
cation model that automatically identifies the context of a section
in a README file. They argue that labeling sections makes the
knowledge discovery process easier for visitors. We followed a
similar method and share their idea that categories may help navi-
gate the information space, especially for outsiders. For a different
type of documentation file, Robillard and Chhetri [65] categorized
text fragments from API documentation based on their relevance
for programmers. The authors proposed a coding guide and an
automated technique to classify text fragments into three levels of
relevance for programmers. The variety of studies exploring the
automatic categorization of information in software-related arti-
facts is wide (e.g., [45, 60, 87]), but our study is among the first to
automatically categorize information in contribution guidelines to
address newcomers’ contribution barriers.

Newcomers in OSS communities: Supporting and engaging
newcomers increases the likelihood of newcomers completing their
contributions, which is essential for the long-term viability of OSS
projects [25, 57, 78, 81]. Without adequate retention, project devel-
opment progress slows, jeopardizing the existence of such com-
munities [80]. To study this issue, researchers identified different
obstacles newcomers face in the onboarding process, focusing on
the period between their initial contact with the OSS community
and their first contribution [1, 76–78].

Steinmacher et al. [73] propose a taxonomy of 58 barriers new-
comers face when joining OSS projects. Documentation issues ap-
pear as a central source of problems for newcomers, including al-
ready mentioned challenges such as information overload, scattered
and outdated documentation, and lack of necessary project infor-
mation. Some researchers investigated how existing approaches
support newcomers onboarding. More specifically, they focus on un-
derstanding labels to guide newcomers to choose their tasks [80, 81],
exploring the role of Q&A websites in helping the onboarding [84],
and code visualization [57]. Other studies discuss how documen-
tation can help and cause problems and how it may impact the
newcomers’ experience [47, 55]. We believe our results inform OSS
projects toward better supporting newcomers with the information
they need when joining a project.

It is clear from the literature that documentation is critical for
onboarding newcomers in OSS. Despite the efforts in categorizing
artifacts related to project documentation, no body of knowledge
exists about the appropriateness of contribution guidelines for on-
boarding newcomers. In this paper, we address this by analyzing
the content of CONTRIBUTING files fromOSS repositories in terms
of barriers newcomers face.

3 RESEARCH METHOD OVERVIEW
To answer our research questions, we manually analyzed CON-
TRIBUTING files from 500 projects and built a classifier to label
information known to be relevant for newcomers. According to
GitHub [31] guidelines, CONTRIBUTING files are where one should

http://contributing.streamlit.app/

Do CONTRIBUTING Files Provide Information about OSS Newcomers’ Onboarding Barriers? ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Extraction of repositories'
CONTRIBUTING.md files

using GitHub API

Selection of repositories
hosted on GitHub

based on their popularity
level and programming

language

Conversion of
CONTRIBUTING.md

paragraphs to spreadsheets
for annotation

Annotation
of paragraphs

based on information
known to be relevant

for newcomers

Data Extraction
Data

Analysis

Text preprocessing on
annotated paragraphs

Conversion of
paragraphs into

TF-IDF and
 heuristic-based features

Feature Selection

Preprocessing

Classification

Training and
selection of
best classifier

Evaluation

Evaluation of selected
classifier on test data

Application of a survey to
evaluate classifier

predictions

9514
projects

2915
files

Categories Definition
Six categories of information known
to be relevant for newcomers were

used for analysis

Prediction

CONTRIBUTING.md file
of 2.274 projects

predicted by the best
classification model

20.773
paragraphs

Figure 1: Research method followed in this research, from building the corpus to assessing the classifier

"create guidelines to communicate how people should contribute to
your project." Additionally, the Open Source guide [53] reinforces
that "a CONTRIBUTING file tells your audience how to participate
in your project... [and] is an opportunity to communicate your ex-
pectations for contributions." Therefore, newcomers expect to find
relevant information to avoid common onboarding barriers [73].

The research method was conducted in six steps, as presented in
Figure 1: (1) We extracted the CONTRIBUTING files from 2,913 OSS
projects hosted on GitHub. (2) The paragraphs of a random sample
of files were manually annotated. (3) The annotated paragraphs
were pre-processed and then converted into statistical features
(i.e., term frequency-inverse document frequency) and heuristic-
based features (in which a rule-based approach was performed). (4)
We trained five different classification models with these features
and compared their performances. (5) We surveyed developers to
assess the quality of the classifications. (6) Finally, we used our
model to classify the content of 2,274 CONTRIBUTING files and to
understand to what extent they cover the onboarding barriers.

All scripts, models, data, and results are available in our replica-
tion package [20]. In the following, we present more details of the
method and results of each step.

4 BUILDING THE CORPUS
To train our models we collected and manually categorized the
content of CONTRIBUTING files from a set of OSS projects.

4.1 Categories Definition
We manually labeled each paragraph of the 500 CONTRIBUTING
files according to the way Steinmacher et al. organized the cate-
gories of barriers on the FLOSScoach portal [78]. The portal was
created based on a barriers model built based on a systematic liter-
ature review, interviews with multiple stakeholders, and surveys
within OSS communities, providing a comprehensive aggregation of
the barriers newcomers face when joining OSS projects. In addition
to the comprehensiveness of the model, we chose to follow these
categories since the work by Steinmacher et al. [74, 78] showed
that organizing the information in these categories lowered the
barriers related to orientation and contribution process. These are
the categories we used:

CF - Contribution flow: Derived from the “Newcomer Orien-
tation” barrier category mapped to the contribution flow shown
under “How to Start” in FLOSScoach, this category defines the steps
that a newcomer needs to follow to contribute to the project. This
category appears as, for example, an ordered list of steps to follow
or as a set of paragraphs describing the current project workflow.
CT - Choose a task: Also derived from the “Newcomer Orienta-
tion” barrier, it is mapped from the “Choose a Task” menu item
in FLOSScoach. This category explains how newcomers can find
a task (or issue) to contribute to the project. It may also contain
descriptions of different types of tasks appropriate for newcomers.
TC - Talk to the community: Related to the “Communication
Issues” barriers, this category refers to information about how a
newcomer can get in touch with community members and how to
find a mentor. This category includes, for example, links to commu-
nication channels, communication etiquette, community guidelines,
and tutorials on how to start a conversation.
BW - Build local workspace:Mapped from the “Local Environ-
ment SetupHurdles,” this category determines the steps a newcomer
needs to follow to build the local workspace. It may include instruc-
tions such as bash commands and changes in computer settings.
DC - Deal with the code: Derived from “Code/Architecture Hur-
dles,” it describes how newcomers should deal with the source code.
This category may contain code conventions, descriptions of the
source code, and guidelines on how to write code for the project.
SC - Submit the changes: Directly mapped from “Change Re-
quest Hurdles,” this category represents information about how
newcomers should submit a contribution to the project.

4.2 Data Collection
4.2.1 Project Selection. We selected the most popular OSS reposi-
tories hosted on GitHub when we started the data collection (Aug
2020), written in at least one of the top 10 programming languages
used in the platform. We selected projects based on their popular-
ity and programming language to avoid repositories that were toy
projects or unrelated to software development. The selection of
projects by popularity was based on the study of Borges et al. [8],
which discusses stars as a unit to measure the popularity of OSS
projects on GitHub, and shows that, in their population, “three out
of four developers consider the number of stars before using or

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Fronchetti et al.

Table 1: Number of projects removed per language and their respective reasons for exclusion. The “n” value represents the total
number of projects collected for a language. CONTRIBUTING files may have been excluded for more than one reason.

Removed because JavaScript Python Java PHP C# C++ TypeScript Shell C Ruby
CONTRIBUTING... (n=824) (n=929) (n=942) (n=941) (n=990) (n=942) (n=990) (n=990) (n=947) (n=1019)

was missing 381 (46%) 527 (57%) 692 (73%) 593 (63%) 651 (66%) 604 (64%) 474 (48%) 785 (79%) 702 (74%) 646 (63%)
size <0.5kB 41 (5%) 37 (4%) 22 (2%) 49 (5%) 54 (5%) 35 (4%) 42 (4%) 23 (2%) 28 (3%) 33 (3%)
was not in English 3 (< 1%) 12 (1%) 4 (< 1%) 4 (< 1%) 3 (< 1%) 2 (< 1%) 3 (< 1%) 4 (< 1%) 2 (< 1%) 1 (< 1%)
was not in Markdown 2 (< 1%) 91 (10%) 5 (1%) 4 (< 1%) 1 (< 1%) 14 (1%) 4 (< 1%) 6 (1%) 26 (3%) 11 (1%)

Projects removed 425 (52%) 661 (71%) 721 (76%) 647 (68%) 709 (71%) 651 (69%) 521 (52%) 818 (82%) 755 (79%) 691 (67%)

contributing to a GitHub project”. In addition to it, this is a fairly
common way to sample projects on GitHub [33, 59, 61, 63, 75].

To identify the top 10 most-used languages, we used the ranking
provided by GitHub Octoverse [29], which showed, at that time:
JavaScript, Python, Java, PHP, C#, C++, TypeScript, Shell, C, and
Ruby. We aimed to get the first 1,000 projects per language ranked
by stars. However, the GitHub API provides only a few pages con-
taining the top projects and we could not collect 1,000 projects for
some languages. We collected a total of 9,514 repositories.

To ensure that all the selected repositories had a valid CON-
TRIBUTING file, we defined a set of filters to remove projects in
our dataset. We removed from our sample the projects that had a
CONTRIBUTING file:

i. missing—we focused only on projects that followed the guide-
lines from GitHub to keep in this specific file information
about how to contribute;

ii. smaller than 0.5kB—to filter out those files that redirect to
guidelines not hosted on GitHub, or empty files;

iii. written in a language other than English;
iv. not in Markdown format—which was the most prevalent

format in our sample (3,295 out of 3,459 projects that had a
CONTRIBUTING file were in Markdown–95.2%).

0 100 200 300 400

Contributors

0 500 1000 1500 2000 2500 3000 3500

Forks

0 1000 2000 3000

Pull requests

0 5000 10000 15000 20000

Stars

Figure 2: Distribution of contributors, forks, pull requests,
and stars per project considered as valid.

Table 1 shows the number of projects per programming language
removed from our dataset. The final set of repositories comprised

2,915 projects. After applying the filters, we kept a diverse number
of projects in terms of the number of contributors, forks, pull re-
quests, and stars (see Figure 2). The programming languages with
the highest number of repositories included in the analysis were
TypeScript, JavaScript, and Ruby.

4.2.2 Documentation Formatting. To prepare the projects for the
qualitative analysis, we converted the contribution files into spread-
sheets. Each spreadsheet maps to all paragraphs of one contributing
file in our sample. The first column of each row of the spreadsheet
contained in plaintext format one paragraph of the documenta-
tion file for the respective project. We followed the definition of a
paragraph provided by the specification of GitHub Flavored Mark-
down [30], which specifies it as “a sequence of non-blank lines that
cannot be interpreted as other kinds of blocks forms.” To facilitate the
work of the annotators, we created headers for six columns, each
representing one of the six categories we aimed to identify during
the qualitative analysis.

4.3 Data Annotation
After transforming the CONTRIBUTING files into spreadsheets,
we conducted the annotation process. We annotated a total of 500
spreadsheets (from 500 projects). In the first step, two annotators la-
beled 30 spreadsheets of a random subset of projects and discussed
how the categories should be assigned to each paragraph. To mea-
sure the agreement between the annotators, they independently
labeled the spreadsheets divided into three consecutive stages—
consisting of 10 spreadsheets per stage. The annotation consisted of
analyzing and labeling each paragraph according to the categories
presented in Section 4.1. At the end of each stage, the reviewers
compared their labels and discussed their differences to align their
understanding of each category. We use Cohen’s kappa coeffi-
cient to measure the agreement between the annotators [13]. After
the first stage, the annotators reached an agreement of 73% and
discussed the potential meaning of categories. For the other two
stages, the agreement was 85% and 79%, respectively. The overall
agreement between the annotators was 79%, which was considered
sufficient given the multi-class nature of the data.

4.3.1 Documentation Annotation. After reaching a substantial agree-
ment, the reviewers proceeded to analyze the remaining files, which
were split between them. A total of 500 spreadsheets were anno-
tated during the qualitative analysis, resulting in 20,733 paragraphs
analyzed. We had to dismiss 66 files that did not present any infor-
mation about the six categories of barriers, which were replaced by

Do CONTRIBUTING Files Provide Information about OSS Newcomers’ Onboarding Barriers? ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

66 other files from our dataset. After the replacement, we ended up
with 19,961 paragraphs.

4.4 Corpus Characterization
In Figure 3, we present the distribution of paragraphs analyzed per
file. The average number of paragraphs for our set of 500 projects
was 41, and the median was 29. Two projects had only 2 paragraphs
(minimum), and one had 422 paragraphs in a single file (maximum).

0 20 40 60 80 100

Figure 3: Distribution of paragraphs per file.

Table 2 shows the distribution of categories in our sample. More
than 6,000 paragraphs were categorized as "Submit the changes",
and more than 2,000 as "Deal with the code" and "Contribution
flow." On the other hand, "Choose a task" and "Talk to the com-
munity" appear in 116 and 183 paragraphs respectively. Still, 7,461
paragraphs could not be categorized under any category. We ana-
lyzed these paragraphs and found different types of content that did
not belong to any category. The most recurring cases were: "thank
you" messages; license statements or the complete license; links to
other sites; instructions on how to open an issue; information in
different languages; GitHub badges; and lists of contributors.

Table 2: Characterization of the dataset considering the six
categories of barriers [74]
Category # Paragraphs # Projects Avg. per file

Choose a Task 116 (0.58%) 116 (23%) 1
Talk to the Community 183 (0.92%) 183 (37%) 1
Build Local Workspace 1,444 (7.23%) 139 (28%) 10.4
Contribution Flow 2,088 (10.64%) 319 (64%) 6.5
Deal with the Code 2,495 (12.5%) 280 (56%) 8.9
Submit the Changes 6,174 (30.93%) 396 (79%) 15.6
No category 7,461 (37.38%) 483 (97%) 15.4

5 BUILDING AND EVALUATING THE
CLASSIFIER

We trained machine learning models to classify information accord-
ing to the six categories defined in Section 4.1. The 500 annotated
spreadsheets were used to extract features for classification (Sec-
tion 5.1). The data was prepared using text pre-processing tech-
niques. The features created were divided into statistical features
(i.e., extracted using statistical methods) and heuristic features (i.e.,
extracted through identifying linguistic patterns).

The features were then applied to supervised learning algorithms
to find the best classification model for this problem (Section 5.2).
The annotated dataset was split into two random subsets. A training
set (80% of the dataset) was used to compare the different classi-
fiers, and a test set (20% of the dataset) was reserved for testing
the classification algorithm with the highest evaluation score. The
algorithms were evaluated based on their classification scores, and
a final model was trained using the best-performing classification

algorithm (Section 5.5). Figure 4 provides an overview of the classi-
fication process, which is detailed in the following sections.

Test Set

Evaluate Estimators Performance
Using five supervised learning algorithms, we executed:

Nested Cross-Validation (10-fold + GridSearch)

Training
Best algorithm + Best Configuration

Text Preprocessing
Lemmatization, stop words and punctuation removal on text column

Training Set

Spreadsheets
Text column + Columns of relevant categories

Feature Extraction
Conversion of text column to TF-IDF and heuristic features

Final evaluation
Analysis of evaluation metrics

Text Preprocessing
(Separately)

Feature Extraction
(Separately)

Figure 4: The classification process.

5.1 Feature Extraction
In the feature extraction process, the annotated paragraphs (Section
4.3) were converted into numerical data. We divided the feature
extraction process into four stages: text pre-processing, the defini-
tion of statistical features, the definition of heuristic features, and
feature selection.

5.1.1 Text Pre-processing. Before creating any features for the clas-
sifier, three pre-processing techniques used in text classification
were applied to the paragraphs: lemmatization, stop words, and
punctuation removal. In the lemmatization process, the affixes of
words in each paragraph were removed, turning the words back
to their root form [37]. Words such as submits, submitted, and sub-
mitting, for example, were returned to their root form submit. To
reduce the number of ineffective words in the paragraphs’ classifi-
cation, we also removed stop words, excluding words commonly
found in the English vocabulary (e.g., conjunctions and pronouns)
[86]. For the same purpose, punctuation was also removed from
the text. For both lemmatization and stop words removal, we used
the implementations provided by the NLTK library [44].

5.1.2 Statistical Features. We converted the annotated paragraphs
into TF-IDF features using the TfIdfVectorizer method of the scikit-
learn library [6, 58]. In this approach, we represented words as
n-grams of size one and two [5]. The acronym TF-IDF is a refer-
ence for the multiplication of two statistical measures used in text
classification, term frequency (TF) and inverse document frequency
(IDF) [38, 82]. For term frequency, we measured how often words
occur in a paragraph (number of occurrences of each word per
paragraph, divided by the total words in that paragraph). For the
inverse document frequency, we counted how often words occur
compared to the entire set of paragraphs. The multiplication of
both measures gives us statistical features that show the relative
importance of each word.

5.1.3 Heuristic Features. The set of statistical features was com-
bined with heuristics found through qualitative analysis to enrich
the characteristics used in classification. We adopted a strategy

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Fronchetti et al.

used by previous work [56, 61], in which features are generated
by analyzing linguistic patterns in the annotated paragraphs. Dur-
ing the manual analysis, the annotators selected words that could
characterize specific categories and be used as patterns for a classi-
fication based on heuristics. For example, the word “commit” was
commonly found in paragraphs annotated as Submit the changes
(see Table 3 for examples of other categories).

Table 3: Examples of heuristic features per category.

Category Related examples
Contribution Flow Clone, push, merge, pull request, contribution
Choose a task Issue, issue tracker, label, fork
Talk to the community Mailing list, contact, email, conduct, slack
Build local workspace Tool, package, update, dependencies

Deal with the code Code snippet, library, debug,
coding convention, method, variable

Submit the changes Commit, diff, review, test, fetch

Using the rule-basedmatching approach of the Spacy library [72],
we assigned an equal set of heuristic features to each paragraph in
the training process. Each feature represented a pattern; paragraphs
were assigned the value of 1 when they contained the respective
words and 0 otherwise.

5.1.4 Feature Selection. To avoid using features that could be con-
sidered irrelevant to our classification, we removed the ones with
the lowest scores. The SelectPercentile [69] method of the scikit-
learn library was used with Chi-square as the score function. Fea-
tures that fell below the 15𝑡ℎ percentile were removed. Wemanually
tested a set of percentiles (5th, 10th, 15th, 20th) based on the default
value of Scikit-learn [69], which is the 10th percentile. We chose
the 15𝑡ℎ percentile as it performed best, as it is commonly done in
the literature [4, 14, 70].

5.2 Finding the Best Classifier
A set of classifiers was trained to find the best learning algorithm to
solve our classification problem. To train the classifiers, we used two
multi-class training strategies: one-vs-rest (OvR) and one-vs-one
(OvO) [7]. In the OvR strategy, a binary classifier was trained for
each category. The assignment of a category for a paragraph was
then made by identifying the binary classifier that best represented
the respective paragraph (i.e., the one with the best scores). In
the OvO strategy, the samples of each category were grouped in
pairs, and the comparison was made in a binary classifier for two
categories at a time. To identify what category should be assigned
for a paragraph, the predominance of a category among all the pairs
was considered as the decision method.

The following classification algorithms were trained during
this step: RandomForestClassifier, KNeighborsClassifier, LinearSVC,
MultinomialNB, LogisticRegression. The selection was based on
similar studies using text classification in Software Engineering
[56, 61]. As a baseline, we trained two dummy classifiers, one us-
ing the most frequent class label observed in the training set and
one providing completely random predictions. As highlighted in
Table 2, we noticed that the number of instances per category was
unbalanced in our data set, so we used the SMOTE oversampling
technique to achieve a better balance between the classes. The

SMOTE algorithm was implemented using the imbalanced-learn
library [40], a module designed for unbalanced datasets that are
recommended by the scikit-learn community. Still, we used chat-
GPT (GPT 3.5 model) [54] using a few-shot learning approach [10]
to compare our results with the performance of this LLM. For the
few-shot learning, we randomly selected 12 instances of paragraphs
in our training set for each category. Then, we prompted chatGPT
to classify 200 instances randomly selected from our test set.

5.3 Evaluation Metrics
To measure the overall performance of the classifiers, we used
a combination of three evaluation metrics for data classification:
precision, recall, and F1 score. Precision, also known as confidence,
provides the proportion of positive samples that were correctly
predicted, in contrast to all the samples predicted as positive [28, 85].
Recall gives the fraction of positive samples correctly predicted by
the classifier, and the F1 score provides the harmonic mean between
precision and recall values [12, 36]. This is a multi-class problem,
and the resulting values are the weighted average of all classes.

5.4 Cross-validation
We tested the performance of our classifiers using a nested ten-fold
cross-validation strategy [17, 52]. This algorithm divides the dataset
of features and labels into ten parts. The ten parts are combined into
ten different training and validation subsets, also known as folds.
For each fold 𝑖 divided into 𝑘 parts (𝑘 = 10), the 𝑘𝑖 part is used as the
validation set, and the remaining parts are used as training for each
classification algorithm in our list. The average of the weighted F1
scores of the 𝑘 different classifiers gave us an overall performance
for each learning algorithm.

To increase the chance of selecting the best parameters for
each algorithm, we applied the GridSearch method to the cross-
validation internal loop. The values tested were based on the default
values in the scikit-learn library. We selected the best configuration
(i.e., classifier, parameters, and training strategy) to train a final
classification model.

5.5 Classifier Training
With the best learning algorithm selected, we trained a classifier
using the complete dataset used in the previous step (training set in
Fig. 4) and the test set (Fig. 4) was used for testing. This was done
to show the reliability of both the model and the results [56, 61, 69].
This enabled us to use our complete annotated training set (80% of
the sample) and test on the 20% of the original annotated dataset
that was not previously used.

5.6 Classifier Human Evaluation
To further evaluate our classification model, we surveyed 46 indi-
viduals using Amazon Mechanical Turk [2]. We invited only indi-
viduals with prior programming experience by specifying on the
Amazon platform “Employment Industry - Software & IT Services”
as a selection criterion. The survey was divided into training, eval-
uation, and demographics. In the training section, we introduced
the survey and described the six categories of information used
to classify the content. To guarantee that we would only consider
participants who paid attention to our questionnaire, we asked

Do CONTRIBUTING Files Provide Information about OSS Newcomers’ Onboarding Barriers? ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

them to match each category with their corresponding definitions
on a subsequent page. An attention check question was also in-
cluded among the questions of our questionnaire. We dismissed the
answers from 29 participants who selected the wrong definition for
more than one category (28) or did not mark the correct answer
on the attention check (6)—5 of them selected the wrong answers
in both. We ultimately considered 17 valid answers for analysis.
Although the number of remaining participants is small due to
the substantial number of discarded answers, this is considered
a common limitation of crowdsourcing platforms, as suggested
in recent studies [46, 64, 79]). The literature also mentions that
cleaning the answers is necessary to guarantee data quality and
consistency [64].

In the evaluation section, we asked participants to judge the
quality of the predictions. We used paragraphs from CONTRIBUT-
ING files of 75 randomly selected projects that were not part of
the training or test set—and thus were unknown by the classifier.
We randomly selected ten paragraphs classified into each category
from that set of OSS projects to use in the questionnaire. For each
participant, we randomly assigned 18 paragraphs (3 per category).
We gave the same number of sections for each category (instead
of a complete file) per participant to ensure the number of para-
graphs assessed per category was balanced. Moreover, we use an
approach in which the participants recognize if an item belongs
to a category (aided recall) instead of asking the participants to
label them (unaided recall) because items requiring recognition
are easier than items that use unaided recall [9]. So, we provided
annotated paragraphs and asked whether the category was correct.
We asked each participant to rate each prediction using a 4-point
Likert scale (extremely adequate to extremely inadequate). We
employed a 4-point Likert scale to compel respondents to take a
definitive stance, preventing the use of a neutral option [11].

In the demographics section, we asked participants to provide
information about their experience with OSS projects. This section
included twomultiple-choice questions about years of experience in
programming and maintenance of OSS projects and two questions
about their role as participants in OSS (coder or non-coder) and
their contributions to documentation in OSS projects (Yes/No). In
Table 4, we present the overall experience of our participants in
programming and OSS projects. As expected, all of our participants
had some experience in programming, with the majority of them
(64%) having between 3 and 15 years of programming experience.
In terms of experience as maintainers in OSS projects, 82% of our
participants had at least some experience, and 41% of them had
between 3 and 15 years of experience as software maintainers. All
14 participants with experience in OSS defined themselves as coders,
and 10 worked with documentation in their projects.

Table 4: Experience of survey participants in programming
and OSS project maintenance.

Experience / Type Programming OSS
No experience 0 3
Less than or equal to 3 years 4 7
Greater than 3 years and less than 15 years 11 7
Greater than or equal to 15 years 2 0

Table 5: F1 scores for classifiers tested in the ten-fold cross-
validation process.

With SMOTE Without SMOTE
OvR OvO OvR OvO

RF 0.636 0.625 0.620 0.609
kNN 0.563 0.566 0.516 0.530
SVC 0.630 0.634 0.652 0.646
LR 0.612 0.606 0.617 0.602
NB 0.579 0.580 0.636 0.633
Dummy (Freq.) 0.001 0.009 0.001 0.190
Dummy (Rand.) 0.001 0.010 0.001 0.010
chatGPT (macro F1) 0.272

6 RQ1. HOW ACCURATELY CANWE
AUTOMATICALLY CLASSIFY THE CONTENT
OF CONTRIBUTING FILES?

This section details the evaluation of the machine learning models.

6.1 Comparing Different Classifiers
To identify the best classifier for our problem, we compared the
outputs of five machine learning algorithms and two dummy algo-
rithms in a ten-fold cross-validation process, in addition to chatGPT
with a few-shot learning approach [10]. Table 5 presents the F1
scores for each classifier. The best F1 score of 0.652 is from the Lin-
earSVC classifier, without oversampling and using the OvR strategy.
The second-best score is from the same classifier configuration but
uses the OvO multi-class strategy. The performance of chatGPT
using a few-shot approach reached an overall macro precision of
0.250, recall of 0.322, and F1 equal to 0.272. Ignoring the dummy
classifiers and chatGPT, the classification model with the worst
scores of 0.516 and 0.530 was kNN. Such results follow similar per-
formance found by Prana et al. [61], who categorized the content
of README files.

Because of its scores and similar performance in other studies,
LinearSVC was chosen as the final machine learning algorithm.
Based on the outputs of the GridSearch algorithm, we found that
the best hyper-parameters for LinearSVC were 1,000 iterations
(max_iter = 1000), regularization equal to one (C = 1), and tolerance
equal to 0.001 (tol = 0.001). The LinearSVC algorithm was trained
again with this final configuration without oversampling and using
the OvR strategy, as this combination provided the best F1 score
in our comparison of classifiers. Table 6 presents the training data
and its performance per class in relation to the test set.

In Table 6, we can see that the performance varies per category.
The information about Deal with the code (DC) and Build local
workspace (BW) barriers is fairly well predicted (F1 0.711 and 0.716,
respectively). On the other hand, Choose a task (CT) and Contribu-
tion flow (CF) had the lowest scores of 0.379 and 0.345, respectively.
Some external factors may have influenced such performances.
The number of instances per class, for example, might justify the
low score of Choose a Task (CT), which on average had only 1
paragraph per project analyzed (see Section 4.4). The fact that the
Contribution flow contained more generic information than other
content-specific categories, such as Build local workspace, might
also explain the difference in performance.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Fronchetti et al.

For the sake of comparison, we include the results of the chatGPT
few-shot learning approach per class in Table 7. As can be observed,
the Linear SVC model outperforms chatGPT in this context in
almost all metrics and categories. The exception are the recall for the
Talk to Community and Contribution Flow categories. Interestingly,
chatGPT could not correctly identify any paragraph belonging to
the Choose a Task Category—although it received 5 instances, and
(incorrectly) predicted 3 instances. Considering the overall metrics,
the linearSVC model is more than 2x better than chatGPT in terms
of recall, precision, and F1.

Table 6: Performance of the final model (LinearSVC).

Category F1 Precision Recall
Build local workspace 0.716 0.674 0.764
Deal with the code 0.711 0.682 0.743
Talk to the community 0.648 0.657 0.639
Submit the changes 0.617 0.717 0.541
Choose a task 0.379 0.687 0.261
Contribution flow 0.345 0.519 0.258
No categories identified 0.592 0.596 0.588
Overall 0.651 0.655 0.662

Table 7: Performance of chatGPT with few-shot learning.

Category F1 Precision Recall
Build local workspace 0.438 0.389 0.500
Deal with the code 0.154 0.200 0.125
Talk to the community 0.522 0.400 0.750∗
Submit the changes 0.114 0.160 0.089
Choose a task 0.000 0.000 0.000
Contribution flow 0.237 0.184 0.333∗

No categories identified 0.436 0.420 0.453
Overall 0.322 0.250 0.272

Confusion between categories In Figure 5, we present the con-
fusion matrix produced by the final classification model. Using a
confusion matrix, we can assess the similarity between the differ-
ent categories of information and verify what labels contain false
positives. The main diagonal represents the true positives for each
class, and the upper and lower triangular submatrices represent the
misclassifications.

In line with the previous results, contribution flow (CF) and
Choose a task (CT) are the categories of information with the high-
est amount of misclassifications, with only 26% true positives. Con-
tribution flow (CF) had more false positives assigned to deal with
the code (DC) than its own category. Such results may confirm the
assumption that because contribution flow (CF) contains a wide
range of information, and choose a task (CT) has just a few samples
used for training, they performed poorly.

All other categories had more than 50% true positives. Build
local workspace (BW) and Deal with the code (DC) had the lowest
number of false positives (< 25%). Talk to the community (TC)
also presented good performance, with less than 36% incorrect
predictions. This may be because such categories contain more
specific content and a good number of samples per class.

Figure 5: Confusion matrix for LinearSVC.
Legend: BW (Build local workspace), DC (Deal with the code),
TC (Talk with the community), SC (Submit the changes), CT
(Choose a task), CF (Contribution flow).

6.2 Observations from the Survey
In Figure 6, we present the participants’ evaluation of the predic-
tions made by our final model. For all the categories, at least 30%
of the predictions were considered extremely adequate for their
paragraphs, and at least 69% of the predicted categories were consid-
ered at least somewhat adequate. The best-evaluated category was
Build local workspace (BW), with 47% of participants considering
its predictions extremely adequate.

0 10 20 30 40 50 60 70 80 90 100

CF

CT

TC

BW

DC

SC

Percentage

Ca
te
go
rie

s

Extremely adequate Somewhat adequate
Somewhat inadequate Extremely inadequate

Figure 6: Survey: Participants’ evaluation of predictionsmade
by the final classification model.
Legend: BW (Build local workspace), DC (Deal with the code),
TC (Talk with the community), SC (Submit the changes), CT
(Choose a task), CF (Contribution flow).

Whenwe aggregate extremely adequate and somewhat adequate,
Deal with the code (DC) leads the adequacy board with 82% of
predictions considered adequate. Contribution flow (CF) has the
lowest estimates, with 31% of its predictions estimated as somewhat
or extremely inadequate. The second to last place is held by Choose
a task (CT) and Talk to the community (TC), with 29% of their
predictions considered somewhat inadequate or less. Such results
follow similar outcomes found in the evaluation scores of Table 6,
confirming the nature of our predictions.

To further understand the disagreement between the classifier
output and the crowd, we manually analyzed the 12 paragraphs in

Do CONTRIBUTING Files Provide Information about OSS Newcomers’ Onboarding Barriers? ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

which 50% or more of the respondents disagreed with the predic-
tions. In summary, we found that the prediction was incorrect in 9
cases. In the 3 other cases, the prediction was correct (2 related to
Choose a Task and one related to Build the Workspace).

Answer to RQ1:After comparing five supervised learning
algorithms, we were able to classify the content of CON-
TRIBUTING files achieving an F-measure of 0.651, with
precision = 0.655 and recall = 0.622. Although different cat-
egories of information differed in performance, in general
69% of the classifications were considered appropriate by
external reviewers.

7 RQ2. TO WHAT EXTENT DO
CONTRIBUTING FILES COVER CONTENT
RELATED TO CONTRIBUTION BARRIERS?

We used the classification model to predict a set of the remaining
2,274 CONTRIBUTING files from our dataset that we had not used
in the previous steps. From the 9,514 files, we removed 6,599 because
they did not meet the filtering criteria presented in Section 4.2.

Figure 7 shows the distribution of projects and the average of
paragraphs per category in the CONTRIBUTING files in which each
category appeared at least once. A total of 2,265 (99.6%) projects
had at least one paragraph that did not belong to any category, with
an average of 15 unidentified paragraphs per file.

0

2

4

6

8

10

12

14

16

0

500

1000

1500

2000

2500

A
ve

ra
ge

P

ro
je

ct
s

Projects Average

Figure 7: Average number of paragraphs per category in the
CONTRIBUTING files predicted.
Legend: BW (Build local workspace, DC (Deal with the code),
TC (Talk with the community), SC (Submit the changes), CT
(Choose a task), CF (Contribution flow), NC (No categories
identified).

Submit the changes was the category with the highest number of
paragraphs per CONTRIBUTING file, appearing in 2,192 projects.
The Deal with the code category represented the second highest
average of paragraphs per CONTRIBUTING file and the second in
the number of projects, being identified in 1,660 projects with an
average of 4 paragraphs per file. Contribution Flow was the cate-
gory with the third highest frequency, appearing in 1,648 projects,
with an average of only two paragraphs per project. A similar
phenomenon happened with Build local workspace (1,162 projects;

2 paragraphs/project). Talk to the community (513 projects) and
Choose a task (332 projects) were in the lowest positions.

Regarding the frequency of categories per project, not all cat-
egories are covered by the CONTRIBUTING files (see Figure 8).
From our set of 2,274 OSS projects, we identified 729 with content
related to four of the six categories (32%), 603 related to 3 (27%), and
411 files containing only two categories (18%). For 287 projects, we
identified information about five categories, and for only 65 projects
(6%), the classifier identified information about all six categories. On
the lower bound, only one category of information was identified
for 165 projects. We also found 14 projects where no categories
were identified. In a manual inspection of their CONTRIBUTING
files, we detected that none of them present any information that
could be mapped to any of the six categories, validating the analysis
made by the classifier. While some presented ways to report an
issue, others contained links to contribution guidelines elsewhere
(some on the GitHub wiki, others outside GitHub).

5% 4% 6% 13%19%
24%

24%
20%6%

13%

19%

18%23%

25%

23%

20%

83%

46%

33%

25%

20%

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6

Choose a Task Talk to the Community Contribution Flow
Build the Workspace Deal with the Code Submit the Changes

Figure 8: Distribution of categories per CONTRIBUTING file
predicted. The percentages represent the proportion of each
category in the respective subset of files.

The distribution of categories is in line with the distribution of
500 projects manually annotated during the qualitative analysis,
providing further evidence of the adequacy of the classifier. The
only differences are that no projects analyzed had zero categories
of information and the Contribution flow category had a slightly
higher average of paragraphs per CONTRIBUTING file.

In summary, more than 50% of the CONTRIBUTING files present
information pertaining to fewer than 3 categories of barriers faced
by newcomers, while only 15% present information classified in 5
or 6 different categories. These results—in addition to the fact that
more than 60% of the projects collected do not have a CONTRIBUT-
ING file (Table 1)—evidence that this highly relevant resource for
new contributors is still inadequate for mitigating barriers faced
by newcomers. In particular, the lack of content about Choosing
a task (CT) and Building the workspace (BW) is crucial and may
hinder onboarding and lead to dropouts [67, 74].

Answer to RQ2:Most CONTRIBUTING files focus on the
final stages of the contribution process. Categories contain-
ing information such as how to submit the changes and
deal with the code are the most frequent, while informa-
tion about choosing a task and contacting the community
is often missing.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Fronchetti et al.

8 DISCUSSION
Lack of essential information for newcomers. In our study,
we noticed that many projects do not provide primary information
that new contributors may need when attempting to contribute
to a project. This was highlighted in previous literature [71, 74]
and evidenced in our analysis based on the number of categories
of information covered per project in Figure 8 and Table 2. Most
projects had a maximum of 3 out of 6 categories covered in their
CONTRIBUTING files. This suggests that OSS projects might not
satisfy newcomers’ needs in terms of documentation when con-
sidering the categories defined by the literature. Some of the most
critical barriers faced by newcomers [74, 78] are not covered by
the CONTRIBUTING files. Table 2 shows that only 23% of the files
analyzed had information about how to Choose a task, and 28% of
them presented some information about how to Build their local
workspace. The “curse of expertise” [24], i.e., the inherent cognitive
bias stemming from the deep familiarity with the subject matter,
may hamper project maintainers’ ability to accurately evaluate the
comprehensiveness and clarity of their documentation. Our results
can shed light on the gaps in the existing documentation from the
perspective of barriers commonly faced by newcomers.

A more critical problem is also evidenced in Table 1, showing
that ≈ 65% of the projects in our sample (more than 6,000 in ab-
solute numbers) do not have a CONTRIBUTING file available in
their repositories. Although some projects prefer to use other re-
sources to explain their contributing process (e.g., Valhalla [83]
uses a section in their README file), many popular repositories do
not contain any orientation for newcomers, even though they are
open to external submissions (e.g., Google Sanitizers [32], Microsoft
PHPSQL [50], NVIDIA NCCL [51]).

Most files focus on the contribution process’s final steps.
In Figure 7, we show the average number of paragraphs identified
per category in the projects of our qualitative analysis. The results
suggest that the category with the highest number of paragraphs is
Submit the Changes, followed by Contribution Flow and Deal with
the Code. Although Dealing with the code focuses on the more
general steps of the project, Submitting the changes and Dealing
with the code are intended to be relevant for newcomers in the
later stages of their contribution, after they selected a task, built
their workspace, and established communication with the project’s
community. This result suggests that projects tend to focus more
on the last stages of the contribution, assuming newcomers already
know how to implement their contribution.

Implications for practice and research. As a result of this
study, we also implemented a web tool to provide feedback to
project maintainers about their CONTRIBUTING files [19]. The
maintainer only needs to input their project URL, and our tool
reviews the project’s CONTRIBUTING file using our classifica-
tion model. The tool provides a chart showing the distribution
of paragraphs per category of information, a discussion about the
dominant categories (i.e., the highest number of paragraphs) and
weak categories (i.e., the lowest number of paragraphs), and a com-
parison of the input project with other popular repositories on
GitHub. In addition, the tool provides a clear description for each
category when the report is presented to the user, highlighting why
they are important. The report provided by the tool also suggests

CONTRIBUTING files that maintainers could use as inspiration to
enrich a specific faulty category. We envision the proposed tool as
a starting point to support better documentation files.

This tool could be particularly useful to community builders
and managers who oversee a non-trivial number of projects. Those
playing these roles need information about the content of CON-
TRIBUTINGfiles inmultiple projects in the ecosystem to take action.
The classifier may support their efforts by providing insights into
the types of information available for each project.

The tool is also an important step toward implementing auto-
mated on-demand developer documentation, which automatically
parses documentation and generates responses to user queries [66],
and smart assistants [16]. These tools need to parse existing docu-
mentation and classify information in order to provide adequate
assistance to newcomers.

From the research perspective, our study helps to understand
how the current content of CONTRIBUTING files addresses new-
comers’ needs. Our work can be extended to evaluate the content
quality of the CONTRIBUTING files, which may help newcomers
find appropriate documentation. Future work can also investigate
the subcategories of Steinmacher et al.’s model [73].

9 LIMITATIONS AND DESIGN DECISIONS
In this section, we present our work’s limitations and trade-offs for
research design decisions.

Using the most popular projects from GitHub. We focused
our study on GitHub and the results may not generalize for the
whole OSS universe. Nevertheless, GitHub is arguably the most
popular OSS hosting platform. Additionally, the selected projects
may not generalize to GitHub as well, since our projects were
selected based on their programming language and popularity. Still,
there may be projects that are not exactly software projects in our
sample, like “algorithms” and “awesome lists”—in a manual analysis,
these projects correspond to ≈1% of our sample. We acknowledge
that a more diverse set of projects would potentially bringmore data
points with different styles. However, focusing on more popular
projects and on GitHub brings more confidence about the relevance
of the CONTRIBUTING files analyzed. We opted to keep a more
trustful set of projects, rather than expanding the data points.

Unit of analysis. Our approaches to selecting, filtering, analyz-
ing, and classifying documentation files were based on prior studies
[8, 26, 61]. Still, our decision to choose paragraphs as the unit of
analysis instead of lines or larger chunks of text could impact our
results. We attempted to use lines as units of analysis, but they
did not provide enough context to identify the categories during
manual analysis since the information in CONTRIBUTING files is
highly contextual. Paragraphs provide enough context for identify-
ing the categories, and Markdown provides a standard approach to
split the content into paragraphs (i.e., blank lines).

Other approaches to determining the content of CONTRIBUT-
ING files could also be used. For example, a classification model
based on section names could be a great alternative for our decision.
We decided to make our classification based on paragraphs and
not on section names for the same reasons that we did not use
lines as units of analysis. We also decided to keep duplicated para-
graphs from distinct projects in our dataset, as CONTRIBUTING

Do CONTRIBUTING Files Provide Information about OSS Newcomers’ Onboarding Barriers? ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

files from different projects may follow similar guidelines. We ran
LinearSVCwithout the duplicated paragraphs, and the performance
was similar to our final model (precision: 0.612, recall: 0.621).

It is also worth mentioning that we only analyzed the content
available on the CONTRIBUTING files. We did not explore any ex-
ternal links from these files or resources they reference; we also did
not check textual, HTML, .ris, or other types of files containing con-
tribution guidelines. We analyzed 95 README files from (randomly
selected) projects that we dismissed because of the absence of the
CONTRIBUTING file; only three had links to external guidelines,
and six had sections related to contribution. This could have limited
the conclusions made for projects such as Apple Swift [3], and oth-
ers highlighted in Section 7, whose contribution file only contained
directions to other sources of documentation. Future studies are
encouraged to (i) analyze one level of depth using the links available
in the CONTRIBUTING files, and (ii) understand how to use the
proposed approach to refactor contributing guidelines contained
on README and other textual files onto CONTRIBUTING files.

Representativeness of contributors’ perspective. To assess
the quality of our classification model, we invited participants with
programming expertise to answer questions in which they judged a
set of predictions made by our classifier. Although we introduced a
tutorial at the beginning of the questionnaire, we cannot guarantee
that the answers given by the respondents represent the perspective
of contributors or the correctness of the predicted categories. To
mitigate this problem, we not only asked the participants to match
the categories definition with their names in the early stages of the
survey but also included an attention check question into our set of
questions to ensure participants did not randomly assign answers
for them. Once again, our choice was guided by the trustfulness of
the data points. We kept only a small set of answers, which can be
considered more reliable than having more data points and losing
reliability.

Coverage of the categories and information. We decided to
use a pre-existing set of categories to label our dataset according to
the barriers newcomers could face. We acknowledge that the cate-
gories analyzed may not cover all the information a newcomer may
need when contributing to a project. However, the set of categories
resulted from several studies investigating problems associated
with documentation files in the context of OSS repositories [76, 77].
We opted to classify our data using a validated set of categories
rather than explore potential new categories.

Construction of the classifier. To build a classification model
from scratch, a set of design decisions were made throughout
the process. We understand that other strategies could have been
adopted in building our model (e.g., the use of additional pre-trained
models) and that the decisions made may have an influence on the
performance reported in this study. To mitigate this issue, we com-
pared our classifier with chatGPT in Section 6.1, and trained a super-
vised model with the same dataset using FastText [21] (precision:
0.653, recall: 0.653). Both strategies presented a similar or worse
performance than our final classifier. We also undertook an ablation
study to determine the impact of the heuristic and statistical fea-
tures. Two models were constructed using the same configurations
as our final classifier: one solely with statistical features (preci-
sion: 0.657, recall: 0.664) and the other with only heuristic features

(precision: 0.414, recall: 0.493). Both models exhibited performance
comparable to, or less than, our final estimator.

10 CONCLUSION
A primary documentation resource for newcomers embarking on
open source software projects is the CONTRIBUTING file. Located
within repositories, these files outline the project’s contribution
guidelines. While many OSS communities utilize CONTRIBUTING
files to orient newcomers, the comprehensiveness of their content
was largely unexplored.

In this paper, we investigate the extent to which CONTRIBUT-
ING files address the onboarding barriers newcomers face in OSS
projects. Drawing upon a barrier model from existing literature [74],
we manually analyzed CONTRIBUTING files from 500 projects. Our
findings indicate a notable lack of information: 90% of the projects
lacked content in at least two of the six information categories, with
79% missing details in three or more categories. Notably, our man-
ual review revealed that over 75% of the projects failed to include
guidance on task selection and workspace setup, two key barriers
for newcomers as highlighted by Steinmacher et al. [74].

We also built amachine learningmodel designed to automatically
classify the information from CONTRIBUTING files from other
projects and thereby help projects identify missing information in
their files. Overall, the classifier performed well in this multiclass
problem, with an overall precision of 0.655 and a recall of 0.662.
The performance was good for four out of the six categories of
information (F1 ≥ 0.61): Build local workspace, Deal with the code,
Talk to the community, and Submit the changes. Exceptions were
How to choose a task and Contributing flow, with low recall (< 0.3)
and F1 of 0.379 and 0.345, respectively.

In summary, our findings indicate that many OSS projects need
to improve the comprehensiveness of their ‘CONTRIBUTING’ files
to better cater to newcomers. Evaluating 2,274 projects using our
machine learning model, our results echoed the findings from our
qualitative assessment: 84% of the projects lacked content in at least
two of the six information categories, and 52% were deficient in
three or more categories. To assist with this issue, we developed an
online tool designed to offer feedback to project maintainers about
how their ‘CONTRIBUTING’ files address onboarding challenges,
ensuring that the communities are better equipped to welcome and
nurture their next generation of contributors.

11 DATA AVAILABILITY
The artifacts used in this paper are available on Zenodo [20].

ACKNOWLEDGMENTS
This work is partially supported by FAPESP (grant #2019/12743-
4), CNPq/MCTI/FNDCT (#408812/2021-4), MCTIC/CGI/FAPESP
(#2021/06662-1), and NSF (2236198, 2247929, 2024561, and 2303042).

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Fronchetti et al.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,

Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-
tion issues unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1199–1210.

[2] Amazon. 2023. Amazon Mechanical Turk (Website). https://www.mturk.com/
[Accessed on Aug-2023].

[3] Apple. 2023. Apple Swift (CONTRIBUTING.md). https://github.com/apple/
swift/blob/main/CONTRIBUTING [Accessed on Aug-2023].

[4] Tasneem Batool, Mostafa Abuelnoor, Omar El Boutari, Fadi Aloul, and Assim
Sagahyroon. 2021. Predicting Hospital No-Shows Using Machine Learning. In
2020 IEEE International Conference on Internet of Things and Intelligence System
(IoTaIS). 142–148. https://doi.org/10.1109/IoTaIS50849.2021.9359692

[5] Ismaïl Biskri and Sylvain Delisle. 2002. Text classification and multilinguism:
Getting at words via n-grams of characters. In Proceedings of the 6th World Multi-
conference on Systemics, Cybernetics and Informatics (SCI-2002), Orlando (Florida,
USA), Vol. 5. 110–115.

[6] Giuseppe Bonaccorso. 2017. 12.2.4.2 Tf-idf Vectorizing. In Machine Learning
Algorithms. Packt Publishing.

[7] Giuseppe Bonaccorso. 2017. 2.1.1.1 One-vs-All. In Machine Learning Algorithms.
Packt Publishing.

[8] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding
the factors that impact the popularity of GitHub repositories. In 2016 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
334–344.

[9] Norman M Bradburn, Seymour Sudman, and Brian Wansink. 2004. Asking ques-
tions: the definitive guide to questionnaire design–for market research, political
polls, and social and health questionnaires. John Wiley & Sons.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[11] Seung Youn Chyung, Katherine Roberts, Ieva Swanson, and Andrea Hankinson.
2017. Evidence-based survey design: The use of a midpoint on the Likert scale.
Performance Improvement 56, 10 (2017), 15–23.

[12] Giuseppe Ciaburro and Prateek Joshi. 2019. 2.9.4 There’s More... In Python
Machine Learning Cookbook (2nd Edition). Packt Publishing.

[13] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[14] Maria Eduarda Rosa da Silva, Giovani Gracioli, and Gustavo Medeiros de Araujo.
2022. Feature Selection in Machine Learning for Knocking Noise detection. In
2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC). 1–8.
https://doi.org/10.1109/SBESC56799.2022.9964726

[15] Edson Dias, Paulo Meirelles, Fernando Castor, Igor Steinmacher, Igor Wiese, and
Gustavo Pinto. 2021. What makes a great maintainer of open source projects?.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 982–994.

[16] James Dominic, Jada Houser, Igor Steinmacher, Charles Ritter, and Paige
Rodeghero. 2020. Conversational bot for newcomers onboarding to open source
projects. In Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops. 46–50.

[17] Günhan Dündar and Mustafa Berke Yelten. 2020. 3.6.2 Resampling. In Modelling
Methodologies in Analogue Integrated Circuit Design. Institution of Engineering
and Technology.

[18] Omar Elazhary, Margaret-Anne Storey, Neil Ernst, and Andy Zaidman. 2019. Do
as i do, not as i say: Do contribution guidelines match the github contribution
process?. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 286–290.

[19] Fronchetti et al. 2023. Contributing Files (Website). https://contributing.streamlit.
app/ [Accessed on Aug-2023].

[20] Fronchetti et al. 2023. Replication Package (Zenodo Repository). https:
//zenodo.org/record/8270217 [Accessed on Aug-2023].

[21] Facebook. 2023. FastText (Website). https://fasttext.cc/ [Accessed on Aug-2023].
[22] Fabian Fagerholm, Alejandro Sanchez Guinea, Jay Borenstein, and Jürgen Münch.

2014. Onboarding in open source projects. IEEE Software 31, 6 (2014), 54–61.
[23] Fabian Fagerholm, Alejandro S Guinea, Jürgen Münch, and Jay Borenstein. 2014.

The role of mentoring and project characteristics for onboarding in open source
software projects. In Proceedings of the 8th ACM/IEEE international symposium
on empirical software engineering and measurement. 1–10.

[24] Matthew Fisher and Frank C Keil. 2016. The curse of expertise: When more
knowledge leads to miscalibrated explanatory insight. Cognitive science 40, 5
(2016), 1251–1269.

[25] Karl Fogel. 2009. How To Run A Successful Free Software Project - Producing Open
Source Software. CreateSpace, Scotts Valley, CA.

[26] Felipe Fronchetti, Igor Wiese, Gustavo Pinto, and Igor Steinmacher. 2019. What
attracts newcomers to onboard on oss projects? tl; dr: Popularity. In IFIP Interna-
tional Conference on Open Source Systems. Springer, 91–103.

[27] Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On using
machine learning to identify knowledge in API reference documentation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 109–119.

[28] Johannes Fürnkranz and Peter A Flach. 2003. An analysis of rule evaluation
metrics. In Proceedings of the 20th international conference on machine learning
(ICML-03). 202–209.

[29] GitHub. 2020. GitHub Octoverse. https://octoverse.github.com/credits/ [Ac-
cessed on Jun-2023].

[30] GitHub. 2022. GitHub Flavored Markdown Specs Paragraphs. https://github.
com/gfm/#paragraphs [Accessed on Jun-2023].

[31] GitHub. 2022. Setting guidelines for repository contributors. https:
//docs.github.com/en/communities/setting-up-your-project-for-healthy-
contributions/setting-guidelines-for-repository-contributors [accessed on
Jun-2023].

[32] Google. 2023. Google Sanitizers (GitHub Repository). https://github.com/google/
sanitizers [Accessed on Aug-2023].

[33] Kazi Amit Hasan, Marcos Macedo, Yuan Tian, Bram Adams, and Steven Ding.
2023. Understanding the Time to First Response In GitHub Pull Requests. In Intl.
Conference on Mining Software Repositories (MSR 2023).

[34] Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto. 2015. Charac-
teristics of sustainable oss projects: A theoretical and empirical study. In 2015
IEEE/ACM 8th International Workshop on Cooperative and Human Aspects of
Software Engineering. IEEE, 15–21.

[35] Helena Holmstrom, Eoin Ó Conchúir, J Agerfalk, and Brian Fitzgerald. 2006.
Global software development challenges: A case study on temporal, geographi-
cal and socio-cultural distance. In 2006 IEEE International Conference on Global
Software Engineering (ICGSE’06). IEEE, 3–11.

[36] Mohammad Hossin and Md Nasir Sulaiman. 2015. A review on evaluation met-
rics for data classification evaluations. International journal of data mining &
knowledge management process 5, 2 (2015), 1.

[37] Ammar Ismael Kadhim. 2018. An Evaluation of Preprocessing Techniques for
Text Classification. International Journal of Computer Science and Information
Security 16, 6 (2018).

[38] Frank Kane. 2017. 9.7 TF-IDF. In Hands-on Data Science and Python Machine
Learning. Packt Publishing.

[39] Jacob Krüger, Sebastian Nielebock, and Robert Heumüller. 2020. How Can I
Contribute? A Qualitative Analysis of Community Websites of 25 Unix-Like Dis-
tributions. In Proceedings of the Evaluation and Assessment in Software Engineering.
324–329.

[40] Imbalanced Learn. 2023. Imbalanced Learn (Website). https://imbalanced-
learn.org/stable/ [Accessed on Aug-2023].

[41] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. 2017. Understanding the
impressions, motivations, and barriers of one time code contributors to FLOSS
projects: a survey. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 187–197.

[42] Timothy C Lethbridge, Janice Singer, and Andrew Forward. 2003. How software
engineers use documentation: The state of the practice. IEEE software 20, 6 (2003),
35–39.

[43] Jiawei Li and Iftekhar Ahmed. 2023. Commit Message Matters: Investigating
Impact and Evolution of Commit Message Quality. (2023).

[44] Edward Loper and Steven Bird. 2002. NLTK: The Natural Language Toolkit.
In Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics - Volume
1 (Philadelphia, Pennsylvania) (ETMTNLP ’02). Association for Computational
Linguistics, USA, 63–70.

[45] Yuzhan Ma, Sarah Fakhoury, Michael Christensen, Venera Arnaoudova, Waleed
Zogaan, and Mehdi Mirakhorli. 2018. Automatic classification of software arti-
facts in open-source applications. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR). IEEE, 414–425.

[46] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. 2017. A survey of the use of
crowdsourcing in software engineering. Journal of Systems and Software 126
(2017), 57–84.

[47] Gerardo Matturro, Karina Barrella, and Patricia Benitez. 2017. Difficulties of
newcomers joining software projects already in execution. In 2017 International
Conference on Computational Science and Computational Intelligence (CSCI). IEEE,
993–998.

[48] Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret Burnett. 2018. Open source barriers to entry, revisited: A sociotech-
nical perspective. In Proceedings of the 40th International conference on software
engineering. 1004–1015.

[49] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. 2018. Applica-
tion programming interface documentation: what do software developers want?
Journal of Technical Writing and Communication 48, 3 (2018), 295–330.

[50] Microsoft. 2023. Microsoft PHPSQL (GitHub Repository). https://github.com/
microsoft/msphpsql [Accessed on Aug-2023].

https://www.mturk.com/
https://github.com/apple/swift/blob/main/CONTRIBUTING
https://github.com/apple/swift/blob/main/CONTRIBUTING
https://doi.org/10.1109/IoTaIS50849.2021.9359692
https://doi.org/10.1109/SBESC56799.2022.9964726
https://contributing.streamlit.app/
https://contributing.streamlit.app/
https://zenodo.org/record/8270217
https://zenodo.org/record/8270217
https://fasttext.cc/
https://octoverse.github.com/credits/
https://github.com/gfm/#paragraphs
https://github.com/gfm/#paragraphs
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://imbalanced-learn.org/stable/
https://imbalanced-learn.org/stable/
https://github.com/microsoft/msphpsql
https://github.com/microsoft/msphpsql

Do CONTRIBUTING Files Provide Information about OSS Newcomers’ Onboarding Barriers? ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[51] NVIDIA. 2023. NVIDIA NCCL (GitHub Repository). https://github.com/NVIDIA/
nccl [Accessed on Aug-2023].

[52] Fred Nwanganga and Mike Chapple. 2020. 9.1.1.1 k-Fold Cross-Validation. In
Practical Machine Learning in R. John Wiley & Sons.

[53] Open Source Guides. 2022. Open Source Guides – Starting an Open Source
Project. https://opensource.guide/starting-a-project/ [Accessed on Jun-2023].

[54] OpenAI. 2023. ChatGPT (Website). https://chat.openai.com/ [Accessed on
Aug-2023].

[55] Susmita Hema Padala, Christopher John Mendez, Luiz Felipe Dias, Igor Stein-
macher, Zoe Steine Hanson, Claudia Hilderbrand, Amber Horvath, Charles Hill,
Logan Dale Simpson, Margaret Burnett, et al. 2020. How gender-biased tools
shape newcomer experiences in oss projects. IEEE Transactions on Software
Engineering (2020).

[56] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio,
Gerardo Canfora, and Harald C Gall. 2015. How can i improve my app? classifying
user reviews for software maintenance and evolution. In 2015 IEEE international
conference on software maintenance and evolution (ICSME). IEEE, 281–290.

[57] Yunrim Park and Carlos Jensen. 2009. Beyond pretty pictures: Examining the
benefits of code visualization for open source newcomers. In 2009 5th IEEE Inter-
national Workshop on Visualizing Software for Understanding and Analysis. IEEE,
3–10.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[59] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. 2016. More common
than you think: An in-depth study of casual contributors. In 2016 IEEE 23rd inter-
national conference on software analysis, evolution, and reengineering (SANER),
Vol. 1. IEEE, 112–123.

[60] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Rocco Oliveto, Massimiliano
Di Penta, Sonia Haiduc, Barbara Russo, and Michele Lanza. 2017. Automatic
identification and classification of software development video tutorial fragments.
IEEE Transactions on Software Engineering 45, 5 (2017), 464–488.

[61] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo. 2019. Categorizing the content of GitHub README files. Empirical
Software Engineering 24, 3 (2019), 1296–1327.

[62] Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Andrea Di Sorbo, and
Oscar Nierstrasz. 2021. How to identify class comment types? A multi-language
approach for class comment classification. Journal of systems and software 181
(2021), 111047.

[63] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering. 155–165.

[64] Brittany Reid, Markus Wagner, Marcelo d’Amorim, and Christoph Treude. 2022.
Software Engineering User Study Recruitment on Prolific: An Experience Report.
arXiv preprint arXiv:2201.05348 (2022).

[65] Martin P Robillard and Yam B Chhetri. 2015. Recommending reference API
documentation. Empirical Software Engineering 20, 6 (2015), 1558–1586.

[66] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, et al. 2017. On-demand developer documentation. In
2017 IEEE International conference on software maintenance and evolution (ICSME).
IEEE, 479–483.

[67] Fabio Santos, Bianca Trinkenreich, João Felipe Pimentel, Igor Wiese, Igor Stein-
macher, Anita Sarma, and Marco A Gerosa. 2022. How to choose a task? Mis-
matches in perspectives of newcomers and existing contributors. In International
Symposium on Empirical Software Engineering and Measurement (ESEM).

[68] CJ Satish and M Anand. 2016. Software documentation management issues and
practices: A survey. Indian Journal of Science and Technology 9, 20 (2016), 1–7.

[69] Scikit-learn. 2023. Cross-validation: evaluating estimator performance (Docu-
mentation). https://scikit-learn.org/stable/modules/generated/sklearn.feature_

selection.SelectPercentile.html [Accessed on Jun-2023].
[70] Francesco Setragno, Massimiliano Zanoni, Augusto Sarti, and Fabio Antonacci.

2017. Feature-based characterization of violin timbre. In 2017 25th European
Signal Processing Conference (EUSIPCO). 1853–1857. https://doi.org/10.23919/
EUSIPCO.2017.8081530

[71] Dan Sholler, Igor Steinmacher, Denae Ford, Mara Averick, Mike Hoye, and Greg
Wilson. 2019. Ten simple rules for helping newcomers become contributors to
open projects. PLoS computational biology 15, 9 (2019), e1007296.

[72] Spacy. 2023. Rule Based Matching (Documentation). https://spacy.io/usage/rule-
based-matching [Accessed on Aug-2023].

[73] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing. 1379–1392.

[74] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming Open Source Project Entry Barriers with a Portal for
Newcomers. In ICSE ’16. Association for Computing Machinery, New York, NY,
USA, 273–284.

[75] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A Gerosa. 2018.
Almost there: A study on quasi-contributors in open source software projects. In
Proceedings of the 40th International Conference on Software Engineering. 256–266.

[76] Igor Steinmacher, Marco Aurélio Graciotto Silva, and Marco Aurélio Gerosa. 2014.
Barriers faced by newcomers to open source projects: a systematic review. In
IFIP International Conference on Open Source Systems. Springer, 153–163.

[77] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David F Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Technol-
ogy 59 (2015), 67–85.

[78] Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:
Guidelines for the successful onboarding of newcomers to open source projects.
IEEE Software 36, 4 (2018), 41–49.

[79] Kathryn T Stolee and Sebastian Elbaum. 2010. Exploring the use of crowdsourc-
ing to support empirical studies in software engineering. In Proceedings of the
2010 ACM-IEEE international symposium on Empirical software engineering and
measurement. 1–4.

[80] Xin Tan, Yiran Chen, Haohua Wu, Minghui Zhou, and Li Zhang. 2023. Is It
Enough to Recommend Tasks to Newcomers? Understanding Mentoring on
Good First Issues. arXiv preprint arXiv:2302.05058 (2023).

[81] Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A first look at good first issues on
GitHub. In Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
398–409.

[82] Jalaj Thanaki. 2017. 5.3.4.1 Understanding TF-IDF. In Python Natural Language
Processing. Packt Publishing.

[83] Valhalla. 2023. Valhalla (GitHub Repository). https://github.com/valhalla/valhalla
[Accessed on Aug-2023].

[84] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov.
2014. How social Q&A sites are changing knowledge sharing in open source
software communities. In Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing. 342–354.

[85] Sathiyamoorthi Velayutham. 2020. 3.5.1 Precision. In Handbook of Research on
Applications and Implementations of Machine Learning Techniques. IGI Global.

[86] S Vijayarani, Ms J Ilamathi, and Ms Nithya. 2015. Preprocessing techniques for
text mining-an overview. International Journal of Computer Science & Communi-
cation Networks 5, 1 (2015), 7–16.

[87] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D
Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. 2022. Documentation Matters:
Human-Centered AI System to Assist Data Science Code Documentation in Com-
putational Notebooks. ACM Transactions on Computer-Human Interaction 29, 2
(2022), 1–33.

Received 2023-02-02; accepted 2023-07-27

https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://opensource.guide/starting-a-project/
https://chat.openai.com/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectPercentile.html
https://doi.org/10.23919/EUSIPCO.2017.8081530
https://doi.org/10.23919/EUSIPCO.2017.8081530
https://spacy.io/usage/rule-based-matching
https://spacy.io/usage/rule-based-matching
https://github.com/valhalla/valhalla

	Abstract
	1 Introduction
	2 Related Work
	3 Research Method Overview
	4 Building the Corpus
	4.1 Categories Definition
	4.2 Data Collection
	4.3 Data Annotation
	4.4 Corpus Characterization

	5 Building and Evaluating the Classifier
	5.1 Feature Extraction
	5.2 Finding the Best Classifier
	5.3 Evaluation Metrics
	5.4 Cross-validation
	5.5 Classifier Training
	5.6 Classifier Human Evaluation

	6 RQ1. How accurately can we automatically classify the content of CONTRIBUTING files?
	6.1 Comparing Different Classifiers
	6.2 Observations from the Survey

	7 RQ2. To what extent do Contributing files cover content related to contribution barriers?
	8 Discussion
	9 Limitations and Design Decisions
	10 Conclusion
	11 Data Availability
	References

