
Anticipating User Needs: Insights from Design
Fiction on Conversational Agents for

Computational Thinking

Jacob Penney1[0009−0004−1629−5883],
João Felipe Pimentel2[0000−0001−6680−7470],
Igor Steinmacher1[0000−0002−0612−5790], and

Marco A. Gerosa1[0000−0003−1399−7535]

Northern Arizona University
{jacob_penney, igor.steinmacher, marco.gerosa}@nau.edu

Universidade Federal Fluminense
jpimentel@ic.uff.br

Abstract. Computational thinking, and by extension, computer pro-
gramming, is notoriously challenging to learn. Conversational agents
and generative artificial intelligence (genAI) have the potential to facil-
itate this learning process by offering personalized guidance, interactive
learning experiences, and code generation. However, current genAI-based
chatbots focus on professional developers and may not adequately con-
sider educational needs. Involving educators in conceiving educational
tools is critical for ensuring usefulness and usability. We enlisted nine in-
structors to engage in design fiction sessions in which we elicited abilities
such a conversational agent supported by genAI should display. Partic-
ipants envisioned a conversational agent that guides students stepwise
through exercises, tuning its method of guidance with an awareness of
the educational background, skills and deficits, and learning preferences.
The insights obtained in this paper can guide future implementations of
tutoring conversational agents oriented toward teaching computational
thinking and computer programming.

Keywords: Conversational Agents · Scaffolding Computational Think-
ing · Natural Language Programming · Introductory Programming Courses
· Design Fiction

1 Introduction

Knowledge of computer programming is key for modern society and for stu-
dents [52]. Professionals from a diverse variety of industries need to write pro-
grams for tasks such as making financial predictions, office work, scientific re-
search, creating entertainment, etc. [44, 34, 27, 6, 22]. End-user programmers—
those who program but are not professional developers—have grown enough as
a population to compel large tech firms to make major investments into tech-
nologies intended to ease development for them [28]. This increasing need among



2 J. Penney et al.

future workforce professionals to learn how to program is reflected in their edu-
cational needs today. It is not surprising that a large number of undergraduate
programs include introductory programming in their curriculum. In fact, the
literature shows plenty of evidence that STEM students perceive programming
as a key skill in their careers [12, 13, 56, 7].

However, computer programming is difficult to learn [26, 27, 32, 47, 59]. Both
undergraduate Computer Science majors and the growing population of non-
majors who program struggle and show clear signs of poor performance, frustra-
tion, and lack of engagement [16, 4, 18]. Some institutions have reported dropout
rates up to 50% [25], and the estimated mean global pass rate for introductory
Computer Science courses is around 68% [62]. Substantial effort has been made
to discover why learning how to program is chronically problematic. While there
is no definitive consensus in the literature on what factors determine perfor-
mance in introductory CS courses [62], many findings highlight student frustra-
tions with programming language syntax, which is rigid and allows only a very
restricted set of operations, as a reason for why learning is difficult [20, 18, 29,
37, 60]. In interviews with students, Petersen et al. [49] discovered a variety of
contributing factors that prompt class withdrawal, such as the usage of ineffec-
tive study strategies; falling behind in the class and consequently receiving less
support from in-class exercises and labs; and difficulty handling the relatively
high level of detail in the material, which required developing problem-solving
skills and was eased when they had access to “step-by-step instructions”. Stu-
dent participants in other works also report difficulty adapting to the demands
of CS1 courses, citing difficulty with “new teaching methods emphasizing in-
dependent thinking, critical thinking, and innovative learning”, as well as “less
interaction with teachers and classmates”, “disconnection between the knowl-
edge and real-life cases, and not receiving enough academic support with timely
help and real-time feedback” [8].

New study strategies built on novel technologies, such as large language
model-based (LLM-based) conversational agents – that allow exercising com-
putational thinking in a conversational way – have the potential to overcome
traditional strategies, allowing more students to succeed and grow in introduc-
tory programming courses. Such tools have achieved incredible performance even
on complex assignments [45, 33, 51, 57, 17]. GPT-3 has been used to create expla-
nations of code snippets that are “significantly easier to understand and more
accurate summaries of code” than what can be produced by first-year CS stu-
dents [31], providing students on-demand access to explanations that explain
code, freeing up instructor time. GPT-4 has even displayed rivaling human tu-
tor performance in various programming education scenarios [50]. Not only are
these tools capable, but findings show that users feel that they improve their
outcomes. For example, programmers of various skill levels who used or were ex-
posed to the features of a custom LLM-based conversational agent perceived that
it could improve their productivity [55], and students feel “more motivated to
learn, more engaged in the course, and more connected to their classmates” [8].



Anticipating User Needs: Insights from Design Fiction 3

While evidence displays that LLM-based conversational agents can improve
various outcomes for developers and students of different skill levels, little re-
search exists on how to design such technology to improve the learning of compu-
tational thinking. Most existing solutions that allow for using a conversational
way to program expose the artificial intelligence of the tool in a way not tai-
lored to facilitate learning to program. This is because they typically focus on
professional productivity, giving the user the desired solution instead of using
coaching and scaffolding, in the Cognitive Apprenticeship Model usage [14], to
teach the user. Such tools could be used to refocus students’ initial efforts on
learning computational thinking [39, 1] instead of focusing on implementation.
The literature shows that implementation details can frustrate students because
of the rigid set of operations allowed by programming language syntax [20, 18,
29, 37, 60].

With this in mind, this work seeks to understand instructors’ expectations
of a conversational agent’s capabilities in effectively facilitating the acquisition
of computational thinking skills. The research question we answer here is:

Research Question

What are instructors’ expectations of a programming conversational
agent intended to scaffold computational thinking?

To answer this question, we used the Design Fiction method. We analyzed the
data collected from sessions with instructors by means of open and axial coding
procedures. From this analysis, we learned that instructors expect a conversa-
tional agent intended to scaffold computational thinking to approach students
with an awareness of their educational history and context and tailor its response
to their questions accordingly. These responses should guide the student, maxi-
mizing skill set development. We hope these findings will inspire future research,
design, and evaluation of conversational agents as well as serve as criteria for
evaluating AI-based generative agents.

2 Related Work
After the recent proliferation of genAI tools, there have been escalating salvos
of works exploring their use cases, quantifying and qualifying their abilities,
and speculating about futures in which they have become fixtures. This work is
situated among others which explore the perspectives of instructors about the
experiences of students using conversational agents empowered by genAI to aid
the learning process, the imagined and real benefits, and the potential pitfalls.
Phung et al. [50] quantify the skills of existing LLM’s, displaying not only where
the state-of-the-art is at but also discussing where it is headed. Becker et al.
[1] motivate educators in the booming genAI discussion, conveying an urgency
to concertedly influence coming opportunities. Maher et al. [40] propose and
acknowledge many of the same benefits and concerns, respectively, that our
participants imagined and introduce a methodology for analyzing AI tool impact
via examining impact on student experience and abilities. Guo [23] discusses



4 J. Penney et al.

ways that genAI can already be used for programming autodidacticism and
considers ways that scientists and engineers can ply them for the educational
needs of their specific fields.

The closest work to ours was performed by Lau et al. [30]. They ran inter-
views with instructors to understand how they plan to handle the use of genAI
tools in their introductory programming classes. They found that the most com-
mon reason that instructors do not want to use AI-based tools in their classes is
because they “felt it is still important to learn the fundamentals of programming,
even if AI tools will be doing a lot of the coding in the future”. This opposition
depends completely on the diegesis used, which asks the participant to imagine
a tool that handles programming for the student with consistent perfect output,
not paradigms that run counter to this “solution-oriented” functionality. Our
work expands upon Lau et al. by taking some first steps towards answering open
research questions they have posed, specifically “Scaffolding novice understand-
ing” and “Tailoring AI coding tools for pedagogy”. We did this by approaching
a population of instructors, as they did, with a diegesis oriented towards future
conversational agents that do not have the limitations of current LLM-based
ones.

3 Research Design

3.1 Research Approach

To explore the design space of the conversational agent, we employed Design
Fiction [61]. This method features “the deliberate use of diegetic prototypes
to suspend disbelief about change” [61] and envision and explain plausible fu-
tures [2, 38, 24, 21, 35, 42, 36]. Human-Computer Interaction studies often use this
method to probe, explore, and critique future technologies [30, 54, 63, 42, 3]. Some
researchers use design fiction to anticipate issues [3] while others emphasize val-
ues related to new technologies [43, 11] and anticipate users’ needs [10, 21, 46],
which is the focus of this paper.

3.2 Method

The Fictional Narrative. We started the design fiction session by presenting
a fictional narrative to the participants through a video [48]. The video was
intended to prompt participants to think about how a conversational agent could
effectively scaffold computational thinking for students in introductory computer
programming courses. In this scenario, a fictional student named Luna is learning
Computer Science and, while she has access to an instructor during her class
periods, she is left to find her own answers after class. The context of the video
is a future in which present technological limitations have been overcome, and
she has access to ecumenical AI tools that can help her with her studies. One
such tool, Atlas, is a conversational agent that may interact conversationally
and have access to and awareness of the student’s context through integrations,
such as coding environments, execution artifacts, exercises, and the progression
of the course. The tool is presented as intended to help the student express her
thoughts computationally. Having placed themselves in this narrative, we asked



Anticipating User Needs: Insights from Design Fiction 5

Table 1. Demographics of participants. Exp. indicates the experience in years of the
participant. Uni. Type indicates the type of the university and the highest education
level that it grants.

ID Exp. Gender Country Uni. Type Introductory Classes
P1 14 F USA Public-PhD Algorithms, Data Structures, Programming
P2 20 M Brazil Public-MSc Algorithms, App Programming
P3 3 M USA Public-PhD Web Programming, Programming
P4 2 M Brazil Public-MSc Algorithms, Programming
P5 15 M Brazil Public-PhD Programming
P6 1.5 M Brazil Public-BSc Data Structures, Programming, Object Orientation
P7 10 F Brazil Public-PhD Programming
P8 15 M Brazil Private-BSc Algorithms, Data Structures, Web Programming
P9 3.5 M USA Public-PhD Algorithms, Data Structures, Programming

the participant to help us define how the conversational agent should behave so
that it can help the student learn.

Participant Recruitment. To participate in the design fiction sessions, we
recruited instructors who have at least one year of professional experience teach-
ing Computer Science or computational thinking. To access this population, we
started by recruiting from the pool of instructors from our personal network and
we used snowball sampling to help find new participants.

We screened potential participants by looking at their personal or university
websites and invited those who had experience teaching introductory program-
ming classes. During the invitation, we also sent our consent form that discussed
relevant information about the study, including stipulations that our interviews
would be recorded but that the recording and any resulting transcripts would
be deleted after our work concluded.

In total, nine instructors agreed to participate in the study, as presented in
Table 1.

Design Fiction Sessions. Qualified participants were invited to a meeting
wherein one researcher introduced the goals of the work, displayed the two-
minute prompt diegesis video, and interviewed the participants about how the
conversational agent could help scaffold computational thinking and how they
feel about such a tool. These interviews lasted for 30-60 minutes and were guided
by these questions: 1. How can Atlas help Luna with computational thinking?
2. How should Luna interact with Atlas? 3. Where should Atlas be integrated to
offer the best teaching experience? 4. Are there any statistics that Atlas should
collect from students and give to instructors? 5. What benefits do you foresee
with the use of Atlas? 6. What drawbacks do you foresee with the use of Atlas?
7. If you had two competing personal assistants, which criteria would you use to
choose which one to use with your students? 8. Do you have other suggestions
about how Atlas should work?

Analysis Method To analyze the narratives, as in similar studies [63, 30], we
applied open and axial coding procedures [15] through multiple rounds of anal-
ysis (see figure 1). This analysis aimed to collect design insights and expec-
tations that serve as guidelines for implementing such a conversational agent.



6 J. Penney et al.

Fig. 1. Our research method consists of five main steps, with the outcome of one step
being the input to the next.

After concluding an interview, the resulting recording was transcribed using a
speech recognition tool [53], and a researcher reviewed the transcription with
the recording to correct errors. Then, a researcher analyzed the text and coded
participant quotes, after which a second researcher reviewed the first coding and
applied coding a second time. After these two rounds of coding, we iteratively
and cyclically reviewed and refined our categories, initially as a team and then
conducted by the lead researcher. High-level categories of participant expecta-
tions began to emerge from our interview data and began to stabilize as our
number of participants grew, indicating advancement towards data saturation,
where these high-level categories nearly stopped evolving. We stopped interview-
ing participants since the final interviews did not bring significant insights to our
results.

4 Results
In this section, we present our participants’ expectations for an educational
conversational agent and their sentiments about those expectations.

4.1 Expectations

Participants described five categories of expectations that they felt would make
the tool optimal for the end goal of scaffolding computational thinking for novice
Computer Science students, displayed in Figure 2: programming guidance, code
elucidation, student telemetry, course administration, and UI/UX.

Programming Guidance. Instructors expect conversational agents to be able
to scaffold computational thinking for students by guiding them stepwise through
the development of algorithms in natural language instead of giving students so-
lutions. The general idea was elaborated most lucidly by participant P1: “So,
there are some standard questions that the teacher sometimes asks to say, ‘Look



Anticipating User Needs: Insights from Design Fiction 7

Give Study 
Material

P6
P9

Create 
Grades

P3

Exercises
P3 P4
P5 P8

P9

Personalized 
Content

P6
P7

Incremental P4

Gamification P4 Remedial P9

Visualize
P1 P2

P8
P9

Explore
Fixes

P2 P2
P8
P9

Give Past
Error Reminders

P6

Refactors P5 P6

Comment Improvements P9

Code
P2
P5
P8 Exception P2 Documentation P3 Problem Prompt P2

Toggle Functionality P1 P9

Programming
Language

P2

Mode P9

Record
Interaction

P8

MobileP6

Chatbot P6 P9

Recognize
Student

P2

Assistant P6 P9 Notifications P6

Code 
Elucidation

Explore

Debug P1 P3

VR/
AR

P2
P7
P8

Performant P5

Traditional P4 P8

Accessibility P4

Input mode

Customize P2

Accept 
Feedback

P1
P3
P4

Student 
Statistics

P3 P3
P5 P7

Usage P4

Everything P7

Voice P2

UX/UI

Student
Telemetry

Code P8

Errors P8

Aggregated 
Summary

P1Searches P1
P6
P8

Solution 
Performance

P6
P9

Cheating P4 P9

Amount of 
Work

P1
P4
P9

Help P8

Let Student 
Try

P1
P7Mistakes

P1 P2
P6
P8

Knowledge
P1 P2 P3

 P4 P5
 P6 P8

Social 
Factors

P2
P4
P8

Detect 
Stuck

P1
P3
P4Problem

Solving

P4
P5

Personal 
Context

P2
P6
P8

Stepwise 
Prompting

P1 P4
 P5 P6
 P8 P9

From 
Partial Code

P1

Structure P3 P6

From 
Description

P8

Hint P7 P9

After Elapsed 
Attempts/time

P9

Enforce 
Stepwise

P4
P6

To 
Professional

P5

Course 
Administration

Programming 
Guidance

Give 
Code

P3
P6

Give 
Solution

P1 P4
P6 P8

P9

From 
Pseudocode

P1 P4
 P5 P7

P8

Give 
Help

P1 P2
  P4 P7

  

Expectations

Explain

Fig. 2. Categorization of expectations narrative data

at what you want to do. What is the next step you would need to take in order to
express yourself in the language you’re using, in natural language, so to speak?’”.
While doing this, the agent should approach the student with an awareness of
their educational background and knowledge and tailor their responses accord-
ingly, such as explaining a concept differently to address the student’s misunder-
standing (P3). Support for giving the student solutions was overwhelmingly neg-
ative, and support for giving code was mixed and conditional, with four viewing
it unfavorably (P3, P5, P6, P8) and three in support of translating pseudocode
into code (P2, P4, P7). P4 felt that it was permissible because the intention
is that students should focus on algorithmic thinking, not implementation. P3
felt it was permissible that the conversational agent give an algorithm in code
that models the current problem, but which is not the solution and must be
synthesized with their own ideas to successfully complete.

Code Elucidation. The conversational agent should be able to explain things
in the environment that the student might be confused about, such as prob-
lem statements, code snippets, diagnostics, compilation and runtime errors, and
underlying algorithms and concepts, such as memory. It should also be able to
use diverse means to do so. For example, the most popular elucidation expec-
tation that participants had was visualization, such as for algorithms (P1, P2,
P9), memory (P8), debugging (P1), and code flow (P2). P2 emphasized “I un-
derstand that, from my experience, one of the best ways to make the student
understand computational thinking and how it works is by drawing diagrams.”
Other examples of envisioned elucidation behaviors include retrieving documen-
tation, highlighting passages relevant to the problem being addressed, and even



8 J. Penney et al.

explaining them if the student does not understand it (P3) and proactive and
reactive debugging (P1, P2, P3, P8, P9) and refactoring (P5, P6), wherein the
agent explains what can or should be done and why.

Student Telemetry. Participants acknowledged that many of the behaviors
they expect from a conversational agent may require it to collect and use infor-
mation about the student, and some desired for the agent to return statistics
about the class for their consideration. Our participants thought of various pieces
of information that would be useful to the agent and them. The most discussed
was information about the student’s formal and informal educational history
(P2, P3), field of study or career (P4), doubts or struggles with course topics
(P4, P5, P6), past usage of the tool (P2), and ability and disability (P3, P8). As
discussed before, having information about the student could allow the agent to
tailor responses, ideally to a high level. P3 explained that “there are many differ-
ent ways to get to a solution, and if a student had that particular background, for
instance, and Atlas was aware of that background, that might really help Atlas to
maybe redirect the student to a different angle or a different approach to maybe
better explore their lack of understanding on a topic”.

As per our participants, Atlas should display to the professor which topics
students are struggling with, not only to help the current course but to create
an awareness of specific struggles for the next iteration of the course. P6 thinks
that “[the agent should collect statistics and create a] categorization of the main
difficulties, so that... in a new class, the instructor can already have an idea of
what they should address...”. Participants also imagined that the conversational
agent could observe the problem-solving behaviors of the student, such as de-
tecting when they were stuck, how many and what kind of mistakes they made,
the amount of effort and time the student put into work on the platform, the
performance of their code solutions (maybe similar to how tools like Leetcode
evaluate the speed of a solution), and whether or not the student cheated.

To the contrary and looking towards the future of pedagogy, P3 felt that col-
lecting statistics on student performance facilitates usage of outmoded methods
of assessment: “the idea that students can navigate their own learning process at
their own speed is entirely novel to... modern education. And I think that espe-
cially with tools like Atlas, we should really be stepping back from the concept
of performance and especially like temporal performance achievements.”

Course Administration. Concerning course administration, participants were
interested in the creation of study materials and exercises that were predicated
on their students’ past education, work they have done with the conversational
agent, and deficiencies with the current topic. Some participants (P6, P8, P9)
envisioned students being given remedial exercises based on scores on assess-
ments taken in the agent. P4 envisioned assessments advancing incrementally,
as they would in curriculum, and felt this pattern of escalation lends itself well
to gamification, which would act as a means to maintain engagement. P3 op-
posed the conversational agent giving preprepared exercises because they cannot
address the individual’s particular misunderstandings or tailor their help to fit



Anticipating User Needs: Insights from Design Fiction 9

them. They also opposed the agent creating “final grades for a class... or even
final grades for a set of concepts” because it may lack the flexibility and nuance
that humans display when assessing how well a student has learned.

UI/UX. Expectations for how the user interface should behave, how the student
should interact with the agent, or what the user experience should be like were
varied and inconsistent. Participants imagine interacting with conversational
agents via voice (P2, P6, P9), traditional input methods, virtual/augmented
reality (P7, P8), and mobile (P6), with some detractors. P8 felt that popular
utilities, like search engines, already respond via text, so the method of IO was
not interesting. P2 felt that virtual reality doesn’t offer much at the moment,
but may in the future. The ability to customize the agent was interesting to
a few participants (P1, P2, P9), specifically the ability to toggle functionality
through atomic settings. Another suggestion was the use of “modes” dedicated
to common usages, such as taking exams (P9). One participant, P4, mentioned
accessibility a couple of times, referencing students with physical disabilities,
such as deafness, and neuroatypicality, such as ADHD, and discussed that it
would be meaningful for the system to have flexibility with IO methods to include
such students.

4.2 Sentiments

In addition to expectations, the participants discussed three categories of senti-
ments they had about such a tool in response to questions 5-7.

Benefits. All-in-all, participants saw benefits of using a conversational agent
oriented towards education for both students and instructors, but particularly
for engaging, emotionally buttressing, and increasing understanding for students.
Participants felt the tool could continuously assist students as they worked, po-
tentially even in an “omnipresent” way (P8). Through this, they could experience
decreases in feelings of isolation or fending for oneself (P7) and anxiety from not
being able to finish their work right away and while a teacher is not around (P9).
P3 explained that by providing a guide that will be present to help decompose
and guide them through problems “you’re giving students an opportunity to ex-
plore the problem without freaking out and... giving up”, which they feel “is one
of the biggest barriers to success for computer science students.” The benefits
to instructors that we found discussed most were that the agent could provide
them with metrics about the class and help to free up their time by assisting
with responding to students (P1), allowing them to focus on other areas of the
class (P9), or even allowing them to teach more students (P9).

Drawbacks. Reliance on the agent, teaching students incorrectly, and deterio-
rating relationships in the classroom are among the worries that participants had
about the agent. If the tool engages in proactive intervention while the student
is incorrectly implementing something, as an instructor might, it may condition
students to wait for help (P2, P4). If the design is poor and students are capable
of getting to solutions without receiving scaffolding, the student may not learn



10 J. Penney et al.

or may not be able to perform without the tool (P1, P4, P5). Of course, the
instructor may have to watch for signs of misuse or cheating (P1, P2, P3). Then
again, if the design works, participants worried that students may lose connec-
tion to their instructor or feel that they no longer need class time (P1, P6, P9).
P3 noted that the tool may be difficult to administer, and it may make finding
instructors more difficult because the institution will need those who can operate
the tool.

Priorities. In the scenario where participants were deliberating over which con-
versational agent to use, proven effectiveness with teaching students, credibility,
and customization would sway their decision the most. Participants sometimes
remarked on specific qualities that would promote learning the most, such as
knowing when it is appropriate to intervene to offer assistance (P5, P7), teach-
ing as opposed to simply giving answers and offering a comfortable interaction
to the student (P6) and choosing the most effective means of teaching a concept,
such as using visuals (P8). Emphasis on the tool’s credibility betrayed that the
participants who mentioned it did not fully immerse in the diegesis when it pro-
posed that present technical limitations were not a concern, but that concern is
significant and present. Instructors felt that customization would offer the ability
for the tool to cater to needs more finely, such as by adjusting language (P4);
the instructor having the ability to toggle functionality when needed, such as
for specific assignments or tasks (P1, P9); and the student being able to toggle
functionality as well, so they can get the experience they want (P9).

Answer to the Research Question

What are instructors’ expectations of a programming conver-
sational agent intended to scaffold computational thinking?

The conversational agent is expected to act as a competent guide which
would allow the student to move at their own pace through guided al-
gorithm implementations and have access to thorough explanations in
a variety of media, adapted to the individual student’s background. In-
structors would like the agent to collect statistics about student perfor-
mance, usage, and background to make other abilities possible. Correct
scaffolding behavior and credible guidance stemming from good data are
preeminent and will sway educators to use a given conversational agent.

5 Discussion

Some of the behaviors that the instructors expect can already be meaningfully
realized by existing LLMs and conversational agents built on top of them, such
as ChatGPT. As introduced in Section 1, LLMs have displayed that they can
outperform first-year Computer Science students in creating explanations of ba-
sic function definitions [31]. More advanced models have displayed approaching



Anticipating User Needs: Insights from Design Fiction 11

the efficacy of human tutors in tasks such as “providing hints to a student to
help resolve current issues” and “generating new tasks that exercise specific
types of concepts/bugs” [50], abilities that our participants also expected. How-
ever, these recent findings do not address the more abstract ability to scaffold
problem-solving skills or algorithm implementation via piecewise, tailored guid-
ance without giving code or pseudocode, for one major example. Taming the
output of LLMs for educational purposes is still an open problem, and develop-
ers implementing conversational agents for this purpose must consider how this
can be accomplished.

Instead of allowing the student unrestricted access to the LLM’s bank of
information, developers should consider ways to regulate the LLM so that the
response models actual problem-solving processes or provokes the student into
critical thinking. Developers should also recognize that it is important to instruc-
tors that this response be tailored to the students’ background and learning style.
One popular method of tailoring LLMs is by prompt engineering, or “prompt
crafting” [5], on the natural language input. LLM outputs are known to be “sen-
sitive” to inputs, producing different results for the same questions posed with
different phrasing, and this quality can be exploited to strongly improve output
appropriateness for a conversational agent focused on a specific domain [17].

In the current landscape, recent scholarship notes that novel conversational
agent implementations using GPT-4, such as Khanmigo, are advancing the state-
of-the-art [41] of teaching using LLMs. Khanmigo poses questions to the student
to prompt problem-solving behavior and can use redirection to refocus the stu-
dent on the current question if they try to circumvent it. Functionalities such as
this are possible through prompt engineering; indeed, LLM pipelines that rely on
prompt engineering under the hood appear to be the current standard response
to the question of taming LLM output, as we see with established conversa-
tional agent implementations such as Github Copilot1 and cutting-edge LLM-
based tools from industry research, such as Microsoft Lida2 [19]. Nevertheless,
some expectations that our participants had cannot yet be realized. Dynamically
creating visualizations tailored to address students’ specific misunderstandings
or situations is still hard with current LLMs; regardless, it is one of the most
anticipated abilities among our participants.

Finally, researchers interested in expanding upon our work can also inves-
tigate how certain effects can be accomplished. For example, participants were
interested in the idea that assisting students may make them feel emotionally
supported. While some felt that this was a natural consequence of having access
to a powerful resource such as Atlas, it is not clear whether this hypothesis holds
or what the role of other aspects would be, such as non-traditional interaction
(e.g., voice and visual representations) and social characteristics (e.g., race, gen-
der, culture) in the emotional support of students. For instance, researchers at
the intersection of education and gender have established that gender plays a
significant role in student engagement and that women STEM students are more

1 https://github.blog/2023-07-17-prompt-engineering-guide-generative-ai-llms/
2 https://microsoft.github.io/lida/



12 J. Penney et al.

inclined to seek help from women STEM instructors [58]. Researchers looking
to increase the comfort and effectiveness of LLM-based conversational agents
should acknowledge and integrate work that examines the intersection of stu-
dent and instructor identity with course engagement. A variety of other social
characteristics of chatbots [9] can be investigated in this context. Future studies
building upon this work can also incorporate the students’ perspectives. Such
research could present the same scenarios and pose the same questions to discern
potential discrepancies in expectations and sentiments.

6 Limitations

In this work, we focused on the perspectives of instructors who teach or have
recently taught introductory computer science. This method follows in the foot-
steps of other recent works [30], but is a limitation because our results are skewed
toward the experiences and interests of one population, only half of the class-
room dynamic. Having no student voices leaves this work lacking insight on
how students expect conversational agents to behave to help them develop com-
putational thinking skills more effectively. New research focused on the student
perspective may reveal entirely different sets of expectations and sentiments than
those discussed by our current participants.

Even with focusing exclusively on instructors, our sample population is not
diverse. We recruited instructors who work at five universities in Brazil and one
in the United States. Most (7) were Brazilian cisgender men. we had only two
instructors who were cisgender women, both Brazilian and one who taught in
the United States. Consequently, our outcomes are biased along gender, culture,
and region, for example because we have no trans or non-binary participants,
and none from or teaching in Asia, Africa, or Europe. None explicitly expressed
that they lived with disabilities which influenced their perspective, nor did they
explicitly express that their racialization was a factor in their responses. The
gender distribution of our participant cohort, in particular, arguably reflects
the homogeneous gender distribution of the field it drew from, which has and
still underrepresents cisgender women. Additional research which intentionally
explores the experiences of more diverse populations may yield concerns not
touched upon here. Of particular interest are the experiences of marginalized
populations and discovering ways such tools can serve those who are least served
by current pedagogy and educational institutions. Besides the identity of the
instructors, other meaningful limitations may include that all but one instructor
taught at public universities.

Much like related studies that use design fiction or similar methods [30], our
participants often discussed the future and hypothetical LLM-based conversa-
tional agents of the future in terms of existing conditions and similar extant
technologies. While our interview questions and initial video prompt encouraged
participants to envision a tool without the limitations faced by those that ex-
ist now, the sentiments they expressed may reflect the reality that they know.
This includes how they conceived of UI/UX, such as imagining the tool using
input methods that are currently common, such as voice; struggles LLMs face,



Anticipating User Needs: Insights from Design Fiction 13

such as the relevancy of data that the model was trained upon; and even com-
mon fears about LLM-based tools negatively impacting economic conditions for
instructors.

7 Conclusion

In this paper, we presented the expectations and sentiments of instructors in-
volved with teaching Computer Science on the various functionalities that an
LLM-based conversational agent could offer to best serve them in their work.
Instructors imagined a tool that can scaffold computational using insights into
the individual they are instructing, providing accessible tailored education out-
side of the classroom. This paper’s findings lay the foundation for the imple-
mentation of novel solutions or the improvement of existing ones that can cater
to the academic community, as well as introduce lines of further investigation.
Future work on this topic include a design fiction study with student popula-
tions, Wizard of Oz experiments intended to classify student intentions and how
they are expressed in dialogue, and design and prototype implementation of the
conversational agent.

8 Acknowledgments

This work was supported by the National Science Foundation grants 2236198,
2247929, and 2303042. We thank Alexander Gustav Siegel for assistance with
our coding process and the instructors who shared their valuable experience
participating in our research.

References

1. Becker, B.A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather, J., Santos,
E.A.: Programming Is Hard – Or at Least It Used to Be: Educational Opportunities
and Challenges of AI Code Generation. In: SIGCSE TS. pp. 500–506 (2023)

2. Blythe, M.: Research through design fiction: narrative in real and imaginary ab-
stracts. In: CHI. pp. 703–712. ACM (2014)

3. Blythe, M., Encinas, E.: The Co-ordinates of Design Fiction: Extrapolation, Irony,
Ambiguity and Magic. In: GROUP. pp. 345–354. ACM (2016)

4. Bosse, Y., Gerosa, M.A.: Why is programming so difficult to learn?: Patterns of
Difficulties Related to Programming Learning Mid-Stage. ACM SIGSOFT Soft-
ware Engineering Notes 41(6), 1–6 (2017)

5. Bull, C., Kharrufa, A.: Generative AI Assistants in Software Development Educa-
tion: A vision for integrating Generative AI into educational practice, not instinc-
tively defending against it. IEEE Software pp. 1–9 (2023)

6. Burnett, M.: What Is End-User Software Engineering and Why Does It Matter?
In: IS-EUD. pp. 15–28. Springer (2009)

7. Camp, T., Zweben, S., Walker, E., Barker, L.: Booming Enrollments: Good Times?
In: SIGCSE TS. pp. 80–81 (2015)

8. Cao, C.: Scaffolding CS1 Courses with a Large Language Model-
Powered Intelligent Tutoring System. In: Companion Proceedings of
the 28th International Conference on Intelligent User Interfaces. p.
229–232. IUI ’23 Companion, Association for Computing Machinery,



14 J. Penney et al.

New York, NY, USA (2023). https://doi.org/10.1145/3581754.3584111,
https://doi.org/10.1145/3581754.3584111

9. Chaves, A.P., Gerosa, M.A.: How Should My Chatbot Interact? A Survey on Social
Characteristics in Human–Chatbot Interaction Design. International Journal of
Human–Computer Interaction 37(8), 729–758 (2021)

10. Cheon, E., Su, N.M.: Configuring the User: “Robots Have
Needs Too”. In: CSCW. pp. 191–206. CSCW ’17, ACM, New
York, NY, USA (2017). https://doi.org/10.1145/2998181.2998329,
http://doi.acm.org/10.1145/2998181.2998329

11. Cheon, E., Su, N.M.: Futuristic Autobiographies: Weaving Participant Nar-
ratives to Elicit Values around Robots. In: HRI. pp. 388–397. HRI ’18,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3171221.3171244,
http://doi.acm.org/10.1145/3171221.3171244

12. Chilana, P.K., Alcock, C., Dembla, S., Ho, A., Hurst, A., Armstrong, B., Guo, P.J.:
Perceptions of non-CS majors in intro programming: The rise of the conversational
programmer. In: VL/HCC. pp. 251–259. IEEE (2015)

13. Chilana, P.K., Singh, R., Guo, P.J.: Understanding Conversational Programmers:
A Perspective from the Software Industry. In: CHI. pp. 1462–1472 (2016)

14. Collins, A., et al.: Cognitive Apprenticeship: Teaching the Craft of Reading, Writ-
ing, and Mathematics. Technical Report No. 403. Tech. rep., BBN and UIUC
(1987)

15. Corbin, J., Strauss, A.: Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory. Thousand Oaks, CA: Sage, 3rd edn. (2008)

16. Dawson, J.Q., Allen, M., Campbell, A., Valair, A.: Designing an Introductory
Programming Course to Improve Non-Majors’ Experiences. In: SIGCSE TS. pp.
26–31 (2018)

17. Denny, P., Kumar, V., Giacaman, N.: Conversing with Copilot: Exploring Prompt
Engineering for Solving CS1 Problems Using Natural Language. In: SIGCSE TS.
pp. 1136–1142 (2023)

18. Denny, P., Luxton-Reilly, A., Tempero, E., Hendrickx, J.: Understanding the syn-
tax barrier for novices. In: ITiCSE. pp. 208–212 (2011)

19. Dibia, V.: LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visual-
izations and Infographics using Large Language Models. In: ACL. Association for
Computational Linguistics (March 2023)

20. Edwards, J., Ditton, J., Trninic, D., Swanson, H., Sullivan, S., Mano, C.: Syntax
Exercises in CS1. In: ICER. pp. 216–226 (2020)

21. Encinas, E., Blythe, M.: The Solution Printer: Magic Realist Design Fiction. In:
CHI. pp. 387–396. ACM (2016)

22. Ghaoui, C.: Encyclopedia of Human Computer Interaction. IGI Global (2005)
23. Guo, P.J.: Six Opportunities for Scientists and Engineers to Learn Programming

Using AI Tools such as ChatGPT. Computing in Science & Engineering (2023)
24. Harmon, E., Bopp, C., Voida, A.: The Design Fictions of Philanthropic IT: Stuck

Between an Imperfect Present and an Impossible Future. In: CHI. pp. 7015–7028
(05 2017). https://doi.org/10.1145/3025453.3025650

25. Kinnunen, P., Malmi, L.: Why students drop out CS1 course? In: ICER. pp. 97–108
(2006)

26. Ko, A.J., Myers, B.A.: Development and evaluation of a model of programming
errors. In: HCC. pp. 7–14. IEEE (2003)

27. Ko, A.J., Myers, B.A., Aung, H.H.: Six Learning Barriers in End-
User Programming Systems. In: VL/HCC. pp. 199–206. IEEE (2004).
https://doi.org/10.1109/VLHCC.2004.47



Anticipating User Needs: Insights from Design Fiction 15

28. Kuhail, M.A., Farooq, S., Hammad, R., Bahja, M.: Characterizing Visual Program-
ming Approaches for End-User Developers: A Systematic Review. IEEE Access 9,
14181–14202 (2021)

29. Kummerfeld, S.K., Kay, J.: The neglected battle fields of syntax errors. In: ACE.
pp. 105–111. Citeseer (2003)

30. Lau, S., Guo, P.J.: From “Ban It Till We Understand It” to “Resistance is Futile”:
How University Programming Instructors Plan to Adapt as More Students Use AI
Code Generation and Explanation Tools such as ChatGPT and GitHub Copilot.
In: ICER (2023)

31. Leinonen, J., Denny, P., MacNeil, S., Sarsa, S., Bernstein, S., Kim, J.,
Tran, A., Hellas, A.: Comparing Code Explanations Created by Stu-
dents and Large Language Models. In: Proceedings of the 2023 Con-
ference on Innovation and Technology in Computer Science Education
V. 1. p. 124–130. ITiCSE 2023, Association for Computing Machin-
ery, New York, NY, USA (2023). https://doi.org/10.1145/3587102.3588785,
https://doi.org/10.1145/3587102.3588785

32. Lewis, C., Olson, G.: Can principles of cognition lower the barriers to program-
ming? In: Empirical studies of programmers: second workshop. pp. 248–263 (1987)

33. Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles,
T., Keeling, J., Gimeno, F., Dal Lago, A., et al.: Competition-level code generation
with AlphaCode. Science 378(6624), 1092–1097 (2022)

34. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An
Emerging Paradigm. In: End User Development, pp. 1–8. Springer (2006)

35. Lindley, J., Coulton, P., Brown, E.L.: Peer Review and Design Fiction: “Honestly,
they’re not just made up.”. CHI Extended Abstracts (Alt. CHI). ACM (2016)

36. Linehan, C., Kirman, B.J., Reeves, S., Blythe, M.A., Tanenbaum, J.G., Desjardins,
A., Wakkary, R.: Alternate endings: using fiction to explore design futures. In: CHI.
pp. 45–48. ACM (2014)

37. Lister, R.: Computing education research programming, syntax and cognitive load.
ACM Inroads 2(2), 21–22 (2011)

38. Lupton, E.: Design is storytelling. Cooper-Hewitt Museum, Chicago, IL (November
2017)

39. Luxton-Reilly, A.: Learning to Program is Easy. In: ITiCSE. pp. 284–289 (2016)
40. Maher, M., Tadimalla, Y., Dhamani, D.: IS CHATGPT GOOD FOR

YOUR STUDENTS? A STUDY DESIGN OF THE IMPACT OF AI
TOOLS ON THE STUDENT EXPERIENCE IN LEARNING JAVA.
In: EDULEARN23 Proceedings. pp. 5702–5709. 15th International
Conference on Education and New Learning Technologies, IATED
(3-5 July, 2023 2023). https://doi.org/10.21125/edulearn.2023.1493,
https://doi.org/10.21125/edulearn.2023.1493

41. Markel, J.M., Opferman, S.G., Landay, J.A., Piech, C.: GPTeach: Interactive TA
Training with GPT Based Students. In: L@S. p. 226–236 (2023)

42. Muller, M., Erickson, T.: In the Data Kitchen: A Review (a Design Fiction on
Data Science). In: CHI. pp. alt14:1–alt14:10. CHI EA ’18, ACM, New York, NY,
USA (2018), http://doi.acm.org/10.1145/3170427.3188407

43. Muller, M., Liao, Q.V.: Exploring AI Ethics and Values through Partici-
patory Design Fictions. Human Computer Interaction Consortium (2017),
https://www.slideshare.net/traincroft/hcic-muller-and-liao-participatory-design-
fictions-77345391

44. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited research overview: end-user pro-
gramming. In: CHI. pp. 75–80 (2006)



16 J. Penney et al.

45. Nguyen, N., Nadi, S.: An empirical evaluation of GitHub copilot’s code suggestions.
In: MSR. pp. 1–5. IEEE (2022)

46. Noortman, R., Schulte, B.F., Marshall, P., Bakker, S., Cox, A.L.: HawkEye
- Deploying a Design Fiction Probe. In: CHI. pp. 422:1–422:14. CHI ’19,
ACM, New York, NY, USA (2019). https://doi.org/10.1145/3290605.3300652,
http://doi.acm.org/10.1145/3290605.3300652

47. Pea, R.D., Kurland, D.M.: On the cognitive effects of learning computer program-
ming. New Ideas in Psychology 2(2), 137–168 (1984)

48. Penney, J.M., Pimentel, J.F., Steinmacher, I., Gerosa, M.A.: Anticipating User
Needs: Insights from Design Fiction on Conversational Agents for Computational
Thinking (2023), https://youtu.be/SleAo-IM7kU

49. Petersen, A., Craig, M., Campbell, J., Tafliovich, A.: Revisiting why students drop
CS1. In: KOLI-CALLING. p. 71–80. Koli Calling ’16, Association for Computing
Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2999541.2999552,
https://doi.org/10.1145/2999541.2999552

50. Phung, T., Pădurean, V.A., Cambronero, J., Gulwani, S., Kohn, T., Majumdar,
R., Singla, A., Soares, G.: Generative AI for Programming Education: Benchmark-
ing ChatGPT, GPT-4, and Human Tutors. International Journal of Management
21(2), 100790 (2023)

51. Prenner, J.A., Babii, H., Robbes, R.: Can OpenAI’s Codex Fix Bugs? An Evalua-
tion on QuixBugs. In: Proceedings of the Third International Workshop on Auto-
mated Program Repair. p. 69–75. APR ’22, Association for Computing Machinery,
New York, NY, USA (2022)

52. Prensky, M.: Programming: The New Literacy. Edutopia magazine (2008)
53. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust

Speech Recognition via Large-Scale Weak Supervision. In: ICML. pp. 28492–28518.
PMLR (2023)

54. Ringfort-Felner, R., Laschke, M., Sadeghian, S., Hassenzahl, M.: Kiro: A Design
Fiction to Explore Social Conversation with Voice Assistants. Proceedings of the
ACM on Human-Computer Interaction 6(GROUP), 1–21 (2022)

55. Ross, S.I., Martinez, F., Houde, S., Muller, M., Weisz, J.D.: The Programmer’s
Assistant: Conversational Interaction with a Large Language Model for Software
Development. In: IUI. pp. 491–514 (2023)

56. Sax, L.J., Lehman, K.J., Zavala, C.: Examining the Enrollment Growth: Non-CS
Majors in CS1 Courses. In: SIGCSE TS. pp. 513–518 (2017)

57. Sobania, D., Briesch, M., Rothlauf, F.: Choose Your Programming Copilot: A
Comparison of the Program Synthesis Performance of GitHub Copilot and Ge-
netic Programming. In: Proceedings of the genetic and evolutionary computation
conference. pp. 1019–1027 (2022)

58. Solanki, S.M., Xu, D.: Looking Beyond Academic Performance: The Influence of
Instructor Gender on Student Motivation in STEM Fields. American Educational
Research Journal 55(4), 801–835 (2018)

59. Soloway, E., Spohrer, J.C.: Studying the Novice Programmer. Psychology Press
(2013)

60. Stefik, A., Siebert, S.: An Empirical Investigation into Programming Language
Syntax. ACM Transactions on Computing Education (TOCE) 13(4), 1–40 (2013)

61. Sterling, B.: Cover Story Design fiction. interactions 16(3), 20–24 (2009)
62. Virkki, O.T.: Performance and Attrition in Information Technology Stud-

ies; A Survey of Students’ Viewpoints. In: EDUCON. pp. 1–9 (2023).
https://doi.org/10.1109/EDUCON54358.2023.10125231



Anticipating User Needs: Insights from Design Fiction 17

63. Wessel, M., Abdellatif, A., Wiese, I., Conte, T., Shihab, E., Gerosa, M.A., Stein-
macher, I.: Bots for Pull Requests: The Good, the Bad, and the Promising. In:
ICSE. vol. 26, p. 16. ACM/IEEE (2022)


