MAE 326 - Lista de Exercícios 4

Prof. Antonio Galves

28 de outubro de 2013

Algoritmo para seleção do alcance de Cadeias de Markov:

Dada uma amostra $X_0^n = (X_0, \dots, X_n)$ de símbolos do alfabeto A finito, definimos

$$\hat{k}_n = \inf\{k \ge 0 : \hat{p}_n^{(k)} \approx \hat{p}_n^{(j)}, \forall j \ge k\},\$$

como um critério para selecionarmos o alcance do mecanismo aleatório Markoviano que gerou a amostra. Na definição acima, $\hat{p}_n^{(k)} \approx \hat{p}_n^{(j)}$, para $j \geq k$ se e somente se

$$\max_{a \in A} \max_{a_{-j}^{-1} \in A^j} \{ |\hat{p}_n^{(k)}(a|a_{-k}^{-1}) - \hat{p}_n^{(j)}(a|a_{-j}^{-1})| \} \le \delta,$$

onde $\delta \in (0,1)$ é o limiar fixado. Sempre que $\hat{p}_n^{(k)} \approx \hat{p}_n^{(j)}$, diremos que essas duas medidadas de probabilidades são estatisticamentes iguais.

1. Sejam X_1, X_2, \ldots, X_n variáveis aleatórias iid assumindo valores em $A = \{0, 1\}$ e com distribuição dada por

$$\mathbb{P}(X_i = 1) = p \in \mathbb{P}(X_i = 0) = 1 - p, \text{ para } i = 1, 2, \dots$$

Para n = 1000 e p = 0.5, para quais valores de $\delta > 0$ o majorante da desigualdade de Chebyshev é menor ou igual a 0.05?

2. Sejam X_1, X_2, \ldots, X_n variáveis aleatórias iid assumindo valores em $A = \{0,1\}$ e com $\mathbb{P}(X_i=1)=p$, para $i=1,\ldots,n$. Se p=0.5 e $\delta=0.02$, encontre \bar{n} tal que para todo $n\geq \bar{n}$ temos

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}(X_{1})\right| \ge \delta\right) \le 0.05.$$

3. Sejam X_1, X_2, \ldots, X_n variáveis aleatórias iid assumindo valores em $A = \{1, \cdots, |A|\}$ com distribuição dada por

$$\mathbb{P}(X_i = a) = p(a), \ \forall a \in A$$

onde p(a) é conhecido para todo $a \in A$. Definimos para cada $a \in A$ e $n \geq 0$,

$$\hat{p}_n(a) = \sum_{t=1}^n 1_{\{X_t = a\}},$$

o número de vezes que a cadeia $(X_t)_{t\geq 0}$ visita o símbolo a até o instante n. Usando a desigualdade de Chebyshev, sabemos que para todo $\delta>0$ e n>0

$$\mathbb{P}(|\hat{p}_n(a) - p(a)| > \delta) \le \frac{(a(1 - p(a))^2)}{n\delta^2}.$$

Mostre, a partir da desigualde acima, que para qualquer $\epsilon > 0$ e $a \in A$, existe $\bar{n} = \bar{n}(\epsilon, a)$ tal que,

$$\mathbb{P}(\hat{p}_n(a) - \delta \le p(a) \le \hat{p}_n(a) + \delta) \ge 1 - \epsilon.$$

4. Sejam X_1, X_2, \ldots, X_n variáveis aleatórias iid assumindo valores em $A = \{1, \cdots, |A|\}$ com distribuição dada por

$$\mathbb{P}(X_i = a) = p(a), \ \forall a \in A$$

onde p(a) é desconhecido para todo $a \in A$. Usando a desigualdade de Chebyshev, sabemos que para todo $\delta > 0$ e $n \ge 0$

$$\mathbb{P}(|\hat{p}_n(a) - p(a)| > \delta) \le \frac{1}{4n\delta^2}.$$

Mostre, a partir da desigualde acima, que para qualquer $\epsilon > 0$, existe $\bar{n} = \bar{n}(\epsilon)$ tal que para todo $a \in A$,

$$\mathbb{P}(\hat{p}_n(a) - \delta \le p(a) \le \hat{p}_n(a) + \delta) \ge 1 - \epsilon.$$

5. Dada uma amostra $X = (X_0, \dots, X_{10000})$ gerada por um algoritmo aleatório assumindo valores em $A = \{0, 1\}$, obteve-se os seguintes valores das funções de contagem:

a_0	a_1	a_2	$N_{10000}(a_0a_1a_2)$
0	0	0	3211
0	0	1	790
0	1	0	195
1	0	0	805
0	1	1	810
1	0	1	190
1	1	0	780
_ 1	1	1	3220

$a_0 a_1$	$N_{10000}(a_0a_1)$			
0 0	3940			
0 1	1036			
1 0	4010			
1 1	1015			
a_0	$N_{10000}(a_0)$			
0	4981			

Utilizando \hat{k}_n como critério de estimação, teste a hipótese nula $H_0 = \{X \text{ foi gerada por uma Cadeia de Markov de alcance 1}\}$

6. Dada uma amostra $X=(X_0,\cdots,X_{100000})$ gerada por um algoritmo aleatório assumindo valores em $A=\{0,1\}$, obteve-se os seguintes valores das funções de contagem:

$a_0 \ a_1 \ a_2 \ a_3$	$N_{100000}(a_0a_1a_2a_3)$			
0 0 0 0	24149	-		
$0 \ 0 \ 0 \ 1$	5850			
$0 \ 0 \ 1 \ 0$	3199			
$0 \ 1 \ 0 \ 0$	2800		$a_0 \ a_1 \ a_2$	$N_{100000}(a_0a_1a_2)$
$1 \ 0 \ 0 \ 0$	6250		0 0 0	30000
$0 \ 0 \ 1 \ 1$	4250		$0 \ 0 \ 1$	7449
$0 \ 1 \ 0 \ 1$	2100		$0 \ 1 \ 0$	4900
$1 \ 0 \ 0 \ 1$	1400		$1 \ 0 \ 0$	7650
$0 \ 1 \ 1 \ 0$	1599		$0 \ 1 \ 1$	7599
$1 \ 0 \ 1 \ 0$	1900		1 0 1	4950
$1 \ 1 \ 0 \ 0$	4600		1 1 0	7600
$0 \ 1 \ 1 \ 1$	6000		1 1 1	29851
$1 \ 1 \ 0 \ 1$	3000			
$1 \ 0 \ 1 \ 1$	3050			
$1 \ 1 \ 1 \ 0$	5950			
1 1 1 1	23901			

$a_0 a_1$	$N_{100000}(a_0a_1)$
0 0	37450
0 1	12499
1 0	12600
1 1	37451

assumindo $\delta = 0.01$.

$$\begin{array}{c|c} a_0 & N_{100000}(a_0) \\ \hline 0 & 49950 \end{array}$$

Utilizando \hat{k}_n como critério de estimação, teste a hipótese nula $H_0=\{X \text{ foi gerada por uma Cadeia de Markov de alcance 2}\}$ assumindo $\delta=0.01$