
656 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT - 29, NO. 5, SEPTEMBER 1983

Trans. Inform. Theory, vol. IT-23, pp. 343-353, May 1977.
[4] H. H. Tan, “Tree encoding of discrete-time abstract-alphabet sta-

tionary block-ergodic sources with a fidelity criterion,” IEEE Trans.
Inform. Theory, vol. IT-22, pp. 671-681, Nov. 1976.

[5] R. M. Gray, D. L. Net&off, and J. K. Omura, “Process definition
of distortion-rate functions and source coding theorems,” IEEE
Trans. Inform. Theory, vol. IT-21, pp. 524-532, Sept. 1975.

[6] T. Hashimoto, “A direct proof of the process definition of the
distortion-rate function for stationary ergodic sources,” Inform.
Contr., vol. 51, pp. 45-57, 1983.

[7] T. Berger, Rate Distortion Theory.,, Englewood Cliffs, NJ:
Prentice-Hall, 197 1.

[8] F. Jelinek, “Tree encoding of memoryless time-discrete sources with
a fidelity criterion,” IEEE Trans. Inform. Theov, vol. IT-15, pp.

584-590, Sept. 1969.
[9] C. R. Davis and M. E. Hellman, “On tree coding with a fidelity

criterion,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 373-378,
July 1975.

[lo] J. F. Flanagan, M. R. Schroeder, B. S. Atal, R. E. Crochiere, N. S.
Jayant, and J. M. Tribdet, “Speech coding,” IEEE Trans. Commun.,
vol. COM-27, pp. 710-737, Apr. 1979.

[1 1] J. B. Anderson and J. B. Bodie, “Tree encoding of speech,” IEEE
Trans. Inform. Theory, vol. IT-21, pp. 379-387, July 1975.

[12] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[13] J. K. Omura and A. ShEhara, “On convergence of symmetric
sources,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 573-577, July
1973.

A Universal Data Compression System
JORMA RISSANEN

Absrroct-A universal data compression algorithm is described which is
capable of compressing long strings generated by a “finitely generated”
souree, with a near optimum per symbol length without prior knowledge of
the source. This class of sources may be viewed as a generalization of
Markov sources to random fields. Moreover, the algorithm does not
require a working storage much larger than that needed to describe the
source generating parameters.

I. INTRODUCTION

T HE first universal data compression algorithms were
capable of encoding strings, generated by independent

information sources, with asymptotically optimum mean
per symbol length without a priori given source probabili-
ties (Davisson [2], Lawrence [4], Lynch [5], Schalkwijk
[lo]). Clearly, such algorithms estimate either directly or
indirectly the statistics with increasing accuracy while the
string is being encoded. The same approach can be ex-
tended, at least in principle, to all stationary sources by
means of gathering the statistics of longer and longer
segments. However, in practice there is an obvious diffi-
culty of exponentially growing number of items to be
stored, and new ideas are needed to do the job in a
practically meaningful manner.

The most powerful universal algorithm published to date
is due to Ziv and Lempel [12]. Their elegant algorithm
achieves asymptotically optimum compression for strings
generated by any stationary ergodic source, and it does the
job in many cases in a quite practicable manner. Although
the authors emphasize the finite machine nature of their

Manuscript received February 3, 1982; revised July 30, 1982.
The author is with IBM Research, 5600 Cottle Road, San Jose, CA

95193.

data compression system and the associated notion of
compressibility, the real power of the algorithm is its
convenient data gathering capability. In order to see this as
well as the limitations of the approach, we reinterpret their
algorithm in a natural statistical framework of the type
discussed in Rissanen and Langdon, [8]. This is done in
Section II.

The main results in this paper are in Sections III, IV,
and V. After having demonstrated in Section III that Ziv
and Lempel’s universal algorithm does not compress well
the important class of strings generated by stationary ran-
dom fields which arise, for example, in image compression
applications, we describe a more powerful data gathering
algorithm. Instead of partitioning the string into its “rele-
vant” parsed segments of increasing length and collecting
their occurrence counts, as done by Ziv-Lempel algorithm,
our algorithm gathers the “contexts” in which each symbol
of the string occurs, together with the associated condi-
tional occurrence counts. The contexts, as subsets of the
past string, have varying size, and they are in general
overlapping. Instead of collecting all the possible sequences
as contexts, which requires too much space, only the “rele-
vant” ones are gathered. To find these the algorithm incor-
porates as a design parameter a rule which ranks the past
symbols, relative to each symbol in the string, according to
their importance in influencing the value of the symbol. At
this stage of development, this rule for efficient operation
is to be selected by the designer based upon the general
nature of the string, but any rule will work.

In Section IV we complete the construction of the uni-
versal model by describing how to select a unique context
for each symbol of the string from among the possible

001%9448/83/0900-0656$01.00 01983 IEEE

RISSANEN: UNIVERSAL DATA COMPRESSION SYSTEM 657

ones. As, generally speaking, the achieved compression
improves with the size of the contexts, which in turn
increases their number and the complexity of the mode l,
we associate a cost with each context.‘This cost is balanced
against the incremental gain in compression due to its
addition to the context space, and the result is a universal
mode l with a new degree of “intelligence”: the algorithm
will find asymptotically any stationary ergodic “finitely
generated” source from its samples. This means that with a
reasonable choice of the design parameter the complexity
of the mode l does not exceed appreciably that of the
source. In contrast, the complexity of the Z iv-Lempel
system when applied to the same string would increase
beyond any bounds. The class of finitely generated sources
is described in Section V.

II. A REINTERPRETATION OF ZIV-LBMPEL
ALGORITHM

W e start with a brief description of the universal data
compression system of Z iv and Lempel, [12]. This discus-
sion also serves as an introduction to the ma in topic in this
paper. The heart of their system is a so-called “incremental
parsing algorithm,” which parses the source string into a
collection of segments of gradually increasing length. The
rule is simple: starting with the empty segment, each new
segment added to the collection is one symbol longer than
the longest match so far found. For example, the string
010100010 gets parsed as the collection (0, l,O l,OO,OlO}.
When the parsed segments are retained in the same order
as they are received, each segment can be encoded as the
ordered pair (i, y), where the index i, written as a binary
integer, gives the position of the longest earlier found
matching segment in the collection, and y gives the last
added symbol. For example, the code of the segment “010”
is, conceptually, the pair (3,O). W e refer for further details
of how the decoder can read the position index from the
code string, to Z iv and Lempel [12].

The code length of string s is given by
n(s)

J%,b) = c bg.A + 443
j=l

(1)

where n(s) denotes the number of parsed segments in s,
and 1x1 denotes the least integer not smaller than X.
Despite the relatively crude coding procedure used by Z iv
and Lempel, their universal data compression algorithm is
asymptotically ,optimum for infinite strings generated by a
stationary ergodic source, in that the per symbol compres-
sion converges to the per symbol entropy of the source.
Clearly, the complexity of the implementation, in terms of
the number of stored items needed to generate the parsing
trees, grows beyond all bounds.

It was shown by Ma [6] that exactly the same sequence
of parsed segments can also be generated with an older
algorithm due to Tunstall [111. Here is how: start with the
initial parsing tree consisting of two leaves, where a weight
of two. is placed at the root and a weight of one at both
leaves. Use this tree to parse the first segment as the path

ot- 7 -1

/\
/5\

,/*\, /“\ ’
/*\

’
,/*\, ’

Fig. 1. Example of parsing algorithm.

from the root to a leaf. W h ile climbing the tree, increment
by one the count of each node visited. Hence the last leaf
visited gets the count of 2, which is the maximum of all the
leaf counts (because the others have the count of one). Split
this leaf by creating two new nodes, and assign the count
of one to both. This determines the new parsing tree, which
is used to parse the next segment, and the cycle is repeated.
As an example, we parse the string 010100010 with the
same result as above. The final parsing tree is shown in
F ig. 1, where the numbers at the nodes indicate the counts;
we also drew the tree upside down.

W e describe next how the parsing algorithm defines
automatically a binary information source. As in [8], for
this we need to generate a probability function, which
assigns a probability P(s) to every finite string such that
the compatibility condition P(s) = P(s0) + P(s1) holds.
Here SO and’s1 denote the strings obtained by tagging 0
and 1, respectively, to the end of s. From the initial 2-leaf
tree on, the above described algorithm defines a complete
binary tree after each block is parsed. Let the (variable)
string s have n(s) parsed segments, and let T(s) denote the
binary tree defined by s. Each node’s count equals the
number of leaves that are its descendants, and, in particu-
lar, the root has the count n(s) + 2. Divide the node
counts by the root count, and we have the machinery for
defining the conditional probability of the next parsed
segment as well as of any of its prefixes.

The algorithm defines the next segment to be one of the
paths to the leaves in T(s), while the intermediate nodes
along this path correspond to the prefixes of this segment.
If x denotes a prefix, set the conditional probability P(x/s)
as the ratio of the count of the node defined by x to the
root count. In particular, when x is the entire parsed
segment (i.e., when x defines a leaf) then P(x/s) =
l/(n(s) + 2). Define the probability P(sx) of the new
string sx to be P(s)P(x/s), and, because the probability
of the empty string is 1, we get the probability of a string s
with n(s) full blocks as

P(s) = l/(n(s) + I)!. (2)
The compatibility condition is immediately verified. As an
example, suppose the strings = 010001010 with T(s) given
in F ig. 1 continues as 011. The conditional probabilities of
all the symbols in the new segment are given by the tree as
P(O/s) = 5/7, P(l/sO) = 3/5, and P(l/.sOl) = l/3.
These define the conditional probability P(O1 l/s) = l/7
for the sixth block 911.

658 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT - 29, NO. 5, SEPTEMBER 1983

The ideal code length for strings s having n(s) full
blocks is given by (2) as

-log P(s) = log(n(s) + l)!. (3)
This suggests an interpretation of the statistical model we
have defined: a string s with n(s) blocks is one of the
(n(s) + l)! strings possible obtained by picking each of
their blocks for k = 1,2,. . . , n(s) randomly as one of the
k + 1 leaves available at that point. Hence, with this type
of model, the mean code length cannot be smaller than
-log P(S) - a((1 + n(s))!), where a(n) < log log n
(Rissanen [7]), no matter how the coding is done. This
clearly justifies the name “ideal code length.” The length
(3) is about one bit per block less than the length (1) in Ziv
and Lempel’s code.

The coding of s can be done practically by arithmetic
coding, [8], in such a manner that the ideal code length is
achieved for any string longer than, say, 1000 within 1
percent. In fact, even with the fast algorithm described in
[3] the code length would exceed the ideal by not more
than 2 or 3 percent.

III. A CONTEXTGATHERINGALGORITHM

A major problem with the incremental parsing algo-
rithm, and with all block models for that matter, is that it
can capture random dependencies only between symbols
that fall within one and the same block. Hence, for the
large class of strings, where symbols interact in two or
higher dimensional neighborhoods, any technique produc-
ing one-dimensional parsed segments is necessarily ineffec-
tive and often impossible to implement in a practicable
manner. Consider, for example, a black and white printed
document, which is partitioned into a fine grid of squares.
By a simple thresholding device, each square may be
regarded either as completely black or as completely white,
and we may model the entire grid of squares as a sample of
a two-dimensional field of binary random variables x(i, j),
where i and j are the coordinates specifying the position of
a square. It is immediately clear that in a good model we
should not regard the random variables x(i, j) as indepen-
dent, but rather we should try to fit a model which allows
the color of the variable x(i, j) to depend on the color of
the neighboring variables. And there is clearly no reason to
prefer the horizontal neighbors over the vertical ones.

In an attempt to capture such two-dimensional depend-
encies with parsed segments we may try to consider two-
dimensional segments, i.e., rectangles. If we wish to apply
the incremental parsing algorithm to collect the rectangles,
we must define the notion of m inimal extension and do the
extension while maintaining the property that the created
rectangles still partition the entire surface. A little thought
will reveal that this cannot be done in an entirely satisfac-
tory way. We could, for instance, consider rectangles of,
say, k lines high and grow them to the right, but then we
do not capture dependencies that are further up than k
positions, except when the length of these rectangles is
made wider than the width of the document. This we can
in effect do by a “wrap around” procedure: when the k

lines reach the right end of the document, the rectangle is
continued along the next k lines from the left end. Now, to
grow such huge rectangles cannot be done even in the
simplest case where k = 1, which amounts to a linear
representation of the grid. Indeed, if a document has the
normal width of about 2000 symbols, then the algorithm
would have to grow the binary tree to the depth of 2000
before any dependency of a symbol on the one lying
immediately above it would start to show up, and the total
number of symbols in the document would run out far
before such a depth is reached. If we, again, try to avoid
this difficulty by picking k so large, say 10, that we capture
all the significant vertical dependencies, we run into another
problem: the trees we must grow now have 2” symbols.
Again we run out of the string before any horizontal
dependencies even between two adjacent symbols can be
detected. These are the reasons why the Ziv-Lempel algo-
rithm, despite its asymptotic optimality, is not able to
reach even the vicinity of the ultimate compression within
the length of any sample string.

In order to obtain more powerful models we must
abandon the requirement that the collected segments parti-
tion the string. Instead, we plan to collect overlapping sets
of symbols, each set defining a “context,” on which symbol
occurrences can be conditioned. As proved in [8], such
conditioning allows for a more efficient way to take ad-
vantage of statistical regularities. In fact, even the segments
found by the incremental parsing algorithm are contexts of
each of their symbols, which interpretation offers a uni-
form and more fundamental explanation to the modeling
efficiency of block models.

Formally, a context is defined by means of a total
recursive function f: B* -+ N, where B* denotes the set of
all finite binary strings and N denotes the set of the natural
numbers. The context z(t) of the symbol x(t), immediately
following the “past” string s = x(1) . * * x(t - l), is the
class of strings s’ = x’(1) . . . x’(t - 1) such that f(s’) =
f(s). What this abstract definition really says is that the
context of x(t) is some (computable) function of the past
string. That the context is an equivalence class means only
that not every conceivable value for the past sequence of
random variables need define a distinct context; some
relevant feature of the past, common to several of them, is
enough. Clearly, a measure of the degree of relevance is the
context’s capability of “skewing” the symbol’s occurrence
counts to lower its conditional entropy. As a simple exam-
ple, consider the function f that maps any sequence (of
length at least two) to the value defined by its last two
symbols. Hence, the context of x(t) is the binary number
x(t - 2)x(t - l), as in the second-order Markov process.

We shall eventually describe a way to obtain the all-
important structure functionf, as it was called in [8], but in
this section we give an algorithm that defines it partially.
We consider for simplicity binary strings only, which we
write as s = x(1)x(2) 1 . . x(t) * . . ; we also let the same
symbols x(i) denote binary-valued random variables. The
first step is to establish a ranking order for the past symbol
positions relative to each symbol x(t). The idea is to pi&

RISSANEN: UNIVERSAL DATA COMPRESSION SYSTEM

that position first in which we judge the random variable to
have the greatest influence on the value of the variable
x(t); then comes the next most influential position, and so
on. O ften, the geometric distance is taken as the basis for
this; for example, in the string resulting from a linear scan
of the document above with width M , we could pick the
order to start as follows: first comes the preceding variable,
x(t - l), then the one right above, or x(t - M) in the
linear representation, next the left upper corner position,
or x(t - M - 1).

To generalize, let i * ti be a permutation of the natural
numbers and define for any string s = x(1) * * . x(t - 1)
another a(s) = x(t - t,) . . . x(t - ttpl). In this, we have
to decide how to set the values of symbols x(t - ti) whose
index t - ti is nonpositive. This choice wilI have an effect
only for small values of t, because we will be needing only
about log t first members in the sequence a(s). The most
natural choice is to define a(s) to consist of those consecu-
tive symbols x(t - tl)x(t - tz) . . * , only, whose indices
are positive and, hence, which are symbols in s; if already
the first symbol t - t, is nonpositive, define a(s) to be the
empty string A. This convention would be used in more
practicable versions of the algorithm. However, if we set
the values of the symbols with nonposit ive indices to some
arbitrary value, say 0, all the symbols of u(s) get defined,
and this simplifies matters somewhat. For this reason, we
adopt the latter convention. W e write u(s) as the sequence
z, ** . z,-,, where, accordingly, zi = x(t - ti). In fact, the
description of our algorithm does not involve the details of
any particular permutation, and the reader may take it to
be the identity permutation ti = i, which means that u(s) is
just the sequence s written in reverse: x(t - 1) * . . x(1).
W e mention that in some applications there is a need for
an even more general way to sort the past sequence, one
that allows the sorting to change with t, but for the
purposes of this paper the above described sorting function
u is adequate.

The idea in the next step is to grow two binary trees, one
for the case where the current symbol x(t), which we
denote by u, has the value 0, and the other when it has the
value 1. W e are interested in the intersection of the two
trees, which we actually generate directly; this is how:

1)

2)

W e declare the context tree of the first symbol x(1) in
the string to be the l-leaf tree T(O), where the only
node, the root, is marked with the pair of counts
tcto, A), 41, A)) = (191).
Proceeding recursively, let Z’(t - 1) be the last con-
structed tree with (~(0, z), ~(1, z)) denoting the pair
of the counts at node z. After the next symbol u =
x(t) is observed, generate the next tree T(t) as fol-
lows: climb the tree Z’(t - l), starting at the root and
taking the branch, left for 0 and right for 1, indicated
by each of the successive symbols in the past se-
quence u(x(1) ... x(t - 1)) = z,zZ 0.. . For each
node z visited, increment the component count c(u, z)
by one. Continue until a node w is reached whose
count c(u, w) = 1 before the update.

659

3) If w is an internal node with node w0 as the left and
wl as the right successor, increment the component
counts c(u, w0) and c(u, wl) by one. Define the
resulting tree to be T(t). If, again, w is a leaf, extend
the tree by creating two new leaves w0 and W I.
Assign to both leaves the same counts: c(u, w0) =
c(u, wl) = 1 and c(u’, w0) = c(u’, wl) = 0, where u’
denotes the opposite symbol to u. Call the resulting
tree T(t).

This completes the description of the algorithm, which we
for future reference call “context.”

As an illustration, we consider the binary string 10001,
in which the past symbols are ordered by their distance
from the current symbol, i.e., we use the identity permuta-
tion. After the first symbol 1 is observed, the second tree
T(1) is the 2-leaf tree with the marking (1,2) at the root
and the marking (0,l) at both leaves. The second symbol 0
does not add any new leaves, by the first “if” clause in
Step 3, but the root marking changes to (2,2) and the leaf
markings to (1,l). The tree T(3), generated by the third
symbol 0, is given in F ig. 2(a), and the tree T(5) after the
last symbol 1 is given in F ig. 2(b).

Let z denote a node, which is defined by and identified
with a past sequence zi . * . z, as the path from the root to
that node. Then the sibling nodes z0 and zl denote the
past sequences z, . . . z,O and z, . . * z,l, respectively, while
with 0, z and 1, z we denote the collections of events
consisting of the “current” symbol u = x(t) and the past
sequence z. If we denote by c(z) the sum of the counts at
node z, then we may say that out of c(z) occurrences of z
the event U, z occurs c(u, z) times, and we may define the
conditional probability of the symbol u in context z as

f+/z) = 4% 4/C(Z), (34
provided 0 < P(u/z) < 1. For example, in the tree T(5) of
F ig. 2, we have P(x(t) = O /z = 0) = 3/5. Clearly, if a
symbol, say u = 0, has not been observed at all in a
context z, it does not mean that it will not occur in the
future, and for coding purposes we must not assign the
probability 0 to it. For this reason we put

~(u/z> = v(+) + 11, if c(u,z) = 0. (3b)

The way we eventually will select the context for each
symbol makes the assignment (3b) possible only in the
early part of the string, while the normal case is (3a). These
conditional probabilities define the binary entropy

H(U; z) = -plogp - (1 -p)log(l -p>,

P = fv/Z)? (4)
where z stands for a sequence z, + * . zk.

It follows from the updating and the node splitting rules
in the algorithm that

c(u, ZO) + c(u, zl) = c(u, z> (5)

holds whenever the counts are greater than 1. By summing
up over the two values of u, we get the compatibility

660 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT - 29, NO. 5, SEPTEMBER 1983

0 -13.214 1 (4.3)

RI) (1,l)

/\
,32/ \

(1,O) (1.0) /'\ ("')
(2.6 ci.1,

,I.6 !,o,
(4 (b)

Fig. 2. Example of algorithm Context. (a) T(3). (b) T(5).

equation
c(z0) + c(z1) = c(z), (6)

which holds if all the counts are greater than one. It is
these two last equations that would not hold (except,
approximately for long strings) if we had adopted the other
rule for defining u(s), mentioned above, namely, one where
the variables with nonpositive indices are dropped. These
equations are by no means necessary for a proper behavior
of the algorithm, but they do shorten the proof of the
theorem in Section V.

Further, let Z denote the set of leaves defining a com-
plete subtree, where for all the leaves c(u, z) > 1. Then by
(6) the root count c(A) equals the sum of the leaf counts
c(z), and we may regard Z as a context-valued random
variable with probability distribution given by

P(z) = c(z)/c(h). (7)
It can be seen from the algorithm that the node count

c(u, z) differs from the number of times symbol u occurs
in context z in the so far processed string by at most a
number that depends on z but not on the length of the
string. This is because after the context z has been added to
the tree as a node and its counts exceed 1, every occurrence
of u in context z will be noted and the count incremented.
Accordingly, only a few earlier occurrences of u in context
z may have been omitted. As a result, the tree generated by
the algorithm accumulates essentially all the relevant con-
texts and the associated symbol statistics as the length of
the string grows.

IV. UNIVERSAL MODEL

The trees T(t), generated by the algorithm context,
incorporate a stockpile of contexts for the symbols in the
string, and as noted at the end of previous section, essen-
tially all the past contexts are included. Specifically, the
contexts for the symbol x(t) correspond to the nodes met
as we climb the tree T(t - 1) in Step 2 of the algorithm
according to the past sequence z,zz * * . , The question is
which node we should pick as the context for x(t). Sup-
pose for the moment that we already have made the
selection, i.e., we have associated with the symbol x(t) a
context z*(t) as some prefix of u(x(l) . . . x(t - 1)). This
really means that we then have defined a binary source
(B*, P), where P(s) is defined as the product of the
conditional probabilities of its symbols, (3a) or (3b). These
probabilities can be used to encode each symbol, and the
optimum code length for string s = x(1) * + . x(t) is given

by

-log P(s) = - i log P(x(i)/z*(i)). 03)
i=l

The formula (8) suggests an intuitively attractive context
selection rule: define z*(t) as the first node z in T(t - 1)
along the path z,zl * . . , where P(x(i)/z) deviates most
from l/2. Indeed, if in a stationary source each such
context z* would occur increasingly often with relative
frequency P(z*), then the per symbol length from (8)
would approach a conditional entropy of the type

CP(z)H(U; z) = H(U/Z), (9)

where z runs through the set of the contexts. Moreover,
because the rule m inimizes the binary entropies H(U; z) in
(4), the entire conditional entropy and the per symbol
mean length are clearly m inimized. The main problem with
this context selection rule is that the number of contexts
z*(t) tends to increase with t even when the string is
generated by an independent information source. The rea-
son for this will be apparent later in the proof of Theorem
1, but intuitively it follows from the trend that condi-
tioning on a larger set tends to lower the conditional
entropy.

Instead of putting an arbitrarily selected bound to the
number of contexts, we would like the algorithm itself to
set the bound as it processes the string. The idea behind
such an “intelligent” algorithm, which we adapt from the
recent approaches to estimation theory, Akaike [l] and
Rissanen [9], is to associate a cost with each context, and
accept a context in the set Z only if its share in reducing
the conditional entropy exceeds its cost. For this we need
to calculate the increase in the conditional entropy (9) that
results when two of the elements z0 and zl in Z are fused
into the parent node z. Call the reduced set Z’. The
increase, which is independent of the set Z, is given by

A(t, z) = H(U/Z’) - H(U/Z)
= P(z)H(U; z) - P(zO)H(U; zo)

-P(zl)H(U; zl), 00)
where the probabilities and the binary entropies are de-
fined by the node counts in T(t - I), (3a), (3b), (4), and
(7). The difference A(t, z) is also nonnegative by a well-
known inequality; we shall later give a formula showing
that.

We now describe a context selection rule as follows:
define the context z*(t) for the symbol x(t) to be the node
in T(t - 1) with greatest length]z], i.e., depth, along the
path defined by the past sequence z,zz . . . , such that

A(t, z) > (l/t) log t,
while

I4 6 Plog t,
and

m in{c(zO), c(zl)} 2 2at/Jlogt, (11)

RISSANEN: UNIVERSAL DATA COMPRESSION SYSTEM 661

or, if no such node exists, take z to be the root node. Here,
~1 and fi are positive numbers. Their purpose is to define
the range of the nodes to be searched to be appropriate for
a finite string, but for infinite strings any values for them
will do. The upper bounds for z are selected for the
purpose of making the proof of the ma in theorem easy.
The first bound @ log t is in most cases satisfied automati-
cally, because the depth of the entire tree T(t) is of the
order of log t. The purpose of the second bound is to make
sure that the counts grow at the selected contexts, while not
restricting the set of the contexts to be uniformly bounded.
Observe that the count c(z) for a string generated by a
stationary source grows as PO(z)t, where the source proba-
bility P’(z) tends to zero as the length of z grows. This is
why the mu ltiplier of t in the second bound is taken as a
function that tends to zero as t grows.

W e could mark in some manner the special context
nodes in the tree, for example, by turning a “flag” bit to
one, while keeping it at zero if a node is not a context.
Then a creation of a new context turns an earlier found
context node on its path to a nonf lagged regular node, and
since every path has a context, the set Z(t) of them all in
the tree T(t - 1) defines a complete subtree. Once the
count ratios at the nodes are stabilized and if Z(t) = Z
remains unchanged, then as easily verified, this selection
rule will m inimize locally the combined cost

W /Z) + Gw%o/t~ (14

where IZI denotes the number of elements in Z. By a local
m inimum we mean a set of leaves such that a fusion of any
two leaves or a split of any leaf into two new leaves will
increase the value of the sum in (12).

Why is the cost associated with each context taken as
(log t)/t? A pragmatic answer will be given in the theorem
below, namely, that with such a cost we get the desired
behavior. But we can also give a natural justification for
the cost term. This is particularly easy if we instead of
adaptation would first construct the context tree for the
entire string and then using the so-found data would
determine in the second pass the contexts of the symbols
and calculate the ideal code length (8). Indeed, as each
count is proportional to t, it takes about log t bits to write
down each, and therefore about]Z]log t bits are needed to
describe all the parameters defining the mode l. Because in
such a two-pass data compression algorithm the mode l
clearly must also be sent to the decoder along with the
code string, the total code length is approximately as given
in (12).

But it is a quite remarkable fact, which we were able to
show only after this paper went to print, that the same cost
term is valid even when the parameters are determined
adaptively from the past string, as is done here. The
intuitive reason for this is that the cumulative effect of the
inherent estimation errors increases the ideal per symbol
code length by (log t)/2t per parameter. Accordingly, the
per symbol entropy (9) ought to be incremented by this
much in order to account for the fact that we are using an
estimate for the next symbol’s probability, and a good

context selection rule should m inimize the total per symbol
ideal code length, which is what (11) seeks to do. (The
second term in (11) should really be divided by two, but
this correction does not change the ma in theorem,
Section V.)

V. MAIN THEOREM

For the ma in theorem in this section we need to define a
class of “finitely generated” sources, appropriate for ran-
dom fields. Although these sources are technically Markov
sources, we must describe them more efficiently by taking
advantage of their random field nature. Just as in Section
II, viewing them as Markov chains may involve an im-
mense number of states with their transition probabilities,
while viewing them as random fields allows us to describe a
small number of conditional probabilities as generators,
which with a simple extension rule define the rest. This
simplification in the description of such sources is of
crucial importance, if one wishes to construct an algorithm
for their estimation.

Let i, < *a* -C i, denote n natural numbers, and let f”
denote a function which maps every string s = x(1) . . *
x(t), to its context

f O(s) = x(t - i,) * * * x(t - i,), (13)
where we set x(t - i,) empty if t - ij G 0. The range off’
clearly consists of the nodes of the balanced tree of depth
n, called the (source) contexts. W e denote by Z” the set of
the 2” leaves, defined by the values of the variables x(t -
iI>; * *) x(t - i,). W e call a stationary ergodic process
finite& generated, if for all finite strings su,

PO(m) = P”(s)PO(u/fO(s)). (14)
Observe that with this rule the random variables
x(t), x(t’) * * .) condit ioned on the same context z at dif-
ferent locations t, are independent.

The conditional probabilities P’(O/f O(s)) and 1 -
P’(O/f O(s)) cannot be chosen entirely freely to generate a
stationary process, for they must also satisfy the conditions
for stationarity, namely, P(0.s) + P(1.s) = P(s) for all s
(this nonorthodox but handy way of defining stationarity
was done in [S]). However, it is clear that these conditions
can be satisfied, and we may regard the class of finitely
generated processes as being well defined. They clearly
include all Markov processes with fixed transition proba-
bilities. F inally, we also assume that the generat ing index
set i,; . ., i, is unique (so that it can be estimated), which
in particular implies that it is m inimal, i.e., that none of its
proper subsets defines the same probabilities (13).

The per symbol entropy of a stationary finitely gener-
ated source is seen to be given by the conditional entropy

HO(U/ZO) = c PO(z)HO(U; z), (15)
2GZ0

where H’(U; z) = -plogp - (1 -p)log(l -p) with p
= PO(O/z).

W e define one more notion for the theorem to follow.
For a sorting function u(s) = x(t - t,)x(t - t2) . . . =

662 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT - 29, NO. 5, SEPTEMBER 1983

z1z2 .-* denote the set of the shortest past sequences
z, 0.. z, that contain all the random variables x(t -
ill,- . -) x(t - i,) defining the source by Z,. Hence, m is
the index for which t, = i,. An example showing the
relationship between the two sequences is given in the
discussion following the theorem.

Theorem 1: Let s be an infinite string from a finitely
generated stationary ergodic source defined by the indices
1,;. -, i,, and let the algorithm Context generate the tree
T(t - 1) for the growing prefix s’ of s, using any sorting
function u. Then with the context selection rule (1 l), for
almost all samples s,

Pr{z*(t) E Z,} + 1, ast -+ co. (16)
Moreover,

- (l/t) . logP(s’) -+ H”(U/Zo), as t + 03.

07)
We give the proof in the Appendix.

The following corollary is worth mentioning.
Corollary: Let the source be a Markov source of some

(unknown) order n. Then (16) and (17) hold, where Z, = Z”
is the set of the 2” states.

VI. DISCUSSION

By Theorem 1 the universal model is capable of contain-
ing the source generating contexts within a finite set Z,,
whose size depends on the sorting function (I. This means
that we do not need to grow the trees T(t) much beyond
Z,. In practice, we can let the trees T(t) grow until they
have, say, twice the number of leaves in the maximum set
of contexts z* found. Because the maximum context set
depends on T(t), and we wish to maintain T(t) twice the
size of the maximum context set, there is a bit of “dog-
chasing-its-tail” process involved. This is easily resolved,
however. We can, for example, partition the indefinitely
long string into a set of growing segments of length
K,2K,3K;.., where K is some positive integer. During
the first segment we let the tree T(t) grow freely, but in the
subsequent intervals we let it grow only until it has twice
the number of nodes in the context set found in the
previous interval. It is easily seen that this process lets the
context set grow to its final size and shape, as stated in the
theorem, and the trees T(t) stay bounded too.

Although the theorem holds for any function u we select,
the size of the final context tree and, therefore, the size of
the maximum of the trees T(t) and the implementation
cost of the algorithm are strongly dependent on the selec-
tion. The best case, of course, is when we know the ranking
of the past symbols and hence the sorting function. This is
still a nontrivial modeling problem, because we must locate
a subset Z” that generates all the contexts of the source,
among the set of all possible contexts, namely, the set B*
of all binary strings. In this case the algorithm will generate
the trees T(t) until they have about twice the number of
leaves in Z”, no matter how long the string is. In contrast,

for example, the Ziv-Lempel algorithm would keep on
generating longer and longer parsed blocks until it runs out
of work space, without ever realizing that no further com-
pression is being gained.

In many cases we do not, of course, know the sorting
function u. However, this universal algorithm provides a
means of experimentally estimating it, which we regard as
the single most important and unique feature of the algo-
rithm, not shared by any other known to us. We can fix the
maximum permitted size for the trees T(t) and run the
algorithm for several different sorting functions. The one
giving the best compression evidently captures the most
efficient contexts. We believe that such exploratory study
can give valuable information of the strings to be com-
pressed, and make the crucial modeling problem a little
more mechanical. Bear in mind that the problem of finding
the best model is undecidable, and all we can do is try to
build more and more intelligent algorithms to aid us in
finding good models if not the very best.

We illustrate with a simple example the effect of choos-
ing a good and a bad sorting function to the size of the
needed workspace. Suppose the source is generated by the
four conditional probabilities P(O/x(t - l)x(t - loo)),
corresponding to the four values of the two indicated
variables. In a two-dimensional field of 100 symbols wide,
this means that a symbol’s value is statistically dependent
only on the previous value and the one right above it. If we
choose for the model the sorting function u defined by the
identity permutation, then Z, consists of the 2’O” sequences
of length 100, and the algorithm will not find the second
generating context within any string of practical size. We
have the same problem as with the Ziv-Lempel algorithm.
But if we guess that the nearby symbols are the significant
symbols, and we put u(s) = x(t - l)x(t - 2)x(t - 99)
x(t - 100) **a, then Z,, is defined by the 16 sequences of
length 4. This time, the algorithm finds both of the generat-
ing contexts quickly with a small workspace. Observe, that
it is not necessary to guess the precise ranking of the
symbols in order to achieve asymptotically the ideal com-
pression with a limited workspace.

What about compressing a string which cannot be well
modeled by a finitely generated source? Again, by guessing
a reasonable sorting function we can let the algorithm
generate the trees T(t) and the contexts, but this time the
trees grow until a preset bound for the workspace is
reached. The situation is quite analogous to the Ziv-Lempel
algorithm, and the only advantage is that for the same
amount of workspace we get a better compression if a
sorting function sufficiently different from the one defined
by the identity permutation is required. In the case with
the identity permutation, the roles are reversed, because
then the best contexts are to be found among the im-
mediately preceding symbols, which the Ziv-Lempel algo-
rithm is capable of taking advantage of. This is accom-
plished with a somewhat smaller workspace. The number
of nodes in the tree built by the incremental parsing
algorithm for a string of length t is approximately t/log t,
while the tree T(t) built by the algorithm context has t

RISSANEN: UNIVERSAL DATA COMPRESSION SYSTEM 663

nodes. In typical cases the ratio of the workspace size in
favor of Z iv-Lempel algorithm is then something like
10-20. The final compressions in both cases are about the
same, because one can simulate, as it were, the block model
created by the incremental parsing algorithm as a binary
mode l using contexts.

W e conclude this section with two more remarks. In
order to obtain a universal data compression system with
per symbol code length near the ideal (16), all we need to
do is to apply an arithmetic binary code to encode each
symbol u = x(t) using the conditional probability
P(u/z*(t)). W e have written a computer program for the
algorithm context in a slightly mod ified form in the general
case with any finite number of symbols. An implementa-
tion of the m inimum conditional entropy rule, ment ioned
in the beginning of Section V, is straightforward, al though
a new problem not present in the binary case arises,
namely the problem of how to assign a distribution for an
alphabet of which only a small number of symbols has yet
occurred. Several reasonable solutions exist, and with one
of them, strings defined by English text can be compressed
very well with a reasonable workspace size. Notice that the
storage space explodes if we mode l such strings by Markov
sources of some order k > 1.

maximum length node whose counts satisfy the constraint in (11).
These are the nodes among which the context z*(t) is to be
selected. We know by the first part of the theorem that for all t
greater than some number M such nodes exist. We can expand
the second sum in (Al) in Taylor series with the result

Att, z> = P(z) c P(Y/z)~*(~> z, Y> + R, W I
y=o, 1

where 0(t, z, y) = P(O/z) - P(O/zy) and R consists of the higher
order terms such that R/e2(t, z, y) + 0 as e(t, z, y) -+ 0. The
estimates P(O/z) = ~~(0, z)/c,(z) are asymptotically normal with
mean P’(O/z) and standard deviation proportional to l/ \ict(z>,
where we denote the count of node z in the tree T(t - 1) by c,(z)
to emphasize its dependence on t. This is true, because in the
source the random variables x(t), x(t’), . . that “occur” in a
context z, or more correctly, are conditioned on a sequence z
which contains a sequence in Z” as a subsequence, are indepen-
dent. Here, the argument then is the same as with Markov chains,
where the distinct symbols are dependent but they become inde-
pendent when they are conditioned on any one state; in other
words, “different symbol occurrences at each state are indepen-
dent,” to abuse the language a little. Hence 0(t, z, y) is also
asymptotically normal. Further, by (13) P’(u/z) = P’(u/zy),
which means that A’(z) = 0, and the mean of 0(t, z, y) is zero.
Its standard deviation d(t, z, y) clearly satisfies the inequality

APPENDIX

d2(t, z, y) i l/c,(z) + max(I/c,(zO), I/c,(zl)} + R’

< 2max(l/c,(zO), l/c,(zl)} + 2R’, (A3)
Proof of Theorem I: The first task is to evaluate A(t, z) at a

node z of T(t - 1) in terms of the probabilities (3a), (3b), (4),
and (7), defined by the counts. The result is, as can be verified by
a direct computation, the familiar formula

A(t,z) = P(z) c P(Y/Z> c P%/ZY>

where R’ denotes the higher order terms such that R’/d2(t, z, y)
--f 0 as d(t, z, y) ---* 0. Further, the ratio O*(t, z, y)/d*(t, z, y)
has asymptotically x2 distribution. Using the second bound in
(11) with (A3) we have the inequality

d2(t, z, y) i (,/i@+‘at + 2R’ (A9
y=o, 1 u=o, 1

.log[Ptu/z~)/Ptu/z)1, (Al)

where for simplicity we did not indicate that the probabilities
depend on t. Also, we use the same symbol P for all the
conditional probabilities and let the argument variables tell which
one is meant; for instance, P(u/z) is not the same function as
P(y/z). Moreover, by a well-known result, A (t/z) > 0, and it is
zero if and only if for all u, z, and y, P(u/zy) = P(u/z).

for all z of the considered type, all y = 0, 1, and all t.
The probability of the event that z*(t) is not in Z, for t > M,

is by (11) the probability of the event that for at least one z of the
above defined type, A(t, z) > (log t)/t. This probability, in turn,
is bounded from above by the sum of the probabilities

c Pr[A(t, z) > (logtb’tl, (A51
z

We show first that any node z of Z, is a prefix of some context
z*(t) for large enough t. We have nothing to prove if the source is
independent, because then Z,, consists clearly of the root A, only.
Otherwise, let z be an interior node with depth m - 1 of T,, the
tree defined by Z,, as the set of leaves. Then its descendants zy
are leaves in Z,,, and they contain a source generating context,
i.e., a sequence of the values x(t - i,) . . . x(t - i,), as a subse-
quence. By the minimality of the source generating contexts, the
source probability P’(u/zy) cannot equal P”(u/z) for both
values of u, and

over the at most /?log t values of z. From (A2) and (A4) we get
the inequalities

Pr[A(t, z) > (logt)/tl

= Pr{i3* + R > (log t)/t}

< Pr{B2/d2 > ((Y - (R + 2R’)/d2)Jlogt}

6 Pr(8*/d2 > a/c},

A’(z) = P’(z)H’(u; z) - P~(zo)H~(u; zo)

-PO(zl)HO(U; zl) > 0.

By the ergodic theorem, A(t, z) + A’(z), and we conclude with
(11) that z is a proper prefix and zy a prefix of z*(t) for t large
enough. We have shown the first part, namely, that the algorithm
context grows the tree at least as large as to include T,.

where (Y’ > 0 for t greater than some number M’. We also
dropped the argument variables for simplicity. The last probabil-
ity, expressing the probability mass of the tail from p = a’=
on in the x2 distribution, is not greater than e-p. Therefore, the
sum in (A5), which has no more than /?log t terms, is not greater
than

@ log t)e-+q

Consider a past sequence z = z,z2 . . , relative to u = x(t),
such that it lies in the tree T(t - 1) between a node in Z- and the

which goes to zero as t goes to infinity. We have proved (16).
From (S), where z*(t) denotes the context generated by the

\ I ~~~ -u ~~- -~~~ rule (11) the ideal per symbol code length is seen to converge to a

664 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT - 29, NO. 5, SEPTEMBER 1983

conditional entropy (9), where by the first part of the theorem Z [51
contains Z,, for t greater than some number. The convergence
(17) follows with the ergodic theorem. Q.E.D. 16]

REFERENCES [71

ill

PI

I31

[41

181
H. Akaike, “On entropy maximization principle,” in Applications of
Statistics, P. R. Krishnaiah, Ed. Amsterdam: North Holland, 1977,
pp. 27-41. [91
L. D. Davisson, “Comments on ‘Sequence time coding for data
compression ‘,” in Proc. IEEE (Lett.), vol. 54, p. 2010, Dec. 1966. 1101
G. G. Langdon, Jr., and J. Rissanen, “A simple general binary
source code,” IEEE Trans. Inform. Theory, vol. IT-28, no. 5, pp. [I I]
800-803, Sept. 1982.
J. C. Lawrence, “A new universal coding scheme for the binary [12]
memoryless source,l’ IEEE Trans. Inform. Theory, vol. IT-23, no. 4,
pp. 466-472, July 1977.

T. J. Lynch, “Sequence time coding for data compression,” in Proc.
IEEE (Lett.), vol. 54, pp. 1490-1491, Oct. 1966.
J. S. Ma, “Data compression,” Ph.D. dissertation, Dept. Electrical
and Computer Engineering, University of Massachusetts, Amherst,
1978.
J. Rissanen, “Tight lower bounds for optimum code length,” IEEE
Trans. Inform. Theory, vol. IT-28, no. 2, pp. 348-349, Mar. 1982.
J. Rissanen and G. G. Langdon, Jr., “Universal modeling and
coding,” IEEE Trans. Inform. Theory, vol. IT-27, no. 1, pp. 12-23,
Jan. 1981.
J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, pp. 465-471, 1978.
J. P. M. Schalkwiik. “An aleorithm for source codina.” IEEE Trans.
Inform. Theory, Goi. IT-lI,%o. 3, pp. 395-398, 197%
B. P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D.
dissertation, Georgia Inst. of Technology, 1968.
J. Ziv and A. Lempel, “Compression if individual sequences via
variable-rate-encoding,” IEEE Trans. Inform. Theory, vol. IT-24,
no. 5, pp. 530-536, Sept. 1978.

A Simple Class of Asymptotically
Optimal Quantizers

STAMATIS CAMBANIS, MEMBER, IEEE, AND NEIL L. GERR

Ahtract-A simple class of quantizers is introduced which are asymptot-
ically optimal, as the number of quantization levels increases to infinity,
with respect to a mean rth power absolute error distortion measure. These
asymptotically optimal quantizers are very easy to compute. Their perfor-
mance is evaluated for several distributions and compares favorably with
the performance of the optimal quantizers in all cases for which the latter
have been computed. In addition their asymptotic robustness is studied
under location; scale, and shape mismatch for several families of distribu-
tions.

I. INTRODUCTION

T HE quantization of a random variable X with known
probability density function p(x) is an important

problem which has been studied extensively in the litera-
ture. The special issue on quantization published in the
March 1982 issue of this TRANSACTIONS provides a com-
prehensive overview of the problem.

Manuscript received May 11, 1982; revised November 1, 1982. This
work was supported by the Air Force Office of Research under Contract
AFOSR F49620-82-C-0009. This work was partially presented at the 1982
Conference on Information Sciences and Systems, Princeton, NJ, March
17-19.

S. Cambanis is with the Statistics Department, University of North
Carolina, Chapel Hill, NC 275 14.

N. L. Gerr was with the Statistics Department of the University of
North Carolina at Chapel Hill; he is now with D. H. Wagner, Associates,
3887 Plaza Drive, Fairfax, VA 22030.

Here we consider real valued random variables and
mean r th power absolute error distortion measures, so that
the optimal N-level quantizer minimizes &]X - Q,(X)]’
over all N-level quantizers QN. The problem of finding
optimal N-level quantizers has been considered by Lloyd
[12] and Max [15], and its solution is not generally
straightforward. The optimal mean square error N-level
quantizers have been computed in the literature for the
Gaussian, Rayleigh, and Laplacian distributions using the
Lloyd-Max algorithm. (For a discussion of some problems
inherent in such algorithms see Bucklew and Gallagher [S].)

In this paper we determine in a very simple manner a
sequence Q$ of N-level quantizers which, while not neces-
sarily optimal ‘for any N, are nevertheless asymptotically
optimal in the sense that their r th-order mean approxima-
tion error tends to zero as N --+ co at the same rate as for
the sequence of optimal quantizers:

&IX - Q;(X>Y
d?to inn&IX - Q,(X)1’ = ”

where the infimum is taken over all N-level quantizers QN.
Under appropriate conditions on the tails of the density
p(x), the asymptotically optimal sequence of quantizers
Qg is determined as follows. The quantization levels aiN)
< a$N) < . . . < a(NN’ are, respectively, the l/(2 N),
3/(2N); . . ,(2N - 1)/(2N) quantiles of the density h(x)

0018-9448/83/0900-0664$01.00 01983 IEEE

