
0 Notation and Terminology.

This course will be concerned with the applications
of information theory concepts in statistics. Much of the
course will be based on lectures given by Imre Csiszár
at Maryland in 1989. Some recent results about depen-
dent processes will also be given. It is assumed that the
reader is familiar with basic information theory ideas
as presented, for example, in the initial chapters of the
Csiszár-Körner book, and with basic statistical concepts
as presented, for example, in the book by Cox and Hink-
ley. Notation and terminology that will be used in these
lectures will be introduced in this section.

The symbol A = {a1, a2, . . . , a|A|} will denote a finite
set of cardinality |A| and xn

m will denote the sequence
xm, xm+1, . . . , xn, where each xi ∈ A. The set of all n-
length sequences xn

1 will be denoted by An, the set of
all infinite sequences x = x∞1 , with xi ∈ A, i ≥ 1 will be
denoted by A∞, and the set of all finite sequences drawn
from A will be denoted by A∗. If u and v are finite length
sequences then their concatenation is denoted by uv, and
uk = uk−1u, k > 1.

The entropy H(P ) of a probability distribution, P =
(P (a)) on A, is defined by the formula

H(P ) = −
∑
a∈A

P (a) log P (a),

where here, as elsewhere in these lectures, base two loga-
rithms are used. Random variable notation is often used
in this context, that is, H(X) denotes the entropy of
the distribution P of the random variable X. If P and
Q are two distributions on A then their divergence or
cross-entropy is defined by

D(P‖Q) =
∑
a∈A

P (a) log
P (a)
Q(a)

.

If P is the joint distribution of two random variables
(X, Y ) then their joint entropy is defined by

H(X, Y ) = −
∑
(a,b)

P (a, b) log P (a, b),

while the conditional entropy H(X|Y ) and mutual infor-
mation I(X ∧ Y ) are defined, respectively, by

H(X|Y ) = H(X, Y )−H(Y ),
I(X ∧ Y ) = H(X) + H(Y )−H(X, Y )

= H(X)−H(X|Y ) = H(Y )−H(Y |X).

Two types of codes will be of interest. A block code
is a mapping C:An 7→ Bm, while a variable-length code

is a mapping C:An 7→ B∗. The length function L:An 7→
{1, 2, . . .} for a variable-length is defined by the formula

C(xn
1 ) = b

L(xn
1 )

1 .

Thus, in particular, a block code is just a variable length
code whose length function is constant.

A block code C is invertible (or faithful) if it is one-
to-one. A variable-length code is uniquely decodable if
for any two distinct sequences, u(1), u(2), . . . , u(m) and
v(1), v(2), . . . , v(k), where u(i), v(j) ∈ An, ∀i, j, the con-
catenations of the images, C(u(1))C(u(2)) · · ·C(u(m))
and C(v(1))C(v(2)) · · ·C(v(k)), are not equal. A con-
dition that guarantees unique decodability is the prefix
condition. A variable-length code C satisfies the prefix
condition if

C(v) = C(u)w, u, v ∈ An, w ∈ B∗ ⇒ w = Λ, u = v,

where Λ denotes the empty string.
In most cases of interest to us, the image alphabet will

be binary, that is, B = {0, 1}. It is easy to see that the
length function for a binary prefix code must satisfy the
so-called Kraft inequality.∑

xn
1

2−L(xn
1 ) ≤ 1.

It can in fact be shown that a uniquely decodable binary
code also satisfies the Kraft inequality, and that if L is
a positive integer-valued function on An for which the
Kraft inequality holds then there is a binary prefix code
C whose length function is L. (Thus, in particular, for
any uniquely decodable code C with length function L
there is a prefix code C̃ whose length function is also
L.) The reason for the connection between the Kraft
inequality and prefix codes is the connection between
the Kraft inequality and binary trees, a connection that
we now sketch.

A (binary) tree is a directed graph (V,E), along with
a distinguished vertex r ∈ V , called the root, such that
the following properties hold.

1. The outdegree of each vertex is at most 2.

2. The indegree of the root is 0. The indegree of all
other vertices is exactly 1.

3. Given any v ∈ V − r there is a directed path from r
to v.

It is easy to see from the above that there is only one
path from r to any v 6= r; the length of this path is called
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the depth d(v) of v. A vertex is called an outer node if
its outdegree is 0; otherwise it is an inner node. Let O
denote the set of outer nodes. It is easy to see that the
edges of the tree can be labeled by 0’s and 1’s so that for
any vertex v whose outdegree is 2, the two edges leading
out of v have different labels. Such a labeling assigns a
binary sequence of length d(v) to each outer node v such
that distinct outer nodes are assigned distinct sequences.
The labeling is therefore just a binary code on the set
of outer nodes. Furthermore, the code is a prefix code,
due to the simple fact that an outer node is not an inner
node! It is clear that∑

v∈O
2−v(x) ≤ 1.

In summary, binary trees lead to binary prefix codes on
their outer codes for which the Kraft inequality holds.

Now suppose L is a positive integer-valued function
defined on a set A such that

∑
2−L(a) ≤ 1. Our goal is to

show that there is a prefix code C whose length function
is L. Without loss of generality it can be assumed that
A is labeled so that L(ai) ≤ L(ai+1), i < |A|. The code
C is defined by setting C(ai) = w(i) ∈ B∗, where w(1) is
a block of 0’s of length L(a1), and w(i), i > 1 is the first
L(ai) bits in the binary expansion of

∑
j<i 2

−L(aj). It is
left to the reader to show that this defines a prefix code.
The code is known as the Shannon-Fano code, or simply
the Shannon code. The following theorem summarizes
this coding construction in a form that will be used later.

Theorem 1 Let P be a probability distribution on A
and define L(a) = d− log P (a)e, a ∈ A, where d·e de-
notes the least integer function. There is a binary pre-
fix code for which the expected length satisfies E(L) =∑

a L(a)P (a) ≤ H(P ) + 1.

We shall also make use of a prefix code defined on
the integers, a code that is essentially due to Elias. Let
b(n) be the usual binary representation of the integer
n ≥ 0, and let `(n) denote the length of b(n), so that
`(n) = dlog2(n + 1)e. Let Ok denote a sequence of 0’s of
length k. The code is defined by

C(n) = 0`(`(n))b(`(n))b(n).

For example b(12) = 1100, so b(`(12)) = b(4) = 100 and
`(`(12)) = 3. Thus C(12) = 0001001100. The decoding
is as follows. The initial block 000 of 0’s has length 3.
This tells us to look in the next 3 places, where we see
100, the binary representation of 4, which in turn tells

us to look in the next 4 places where we see 1100, the
binary representation of 12. The code C is a prefix code;
the codeword length is `(n) + 2`(`(n)), which, for large
n, is approximately equal to

log2 n + 2 log2 log2 n.

1 Large Deviations.

One important application of information theory is to
the theory of large deviations. A key to this application
is the theory of types. The n-type of a sequence xn

1 ∈ An

is just another name for its empirical distribution P̂ =
P̂xn

1
, that is, the distribution defined by

P̂ (a) =
|{i:xi = a}|

n
, a ∈ A.

Two sequences xn
1 and yn

1 are said to be equivalent if they
have the same type; the equivalence classes will be called
type classes. The type class of xn

1 will be denoted by T n
P ,

where P = P̂xn
1
. The proof of the following lemma is left

to the student.

Lemma 1 The number of possible types is(
n + |A| − 1
|A| − 1

)
.

Theorem 2 For any type P(
n + |A| − 1
|A| − 1

)−1

2nH(P ) ≤ |T n
P | ≤ 2nH(P ).

Proof. Fix the type P and define Pn(xn
1 ) =

∏
i P (xi).

A simple calculation shows that if xn
1 has type P then

Pn(xn
1 ) = 2−nH(P ). Since Pn is a probability distribu-

tion on An we must have Pn(T n
P ) ≤ 1. This gives the

desired upper bound since Pn(T n
P ) = |T n

P |2−nH(P ).
The lower bound can be obtained as follows. Let A =

{a1, a2, . . . , at}, where t = |A|. By definition of types we
can write P (ai) = ki/n, i = 1, 2, . . . , t with k1+k2+ . . .+
kt = n, where ki is the number of times ai appears in xn

1

for any fixed xn
1 ∈ T n

P . Thus we have

|T n
P | =

n!
k1!k2! · · · kt!

,

so that

nn = (k1 + . . . + kt)n =
∑ n!

j1! · · · jt!
kj1

1 · · · kjt
t ,
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where the sum is over all t-tuples (j1, . . . , jt) of nonneg-
ative integers such that j1 + . . .+ jt = n. The number of

terms is

(
n + |A| − 1
|A| − 1

)
, by Lemma ??, and the largest

term is
n!

k1!k2! · · · kt!
kk1

1 kk2
2 · · · kkt

t ,

for if jr > kr, js < ks then decreasing jr by 1 and
increasing js by 1 multiplies by

jr

kr

ks

1 + js
≥ jr

kr
≥ 1.

This yields the lower bound.
The following corollary will be useful in a later section.

Corollary 1 The minimum number `
(n)
min of bits needed

to encode sequences xn
1 of known type P , with codewords

of a fixed length, satisfies

nH(P )− log

(
n + |A| − 1
|A| − 1

)
≤ `

(n)
min ≤ dnH(P )e.

In particular, (1/n)`(n) → H(P ) as n →∞.

Our next result connects the theory of types with gen-
eral probability theory.

Theorem 3 For any distribution P on A and any n-
type Q(

n + |A| − 1
|A| − 1

)−1

2−nD(Q‖P ) ≤ Pn(T n
Q )

≤ 2−nD(Q‖P ),

where Pn is the product measure defined by P on An.

Proof. If xn
1 has type Q then the number of times xi = a

is just nQ(a), and hence

Pn(xn
1 ) =

∏
a

P (a)nQ(a) = 2n
∑

a
Q(a) log P (a).

Thus Lemma ?? yields the desired upper bound

Pn(T n
Q ) =

∣∣∣T n
Q

∣∣∣ 2n
∑

a
Q(a) log P (a)

≤ 2−n
∑

a
Q(a) log

P (a)
Q(a)

= 2−nD(Q‖P ).

A similar argument establishes the lower bound.

Let X1, X2, . . . be independent random variables tak-
ing values in X with common distribution P and let

P̂n be the n-type of the random sequence X1, . . . , Xn.
The law of large numbers tells us that P̂n → P with
probability 1 as n →∞. The next result is useful for es-
timating the (exponentially small) probability that P̂n

belongs to some set Π of distributions that does not
contain the true distribution P . We use the notation
D(Π‖P ) = infQ∈Π D(Q‖P ).

Theorem 4 (Sanov’s Theorem.) Let Π be a set of
distributions on A whose closure is equal to the closure
of its interior. Then

− 1
n

log P
(
P̂n ∈ Π

)
→ D(Π‖P ).

Proof. Let Pn be the set of possible n-types and let
Πn = Π ∩ Pn. Theorem ?? implies that

P (P̂n ∈ Πn) = Pn
(
∪Q∈ΠnT n

Q

)
is upper bounded by(

n + |A| − 1
|A| − 1

)
2−nD(Πn‖P )

and lower bounded by(
n + |A| − 1
|A| − 1

)−1

2−nD(Πn‖P ).

Since D(Q‖P ) is continuous in Q, the hypothesis on Π
implies that D(Πn‖P ) is arbitrarily close to D(Π‖P ) if
n is large. Hence the theorem follows.

Example 1 Let f be a given function on A and set
Π = {Q:

∑
a Q(a)f(a) > α} where α < maxa f(a).

The set Π is open and hence satisfies the hypothe-
sis of Sanov’s theorem. Note that P̂n ∈ Π is equiv-
alent to (1/n)

∑
xi

f(xi) > α, since
∑

a P̂n(a)f(a) =
(1/n)

∑
xi

f(xi). Thus we obtain the classical large de-
viations result

− 1
n

log Pn

(
1
n

n∑
i=1

f(xi) > α

)
→ D(Π‖P ).

In this case, D(Π‖P ) = D(cl(Π)‖P ) = minD(Q‖P ),
where the minimum is over all Q for which

∑
Q(a)f(a) ≥

α. In particular, for any α >
∑

P (a)f(a) we
have D(Π‖P ) > 0, so that, the probability of
(1/n)

∑n
1 f(Xi) > α goes to 0 exponentially fast.
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It is instructive to see how to calculate the expo-
nent D(Π‖P ) for the preceeding example. Consider
the exponential family of distributions P̃ of the form
P̃ (a) = cP (a)2tf(a), where c = (

∑
a P (a)2tf(a))−1.

Clearly
∑

a P̃ (a)f(a) is a continuous function of the pa-
rameter t and this function tends to max f(a) as t →∞.
(Check!) As t = 0 gives P̃ = P , it follows by the as-
sumption ∑

a

P (a)f(a) < α < max
a

f(a)

that there an element of the exponential family, with
t > 0, such that

∑
P̃ (a)f(a) = α. Denote this P̃ by Q∗,

so that,

Q∗(a) = c∗P (a)2t∗f(a), t∗ > 0,
∑
a

Q∗(a)f(a) = α.

We claim that

D(Π‖P ) = D(Q∗‖P ) = log c∗ + t∗α. (1)

To show that D(Π‖P ) = D(Q∗‖P ) it suffices to show
that D(Q‖P ) > D(Q∗‖P ) for every Q ∈ Π, i. e., for
every Q for which

∑
a Q(a)f(a) > α. A direct calculation

gives

D(Q∗‖P ) =
∑
a

Q∗(a) log
Q∗(a)
P (a)

=∑
a

Q∗(a) [log c∗ + t∗f(a)] = log c∗ + t∗α (2)

and ∑
a

Q(a) log
Q∗(a)
P (a)

=∑
a

Q(a) [log c∗ + t∗f(a)] > log c∗ + t∗α.

Hence

D(Q‖P )−D(Q∗‖P ) >

D(Q‖P )−
∑
a

Q(a) log
Q∗(a)
P (a)

= D(Q‖Q∗) > 0.

This completes the proof of (??).

Remark 1 Replacing P in (??) by any P̃ of the expo-
nential family, i. e., P̃ (a) = cP (a)2tf(a), we get that

D(Q∗‖P̃ ) =

log
c∗

c
+ (t∗ − t)α = log c∗ + t∗α− (log c + tα).

Since D(Q∗‖P̃ ) > 0 for P̃ 6= Q∗, it follows that

log c + tα = − log
∑
a

P (a)2tf(a) + tα

attains its maximum at t = t∗. This means that the
“large deviations exponent”

lim
n→

[
− 1

n
log Pn

{
1
n

n∑
i=1

f(Xi) > α)

}]

can be represented also as

max
t≥0

[
− log

∑
a

P (a)2tf(a) + tα

]
.

This latter form is the one usually found in text-
books. Note that the restriction t ≥ 0 is not needed
when α >

∑
a P (a)f(a), because, as just seen, the un-

constrained maximum is attained at t∗ > 0. However,
the restriction to t ≥ 0 takes care also of the case when
α ≤

∑
a P (a)f(a), when the exponent is equal to 0.

2 I-projections.

The I-projection of a distribution Q onto a closed,
convex subset Π of distributions on A is the P ∗ ∈ Π
such that

D(P ∗‖Q) = min
P∈Π

D(P‖Q).

In the sequel we suppose that Q(a) > 0 for all a ∈ A.
The function D(P‖Q) is then continuous and strictly
convex in P , so that P ∗ exists and is unique.

The support of the distribution P is the set S(P ) =
{a:P (a) > 0}. Since Π is convex, among the supports of
elements of Π there is one whose support contains all the
others; this will be called the support of Π and denoted
by S(Π).

Theorem 5 S(P ∗) = S(Π) and D(P‖Q) ≥ D(P‖P ∗)+
D(P ∗‖Q) for all P ∈ Π.

Proof. Of course, if the asserted inequality holds for some
P ∗ ∈ Π and all P ∈ Π then P ∗ must be the I-projection
of Q onto Π.

For arbitrary P ∈ Π, by the convexity of Π we have
Pt = (1 − t)P ∗ + tP ∈ Π, for 0 ≤ t ≤ 1, hence for each
t ∈ (0, 1),

0 ≤ 1
t

[D(Pt‖Q)−D(P ∗‖Q)] =
d

dt
D(Pt‖Q) |t=t̃ ,
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for some t̃ ∈ (0, t). But

d

dt
D(Pt‖Q) =

∑
a

(P (a)− P ∗(a)) log
Pt(a)
Q(a)

,

and this converges (as t ↓ 0) to −∞ if P ∗(a) = 0 for
some a ∈ S(P ), and otherwise to

∑
a

(P (a)− P ∗(a)) log
P ∗(a)
Q(a)

. (3)

It follows that the first contigency is ruled out, proving
that S(P ∗) ⊃ S(P ), and also that the quantity (??) is
nonnegative, proving the claimed inequality.

Now we examine some situations in which the inequal-
ity of Theorem ?? is actually an equality. For any given
functions f1, f2, . . . , fk on A and corresponding numbers
α1, α2, . . . , αk, the set

L = {P :
∑
a

P (a)fi(a) = αi, 1 ≤ i ≤ k},

will be called a linear family of probability distributions.
For any given functions f1, f2, . . . , fk on A, the set E of
all P such that

P (a) = cQ(a) exp(
k∑
1

θifi(a)), for some θ1, . . . , θk,

will be called an exponential family of probability distri-
butions; here Q is any given distribution and

c = c(θ1, . . . , θk) =

(∑
a

Q(a) exp(
k∑
1

θifi(a))

)−1

.

We will assume that S(Q) = A; then S(P ) = A for all
P ∈ E . Note that Q ∈ E . The family E depends on Q, of
course, and but only in a weak manner, for any element
of E could play the role of Q. If necessary to emphasize
this dependence on Q we shall write E = EQ.

Theorem 6 The I-projection P ∗ of Q onto a linear fam-
ily L satisfies

D(P‖Q) = D(P‖P ∗) + D(P ∗‖Q), ∀P ∈ L.

Further, if S(L) = A then L ∩ EQ = {P ∗}.

Proof. By the preceeding theorem, S(P ∗) = S(L).
Hence for every P ∈ L there is some t < 0 such that
Pt = (1 − t)P ∗ + tP ∈ L. Therefore, we must have
(d/dt)D(Pt‖Q)|t=0 = 0, that is, the quantity (??) in the

preceeding proof is equal to 0, for all P ∈ L. This gives
the desired identity. Also we can equivalently write∑

a

P (a)
[
log

P ∗(a)
Q(a)

−D(P ∗‖Q)
]

= 0, P ∈ L. (4)

Now, by the definition of L, the distributions P ∈ L,
regarded as |A|-dimensional vectors, are in the orthog-
onal complement of the subspace F spanned by the k
vectors, {fi(·)−αi: 1 ≤ i ≤ k}. If S(L) = A then the dis-
tributions P ∈ L also span the orthogonal complement
of F , from Lemma ??, below , and hence the identity
(??) implies that the vector

log
P ∗(·)
Q(·)

−D(P ∗‖Q)

must be in F . This proves that P ∗ ∈ EQ.
Finally, if P̃ ∈ L ∩ EQ then it is easily checked that

the identity (??) holds for P̃ in place of P ∗. This implies
that P̃ satisfies the Pythagorean identity in the role of
P ∗, and this, in turn, implies that P̃ = P ∗.

The proof of the theorem is finished, once the following
linear algebra result is established.

Lemma 2 Suppose V is a the subspace of Rn such that
there is a strictly positive vector p ∈ V ⊥, the orthogonal
complement of V . Then V ⊥ is spanned by the probabil-
ity vectors that belong to it.

Proof. Choose a basis for V ⊥ of the form {p, q1, . . . , q`}
and determine ti ∈ (0, 1), 1 ≤ i ≤ ` such that pi =
(1 − ti)p + tiqi is a nonnegative vector. The vectors
{p, p1, . . . , p`} are easily seen to be a basis for V ⊥; each
can be then be rescaled to obtain a basis for V ⊥ that
consists of probability vectors. This completes the proof
of the lemma.

If S(L) 6= A then no element of the exponential family
E = EQ can belong to L, but since E is not a closed
set in general, some element of the closure, cl(E) may
be in L. Indeed, if there is a P̃ ∈ L ∩ cl(E) then the
Pythagorean identity still holds for P̃ , and this implies
that P̃ = P ∗. A sequence of elements converging to P ∗

can always be generated by the “generalized iterative
scaling” algorithm, which will be discussed at the end of
this section. Hence we always have L ∩ cl(E) = {P ∗}.

Suppose now that L1, . . . ,Lm are given linear families
and generate a sequence of distributions Pn as follows:
Set P0 = Q (any given distribution with S(Q) = A), let
P1 be the I-projection of P0 onto L1, P2 the I-projection
of P1 onto L2, and so on, where for n > m we mean by
Ln that Li for which i ≡ n (mod m); i. e., L1, . . . ,Lm

is repeated cyclically.
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Theorem 7 If ∩m
i=1Li = L 6= ∅ then Pn → P ∗, the

I-projection of Q onto L.

Proof. By the preceeding theorem, we have for every
P ∈ L (even for P ∈ Ln) that

D(P‖Pn−1) = D(P‖Pn) + D(Pn‖Pn−1), n = 1, 2, . . .

Adding these equations for 1 ≤ n ≤ N we get that

D(P‖Q) = D(P‖P0) = D(P‖PN ) +
N∑

n=1

D(Pn‖Pn−1).

By compactness there exists a subsequence PNk
→ P ′,

say, and then from the preceeding inquality we get for
Nk →∞ that

D(P‖Q) = D(P‖P ′) +
∞∑

n=1

D(Pn‖Pn−1) (5)

Since this series is convergent we have D(Pn‖Pn−1) → 0,
and hence also |Pn − Pn−1| → 0, where |Pn − Pn−1|
denotes the usual variational distance

∑
a(|Pn(a) −

Pn−1(a)|. This implies that together with PNk
→ P ′

we also have

PNk+1 → P ′, PNk+2 → P ′, . . . , PNk+m → P ′.

Since by the periodic construction, among the m consec-
utive elements, PNk

, PNk+1, . . . , PNk+m−1 there is one in
each Li, i = 1, 2, . . . ,m, it follows that P ′ ∈ ∩Li = L.

Since P ′ ∈ L it may be substituted for P in (??) to
yield

D(P ′‖Q) =
∞∑
i=1

D(Pn‖Pn−1).

With this, in turn, (??) becomes

D(P‖Q) = D(P‖P ′) + D(P ′‖Q),

which proves that P ′ equals the I-projection of Q onto
L. Finally, as P ′ was the limit of an arbitrary convergent
subsequence of the sequence Pn, our result means that
every convergent subsequence of Pn has the same limit
P ∗. Using compactness again, this proves that Pn → P ∗

and completes the proof of the theorem.

Now we discuss iterative scaling, a method for evalu-
ating I-projections that is useful in the analysis of con-
tigency tables, a subject to be discussed in the next sec-
tion. Let B = {B1, B2, . . . , Bk} be a partition of A and
let P be a distribution on A. The distribution defined
on {1, 2, . . . , k} by the formula

PB(i) =
∑
a∈Bi

P (a),

is called the B-lumping of P .
Fix nonnegative constants αi, i ≤ k, whose sum is 1,

and let L = {P :PB(i) = αi,∀i}. The I-projection of any
Q onto L is obtained simply by “scaling”:

P ∗(a) = ciQ(a), a ∈ Bi, where ci =
αi

QB(i)
. (6)

This follows from the fact that lumping does not increase
divergence, that is,

D(P‖Q) ≥ D(PB‖QB).

The condition that P ∈ L is equivalent to the condition
that P (Bi) = αi, ∀i. If P ∗(a) = αiQ(a)/Q(Bi), a ∈ Bi

then∑
a

P ∗(a) log
P ∗(a)
Q(a)

=
∑

i

∑
a∈Bi

αiQ(a)
Q(Bi)

log
αi

Q(Bi)

= D(α‖QB), α = (α1, . . . , αk).

Thus, if P ∈ L then

D(P‖Q) ≥ D(PB‖QB) = D(α‖QB),

which establishes (??).
Now, if L1,L2, . . . ,Lm are all of the preceeding form,

then the iterated sequence of I-projections P1, P2, . . . ,
in Theorem ?? can all be obtained by iterative scal-
ing, and the theorem gives that the so obtained sequence
converges to the I-projection of Q onto the intersection
L = ∩m

i=1Li. In particular, as we shall see in a later
section, iterative scaling can be used to evaluate the I-
projections that are needed in the analysis of contigency
tables.

3 f-divergence and contigency tables.

Let f(t) be a convex function defined for t > 0 with
f(1) = 0. The f-divergence of a distribution P from Q
is defined by

Df (P‖Q) =
∑
a

Q(x)f
(

P (x)
Q(x)

)
.

Here we take 0f(0
0) = 0, f(0) = limt→0 f(t), 0f(a

0 ) =
limt→0 tf(a

t ) = a limu→∞
f(u)

u .
Some examples include the following.

(1) f(t) = t log t ⇒ Df (P‖Q) = D(P‖Q).

(2) f(t) = − log t ⇒ Df (P‖Q) = D(Q‖P ).
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(3) f(t) = (t− 1)2

⇒ Df (P‖Q) =
∑
a

(P (a)−Q(a))2

Q(a)
.

(4) f(t) = 1−
√

t

⇒ Df (P‖Q) = 1−
∑
a

√
P (a)Q(a).

(5) f(t) = |t− 1| ⇒ Df (P‖Q) = |P −Q|.

The expression Df (P‖Q) =
∑

a
(P (a)−Q(a))2

Q(a) will be de-
noted by χ2(P,Q). The analogue of the log-sum inequal-
ity is∑

i

bif

(
ai

bi

)
≥ bf

(
a

b

)
, a =

∑
ai, b =

∑
bi.

Using this, many of the properties of the information
divergence D(P‖Q) extend to general f -divergences, in
particular

Lemma 3 Df (P‖Q) ≥ 0 and if f is strictly convex at
t = 1 then Df (P‖Q) = 0 only when P = Q. Further,
Df (P‖Q) is a convex function of the pair (P,Q), and the
partitioning property, Df (P‖Q) ≥ Df (PB‖QB) holds for
any partition B of A.

A basic theorem about f -divergences is the following
approximation property.

Theorem 8 If f is twice differentiable at t = 1 and
f ′′(1) > 0 then for any Q with S(Q) = A and P “ close”
to Q we have

Df (P‖Q) ∼ f ′′(1)
2

χ2(P,Q)

(Formally, Df (P‖Q)/χ2(P,Q) → f ′′(1)/2 as χ2(P,Q) →
0.)

Proof. Since f(1) = 0, Taylor’s expansion gives

f(t) = f ′(1)(t− 1) +
f ′′(1)

2
(t− 1)2 + ε(t)(t− 1)2,

where ε(t) → 0 as t → 1. Hence

Q(a)f
(

P (a)
Q(a)

)
=

f ′(1)(P (a)−Q(a)) +
f ′′(1)

2
(P (a)−Q(a))2

Q(a)

+ε

(
P (a)
Q(a)

)
(P (a)−Q(a))2

Q(a)
.

Summing over a ∈ A then establishes the theorem.

Remark 2 The same proof works even if Q is not fixed,
provided that no Q(a) can become arbitrarily small.
However, the theorem (the “asymptotic equivalence” of
f -divergences subject to the differentiability hypotheses)
does not remain true if Q is not fixed and the probabili-
ties of Q(a) are not bounded away from 0.

Corollary 2 If f satisfies the hypotheses of the theo-
rem and P̂ is the empirical distribution (i. e., type) of a
sample of size n drawn independently from the distribu-
tion Q, then (2/f ′′(1))nDf (P̂‖Q) has an asymptotic χ2

distribution, with |A|− 1 degrees of freedom, as n →∞.

The χ2 distribution with k degrees of freedom is de-
fined as the distribution of the sum of squares of k inde-
pendent random variables having the standard normal
distribution. By this corollary, both (2/ log e)nD(P̂‖Q)
and (2/ log e)nD(Q‖P̂ ) are asymptotically χ2 with |A|−
1 degrees of freedom.

One property that distiguishes information divergence
among f -divergences is transitivity of projections, as
summarized in the following lemma. It can, in fact, be
shown that the only f -divergence for which either of the
two properties of the lemma holds is the informational
divergence.

Lemma 4 Let P ∗ be the I-projection of Q onto a linear
family L. Then

(i) For any convex subfamily L′ ⊂ L the I-projections
of Q and of P ∗ onto L′ are the same.

(ii) For any “translate” L′ of L, the I-projections of Q
and of P ∗ onto L′ are the same, provided S(P ∗) =
A.

Proof. By the Pythagorean identity

D(P‖Q) = D(P‖P ∗) + D(P ∗‖Q), P ∈ L.

It follows that on any subset of L the minimum of
D(P‖Q) and of D(P‖P ∗) are acheived by the same P .
This establishes (i).
L′ is called a translate of L if it is defined in terms of

the same functions fi, but possibly different αi. Hence,
the exponential family corresponding to L′ is the same
as it is for L. Since S(P ∗) = A, we know that P ∗ be-
longs to this exponential family. But every element of
the exponential family has the same I-projection onto
L′, which establishes (ii).

7



Table 1: A 2-dimensional contingency table.

x(0, 0) x(0, 1) · · · x(0, r2) x(0·)
x(1, 0) x(1, 1) · · · x(1, r2) x(1·)

...
...

. . .
...

...
x(r1, 0) x(r1, 1) · · · x(r1, r2) x(r1·)
x(·, 0) x(·, 1) · · · x(·, r2) n

Now we apply some of these ideas to the analysis of
contingency tables. A 2-dimensional contigency table
is indicated in Figure ??. The sample data have two
features, with categories 0, . . . , r1 for the first feature
and 0, . . . , r2 for the second feature. The cell counts

x(j1, j2), 0 ≤ j1 ≤ r1, 0 ≤ j2 ≤ r2

are nonnegative integers; thus in the sample there were
x(j1, j2) members that had category j1 for the first fea-
ture and j2 for the second. The table has two marginals
with marginal counts

x(j1·) =
r2∑

j2=0

x(j1, j2), x(·j2) =
r1∑

j1=0

x(j1, j2).

The sum of all the counts is

n =
∑
j1

x(j1·) =
∑
j2

x(·j2) =
∑
j1

∑
j2

x(j1, j2).

The term contigency table comes from this exam-
ple, the cell counts being arranged in a table, with
the marginal counts appearing at the margins. Other
forms are also commonly used, e. g., the marginal
empirical probabilities are indicated by replacing x(j1·)
by p̂(j1·) = x(j1·)/n and x(·j2) by p̂(·j2) = x(·j2)/n,
and/or the counts are replaced by the relative counts,
p̂(j1, j2) = x(j1, j2)/n.

In the general case the sample has d features of in-
terest, with the ith feature having categories 0, 1, . . . , ri.
The d-tuples ω = (j1, . . . , jd) are called cells; the corre-
sponding cell count x(ω) is the number of members of
the sample such that, for each i, the ith feature is in
the jith category. The collection of possible cells will be
denoted by Ω. The empirical distribution is defined by
p̂(ω) = x(ω)/n, where n =

∑
ω x(ω) is the sample size.

By a d-dimensional contingency table we mean either the
aggregate of the cell counts x(ω), or the empirical distri-
bution p̂, or sometimes any distribution P on Ω (mainly
when considered as a model for the “true distribution”
from which the sample came.)

The marginals of a contingency table are obtained
by restricting attention to those features i that be-
long to some given set γ ⊂ {1, 2, . . . , d}. Formally,
for γ = (i1, . . . , ik) we denote by ω(γ) the γ-projection
of ω = (j1, . . . , jd), that is, ω(γ) = (ji1 , ji2 , . . . , jik).
The γ-marginal of the contingency table is given by the
marginal counts

x(ω(γ)) =
∑

ω′:ω′(γ)=ω(γ)

x(ω′)

or the corresponding empirical distribution p̂(ω(γ)) =
x(ω(γ))/n. In general the γ-marginal of any distribution
P (ω):ω ∈ Ω is defined as the distribution Pγ defined by
the marginal probabilities

Pγ(ω(γ)) =
∑

ω′:ω′(γ)=ω(γ)

P (ω′).

In general a d-dimensional contigency table has d
one-dimensional marginals, d(d − 1)/2 two-dimensional
marginals, etc., corresponding to the subsets of
{1, . . . , d} of one, two, etc., elements.

For contingency tables the most important linear fam-
ilies of distributions are those defined by fixing certain
γ-marginals, for a family Γ of sets γ ⊂ {1, . . . , d}. Thus,
denoting the fixed marginals by P̄γ , γ ∈ Γ, we consider

L = {P :Pγ = P̄γ , γ ∈ Γ}.

The exponential family (through any given Q) that cor-
responds to this linear family L consists of all distribu-
tions that can be represented in product form as

P (ω) = cQ(ω)
∏
γ∈Γ

aγ(ω(γ)). (7)

In particular, if L is given by fixing the one-dimensional
marginals (i. e., Γ consists of the one point subsets
of {1, . . . , d} then the corresponding exponential family
consists of the distributions of the form

P (i1, . . . , id) = cQ(i1, . . . , id)a1(i1) · · · ad(id)

The family of all distributions of the form (??) is called
the log-linear family with interactions γ ∈ Γ. In most
applications, Q is chosen as the uniform distributions;
often the name “log-linear family” is restricted to this
case. Then (??) gives that the log of P (ω) is equal to a
sum of terms, each representing an “interaction” γ ∈ Γ,
for it depends on ω = (j1, . . . , jd) only through ω(γ) =
(ji1 , . . . , jik), where γ = (i1, . . . , ik).

A log-linear family is also called a log-linear model.
It should be noted that the representation (??) is not
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unique, because it corresponds to a representation in
terms of linearly dependent functions. A common way
of eachieving uniqueness is to postulate aγ(ω(γ)) = 1
whenever at least one component of ω(γ) is equal to 0.
In this manner a unique representation of the form (??)
is obtained, provided that with every γ ∈ Γ also the sub-
sets of γ are in Γ. Log-linear models of this form are also
called hierarchical models.

Remark 3 The way we introduced log-linear models
shows that restricting to the hierarchical ones is more
a notational than a real restriction. Indeed, if some
γ-marginal is fixed then so are the γ′-marginals for all
γ′ ⊂ γ.

In some cases of interest it is desirable to summa-
rize the information content of a contingency table by
its γ-marginals, γ ∈ Γ. In such cases it is natural to
consider the linear family L constisting of those distri-
butions whose γ-marginals equal those of the empirical
distribution, P̂ . If a prior guess Q is available, then we
accept the I-projection P ∗ of Q onto L as an estimate
of the true distribution. By previous results, this P ∗

equals the intersections of the log-linear family (??), or
its closure, with the linear family L. Also, P ∗ equals the
maximum likelihood estimate of the true distribution if
it is assumed to belong to (??).

Again, by previous results, an asymptotically optimal
test of the null-hypothesis that the true distribution be-
longs to the log-linear family E with interactions γ ∈ Γ
consists in accepting the null-hypothesis if

D(P̂‖P ∗) = min
p∈E

D(P̂‖P )

is “small.” Unfortunately the numerical bounds ob-
tained in our asymptotic calculation are too crude for
most applications. Better bounds can be obtained from
the following theorem (still asymptotic, but typically
good for substantially smaller sample sizes than our ex-
ponential error bounds.)

Theorem 9 If the true distribution Q is in E then the
terms on the right-hand side of the Pythagorean identity

D(P̂‖Q) = D(P̂‖P ∗) + D(P ∗‖Q)

are asymptotically independent and (after scaling) have
χ2 distributions with appropriate degrees of freedom.

Remark 4 The scaling is by 2n/ log e as in Corol-
lary ??. The degrees of freedom for D(P̂‖P ∗) equals
the number of (independent) constraints determining L,

and the degrees of freedom for D(P ∗‖Q) are determined
from the condition that the total degrees of freedom is
|Ω| − 1.

The proof of Theorem ?? is omitted. Us-
ing this theorem, the null-hypothesis is rejected if
(2n/ log e)D(P̂‖P ∗) exceeds the threshold found in the
table of the χ2 distribution for the selected level of sig-
nificance.

Now we look at the problem of outliers. A lack of fit
(i. e., D(P̂‖P ∗) “large”) may be due not to the inad-
equacy of the model tested, but to outliers. A cell ω0

is considered to be an outlier in the following case: Let
L be the linear family determined by the γ-marginals
of the empirical distribution P̂ , (γ ∈ Γ) and let L′
be the subfamily of L consisting of those P ∈ L that
satisfy P (ω0) = P̂ (ω0). Let P ∗∗ be the I-projection
of P ∗ onto L′. Ideally, we should consider ω0 as an
outlier if D(P ∗∗‖P ∗) is “large”, for if D(P ∗∗‖P ∗) is
close to D(P̂‖P ∗) then D(P̂‖P ∗∗) will be small by the
Pythagorean identity. Now by the partitioning inequal-
ity:

D(P ∗∗‖P ∗) ≥

P̂ (ω0) log
P̂ (ω0)
P ∗(ω0)

+
(
1− P̂ (ω0

)
log

P̂ (ω0)
P ∗(ω0)

,

and we declare ω0 as an outlier if the right-hand side
of this inequality is “large”, that is, after scaling by
(2n/ log e), it exceeds the critical value of χ2 with one
degree of freedom.

If the above method produces only a few outliers, say
ω0, ω1, . . . , ω`, we consider the subset L̃ of L consisting of
those P ∈ L that satisfy P (ωj) = P̂ (ωj) for j = 0, . . . , `.
If the I-projection of P ∗ onto L̃ is already “close” to P̂ ,
we accept the model and attribute the original lack of fit
to the outliers. Then the “outlier” cell counts x(ωj), j =
0 . . . , ` are deemed unreliable and they may be adjusted
to nP ∗(ωj), j = 0 . . . , `.

Similar techniques are applicable in the case when
some cell counts are missing.

4 An iterative algorithm.

In this section an iterative algorithm to find the
minimum divergence between two convex sets of dis-
tributions is presented. In this discussion the nota-
tion x∗ = arg minx∈X f(x) is used to denote a member
x∗ ∈ X at which the function f acheives its minimum, if
such a minimum exists, otherwise arg min is undefined.
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In the following lemma the sets P and Q and function
D(P‖Q) are completely arbitrary. In later applications
D(P‖Q) will be the divergence and P and Q will be
convex sets of distributions on a finite set A.

Theorem 10 Let D(P‖Q) be an arbitrary real-valued
function defined for P ∈ P, Q ∈ Q such that P ∗ =
P ∗(Q) = arg minP D(P‖Q) exists for all Q ∈ Q and
Q∗ = Q∗(P ) = arg minQ D(P‖Q) exists for all P ∈ P.
Suppose further that there is a nonnegative function
δ(P‖P ′) defined on P × P with the following “three-
points property,”

δ(P‖P ∗(Q)) + D(P ∗(Q)‖Q)
≤ D(P‖Q), ∀P ∈ P, Q ∈ Q,

as well as the following “four-points property,”

D(P ′‖Q′) + δ(P ′‖P )
≥ D(P ′‖Q∗(P )), ∀P, P ′ ∈ P, Q′ ∈ Q.

Let Q0 be an arbitrary member of Q and recursively
define

Pn = arg min
P∈P

D(P‖Qn−1),

Qn = arg min
Q∈Q

D(Pn‖Q). (8)

Then

lim
n→∞

D(Pn‖Qn) = inf
P∈P,Q∈Q

D(P‖Q).

If, in addition, (i) minQ∈Q D(P‖Q) is continuous in P ,
(ii) P is compact, and (iii) δ(P‖Pn) → 0 iff Pn → P , then
for the iteration (??) Pn will converge to some P ∗, such
that if Q∗ = arg minQ∈Q D(P ∗‖Q) then D(P ∗‖Q∗) =
minP∈P,Q∈Q D(P‖Q) and, moreover, δ(P ∗‖Pn) ↓ 0 and

D(Pn‖Qn)−D(P ∗‖Q∗) ≤ δ(P ∗‖Pn−1)− δ(P ∗‖Pn).

Proof. We have, by the three-points property,

δ(P‖Pn+1) + D(Pn+1‖Qn) ≤ D(P‖Qn),

and, by the four-points property

D(P‖Qn) ≤ D(P‖Q) + δ(P‖Pn),

for all P ∈ P, Q ∈ Q. Hence

δ(P‖Pn+1) ≤ D(P‖Q)−D(Pn+1‖Qn) + δ(P‖Pn) (9)

The inequality (??) implies the desired basic limit re-
sult

lim
n→∞

D(Pn‖Qn) = inf
P∈P,Q∈Q

D(P‖Q).

Indeed, if this were false it would mean that there exist
P ∈ P, Q ∈ Q and ε > 0 such that

lim
n→∞

D(Pn‖Qn) = lim
n→∞

D(Pn+1‖Qn) > D(P‖Q) + ε.

Then (??) would give that δ(P‖Pn+1) ≤ δ(P‖Pn) −
ε, n = 1, 2, . . . which contradicts the assumption that
δ is nonnegative.

Suppose assumptions (i)-(iii) hold. Pick a sub-
sequence Pnk

→ P ∗, as k → ∞ and let
Q∗ = arg minQ∈Q D(P ∗‖Q). Our basic limit re-
sult and assumption (i) imply that (P ∗, Q∗) achieves
minP,Q D(P‖Q). But it is easy to see that (??) im-
plies that if (P,Q) achieves minP minQ D(P‖Q) then
δ(P‖Pn+1) ≤ δ(P‖Pn) for every n. Thus δ(P ∗‖Pn) must
be nondecreasing, and, by assumption (iii), its limit must
be 0. Using assumption (iii) once more, we conclude that
Pn → P ∗. The final inquality in the statement of the
theorem then follows from (??) by replacing (P,Q) by
(P ∗, Q∗). This completes the proof of the theorem.

Now we wish to apply the theorem to the case when
D(P‖Q) is the divergence and P and Q are convex, com-
pact sets of nonnegative measures on A. No assumption
that the measures are probability distributions is made
at this point; hence, in particular, D(P‖Q) may have
negative values. Of course, if

∑
P (a) ≥

∑
Q(a) then

D(P‖Q) ≥ 0. Furthermore, the quantity

δ(P‖Q) =
∑
a

[
P (a) log

P (a)
Q(a)

− (P (a)−Q(a)) log e

]
,

is always nonnegative and vanishes iff P = Q. This δ sat-
isfies assumption (iii) of the theorem as well as the three-
points and four-points properties. We verify the four-
points property and leave the verification of the other
properties to the reader. Let Q∗ = arg minQ∈Q, let Q′ be
an arbitrary member of Q, and set Qt = (1−t)Q∗+tQ′ ∈
Q, 0 ≤ t ≤ 1. Then

0 ≤ 1
t

[D(P‖Qt)−D(P‖Q∗)] =

d

dt
D(P‖Qt)

∣∣
t=t̃, 0 < t̃ ≤ t.

With t → 0 it follows that

0 ≤ lim
t̃→0

∑
a

P (a)
(Q∗(a)−Q′(a)) log e

(1− t̃)Q∗(a) + t̃Q′(a)

=
∑
a

P (a)
Q∗(a)−Q′(a)

Q∗(a)
log e. (10)

10



If we then combine this with the fact that log t ≥ (1 −
1/t) log e) we obtain

∑
a

P ′(a) log
P ′(a)Q∗(a)
Q′(a)P (a)

−
(
P ′(a)− P (a)

)
log e ≥ 0,

which is just a rewritten version of the four-points prop-
erty.

Remark 5 Suppose we are given a convex family F of
random variables defined on a finite probability space
(Ω, P ) and let X∗ be a member of the family for which
E(log X) is maximal. Then, letting X and X∗ play the
role of Q′ and Q∗, respectively, the inequality (??) gives
that

E

(
X∗ −X

X

)
≥ 0, i. e., E

(
X∗

X

)
≥ 1,∀X ∈ F .

The finiteness assumption is not really needed here, for
all that is needed is that maxE(log X) is attained. This
is known as Cover’s inequality.

The result of Theorem ?? can be applied to the prob-
lem of minimizing divergence from a set of distributions
that is the image of a “nice” set in some other space. Let
T :A 7→ B be a given mapping and for any P on A write
P T for its image on B, that is, P T (b) =

∑
a:Ta=b P (a).

Problem 1. Given a set Q̃ = {QT :Q ∈ Q} of distri-
butions on B for some set Q of distributions on A,
minimize D(P̃‖Q̃), subject to Q̃ ∈ Q̃ for some given
P̃ on B. Here it is assumed that to any P ∈ P, a
Q ∈ Q minimizing D(P‖Q) can “easily” be found.

Problem 2. The same but with the role of P and Q
interchanged.

The first problem is relevant for maximum likelihood
estimation based on partially observed data, when es-
timation from the full data would be “easy.” The two
problems can be solved in similar ways; we concentrate
on the first one.

Let P be the set of all P on A such that P T = P̃ . Here
P̃ and the elements of Q̃ are not necessarily probability
distributions; indeed, either

∑
P̃ (b) or

∑
Q̃(b) maybe

less than, equal to, or greater than 1. Nevertheless the
partitioning inequality gives D(P‖Q) ≥ D(P T ‖QT ) with
equality iff

P (a)
Q(a)

=
P T (Ta)
QT (Ta)

,∀a ∈ A.

Hence P ∗ ∈ P, Q∗ ∈ Q achieve minP,Q D(P‖Q) iff Q̃∗ =
Q∗T achieves minQ̃ D(P̃‖Q̃).

Such (P ∗, Q∗) can be achieved using Theorem ??. In-
deed, to Qn−1 ∈ Q we can find Pn ∈ P minimizing
D(P‖Qn−1) for P ∈ P merely by letting

Pn(a) = Qn−1(a)
P̃ (Ta)

QT
n−1(Ta)

,

for by definition P T = P̃ , if P ∈ P. The alternate step,
finding Qn ∈ Q minimizing D(Pn‖Q) is ‘easily” found,
by assumption.

Now we apply the preceeding dicsussion to a mixture
distribution problem. Let Q̃ be the set of all Q̃ of the
form Q̃(b) =

∑k
i=1 ciµi(b), where ci ≥ 0,

∑
ci = 1, and

µi(b) are arbitrary nonnegative measures.

Goal: Find (c∗1, . . . , c
∗
k) achieving minQ̃ D(P̃‖Q̃), for a

given P̃ .

Solution. Let A be the set of all pairs (i, b), 1 ≤ i ≤
k, b ∈ B, and let T (i, b) = b. Define P and Q as above
and apply the iteration scheme. Thus

P = {P :
k∑

i=1

P (i, b) = P̃ (b)},

Q = {Q:Q(i, b) = ciµi(b)}.

Start with an arbitrary (c0
1, . . . , c

0
k) with positive com-

ponents that sum to 1; this defines Q0(i, b) = c0
i µi(b).

If Qn−1(i, b) = cn−1
i µi(b) is already defined let Pn be

determined as above, that is,

Pn(i, b) = Qn−1(i, b)
P̃ (b)

Q̃n−1(b)

= cn−1
i µi(b)

P̃ (b)∑
j cn−1

j µj(b)
.

The next step is to find Qn ∈ Q minimizing
D(Pn‖Q). To do this put Pn(i) =

∑
b Pn(i, b), Pn(b|i) =

Pn(i, b)/Pn(i) and use the relation Q(i, b) = ciµi(b) to
write

D(Pn‖Q) =
k∑

i=1

∑
b

Pn(i, b) log
Pn(i, b)
Q(i, b)

in the form

D(Pn‖Q) =
∑
i,b

Pn(i)Pn(b|i)
[
log

Pn(i)
ci

+ log
Pn(b|i)
µi(b)

]
.

(11)
Note that

∑
i Pn(i) =

∑
b P̃n(b), and hence D(Pn‖Q) is

minimized if in (??) we set ci = Pn(i)/
∑

b P̃ (b) (using
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the fact that Pn(b|i) is a probability distribution for fixed
i.) Thus the recursion for cn

i will be

cn
i = cn−1

i


∑

b
P̃ (b)µi(b)∑
j

cn−1
j µj(b)∑

b P̃ (b)

 ,

and by our general theorem, cn
i → c∗i achieving

minQ̃ D(P̃‖Q̃).

Remark 6 The finiteness of B is not essential for the
convergence of this iteration. In particular, using the
remark with Cover’s inequality, Remark ??, for positive
valued random variables X1, . . . , Xk, the weights c∗i max-
imizing E(log

∑
i ciXi) can be found by the same itera-

tion, i. e.,

cn
i = cn−1

i E

(
Xi∑

j cn−1
j Xj

)
.

This is Cover’s portfolio algorithm.

Remark 7 The “decomposition of mixtures” algorithm
can be used also if the individual µi’s depend on some
parameter to be estimated, i. e., when

Q̃ =

{
Q̃: Q̃(b) =

∑
i

ciµ(b|θi)

}
.

Then, from (??), θn
i is chosen to minimize the divergence

∑
b

Pn(b|i) log
Pn(y|i)
µi(y|θ)

.

Unfortunately, the general theorem is not applicable to
this case, because Q̃ and Q are not convex. Indeed, the
iteration may get stuck at a local mimimum and fail to
find the global one.

5 Redundancy.

This and the next two sections are concerned with
measuring the performance of codes. The symbol Cn will
denote a binary prefix n-code with length function L =
L(Cn, n). The (pointwise) redundancy R = RP (Cn, n) of
the code Cn relative to a distribution P on An is defined
by

R(xn
1 ) = L(xn

1 )− log
1

P (xn
1 )

.

The expected redundancy is

R̄ = E(R) =
∑
xn
1

L(xn
1 )P (xn

1 )−
∑
xn
1

P (xn
1 ) log

1
P (xn

1 )
.

The Shannon code determined by the length function
L(xn

1 ) = d− log P (xn
1 )e produces essentially zero redun-

dancy, and, is almost the optimal code for P in that
it produces expected coding length within 1 bit of the
minimal expected coding length. Thus, in general, re-
dundancy gives an approximate measure of the cost in
using the code Cn on P -sequences, rather than the opti-
mal code.

Note that the expected redundancy E(R) = E(L) −
H(P ) is always nonnegative, but the pointwise redun-
dancy R(xn

1 ) can take negative values. We will show
that for random processes the pointwise redundancy is
essentially nonnegative. A random process is an infi-
nite sequence X1, X2, . . . of A-valued random variables
defined on probability space (Ω, P ∗). The Kolmogorov
representation of a process produces the measure P on
the space A∞ of infinite sequences drawn from A, which
is defined by requiring that the value of P on cylinder
sets [an

1 ] = {x ∈ A∞:xn
1 = an

1} be given by the formula

P ([an
1 ]) = Prob (Xi = ai, : 1 ≤ i ≤ n) .

If P is the Kolmogorov measure determined by a process
we shall write Pn for the measure on An determined
by Pn(an

1 ) = P ([an
1 ]). (In cases where n is clear from

the context we write P in place of Pn.) Note that a
process defines a sequence of distributions Pn, where Pn

is defined on An. The key difference between the concept
of process and the general concept of sequences {Pn} of
distributions is that Pn+1 is required to be related to Pn

by the (Kolmogorov consistency) formula

Pn(xn
1 ) =

∑
xn+1

Pn+1(xn+1
1 ).

In the remainder of this section, P will denote the
Kolomogorov measure of a random process {Xn} and

12



Cn will denote a binary prefix n-code, for n = 1, 2, . . ..
The word code will mean either the sequence {Cn} or
one member Cn of this sequence; the context will make
clear which possiblity is being used. Our first result ex-
presses the idea that for random processes the pointwise
redundancy is essentially nonnegative, in that it is very
unlikely to asymptotically take large negative values.

Theorem 11 Let {cn} be a sequence of positive num-
bers satisfying

∑
2−cn < ∞. Then R(xn

1 ) ≥ −cn, even-
tually almost surely.

Proof. Let

An(c) = {xn
1 :R(xn

1 ) < −c} = {xn
1 : 2L(xn

1 )P (xn
1 ) < 2−c}.

Then

P (An(c)) =
∑

xn
1∈An(c)

P (xn
1 )

< 2−c
∑

xn
1∈An(c)

2−L(xn
1 ) ≤ 2−c,

where we used the Kraft inequality. Hence
∞∑

n=1

Prob (R(Xn
1 ) < −cn) =

∞∑
n=1

P (An(cn)) ≤
∞∑

n=1

2−cn < ∞.

The theorem now follows from the Borel-Cantelli princi-
ple.

A sharper lower bound can be obtained for the case
when there is a process Q such that each Cn is a Shannon
code for Qn, or in the case when the sequence of codes
{Cn} satisfies the strong prefix property, that is, for m 6=
n the code word for xm

1 is not a prefix of the code word
for xn

1 unless m ≤ n and xm
1 is a prefix of xn

1 . We state
this as a corollary as its proof is a modification of the
preceeding proof.

Corollary 3 For the Shannon code with respect to a
process Q, or for a strongly prefix code, the pointwise
redundancy R(xn

1 ) is bounded below by a random vari-
able and E(infn R(xn

1 )) > − log e.

Proof. Let

Bn(c) = {xn
1 :R(xn

1 ) < −c, R(xk
1) ≥ −c, k < n}.

As in the proof of the theorem,

P (Bn(c)) < 2−c
∑

xn
1∈Bn(c)

2−L(xn
1 ),

and it is sufficient to show that∑∞
n=1

∑
xn
1∈Bn(c) 2−L(xn

1 ) ≤ 1.
If the code is a strong prefix code then

∞∑
n=1

∑
xn
1∈Bn(c)

2−L(xn
1 ) ≤ 1,

and hence we are done. If the code is a Shannon code
for a process Q then∑

xn
1∈Bn(c)

2−L(xn
1 ) ≤

∑
xn
1∈Bn(c)

Q(xn
1 ) = Q(B̃n(c)),

where B̃n(c) is the union of the [xn
1 ] for which xn

1 ∈ Bn(c).
Since these sets are disjoint, the sum of their Q-measures
cannot exceed 1 and we again reach the desired result
that

∑∞
n=1

∑
xn
1∈Bn(c) 2−L(xn

1 ) ≤ 1. This completes the
proof of the corollary.

If the sequences to be encoded are sample paths from
some known random process P then we cannot do sig-
nificantly better (in the sense of minimizing expected
redundancy) than we can by using the Shannon code,
which produces expected redundancy of at most 1. In
many typical situations, however, the process P is un-
known, although it may be known to belong to some
parametric family. In such cases it is difficult to design
codes for which the redundancy stays bounded. The fol-
lowing result shows that if the code is a Shannon code for
some Q then the redundancy will indeed be unbounded,
unless Q is already very nearly the same as P .

Theorem 12 If Q is singular with respect to P then
the P -redundancy of the Shannon code with respect to
Q goes to infinity with probability 1.

Proof. The redundancy equals log(P (xn
1 )/(Q(xn

1 )), up to
1 bit, hence it suffices to show that Zn = Q(xn

1 )/P (xn
1 )

goes to 0, with probability 1. Towards this end, let Fn

be the smallest σ-algebra for which the sequences xn
1 are

measurable, that is, the σ-algebra generated by the cylin-
der sets [xn

1 ], xn
1 ∈ An. Then {Zn} is a martingale with

respect to the increasing sequence {Fn} and therefore
converges almost surely to some random variable Z. It
suffices to show that Z = 0.

Since Q is assumed to be singular with respect to P
there is a measurable set Ã ⊂ A∞ such that P (Ã) =
1, Q(Ã) = 0. Let µ by the measure defined by

µ(B) = P (B) + Q(B) +
∫

B
Z dP.

Since ∪nFn generates the entire σ-algebra, for every ε >
0 there exists Ãm ∈ Fm, for sufficiently large m, such
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that the symmetric difference between Ã and Ãm has
µ-measure less than ε. In particular,

P (Ãm) > 1− ε, Q(Ãm) < ε,

∫
Ãm

Z dP > E(Z)− ε.

But for n ≥ m the martingale property gives∫
Ãm

Zn dP = Q(Ãm), and therefore Fatou’s lemma gives∫
Ãm

Z dP ≤ lim inf
n→∞

∫
Ãm

Zn dP = Q(Ãm) < ε.

It follows that E(Z) < 2ε and hence that E(Z) = 0.
Since Z ≥ 0, we must have Z = 0, with probability 1, as
claimed. This completes the proof of the theorem.

Good codes are those for which the P -redundancy
grows slowly as n → ∞. The following theorem gives
a condition that guarantees the existence of such codes,
under some restrictions about the process P . In this and
later results, the limiting divergence-rate for processes is
defined by

D∞(P‖Q) = lim
n→∞

1
n

D(Pn‖Qn),

provided this limit exists. The limit is known to exist
for stationary P if Q is i.i.d. or finite-order Markov, but
not necessarily otherwise.

Theorem 13 Suppose P is stationary ergodic and let
Q be a mixture of stationary ergodic distributions, Q =∫

Uν(dU), such that for every ε > 0 the set of all finite-
order Markov measures U with D∞(P‖U) < ε has pos-
itive ν-measure. Then for the Shannon code with re-
spect to Q, the redundancy satisfies R(xn

1 )/n → 0, al-
most surely.

Proof. We have to prove that for every ε > 0,
log(P (xn

1 )/Q(xn
1 )) < εn, eventually almost surely, or,

equivalently,

P (xn
1 ) < 2εnQ(xn

1 ), eventually a.s.

Let Nε be the set of finite-order Markov measures U for
which D∞(P‖U) < ε and note that

Q(xn
1 ) =

∫
U(xn

1 )ν(dU) ≥
∫

Nε

U(xn
1 )ν(dU),

so that

2εnQ(xn
1 )

P (xn
1 )

≥
∫

Nε

2εnU(xn
1 )

P (xn
1 )

ν(dU) ≥

∫
Nε

2
n

(
ε−log

P (xn
1 )

U(xn
1

)

)
ν(dU). (12)

The entropy theorem implies that

1
n

log
P (xn

1 )
U(xn

1 )
→ D∞(P‖U) < ε, P ∈ Nε, (13)

for P -almost all infinite sequences (the exceptional set
may depend on U .) This means that the set of all pairs
(x,U), where x ∈ A∞, for which (??) does not hold, has
P × ν-measure 0; this in turn implies that for P -almost
all x, the set of U ′s not satisfying (??) has ν-measure 0
(in both cases, by Fubini’s theorem.)

Thus, for P -almost all x the integrand in (??) goes
to infinity for ν-almost all P ∈ N∞. It follows by Fa-
tou’s lemma that the integral itself goes to +∞, which
completes the proof of the theorem.

An important class of examples of codes that satisfy
the hypotheses of the preceeding theorem are obtained
as follows. Let Γ be a given (countable) list of stationary
ergodic distributions, and let each U ∈ Γ be assigned a
“description length” L(U), subject to the Kraft inequal-
ity,

∑
U∈Γ 2−L(U) ≤ 1. Then xn

1 can be encoded by a
prefix code of length

min
U∈Γ

[
L(U) + log

1
U(xn

1 )

]
;

namely, choose U ∈ Γ achieving this minimum, encode
xn

1 by the Shannon code with respect to U , and add a
preample of length L(U) to identify U (here, the 1 bit
error from dropping the upper integer part symbol is
disregarded.) Let us call this the code generated by the
list Γ.

Theorem 14 If to any ε > 0 there is some finite-order
Markov code in the list Γ with D∞(P‖U) < ε, then
the redundancy of the code generated by Γ satisfies
R(xn

1 )/n → 0, almost surely.

Proof. Set Q =
∑

U∈Γ 2−2L(U)U ; then Q satisfies the
hypotheses of Theorem ??, hence

1
n

log
P (xn

1 )
U(xn

1 )
→ 0, a.s. (14)

Now we want to show that R(xn
1 )/n → 0, a.s., where R

is the redundancy of the code defined by the list Γ. To-
wards this end, note that the condition

∑
U∈Γ 2−L(U) ≤ 1

implies that

Q(xn
1 ) ≤ max

U∈Γ
2−L(U)U(xn

1 ),

from which it follows that

log
1

Q(xn
1 )
≥ min

U∈Γ

[
L(U) + log

1
U(xn

1 )

]
,

14



which implies that R(xn
1 ) ≤ log(P (xn

1 )/Q(xn
1 )). This,

combined with (??) implies our desired result that
R(xn

1 )/n → 0, a.s. This completes the proof of the the-
orem.

The following principle, called the minimum descrip-
tion length (MDL) principle has been suggested by Ris-
sanen.

Principle. The statistical information in data
is best extracted when a possibly short descrip-
tion of the data is found. The distribution in-
ferred from the data is the one that leads to
the shortest description, taking into account
that the inferred distribution itself must be de-
scribed.

Let Γ be a given finite or countably infinite list of
stationary ergodic processes on the space A∞. Let to
each U ∈ Γ a codeword of length L(U) be assigned as
a description of U ; these lengths must satisfy the Kraft
inequality. Then, given a sample xn

1 , the MDL estimate
P̂n of the unknown distribution P is P̂n = U , where U
achieves minU∈Γ [L(U)− log U(xn

1 )].

Theorem 15 If P ∈ Γ then P̂n = P , eventually almost
surely.

Proof. Let Q =
∑

U∈Γ−{P} 2−L(U)U, and note that

Q(xn
1 ) ≥ max

U∈Γ−{P}
2−L(U)U(xn

1 ),

that is,

log
1

Q(xn
1 )
≤ min

U∈Γ−{P}

[
L(U) + log

1
U(xn

1 )

]
. (15)

Now, Q is singular with respect to P , since each sta-
tionary, ergodic U 6= P is singular with respect to the
stationary, ergodic process P , hence by Theorem ?? the
redundancy of the Shannon code with respect to Q goes
to +∞, that is,

log
1

Q(xn
1 )
− log

1
P (xn

1 )
→∞, a.s.

Using the bound (??) we therefore have

min
U∈Γ−{P}

[
L(U) + log

1
U(xn

1 )

]
− log

1
P (xn

1 )
→∞, a.s.,

hence, for sufficiently large n

min
U∈Γ−{P}

[
L(U) + log

1
U(xn

1 )

]
> log

1
P (xn

1 )
+ L(P ).

The preceeding inequality implies that P̂n = P and com-
pletes the proof of the theorem.

Now let us be given a finite or countable list of para-
metric families of (stationary, ergodic) processes {Pθ: θ ∈
Θγ , where γ ∈ Γ, and to each family on the list, i. e.,
to each γ ∈ Γ suppose there is assigned a codeword of
length L(γ) describing this family, such that the Kraft
inequality holds. Further, let on each parameter set Θγ

be given a “prior” νγ , i. e., νγ is a probability measure
on Θγ . We also assume that the mixture distributions

Qγ =
∫
Θγ

Pθνγ(dθ), γ ∈ Γ

are mutually singular. (In particular, these mean that
the families {Pθ: θ ∈ Θγ are essentially disjoint.)

Theorem 16 There exists subsets Θ̃γ ⊂ Θγ of full mea-
sure 1, such that if P ∈ Θ̃γ∗ , for some γ∗ ∈ Γ, then

min
γ∈Γ

[
L(γ) + log

1
Qγ(xn

1 )

]

is attained for γ = γ∗, eventually almost surely.

Proof. In other words, the family containing the true
distribution will be found with probability 1, unless P is
in a subset of this family having νγ-measure 0.

Exactly as in the proof of the preceeding theorem (re-
placing U by Qγ and L(U) by L(γ)) we obtain that for
sufficiently large n,

min
γ∈Γ

[
L(γ) + log

1
Qγ(xn

1 )

]

will be attained for γ = γ∗, with Qγ∗-probability 1. Let
F be the set of all x ∈ A∞ for which this “almost sure”
statement is true, so that Qγ∗(F c) = 0. Since by defini-
tion

Qγ∗(F c) =
∫
Θγ∗

Pθ(F c)νγ∗(dθ),

it follows that νγ∗({θ:Pθ(F c) > 0}) = 0 and we can take

Θ̃γ∗ = Θγ∗ − {θ:Pθ(F c) > 0}.

This completes the proof of the theorem.

Remark 8 The hypotheses of Theorem ?? are fulfilled,
in particular, when the parameter sets Θγ are subsets of
Euclidean spaces of different dimensions and νγ is abso-
lutely continuous with respect to the Lebesgue measure
for the corresponding dimension.
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6 Redundancy bounds.

Some techniques for obtaining bounds on redundancy
for i.i.d processes will be discussed in this section. Con-
sider the i.i.d. process with alphabet A = {1, . . . , k}
with distribution P . We then have

P (xn
1 ) =

k∏
i=1

P (i)ni ,

where ni is the number of times i occurs in xn
1 . This

probability is maximum if P (i) = ni/n, hence the maxi-
mum likelihood estimate is given by

PML(xn
1 ) =

k∏
i=1

(
ni

n

)ni

.

When encoding with respect to an auxiliary distribution
Q, the redundancy satisfies (disregarding at most 1 bit)
the following simple bound

R(xn
1 ) = log

P (xn
1 )

Q(xn
1 )
≤ log

PML(xn
1 )

Q(xn
1 )

. (16)

Let us take for Q the mixture distribution Q(xn
1 ) =∫

U(xn
1 )ν(p) dp, with a Dirichlet prior having density

ν(p) =
Γ
(∑k

i=1 αi + k
)

∏k
i=1 Γ (αi + 1)

k∏
i=1

pαi
i , p = (p1, . . . , pk).

For α1 = . . . = αk = −1/2 we will get a sharp upper
bound on the redundancy (??), a bound not depending
on the true distribution P nor xn

1 . Before we state and
derive this bound we obtain a representation for Q that
will be useful in constructing the Shannon code for Q..

For a Dirichlet prior with arbitrary αi > −1,∀i, we
have

Q(xn
1 ) =

∫
U(xn

1 )ν(p) dp =

=
∫ k∏

i=1

pni+αi
i dp ·

Γ
(∑k

i=1 αi + k
)

∏k
i=1 Γ (αi + 1)

=
Γ
(∑k

i=1 αi + k
)

Γ (n +
∑

αi + k)

k∏
i+1

Γ (ni + αi + 1)
Γ (αi + 1)

.

Using the functional equation Γ(x + 1) = xΓ(x) we see
that Q(xn

1 ) is given by the ratio∏k
i=1 [(ni + αi)(ni − 1 + αi) . . . (1 + αi]

(n− 1 +
∑

αi + k)(n− 2 +
∑

αi + k) . . . (
∑

αi + k)

or, equivalently,

Q(xn
1 ) =

n∏
j=1

n(xj |xj−1
1 ) + 1 + αxj

j − 1 +
∑

αi + k
. (17)

where n(xj |xj−1
1 ) is the number of occurences of the sym-

bol xj in the “past” xj−1
1 .

Theorem 17 If Q is defined by (??) with αi = −1/2,∀i,
the redundancy always satisfies

R(xn
1 ) ≤ log

Γ(n + k
2 )Γ(1

2)
Γ(n + 1

2)Γ(k
2 )
≤

≤ k − 1
2

log n− log
Γ(k/2)
Γ(1/2)

+ εn

where εn → 0 as n →∞.

Proof. The second inequality is a simple consequence of
Stirling’s formula for the Γ-function, so it is enough to
prove the first inequality.

For αi ≡ −1/2 we have

Q(xn
1 ) =

Γ(k
2 )

Γ(n + k
2 )

k∏
i=1

Γ(ni + 1
2)

Γ(1
2)

=

=

∏k
i=1

[
(ni − 1

2)(ni − 3
2) · · · 1

2

]
(n− 1 + k

2 )(n− 2 + k
2 ) · · · k

2

(18)

Note that, in particular, if xn
1 consists of identical sym-

bols, say, xi ≡ a, then

Q(xn
1 ) =

Γ(k
2 )Γ(n + 1

2)
Γ(n + k

2 )Γ(1
2)

;

hence to prove Theorem ?? it is enough to show that
R(xn

1 ) ≤ log(1/Q(xn
1 )). The simple upper bound (??)

then tells us that it is enough to show that

PML(xn
1 ) ≤

k∏
i=1

(
ni

n

)ni

≤ Q(xn
1 )

Q(x̃n
1 )

,

where x̃i ≡ a. The identity (??) can then be used to see
that it is enough to prove that

k∏
i=1

(
ni

n

)ni

≤
∏k

i=1

[
(ni − 1

2)(ni − 3
2) · · · 1

2

]
(n− 1

2)(n− 3
2) · · · 1

2

,

which can be converted to

k∏
i=1

(
ni

n

)ni

≤
∏k

i=1 [2ni(2ni − 1) · · · (ni + 1)]
2n(2n− 1) · · · (n + 1)

(19)
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since

(n− 1
2
)(n− 3

2
) · · · 1

2
=

1
n!

[
n(n− 1

2
) · · · 1

2

]
=

(2n)!
22nn!

=
2n(2n− 1) · · · (n + 1)

22n
.

At last we have arrived at the assertion we shall prove,
namely, (??). This will be proved if we show that it is
possible to assign to each ` = 1, . . . , n in a one-to-one
mannner, a pair (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ n, such that

ni

n
≤ ni + j

n + `
(20)

Now, for any given ` and i, (??) holds iff j ≥ ni`/n.
Hence the number of those 1 ≤ j ≤ ni that satisfy (??)
is greater than ni−ni`/n, and the total number of pairs
(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ n, satisfying (??) is greater
than

k∑
i=1

(
ni −

ni

n
`

)
= n− `.

It follows that if we assign to ` = n any (i, j) satisfying
(??) (i. e., i may be chosen arbitrarily and j = ni), then
recursively assign to each ` = n − 1, n − 2, etc., a pair
(i, j) satisfying (??) that were not assigned previously,
we never get stuck; at each step there will be at least
one “free” pair (i, j) (because the total number of pairs
(i, j) satisfying (??) is greater than n− `, the number of
pairs already assigned.) This completes the proof of the
theorem.

Our next goal is to show that the result of the preceed-
ing theorem is “best possible,” even if we don’t insist on
a uniformly small redundancy (i. e., on a bound valid for
every xn

1 ), but want only the average redundancy E(R)
to be small.

Consider any prefix code. Without loss of general-
ity (for the purpose of bounding the redundancy) we
may assume that it satisfies the Kraft inequality with
the equality sign, and therefore that is is a Shannon code
with respect to some Q (not necessarily of mixture type.)
Then

E(R(Xn
1 )) = E log

P (Xn
1 )

Q(Xn
1 )

= D(Pn‖Q).

Since P is unknown, we want to select Q in such a way
that no matter what P is the average redundancy will
be small, that is, we want Q to minimize

sup
P

EP (RP (Xn
1 )) = sup

P
D(Pn‖Q).

Suppose we choose P at random with prior distribution
ν; then the observation of xn

1 provides information about
the unknown P , measured by the mutual information

I(ν) = H(Qν)−
∫

H(Pn)ν(dP )

= H(Qν)− n

∫
H(P )ν(dP ),

where Qν is the mixture distribution, Qν =∫
P (xn

1 )ν(dP ). Even though this mutual information ap-
pears to be unrelated to the previous average redun-
dancy, the remarkable fact is that

inf
Q

sup
P

D(Pn‖Q) = sup
ν

I(ν).

Indeed, the following lemma holds in general.

Lemma 5 Consider any noisy channel with input al-
phabet U = {1, . . . , `} and output alphabet V =
{1, . . . ,m}, given by the probability distributions Pi on
V governing the output if the input is i, i = 1, . . . , `.
For any input distribution π, let Qπ denote the output
distribution and let

I(π) =
∑
i,j

π(i)Pi(j) log
Pi(j)
Qπ(j)

=
∑

i

π(i)D(Pi‖Qπ)

be the mutual information between input and output.
Then

max
π

I(π) = min
Q

max
1≤i≤`

D(Pi‖Q).

Proof. The left-side is known as the channel capacity.
The lemma states that it equals the “radius” of the small-
est “divergence ball” that contains all the Pi’s. To es-
tablish this relation first note that for any distribution
Q on V ,

I(π) =
∑̀
i=1

m∑
j=1

π(i)Pi(j)
[
log

Pi(j)
Q(j)

+ log
Q(j)
Qπ(j)

]

=
∑̀
i=1

π(i)D(Pi‖Q)−D(Qπ‖Q).

This identity shows that for any fixed π

min
Q

∑̀
i=1

π(i)D(Pi‖Q) = I(π),

and hence

max
π

I(π) = max
π

min
Q

∑̀
i=1

π(i)D(Pi‖Q).
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The minimax theorem asserts that if f(x, y) is a conti-
nous function of two variables ranging over convex, com-
pact sets, which is concave in x and convex in y then

max
x

min
y

f(x, y) = min
y

max
x

f(x, y).

In our case the theorem can be applied and we get

max
π

I(π) = min
Q

max
π

∑̀
i=1

π(i)D(Pi‖Q).

Since the inner maximum is clearly equal to the maxi-
mum of D(Pi‖Q) over i, the proof of the lemma is com-
pleted.

The lemma is valid also in the case when the input
alphabet X is infinite, providing the maximum with re-
spect ot π is replaced by “supremum.” We omit the
proof of this more general case, even though this is what
we need for lower bounding average redundancy. Indeed,
using this result, we can state

Theorem 18 For any prefix code, the supremum for P
of the expected redundancy is lower bounded by I(ν) =
H(Qν)−n

∫
H(P )ν(dP ), where ν is an arbitrarily chosen

prior distribution.

Of course, the best bound is the supremum of I(ν),
which is the channel capacity of the set of all possible
distributions P on A considered as the input alphabet,
An the output alphabet, and the distribution on An cor-
responding to the input P is Pn.

7 Rissanen’s theorem.

Now we would like to establish the most general
known lower bound on the redundancy of a prefix codes,
a result due to Rissanen.

Theorem 19 Let {Pθ}θ∈Θ be any family of random pro-
cesses, not necessarily i.i.d., possibly not even stationary,
where Θ ∈ Rk. Suppose that for each n ≥ n0 there exists
an estimator Θ̂n(xn

1 ) with

Eθ‖θ̂ − θ‖2 ≤ c(θ)
n

,∀θ ∈ Θ. (21)

Then, for every ε > 0 there is a constant K > 0 such
that for n ≥ n0 and for every probability density or
mass function g we have,

Eθ log
Pθ(xn

1 )
g(xn

1 )
≥ k

2
log n−K, (22)

except possibly for a set of parameters θ of Lebesgue
measure less than ε.

Proof. Suppose the set Θ1 of those θ’s for which (??)
doesn’t hold has Lebesgue measure at least ε. We will
show that this supposition leads to a contradiction if K
is suitably chosen. By Theorem ?? of the preceeding
section, it suffices to show that for some distribution ν
on Θ1, we have I(ν) > (k log n)/2−K. where I(ν) is the
mutual information of the channel having input alphabet
Θ1 and transition probabilities Pθ. (In Theorem ??, Pθ

was i.i.d., but the proof is clearly valid in general.)
Now let c be so large that the subset Θ2 of Θ1 on which

(??) holds with c(θ) = c has Lebesgue measure at least
ε/2. Let ν be the uniform distribution on Θ2, let Z be a
distribution chosen at random according to ν, and let Ẑ
be an estimator of Z such that E‖Z − Ẑ‖2 ≤ c/n. Then
I(ν) ≥ I(Z ∧ Ẑ), by the data processing theorem.

Note that

I(Z ∧ Ẑ) = H(Z)−H(Z|Ẑ)
= H(Z)−H(Z − Ẑ|Ẑ)

≥ log
e

2
−H(Z − Ẑ).

But the entropy of a k-dimensional random variable
Y subject to E(‖Y 2‖) ≤ α is maximized if its dis-
tribution is Gaussian with independent components of
variance σ2 = α/k, and this maximum entropy equals
(k/2) log(2πeσ2). Applying this fact with Y = Z−Ẑ, α =
c/n, σ2 = c/(kn), it follows that

H(Z − Ẑ) ≤ k

2
log(2πe

c

nk
) = −k

2
log n + B,

where B depends only on c and k. From this it follows
that

I(ν) ≥ I(Z ∧ Ẑ) ≥ k

2
log n−B + log

ε

2
,

which proves Rissanen’s theorem.

Corollary 4 If for some subfamily {Pθ}θ∈Θ0 of a fam-
ily of sources satisfying (??) there exist universal codes
whose average redundancy grows slower than (k/2) log n,
i. e.,

lim
n→∞

(
EθRθ(Xn

1 )− k

2
log n

)
= −∞, θ ∈ Θ0,

then, necessarily, Θ0 has Lebesgue measure 0.

Proof. This is immediate, because, without restricting
generality, any code can be supposed to be a Shannon
code with respect to some distribution g.

The hypotheses of Rissanen’s theorem are satisfied, in
particular, if {Pθ} is the family of all i.i.d. distributions
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on a finite alphabet A = {1, . . . , k}. Then θ may be iden-
tified with the vector of the probabilities (P1, . . . , Pk),
and since these form a (k − 1)-dimensional subspace we
get that (??) holds for k replaced by k− 1, thus proving
that that universal codes constructed in the preceeding
section have asymptotically optimal redundancy.

Our results extend beyond the i.i.d. case; in particular
they extend to the Markov case. A Markov chain with
transition matrix P (j|i), 1 ≤ i, j ≤ k, is given by the
joint distributions

Prob (Xt = it, 0 ≤ t ≤ n) = P (i0)
k∏

t=1

P (it|it−1).

We will suppose that the initial state i0 is fixed, so that
we can rewrite these probabilities in the form,

Prob (Xt = it, 0 ≤ t ≤ n) =
k∏

i=1

k∏
j=1

P (j|i)n(i,j), (23)

where n(i, j) is the number of times the pair i, j occurs
in adjacent places in xn

0 . Further, let n(i) =
∑

j n(i, j)
denote the number of occurences of i in the block xn−1

0

and note that the probability in (??) is maximized for
P̂ (j|i) = n(i, j)/n(i), that is

PML(xn
0 ) =

k∏
i=1

k∏
j=1

P̂ (j|i)n(i,j).

By analogy with the i.i.d. case we introduce the mix-
ture distribution

Q(xn
1 ) =

k∏
i=1

∫ k∏
j=1

P (j|i)n(i,j)ν(P (·|i))dP,

where ν is the Dirichlet prior with αi ≡ −1/2. Thus
Q(xn

1 ) is given by the product

k∏
i=1

 k∏
j=1

Γ(n(i, j) + 1/2)
Γ(1/2)

 Γ(k/2)
Γ(n(i) + k/2)

 ,

which is, in turn, equal to the product
k∏

i=1

∏k
j=1(n(i, j)− 1/2)(n(i, j)− 3/2) . . . (1/2)

(n(i)− 1 + k/2)(n(i)− 2− k/2) . . . (k/2)
.

The redundancy of the code based on the above auxil-
iary distribution can be bounded, using the correspond-
ing i.i.d. result. It follows that

R(xn
1 ) =

k∑
i=1

[
k − 1

2
log n(i) + constant

]

=
k(k − 1)

2
log n + constant.

Again, this result is asymptotically best possible (up
to the constant term.) Indeed, on account of Risan-
nen’s theorem, even the average redundancy cannot be
made significantly smaller than (k(k − 1)/2) log n on a
set of positive Lebesgue measure in the parameter space
needed to describe Markov chain probabilities.

Rissanen has provided an interesting application of his
theorem to a special class of processes, which we will
call the chains with finite context. A process has finite
context if there is a positive integer m and a function
f :Am 7→ S where S is some finite set) such that

Prob (Xt = it, 0 ≤ t ≤ n) =

P (i0)
k∏

t=1

P (it|f(ij−m, . . . , ij−1)),

where it is assumed here that i−m+1, . . . , i0 is fixed. The
elements of S are called “contexts” or “states” and P (i|`)
is interpreted as the “probability of the symbol i in the
context `.” Of course, any source that is Markov of order
m has finite memory, and conversely; the context idea
emphasizes that the probability of occurence of the next
symbol may be depend on something much simpler than
the entire past of length m, namely |S| may be much
smaller than |Am| = km, and it would be nice to take
advantage of this fact in coding.

To obtain optimal bounds for processes with finite con-
text we need make only a few changes in our preceeding
discussion. Let us fix S and f and let n(i, `), i < n, ` ∈ S
denote the number of pairs (i, `) that occur among the
pairs (it, st−1), where st−1 = f(it−m, . . . , it−1), for t < n.
We then have

P (xn
1 ) =

∏
`∈S

k∏
i=1

P (i|`)n(i,`)

and the maximum likelihood probabilities

PML(xn
1 ) =

∏
`∈S

k∏
i=1

P̂ (i|`)n(i,`),

P̂ (i|`) = n(i, `)/n(`), n(`) =
∑

i

n(i, `).

Again, as in the i.i.d. case, an asymptotically optimal
universal code is the one based on the auxiliary mixture
distribution (with the Dirichlet prior), as follows,

Q(xn
1 ) =

∏
`∈S

∫ k∏
i=1

P (i|`)n(i,`)ν(P (·|`))dP
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which is equal to∏
`∈S

∏k
i=1(n(i, `)− 1/2)(n(i, `)− 3/2) . . . (1/2)

(n(`)− 1 + k/2)(n(`)− 2 + k/2) . . . (k/2)
,

and this code has redundancy

R(xn
1 ) ≤

∑
`∈S

[
k − 1

2
log n(`) + constant

]

≤ |S|k − 1
2

log n + constant.

Furthermore, Rissanen’s theorem implies that even the
average redundancy cannot be substantially smaller the
above bound, for any universal codes, except possibly for
a vanishingly small set of parameter values, i. e., matrices
P (i`).

Remark 9 Before leaving this topic of redundancy
bounds let us mention an aspect of our discussion which
has some practical value in designing codes. In the pre-
ceeding section we derived the following formula (see
(??)), valid for the i.i.d. case

Q(xn
1 ) =

n∏
j=1

n(xj |xj−1
1 ) + 1 + αxj

j − 1 +
∑

αi + k

where n(xj |xj−1
1 ) is the number of occurences of the sym-

bol xj in the “past” xj−1
1 . This formula suggests the

conditional probabilities

Q(xj |xj−1
1 ) =

n(xj |xj−1
1 ) + 1 + αxj

j − 1 +
∑

αi + k

The latter formula can be used as the specification of
the conditional probabilities used in arithmetic coding,
a (practical) sequential procedure that yields the same
asymptotics as the Shannon coding procedure.

Likewise, the Markov discussion in this section leads
to the conditional formula

Q(ik|i1, . . . , ik−1) =
nk−1(i, j) + 1/2
nk−1(i) + k/2

, if ik−1 = i, ik = j,

where nk−1(i, j) is the number of consecutive (i, j)’s in
the sequence ik−1

0 and nk−1(i) =
∑

j nk−1(i, j). These
conditional probabilities are easily evaluated, because
only simple updating is needed to go from k − 1 to k;
arithmetic coding can then be performed.

The corresponding finite context formula is

Q(ik|i1, . . . , ik−1) =
nk−1(i, `) + 1/2
nk−1(`) + k/2

, if sk−1 = `, ik = j.

These can then be used to do arithmetic coding in the
finite context case; such coding will also yield the same
asymptotics as the Shannon code. Rissanen’s theorem
implies that even the average redundancy can not be
substantially smaller than the bound above, for any uni-
versal code, expect possibly for a vanishingly small set
of parameters (i. e., matrices P (i|`).)

8 Additions.

8.1 The scaling formula.

The scaling formula

P ∗(a) = ciQ(a), a ∈ Bi, where ci =
αi

QB(i)
. (24)

see (??) can be proved as follows. First, lumping does
not increase divergence, that is,

D(P‖Q) ≥ D(PB‖QB).

The condition that P ∈ L is equivalent to the condition
that P (Bi) = αi, ∀i. If P ∗(a) = αiQ(a)/Q(Bi), a ∈ Bi

then∑
a

P ∗(a) log
P ∗(a)
Q(a)

=
∑

i

∑
a∈Bi

αiQ(a)
Q(Bi)

log
αi

Q(Bi)

= D(α‖QB), α = (α1, . . . , αk).

Thus, if P ∈ L then

D(P‖Q) ≥ D(PB‖QB) = D(α‖QB),

which establishes (??).

8.2 Pearson’s χ2.

The chi-square function was defined on page ??. In
the case when P = P̂ , the empirical distribution the
formula can be rewritten as follows.

χ2(P̂ , Q) =
∑
a

(P̂ (a)−Q(a))2

Q(a)

=
1
n

∑ (nP̂ (a)− nQ(a))2

nQ(a)

=
1
n

χ2
k−1,

where χ2
k−1 =

∑ (nP̂ (a)−nQ(a))2

nQ(a) is Pearson’s classical chi-

square function. Here nP̂ (a) gives the observed count,
while nQ(a) gives the expected count of the number of
appearances of a.
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8.3 Maximum entropy and Likelihood.

There is an important case when divergence mini-
mization corresponds to maximum likelihood, namely,
the case when the linear family contains the empirical
distribution. Suppose we are given the corresponding
linear and exponential families,

L = {P :
∑
a

P (a)fi(a) = αi, 1 ≤ i ≤ k}

E = {P :P (a) = c(θ)Q(a) exp(
k∑
1

θifi(a))}.

Theorem 20 If Q(a) > 0,∀a and if the empirical dis-
tribution P̂ belongs to L then the maximum likelihood
estimate in E is the I-projection P ∗ of any member of
E onto L. Furthermore, the minimum value of D(P̂‖P )
for P ∈ E is attained at P ∗.

Proof. Let P ∗ = D(L‖Q), so that L ∩ E = {P ∗}. If
P ∈ E we can write

P = cQ(a) exp(
∑

θifi(a)),

P ∗ = c∗Q(a) exp(
∑

θ∗i fi(a)).

Since
∑

P ∗(a)fi(a) = αi we have

0 ≤ D(P ∗‖P ) = log c∗ +
∑

θ∗i αi − (log c +
∑

θiαi),

so that

log c∗ +
∑

θ∗i αi = max
P∈E

(log c +
∑

θiαi).

If P̂ ∈ L, however, then D(P̂‖P ) − D(P̂‖P ∗) =
D(P ∗‖P ), since

∑
P̂ (a)fi(a) = αi. This proves that the

minimum value of D(P̂‖P ) for P ∈ E is attained at
P ∗. Furthermore, P (xn

1 ) = n
∑

P̂ (a) log P (a), so that if
P ∈ E and P̂ ∈ L then

log
P ∗(xn

1 )
P (xn

1 )
= n

∑
P̂ (a) log

P ∗(a)
P (a)

= D(P ∗‖P ) ≥ 0,

so that P ∗ is indeed the MLE in E .
The argument can be applied to any member of E in

place of the given Q, since they all describe the same
exponential family.

8.4 Redundancy for the LZ algorithm.

An upper bound on the reduncancy of the form
O(log log n/ log n) for the Lempel-Ziv (LZ) algorithm on
the class of i.i.d. processes will now be established.

Extensions of these results to the Markov and hidden
Markov cases can also be obtained.

Let c = c(xn
1 ) be the number of commas in the LZ

parsing of xn
1 . The final block, which may be empty, is

coded by telling the first prior word that this block pre-
fixes. Let ULZ(xn

1 ) be the length of the resulting code.
Each word, except the final word, can be encoded with
at most dlog ce bits to give the location of the prior oc-
curence of all but its final symbol and dlog |A|e to encode
this final symbol. Thus we have the upper bound

ULZ(xn
1 ) ≤ (c + 1)dlog ce+ cdlog |A|e. (25)

The next step in upper bounding the redundancy is to
obtain a lower bound on − log P (xn

1 ), stated here as the
following lemma.

Lemma 6 There is a positive number δ such that if P
is an i.i.d. process then

− log P (xn
1 ) ≥ c log c− cδ +

log(n/c)
n/c

.

Proof. Let W = W (xn
1 ) be the first c words in the LZ

parsing of xn
1 , let WL = WL(Xn

1 ) be the subset of W
consisting of the words of length L, and let c(L) be the
cardinality of WL. We then have

P (xn
1 ) ≤

Lmax∏
L=1

∏
w∈WL

P (w),

so that

− log P (xn
1 ) ≥ −

Lmax∑
L=1

∑
w∈WL

log P (w)

= −
Lmax∑
L=1

c(L)
∑

w∈WL

1
c(L)

log P (w)

≥ −
Lmax∑
L=1

c(L) log
∑

w∈WL

P (w)
c(L)

≥
Lmax∑
L=1

c(L) log c(L)

where the first inequality comes from Jensen’s in-
equality, and the final inequality uses the fact that∑

w∈WL
P (w) ≤ 1, which holds because the words in WL

are distinct and have fixed length L.
To obtain a suitable bound on

∑
c(L) log c(L) set

L̄ =
1
c

Lmax∑
L=1

c(L) log c(L),
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so that∑
c(L) log c(L) = −c

∑ c(L)
c log 1

c(L)

= −c
∑ c(L)

c log 2−L/L̄

c(L) − c
(a)

≥ −c + c log c− c log
∑Lmax

1 2−L/L̄

≥ −c + c log c− c log 2−1/L̄

1−2−1/L̄

(b)

≥ −c + c log c− c log(21/L̄ − 1)
(c)

≥ −c + c log c− c log( ln 2
L̄

)
≥ c log c− cδ − c log n

c .

where Jensen’s inequality was used in (a) and the finite
sum was replaced by the infinite sum (of a geometric
series) to go to (b). The Taylor expansion of 2x was used
to obtain (c), while the final line used δ = 1 − log(ln 2)
and the fact that L̄ ≤ n/c. This completes the proof of
Lemma ??.

Taking the difference between the upper bound on the
code length, (??), and the lower bound of Lemma ??,
then dividing by n, produces the redudancy bound

1
n

RLZ(xn
1 ) ≤ K

c

n
+

log n/c

n/c
, (26)

where K is a constant.
To complete the argument a simple bound for c/n will

be needed, a bound that follows from the foct that the
largest value of c is obtained when all short blocks occur.
It is enough to consider the case when all blocks of length
up to t occur, so that

c =
t∑
1

|A|i ∼ |A|t, n =
t∑
1

i|A|i ∼ t|A|t,

which gives the (asymptotic) bound c/n = O(1/ log n).
Since log x/x is decreasing in x for x > e, the desired
result,

1
n

RLZ(xn
1 ) = O

(
log log n

log n

)
,

follows easily from the bound (??).

8.5 Minimization for general measures.

The minimization result claimed in the paragraph fol-
lowing statement (10) on page 10 follows from a general
result about nonnegative measures, a result that is a sim-
ple consequence of the log-sum inequality. Suppose P is
an arbitrary nonnegative measure, suppose Q is a prob-
ability distribution, and set Q∗(a) = P (a)/

∑
P (b). The

log-sum inequality then gives

D(P‖Q) ≥
(∑

P (a)
)

log
(∑

P (a)
)

= D(P‖Q∗).

8.6 Cutting off the memory.

Let P be a stationary finite-alphabet process. The
k-step Markoviztion of P is the k-step Markov process
P (k) defined by the transition probabilities

P (xk+1|xk
1) =

P (xk+1
1 )

P (xk
1)

.

The following general result shows that the conditions
stated in Theorems 13 and 14 often hold. For example,
the set of all Markov types of all orders is a countable
set for which the conditions of Theorem 14 hold for every
ergodic process P .

Theorem 21 D∞(P‖P (k)) → 0 as k →∞.

Proof. We have

log
P (xk

1)
P (k)(xn

1 )
=

n∑
i=k+1

log
P (xi+1|xi

1)
P (xi+1|xi

i−k+1)

so that taking expectations yields

EP

(
log

P (xk
1)

P (k)(xn
1 )

)
=

n∑
i=k+1

∑
xi+1
1

P (xi+1
1 ) log

P (xi+1|xi
1)

P (xi+1|xi
i−k+1)

. (27)

To see what this is we use the formula

I(X ∧ Y |Z) =
∑

P (x, y, z) log
P (x|y, z)
P (x|z)

,

with X = Xi+1, Y = Xi
1, Z = Xi

i−k+1; the sum (??)
then takes the form

n∑
i=k+1

I(Xi+1 ∧Xi
1|Xi

i−k+1) =

n∑
i=k+1

I(X1 ∧X0
−i+1|X0

−k+1)

where stationarity was used to obtain the final form.
Now we pass to the limit in n, using the martingale the-
orem to obtain

D∞(P‖P (k)) = I(X1 ∧X0
−∞|X0

−k+1),

whichs goes to 0 as k →∞, establishing the theorem.
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8.7 Arithmetic coding.

An interesting idea due originally to Elias and later
adapted in a useful form by Rissanen leads to sequen-
tial coding procedure known as arithmetic coding. Fix
an integer n. An arithmetic code first assigns to each
xn

1 a nonempty subinterval J(xn
1 ) = [`(xn

1 ), r(xn
1 )) of the

unit interval [0, 1) such that the set {J(xn
1 )} is a parti-

tion of the interval into disjoint subintervals. To obtain
sequential codes it is required that

J(xn
1 ) = ∪sJ(xn

1s), (28)

and to avoid trivialities it is required that J(xn
1 ) shrinks

to a single point as n → ∞. The code is then defined
by setting C(xn

1 ) = zm
1 if the endpoints of J(xn

1 ) have
binary expansions .z1z2 . . . zm that agree in their first m
places but no further, that is,

`(xn
1 ) = .z1z2 . . . zm0 . . . , r(xn

1 ) = .z1z2 . . . zm1 . . . .

Since the intervals are disjoint this is a prefix code. Fur-
thermore, if Qn(xn

1 ) = r(xn
1 )− `(xn

1 ) then Qn is a proba-
bility distribution; the condition (??) then implies that
there is a process Q whose n-th order probabilties are
given by Qn. Note also that 2−L(xn

1 )−1 ≥ Q(xn
1 ) so that

L(xn
1 ) ≤ − log Q(xn

1 )+1 and hence the Qn-expected code
length is no more than H(Qn) + 1. The code operates
sequentially in that the code word assigned to xn+1

1 is an
extension of the word assigned to xn

1 .
In general, a process Q can be specified by giving its

sequence of conditional probabilities Q(xn|xn
1 ). These

probabilities can then be used to specify subintervals
of the unit interval in a sequential manner. Thus, we
first partition [0, 1) into subintervals labeled J(x1), x1 ∈
A, then for each x1 partition J(x1) into subintervals
J(x2

1), x2 ∈ A. Proceeding in this manner the process Q
defines a nested sequence of partitions {J(xn

1 ):xn
1 ∈ An}

that satisfy the compatibility condition (??), hence de-
fine an arithmetic code. The mixture processes intro-
duced in Sections 6 and 7, thus lead to useful sequential
codes, as noted in Remark 9 of the notes.

9 Further examples.

Example 2 A lot contains n = 100 defective items.
Each item is tested but the test may fail with probability
p = 0.1. Use the techniques of this course to estimate
the probability that 20 or more defective items remain
undetected.

Solution. Let Xi denote the outcome of testing the i-th
defective item, Xi = 1, if detected, 0, otherwise. Let

P̂n denote the empirical distribution, and Π the set of
all binary distributions Q with Q(0) ≥ 0.2. We want to
estimate tha probability that P̂n ∈ Π. Sanov’s theorem
gives

Prob(P̂n ∈ Π) ≈ exp(−nD(Π‖P )), P = (0.1, 0.9).

Now

D(Π‖P ) = min
Q∈Π

D(Q‖P )

= 0.2 log
0.2
0.1

+ 0.8 log
0.8
0.9

≈ 0.066,

and exp(−nD(Π‖P )) ≈ 0.01. This number is suspect
because the large deviations approximation is reliable
for “very small” probabilities (however, since Π is con-
vex, this number certainly gives an upper bound.) In
our case, approximating the binomial distribution by the
normal will be preferable, and its result is smaller by a
factor of 10.

Example 3 The null-hypothesis P1 is to be tested on
the basis of an iid sample xn

1 , and the probability of first
kind error is required to be no more than exp(−n(γ −
o(1))). Prove that the test with critical region equal to
{xn

1 : P̂xn
1
6∈ Π}, with Π = Πγ = {Q:D(Q‖P1) ≤ γ}, is

asymptotically optimal against any alternative P2 with
D(P2‖P1) > γ, in the sense that for no test meeting the
condition on the first kind error can the probability of
second kind error go to 0 with a larger exponent.

Solution. The meaning of this problem is the follow-
ing. Two distributions P1 and P2 are given such that
D(P2‖P1) > γ. Based on a sample path xn

1 drawn from
Pn

1 or Pn
2 , a decision is to be made as to which process it

comes from. To make this decision, the set An of possi-
ble sample paths is partitioned into two disjoint sets Hn

1

and Hn
2 , and the decision rule is to choose Pi if xn

1 ∈ Hn
i .

It is enough to specify the region Hn
2 , which is called the

critical region of the test, for we can take Hn
1 to be its

complement. The first part of the problem is to show
that if Hn

2 = {xn
1 : P̂xn

1
6∈ Π} then the probability of a

first kind error, namely P1(Hn
2 ), satifies

P1(Hn
2 ) ≤ exp(−n(γ − o(1))) (29)

For this partition there will be a largest number δ > 0
such that the probability of a second kind error, P2(Hn

1 ),
satisfies

P2(Hn
1 ) ≤ exp(−n(δ − o(1))) (30)

The second goal is to show that if {Hn
1 ,Hn

2 } is any se-
quence of partitions for which (??) holds then P2(Hn

1 )
cannot go to zero at a faster rate than (??).
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Let us first show that for Hn
2 = {xn

1 : P̂xn
1
6∈ Π}, the

two inequalities (??) and (??) both hold. Let P ∗ be the
I-projection of P2 onto Π and let δ = D(P ∗‖P2), which
is necessarily positive. If P̂xn

1
6∈ Π then D(P̂xn

1
‖P1) > γ,

so that (??) holds. Sanov’s theorem asserts that (??)
holds.

To establish the second goal we first note that
D(Πγ‖P1) is continuous in γ, hence given ε > 0 we can
choose n so large that there is an n-type Q such that

D(Q‖P1) < γ − ε, and D(Q‖P2) < δ + ε.

If the critical region Cn = Hn
2 of some test contains

at least half of T n
Q then P1(Cn) is lower bounded by

P1(T n
Q )/2 which is turn lower bounded by

1
2

(
n + |X| − 1
|X| − 1

)−1

exp[−nD(Q‖P1)]

≥ exp(−n(γ − ε/2)),

for large enough n. Therefore if we require that (??)
holds then, if n is large enough, at least half of T n

Q is not
in Cn and hence the second kind error P2(Cc

n) is lower
bounded by

1
2

(
n + |X| − 1
|X| − 1

)−1

exp[−nD(Q‖P2)]

≥ exp(−n(δ + ε/2),

for large enough n. Since ε is arbitrary this proves that
the second kind error cannot go to 0 with a larger expo-
nent than δ.

Example 4 Let a contingency table with 3 features,
each with two categories, be given by the cell counts

x111 = 8, x112 = 10, x121 = 5, x122 = 7
x211 = 11, x212 = 1, x221 = 14, x222 = 4

Consider the log-linear models corresponding to (i) Γ =
{{1}, {2}, {3}} and (ii) Γ = {{1, 2}, {1, 3}}, and deter-
mine the maximum likelihood estimate P ∗ for both mod-
els. Does either model fit the data?

Solution. Here n = 60 and the one-dimensional marginal
counts are

x1·· = x2·· = x·1· = x·2· = 30, x··1 = 38, x··2 = 22.

The two-dimensional marginal counts needed in part (ii)
are

x11· = 18, x12· = 12, , x21· = 12, x22· = 18
x1·1 = 13, x1·2 = 17, , x2·1 = 25, x2·2 = 5.

(i) For Γ = {{1}, {2}, {3}}, P ∗ is the product of the em-
pirical marginal distributions, that is, P ∗(i, j, k) =
xi··
n

x·j·
n

x··k
n . This P ∗ clearly does not fit the sample.

(ii) For Γ = {{1, 2}, {1, 3}}, P ∗ is of the form
P ∗(i, j, k) = a(i, j)b(i, k), that is, under this
model the second and third features are condition-
ally independent given the first feature. Hence
P ∗(i, j, k) is obtained by multiplying the empiri-
cal marginal (1/n)xi·· by the conditional distribu-
tions evaluated from the {1, 2} and {1, 3} empirical
marginals xij·/xi·· and xi·k/xi··. Thus P ∗(i, j, k) =
(xij·xi·k)/(nxi··). For x∗ijk = nP ∗(i, j, k) we get
x∗111 = 7.8, x∗112 = 10.2, x∗121 = 5.2, x∗122 =
6.8, x∗211 = 10, x∗212 = 2, x∗221 = 15, x∗222 = 3,
and

nD(P̂‖P ∗) =
∑
i,j,k

xijk log
xijk

x∗ijk
=

1.1
2

ln 2

The degress of freedom, that is, the dimensional-
ity of L determined by the marginals, is 2, and
Prob(χ2 ≥ 1.1) ≈ 0.58, hence the model fits well.

Example 5 A finite-valued random variable Y is ε-
independent from a finite-valued X if∑

x

P (X = x)
∑
y

|P (Y = y|X = x)− P (Y = y)| < ε.

Show that I(X ∧ Y ) ≤ (ε2/2) log e implies ε-
independence.

Solution. Exercise 17, page 58, of the Csiszár-Körner
book gives the bound 2D(P‖Q) ≥ log e|P − Q|2, where
| · | denotes variational distance. Since I(X ∧ Y ) =
D(PX,Y ‖PX ×PY ) the condition I(X ∧Y ) ≤ (ε2/2) log e
implies that D(PX,Y ‖PX × PY ) ≤ ε, which is the condi-
tion for ε-independence.

Example 6 Consider an exponential family defined by
densities Pθ(x) = c(θ) exp[

∑k
i=1 θifi(x)], where c(θ) =

(
∫

exp[
∑k

i=1 θifi(x)]dx)−1 and θ = θk
1 . Let θML be the

value maximizing Pθ for a given x0 (which we suppose
exists.) Show that − log PθML

(x0) = H(PθML
).

Solution. Since

H(Pθ) = −
∫

Pθ(x) log Pθ(x) dx

= −
∫

log c(θ)Pθ(x) dx

−
∫

(log e)
k∑

i=1

θifi(x)Pθ(x) dx

= − log c(θ)− (log e)
k∑

i=1

θiEθfi,
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it suffices to show that for θ = θML we have Eθfi =
fi(x0), 1 = 1, . . . , k. But this immediately follows by
setting the derivatives (∂/∂θi) log Pθ(x0) equal to 0. For
this last step it is necessary to assume that θML is an
interior point of the set of those θ′s for which Pθ is de-
fined, that is, that the integral in the definition of c(θ)
is finite.

Example 7 Let Pn and Qn be n-dimensional distribu-
tions on An such that n−1D(Pn‖Qn) → 0. Show that if
for some sets Bn ⊂ An we have Qn(Bn) < exp(−εn) for
some ε > 0 that does not depend on n then Pn(Bn) → 0.
Is it also true that Pn(Bn) < exp(−εn) implies that
Qn(Bn) → 0?

Solution. For an arbitrary set A,

D(Pn‖Qn)

≥ Pn(A) log
Pn(A)
Qn(A)

+ Pn(Ac
n) log

Pn(Ac)
Qn(Ac)

≥ Pn(A) log Pn(A) + Pn(Ac
n) log Pn(Ac

n)

+Pn(A) log
1

Qn(A)

≥ −1 + Pn(A) log
1

Qn(A)
.

If here Qn(A) ≤ exp(−εn) then it follows that
D(Pn‖Qn) ≥ −1 + εnPn(A), that is,

Pn(A) ≤ 1
ε

[
1
n

D(Pn‖Qn) +
1
n

]
.

Example 8 Let X, Y, Z be real-valued random vari-
ables with unknown joint density p(x, y, z) for which
E(X2) + E(Y 2) + E(Z2) = a and E(XY ) + E(Y Z) = b,
where a and b are known. Show that the joint den-
sity achieving maximum entropy subject to these con-
straints is Gaussian with mean 0. Indicate how its co-
variance matrix could be determined (the actual compu-
tation is not required) and show that for this maximum
entropy joint distribution E(X2) = E(Z2) 6= E(Y 2) and
E(XY ) = E(Y Z) 6= E(XZ).

Solution. Let f1(x, y, z) = x2 + y2 + z2 and f2(x, y, z) =
xy + yz. Then the entropy H(p) = −

∫
p(u) log p(u) du,

where u = (x, y, z), du = dxdydz, has to be max-
imized subject to the constraints inf f1(u)p(u) du =
a,

∫
f2(u)p(u) du = b. The maximizing density will

be in the exponential family

pθ(u) = c(θ) exp[θ1f1(u) + θ2f2(u), θ = (θ1, θ2),

provided this family has a member satisfying the con-
straints. Comparing the family with the 3-dimensional,
mean 0, Gassian densities, that is, those of the form,

p(u) =
(detA)1/2)

(2π)3/2
exp

{
−1

2
uAuT

}
,

where A is symmetric and positive definite, we see that
our exponential family is a subfamily of these Gaussians,
with  −2θ0 −θ1 0

−θ1 −2θ0 −θ1

0 −θ1 −2θ0

 .

Computing the covariance matrix Σ = A−1, the given
moment constraints result in two equations for the un-
knowns θ1 and θ2. The solution of these equations is
straightforward, but tedious. It is clear, however, from
the form of A, that the first and last elements of the main
diagonal of Σ = A−1 will be equal and its middle element
will be different from these (unless θ1 = 0, which occurs
if b = 0, when the maximum entropy distribution is iid.)
The remaining assertion of the problem also follows from
the form of A without any further calculations.

10 Summary of Process Concepts.

A number of process concepts will be used in the discus-
sion of redundancy. These concepts and the results to
be used are summarized here.

A (stochastic) process is a sequence {Xn} of random
variables defined on a probability space, say (X, Σ, µ).
We shall assume that all the random variables have val-
ues in a fixed finite set A, called the alphabet. For each
n a process defines a probability measure on An, called
the n-fold joint distribution, by the formula

Pn(xn
1 ) = Prob (Xi = xi, 1 ≤ i ≤ n) .

The sequence of measures {Pn} is not completely arbi-
trary, for the consistency conditions,

Pn(xn
1 ) =

∑
xn+1

Pn+1(xn+1
1 ) (31)

must hold.
The space (X, Σ, µ) on which the process is defined

is not important; all that matters is the sequence of
joint distributions, {Pn}. In fact, two processes are said
to be equivalent if they have the same joint distribu-
tions; we are free to choose any convenient space and
sequence of functions, as long as the joint distributions
is not changed. The Kolmogorov model takes the space
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to be the set A∞ of infinite sequences drawn from A, and
the functions to be the coordinate functions, defined by
X̂n(x) = xn, x ∈ A∞. The measure is the (unique)
Borel measure P defined by the requirement that if

[an
1 ] = {x:xi = ai, 1 ≤ i ≤ n}

is the cylinder set defined by an
1 , then P ([an

1 ]) = Pn(an
1 ).

In summary, the concept of process, that is, a sequence
of measures {Pn} that satisfy the consistency conditions,
(??), is formally equivalent to the concept of Borel prob-
ability measure P on the sequence space A∞. We usually
take the latter as our definition of process; thus, when we
say process we shall mean a Borel probability measure
P on the sequence space A∞. We shall use the notation
P (an

1 ) for P ([an
1 ]), as well as sample path terminology.

A sample path is a member of A∞, while a finite sample
path is a member of some An.

A process P is stationary if it is invariant under the
shift T , which is the transformation on A∞ defined by
the formula (Tx)n = xn+1, x ∈ A∞, n = 1, 2, . . .. Thus
P is stationary if and only if P = P ◦ T−1.

A stationary process is ergodic if almost every sam-
ple path is “typical” for the process. The concept of
“typical” is defined as follows. The relative frequency
of occurence of ak

1 in the sequence xn
1 is the distribution

P̂k = P̂k(·|xn
1 ) on Ak defined by

P̂k(ak
1|xn

1 ) =
|{i ∈ [0, n− k]:xi+k

i+1 = ak
1}|

n− k + 1
.

The measure P̂k is also called the empirical distribution
of overlapping k-blocks in the sample path xn

1 . The se-
quence x is said to be typical for the process P if for all
k and all ak

1, the following holds

P (ak
1) = lim

n→∞
P̂k(ak

1|xn
1 ).

The set of sequences that are typical for P will be de-
noted by T (P ). A stationary process P is ergodic if
its set of typical sequences has measure 1, that is, if
P (T (P )) = 1.

The entropy (or entropy-rate) of a stationary process
P is defined by H(P ) = limn Hn/n where the n-th order
entropy Hn = Hn(P ) is defined by

Hn = −
∑
an
1

P (an
1 ) log P (an

1 ).

The entropy theorem (also known as the Shannon-
McMillan-Breiman Theorem) asserts that if P is an er-
godic process of entropy H then

1
n

log
1

P (xn
1 )

= − 1
n

log P (xn
1 ) = H, a. s.

For ergodic processes we also have that the entropy of the
empirical distribution, H(P̂k), converges almost surely
to the theoretical entropy, Hk. Furthermore, if we define
transition probabilities by the formula

P̂k(ak|ak−1
1 ) =

P̂k(ak
1)∑

ak
P̂k(ak

1)
,

the entropy of the resulting Markov chain will converge
almost surely, as sample path length n →∞, to the con-
ditional entropy, H(Xk|Xk−1

1 ), which, in turn, converges
as k →∞ to the entropy-rate H(P ).

A stationary process P is always a mixture of ergodic
processes, that is, there is a probability space (Y, Σ, ν)
and a family Uy, y ∈ Y, of ergodic processes such that for
each an

1 the function Uy(xn
1 ) is Σ-measurable and such

that
P (an

1 ) =
∫

Uy(an
1 )ν(dy).

The process {Xn} is finite-state (hidden Markov) if
there is a finite alphabet process {Sn} such that the pro-
cess Yn = (Xn, Sn) is a Markov chain. Csiszár has shown
(unpublished) that if Q is finite-state then for any sta-
tionary, ergodic process P the limiting divergence-rate

D∞(P‖Q) = lim
n

1
n

∑
an
1

P (xn
1 ) log

P (xn
1 )

Q(xn
1 )

exists, and, furthermore, (1/n) log P (xn
1 )/Q(xn

1 ) con-
verges, for P -almost all x, to the limit D∞(P‖Q).

11 Homework # 1.

Due Date: Oktober 7-én.

1. Find the Shannon-Fano code for the distribution
P = (0.4, 0.35, 0.1, 0.1, 0.05). Determine the average
length and compare it with the entropy H(P ). Can
you improve this code by shortening some words,
without losing the prefix property? Do you get an
optimal code in this way?

2. Determine whether there exist binary prefix codes
with the following codeword lengths and give such
a code if the answer is yes.
(a) 2,3,3,3,4,4,4,4,4,5,5,5 (b) 2,2,3,3,4,4,4,5,6,6

3. Determine which of the following bit sequences can
be a code of some sequence of integers, using the
prefix code given in the notes.
(a) 0011110000001100010001110101010100011101

(b) 00001001110010000000100111100001011100010010000
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4. Let B ⊂ An and let P = (1/|B|)
∑

x∈B Px, be the
average type of the sequences in B.

(a) Prove that |B| ≤ exp[nH(P )].

(b) Prove that

k∑
i=0

(
n
i

)
≤ 2nh(k/n), k ≤ n/2

where h(p) = −p log p− (1− p) log(1− p).

(c) Given a function f on a finite set X, show
that for every α that is a possible value of∑n

i=1 f(xi)/n, we have∣∣∣∣∣
{

xn
1 :

1
n

n∑
i=1

f(xi) = α

}∣∣∣∣∣ ≤ exp

[
n max

E(f(X))=α
H(X)

]

5. Prove that H(Y |X) is a concave function of the joint
distribution of (X, Y ), that is, if PXY = αPX1Y1 +
(1 − α)PX2Y2 then H(Y |X) ≥ αH(Y1|X1) + (1 −
α)H(Y2|X2).

6. Let P1 and P2 be probability distributions on the
finite set X such that D(P2‖P1) > γ. Prove that the
I-projection P ∗ of P2 on Π = {Q:D(Q‖P1) ≤ γ}
is of the form P ∗ = cP θ

1 P 1−θ
2 , where c > 0 and

0 < θ < 1 are determined by the requirements that∑
P ∗(x) = 1 and D(P ∗‖P1) = γ. (Hint: first show

that P ∗ is also the I-projection of P2 on the linear
family L = {Q:

∑
Q(x) log P1(x)

P2(x) = δ − γ}, where
δ = D(P ∗‖P2).)

7. Prove that D(P‖Q) ≤ χ2(P,Q) log e.

8. Let X1, X2, . . . be an iid sequence of X-valued ran-
dom variables with entropy H, and let Ĥn be the
empirical entropy of Xn

1 , that is, the entropy of the
empirical distribution P̂n. Prove that

H − 1
n

log

(
n + |X| − 1
|X| − 1

)
≤ E(Ĥn) ≤ H.

9. Given two strictly positive finite distributions P1

and P2 on X, determine γ such that there is exactly
one P ∗ with D(P ∗‖P1) = D(P ∗‖P2) = γ. Show
that

γ = − log min
0≤θ≤1

∑
x

P θ
1 (x)P 1−θ

2 (x).

12 Homework # 2.

1. For k simple hypotheses P1, . . . , Pk, and a clas-
sification rule consisting of the partition A =
(A1, . . . , Ak) of Xn such that Pi is accepted when
the sample belongs to Ai, there are k error prob-
abilities, ei = Pn

i (Ac
i ), i = 1, . . . , k. Give a nec-

essary and sufficient condition for the existence of
classification rules such that all k error probabil-
ities go to 0 with exponential rate at least some
γ > 0, as the sample size n goes to infinity, that is,
ei ≤ exp(−n(γ + o(1)), i = 1, . . . , k.

2. Let E1 ⊂ E2 be exponential families of the form

E1 =

Q:Q(x) = Q0(x)c(θ) exp

 k1∑
i=1

θifi(x)


E2 =

Q:Q(x) = Q0(x)c(θ) exp

 k2∑
i=1

θifi(x)

 ,

where k2 > k1. Given a sample with empirical
distribution P̂ , let P ∗

i ∈ Ei, be the maximum
likelihood estimate for the model Ei i = 1, 2.
Prove that P ∗

2 is the I-projection of P ∗
1 onto L =

{P :
∑k2

i=1 P (x)fi(x) =
∑k2

i=1 P̂ (x)fi(x)}.

3. In a telephone network serving r cities, the incom-
ing and outgoing calls were counted in each city on a
given day. From these numbers, xin(k) and xout(k),
k = 1, . . . , r, the number of calls x(i, j) from city i
to city j are inferred by the method of maximum en-
tropy, setting x∗(i, j) = np∗(i, j); here n is the total
number of calls and P ∗ = {p∗(i, j)} is the maximum
entropy distribution among those P = {p(i, j)} that
satisfy the marginal constraints

r∑
j=1

p(k, j) =
1
n

xout(k),
r∑

i=1

p(i, k) =
1
n

xin(k),

for k = 1, . . . , r, and, in addition, p(k, k) = 0, k =
1, . . . , r (local calls were not counted.) Specify the
exponential family for which this P ∗ is the maxi-
mum likelihood estimate, and suggest an iterative
algorithm for determining P ∗.

4. Suppose that for a 5 × 5 array of random variables
Xij , each taking values in a finite set X, the joint
distributions of “neighboring pairs” (Xij , Xi(j+1))
and (Xij , X(i+1)j) are known, where addition mod-
ulo 5 is used. Based on this information, the
joint distribution of the whole array is estimated by
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maximizing joint entropy subject to the constraints
given. Interprete the maximum entropy joint distri-
bution as an I-projection, and suggest a convergent
iteration for computing it.

5. For binary sequences of length n let Q(xn
1 ) denote

the uniform mixture of the iid probabilities P (xn
1 ) =

pn0(1− p)n−n0 , where n0 denotes the number of ze-
roes in xn

1 . Find an explicit formula for Q and de-
termine the asymptotic behavior of the maximum
redundancy log PML(xn

1 )/Q(xn
1 ) as n → ∞, for se-

quences of two kinds: (i) n0 ∼ αn for 0 < α < 1,
and (ii) n0 constant. Suggest a mixture distribution
that is more appropriate for the latter case.

6. Determine the code-length for the sequence
000110001000111000010000110010000

using the universal coding method discussed in
class, supposing first that the sequence is iid, then
second that it is Markov.

7. Let {Pθ}θ∈Θ be an arbitrary family of distributions
for a random process with finite alphabet A, and let
rn denote the smallest positive integer r for which
there exists a prefix code with codeword lengths
L(xn

1 ) such that the redundancy satisfies the uni-
form bound

L(xn
1 ) + logPθ(xn

1 ) ≤ r, ∀xn
1 , θ.

Show that rn equals log Sn, up to 1 bit, where Sn =∑
xn
1

supθ Pθ(xn
1 ).

8. For an iid sequence of random variables with values
in a finite set X let Ĥn = Ĥn,xn

1
denote the empiri-

cal entropy of the sequence xn
1 , that is, Ĥn = H(P̂ )

where P̂ is the type of xn
1 . Show that with proba-

bility 1

nĤn ≤ − log P (xn
1 ) ≤ nĤn +

|X| − 1
n

log n + Z,

where P is the true distribution and Z is a random
variable, depending on n, such that E(Z) < ∞.

13 Solutions: Homework #1.

1. The i-th codeword, c(i), is the first `i = d− log pie
binary digits of ai =

∑
j<i pj .

i 1 2 3 4 5
ai 0 0.4 0.75 0.85 0.95
`i 2 2 4 4 5

c(i) 00 01 1100 1101 11110
opt(i) 00 01 10 110 111

where the final line indicates the optimal (Huffman)
code. Expected code length and entropy are

L =
∑

pi`i = 2.55, H = −
∑

pi log pi = 1.94

while the optimal L is 2.15. Note that the last code-
word can be shortened by deleting its final two bits,
but the obtained code is still not optimal.

2. The Kraft inequality shows that there is no prefix
code with length set (a), but there is one for (b).

3. The first bit sequence cannot be decoded, but it can
if one more bit is added at the end.

4. Let N(a,B) denote the number of occurrences of
a in all the sequences xn

1 ∈ B, so that P (a) =
N(a,B)/n|B|. Let X1, . . . , Xn be random variables
defined by Prob(Xn

1 = xn
1 ) = 1/|B|, xn

1 ∈ B and
0, otherwise. But Pi(a) = Prob(Xi = a) satisfies∑

i Pi(a) = N(a,B)/|B| = nP (a). Thus,

log |B| = H(Xn
1 ) ≤

∑
i

H(Pi) ≤

≤ nH

(
1
n

∑
i

Pi

)
= nH(P ).

This establishes part (a).

For part (b) apply part (a) to the set B of binary
sequences of length n that contain no more than k
zeroes. For part (c), let P be the average type of
the sequences xn

1 that belong to

B =

{
xn

1 :
1
n

n∑
i=1

f(xi) = α

}
.

¿From (a) we have |B| ≤ exp[nH(P )]. But xn
1 ∈ B

means that its type Pxn
1

satisfies
∑

a Pxn
1
(a)f(a) =

α; which therefore also holds for the average type
P , that is,

∑
a P (a)f(a) = α. Hence H(P ) ≤

maxE(f(X))=α H(X). A lower bound on |B| cannot
be given without additional assumptions.

5. It suffices to show that

PXY (x, y) log PXY (x,y)
PX(x) ≤ αPX1Y1(x, y) log PX1Y1

(x,y)

PX1
(x)

+(1− α)PX2Y2(x, y) log PX2Y2
(x,y)

PX2
(x) .

This follows from

a1 log
a1

b1
+ a2 log

a2

b2
≥ (a1 + a2) log

a1 + a2

b1 + b2
,

with a1 = αPX1Y1 , a2 = (1 − α)PX2Y2(x, y), b1 =
αPX1(x), b2 = (1− α)PX2(x).
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6. Suppose the Pi are everywhere positive. We prove
that the I-projection of P2 on

L =
{

Q:
∑

Q(x) log
P1(x)
P2(x)

= δ − γ

}
is that same P ∗ as the I-projection of P2 on Π =
{Q:D(Q‖P1) ≤ γ}, where δ = D(P ∗‖P2). Indeed,
P ∗ ∈ L; furthermore, for every Q ∈ L

D(Q‖P2)−D(Q‖P1) =
∑

Q(x) log
P1(x)
P2(x)

= δ − γ.

Here if D(Q‖P2) were less than δ, also D(Q‖P1)
would be less than γ, which would imply that Q ∈
Π, contradicting the hypothesis that the P ∗ with
D(P ∗‖P2) = δ is the I-projection of P2 on Π.

Now, the exponential family corresponding to L is{
Pθ:Pθ(x) = c(θ)P2(x) exp

[
θ log

P1(x)
P2(x)

]}
=
{
Pθ:Pθ(x) = c(θ)P θ

1 (x)P 1−θ
2 (x)

}
Since P1 and P2 belong to this family, and L
speparates P1 and P2, there must be some θ∗ with
Pθ∗ ∈ L. Then, by the general theorem, P ∗ = Pθ∗

is the I-projection of P2 on L and therefore also on
Π.

7. Using the inequality lnx ≤ x− 1 we have

∑
i

pi ln
pi

qi
≤

∑
i

pi

(
pi

qi
− 1

)

=
∑

i

p2
i

qi
− 1 =

∑
i

(pi − qi)2

qi

Multiplying both sides by log e produces the claimed
inequality.

8. Since Ĥn = H(P̂n) and EP̂n = P , we have EĤn ≤
H(EP̂n) = H(P ), by concavity. Here H(P̂n) de-
notes the entropy of P̂n as a distribution. On the
other hand, P̂n is also a random variable; H̄(P̂n) will
denote the entropy of this random variable. Then
we can write

nH(P ) = H(Xn
1 ) = H(Xn

1 |P̂n) + H̄(P̂n)
=

∑
Q

Pr(P̂n = Q) log |TQ|+ H̄(P̂n)

≤
∑
Q

Pr(P̂n = Q)nH(Q) + H̄(P̂n)

= nĤn + H̄(P̂n)

The result now follows from the fact that H̄(P̂n) ≤

log

(
n + |X| − 1
|X| − 1

)
.

9. From an earlier problem, the I-projection of P2 on
Π = {Q:D(Q‖P1) ≤ γ} is of the form

P ∗(x) = cP θ
1 (x)P 1−θ

2 (x), c =

[∑
x

P θ
1 (x)P 1−θ

2 (x)

]−1

.

Therefore,

D(P ∗‖P1) =
∑

P ∗(x) log
cP 1−θ

2 (x)
P 1−θ

1 (x)

= log c + (1− θ)
∑
x

P ∗(x) log
P2(x)
P1(x)

D(P ∗‖P2) =
∑

P ∗(x) log
cP θ

1 (x)
P θ

2 (x)

= log c− θ
∑
x

P ∗(x) log
P2(x)
P1(x)

.

By assumption, D(P ∗‖P1) = D(P ∗‖P2) = γ, hence
it follows that

∑
x

P ∗(x) log
P2(x)
P1(x)

= 0 (32)

But this means ex-
actly that (d/dθ)

∑
x P θ

1 (x)P 1−θ
2 (x) = 0, hence the

θ for which (??) holds actually minimizes the con-
vex function

∑
x P θ

1 (x)P 1−θ
2 (x). Since we also have

γ = log c = − log
∑

x P θ
1 (x)P 1−θ

2 (x), we must have
the desired result

γ = − log min
0≤θ≤1

∑
x

P θ
1 (x)P 1−θ

2 (x).

14 Solutions: Homework.2.

1. The necessary and sufficient condition is that the
“divergence balls” Πi = {Q:D(Q‖Pi) < γ} have to
be disjoint, which follows from previous homework
problems.

2. The assertion follows from the fact that the ML
estimate from an exponential family equals the I-
projection of any element of the exponential fam-
ily onto the corresponding linear family (containing
the empirical distribution), and from the transitiv-
ity property of I-projections.
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3. In general, maximizing H(P ) is the same as min-
imizing D(P‖Q0) where Q0 is the uniform distri-
bution. In our case we must have P (i, i) = 0, for
every i; therefore, maximizing H(P ) is equivalent
to minimizing D(P‖Q0) where Q(i, i) = 0,∀i, and
Q(i, j) = constant, i 6= j. This minimization can
be performed by iteratively adjusting the marginals
(iterative scaling).

The exponential family will consist of all distribu-
tions of the form P (i, j) = cQ(i, j)a(i)b(j) and the
maximum entropy distribution will be the ML es-
timate for this family. In this case the exponential
family through Q0, the uniform distribution, is not
appropriate because it does not intersect the set of
feasible distributions, all of which have their diago-
nal elements equal to 0.

4. For each pair (i, j), 1 ≤ i ≤ 5, 1 ≤ j ≤ n, let L(1)
ij

denote the set of all joint distributions on X25 whose
two-dimensional marginal representing the joint dis-
tribution of Xij and Xi(j+1) equals the given one.

Similarly, let L(2)
ij , 1 ≤ i ≤ n, 1 ≤ j ≤ 5, be defined

by the given joint distribution of Xij and X(i+1)j .
Let L be the intersection of all these linear linear
families and let P0 be the uniform distribution on
X25. The required maximum entropy joint distri-
bution will be the I-projection of P0 on L. It can be
computed by iterative scaling, performing cyclically
I-projections on the sets L(1)

ij and L(2)
ij (by adjust-

ing the corresponding two-dimensional marginals.)
Since L is the intersection of 40 sets L(1)

ij and L(2)
ij ,

one cycle of the iteration will consist of 40 consecu-
tive scalings.

5. From Section 6,

ν(p) =
Γ
(∑k

i=1 αi + k
)

∏k
i=1 Γ (αi + 1)

k∏
i=1

pαi
i ,

is a density (for every α1, . . . , αk greater than -1),
hence its integral over the probability simplex is 1.
Applying this with k = 2 and with n0 and n1 =
n− n0 in the role of α1 and α2, it follows that

Q(xn
1 ) =

∫
pn0(1− p)n1dp

=
Γ(n0 + 1)Γ(n1 + 1)

Γ(n + 2)
=

n0!n1!
(n + 1)!

=
1

n + 1
n0!n1!

n!
.

If n0 ∼ αn then Stirling’s formula, k! ∼ kke−k
√

2πk,
gives

n0!n1!
n!

∼ nn0
0 nn1

1

nn

√
2πnα(1− α)

which implies that

log
PML(xn

1 )
Q(xn

1 )
= log

(
nn0

0 nn1
1

nn
/Q(xn

1 )
)
∼ 1

2
log n+ const.

If, on the other hand, n0 is a constant, then

Q(xn
1 ) =

1
n + 1

n0!n1!
n!

=
n0!

(n + 1)n · · · (n− n0 + 1)

and

PML(xn
1 )

Q(xn
1 )

=

=
nn0

0

n0!
· (n− n0)n−n0

nn
· (n + 1)n · · · (n− n0 + 1)

=
nn0

0

n0!
· (1− n0

n
)n−n0 ×

×
[
(1− 1

n
) · · · (1− n0 − 1

n
)
]
(n + 1),

so that in this case,

log
PML(xn

1 )
Q(xn

1 )
∼ log n + const.

A better choice for Q is the mixture with respect
to the Dirichlet prior with α1 = α2 = −1/2, i. e.,
with ν(p) = 1/(π

√
p(1− p)), for then log PML(xn

1 )
Q(xn

1 )

will be asymptotically (1/2) log n + constant, no
matter what is xn

1 .

6. (i) From formula (17) in the lecture notes with k = 2
we have the auxiliary distribution

Q(xn
1 ) =

(n0 − 1
2)(n0 − 3

2) · · · 1
2 · (n1 − 1

2)(n1 − 3
2) · · · 1

2

n!

With n = 32, n0 = 22, n1 = 10, we obtain L(xn
1 ) =

d− log Q(xn
1 )e = 32.

In the Markov case, the formula on page 16 of the
notes yields

Q(xn
1 ) =
(n(0, 0)− 1/2) . . . (1/2) · (n(0, 1)− 1/2) . . . (1/2)

n0!

×(n(1, 0)− 1/2) . . . (1/2) · (n(1, 1)− 1/2) . . . (1/2)
n1!

.

30



In our case, setting the unspecified initial state equal
to 0, we have noo = 16, n01 = 6, n10 = 6, n11 =
4 and n0 = 22, n1 = 10. (Note that the present
n0 and n1 equal those in part (i) only because the
initial state has been set equal to the last bit of the
sequence xn

1 ; otherwise there would be a difference
of 1.) Substituting these values we obtain L(xn

1 ) =
d− log Q(xn

1 )e = 33.

Remark. The perhaps surprising result is that for
the given sequence neither method leads to compres-
sion. This is so in spite of the fact that the first or-
der empirical entropy Ĥn is clearly less than 1, and
the second order empirical entropy Ĥ

(2)
n is clearly

smaller than Ĥn. The reason is that the true code-
length is not Ĥn (or Ĥ

(2)
n , respectively), rather, an

additional term (1/2) log n (or log n, respectively),
has to be added which stands for the description of
the ML distribution.

7. Let r > 0 be any number such that for some prefix
code with word length function L(xn

1 ) we have

L(xn
1 ) + log Pθ(xn

1 ) ≤ r, θ ∈ Θ, xn
1 ∈ An.

Thus log Pθ(xn
1 ) ≤ −L(xn

1 ) + r, so that

sup
θ∈Θ

Pθ(xn
1 ) ≤ 2−L(xn

1 )2r.

Summing over xn
1 and using the Kraft inequality

then gives Sn ≤ 2r, so that rn ≥ log Sn.

On the other hand, for the Shannon code with
respect to the auxiliary distribution Q(xn

1 ) =
S−1

n supθ∈Θ Pθ(xn
1 ), we have

L(xn
1 ) + log Pθ(xn

1 ) ≤ log
Pθ(xn

1 )
Q(xn

1 )
+ 1 ≤ log Sn + 1,

which proves that rn ≤ log Sn + 1.

8. The first inequality is trivial because nĤn =
− log PML(xn

1 ). Consider the mixture distribution
Q with respect to the Dirichlet prior with αi ≡
−1/2. Theorem 17 gives

log
PML(xn

1 )
Q(xn

1 )
≤ k − 1

2
log n + const.

Combining this with nĤn = − log PML(xn
1 ) then

yields

log
1

Q(xn
1 )
≤ nĤn +

k − 1
2

log n + const.

On the other hand, the (pointwise) redundancy of
the Shannon code with respect to Q, though it might
be negative for some xn

1 , is lower bounded by a ran-
dom variable that has finite expectation, (Corollary
3). Thus − log Q(xn

1 ) ≥ − log P ∗(xn
1 ) − Y , where

E(Y ) is finite. Putting this together with the pre-
ceeding inequality yields the bound

log
1

P ∗(xn
1 )
≤ nĤn +

k − 1
2

log n + const. + Y,

which completes the proof.

Remark. It follows in a similar manner that if
X1, X2, . . . , is an m-th order Markov chain (with ar-
bitrarily specified states at times 0,−1, . . . ,−m+1)
then for the m-th order emprical (conditional) en-
tropy Ĥm

n we have

nĤm
n ≤ − log P ∗(xn

1 )

≤ nĤm
n +

|A|m(|A| − 1)
2

log n + const. + Z,

where Z is a random variable not depending on n,
whose expectation is finite. If X1, X2, . . . is Markov
of order `, then it is also Markov of order m > ` and
hence

nĤ`
n ≤ − log P ∗(xn

1 )

≤ nĤm
n +

|A|m(|A| − 1)
2

log n + const. + Zm,

so that,

Ĥ`
n − Ĥm

n ≤ |A|m(|A| − 1)
2n

log n + const. +
1
n

Zm.

This allows us to check if the Markov chain is of
order ` < m. Here Zm can be positive or negative,
but since it has finite expected value, we can use the
Markov inequality to get bounds on the probability
that Zm > ε > 0 and use this in the above.

14.1 Corrections.

Line n+ is the n-th line from the top and line n− is
the n-th line from the bottom.

1. Page 2, column 2, line 20+: Change js+1 to 1 + js.

2. Page 3, column 1, line 19+: Change P (P̂n ∈ Π) to
P (P̂n ∈ Πn).

3. Page 3, column 1, line 8-: Change (1/n)
∑

a f(a) >
α to (1/n)

∑
i f(xi) > α.
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4. Page 4, column 1, line 12+: The minimum should
be over P ∈ Π, not P ∗ ∈ Π.

5. Page 7, column 2, line 18+: γ = (j1, . . . , jd) should
be ω = (j1, . . . , jd)

6. Page 8, column 1, line 17-: log P̂ (ω0)/P (ω0) should
be log 1−P̂ (ω0)

1−P (ω0) .

7. Page 11, column 1, lines 2- and 11-: Replace∑
xn
1∈Bn(c) 2−L(xn

1 ) by
∑∞

n=1

∑
xn
1∈Bn(c) 2−L(xn

1 ).

8. Page 11, column 2, line 16+: Replace Zn =
P (xn

1 )/Q(xn
1 ) by Zn = Q(xn

1 )/P (xn
1 ).

9. Page 11, column 2, line 16-: Replace P (Ã) by
P (Ãm) and Q(Ã) by Q(Ãm).

10. Page 12, column 1, formula (11): In the integral
exponent the logarithm should be multiplied by 1/n.

11. Page 12, column 1, formula (12): Replace P ∈ by
U ∈.

12. Page 12, column 1, line 19-: Replace P ∈ N∞ by
U ∈ Nε.

13. Page 12, column 1, line 3-: Replace “code” by “pro-
cess U”.

14. Page 14, column 1, formula (14): Replace i + 1 by
i = 1 in the product.

15. Page 15, column 2, line 14-: Replace log e
2 by log ε

2 .
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