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Abstract

We consider infinite order chains whose transition probabilities depends on a finite suffix

of the past. These suffixes are of variable length and the set of the lengths of all suffix is

unbounded. We assume that the probability transitions for each of these suffixes are continuous

with exponential decay rate. For these chains, we prove the weak consistency of a modification

of Rissanen’s algorithm Context which estimates the length of the suffix needed to predict the

next symbol, given a finite sample. This generalizes to the unbounded case the original result

proved for variable length Markov chains in the seminal paper Rissanen (1983). Our basic tool

is the canonical Markov approximation which enables to approximate the chain of infinite order

by a sequence of variable length Markov chains of increasing order. Our proof is constructive

and we present an explicit decreasing upper bound for the probability of wrong estimation of

the length of the current suffix.

Key words: Probabilistic suffix trees, Markovian approximations, variable length Markov

chains, algorithm Context, consistent estimation.
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1 Introduction

Unbounded probabilistic suffix trees define an interesting family of stochastic chains of infinite

order on a finite alphabet. The idea is that for each past, only a finite suffix of the past, called

context is enough to predict the next symbol. These suffixes can be represented by a countable
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complete tree of finite contexts. In a probabilistic suffix tree there is a transition probability

associated to each context.

The existence of an infinite order stochastic chain consistent with the probabilistic suffix tree

is assured by imposing that the transition probabilities are weakly non-null and continuous, with

continuity rate decaying exponentially fast.

For these chains, we prove the weak consistency of a modification of Rissanen’s algorithm

Context which estimates the context needed to predict the next symbol, given a finite sample.

Our basic tool is to approximate the chain of infinite order consistent with the unbounded

probabilistic tree, by a sequence of Markov chains, generated by finite probabilistic trees of

increasing height. This idea was introduced by Bressaud, Fernández and Galves (1999a), Bres-

saud, Fernández and Galves (1999b) and Fernández and Galves (2002).

Our proof is constructive and we present an explicit decreasing upper bound for the proba-

bility of wrongly estimating the current context. The use of the Markov approximation makes

the proof simpler and, we hope, clearer.

Probabilistic suffix trees were first introduced by Rissanen (1983) in the finite case. He called

his model finitely generated source . In his work, not only he introduces the model but also he

proposes the algorithm Context which estimates the context needed to predict the next symbol,

given a finite sample in an effective way. In his paper, there is a proof of the weak consistency

of the algorithm in the case of a fixed finite tree. Here, we generalize this result to unbounded

probabilistic trees for a modified version of the algorithm Context.

Recently, probabilistic suffix trees became popular in the statistics literature under the name

variable length Markov chains coined by Bühlmann and Wyner (1999). They prove the weak

consistent of a variant of the algorithm Context for finite trees without assuming a known prior

on the depths of the probabilistic tree but using a bound allowed to grow with the sample size.

An extension of Bühlmann and Wyner (1999) for the unbounded case was obtained by

Ferrari and Wyner (2003) using the same technical ideas. However, they impose rather obscure

conditions, which in their own words “may be difficult to check”. They claim it is enough to

assume that the family of probability transitions is strongly non-null, i.e. the infimum for all

symbols and contexts of the probability of a symbol given the context is strictly positive. This

is definitively more restrictive than the weakly non-nullness property assumed by us.

A different approach to the problem was recently proposed by Csiszár and Talata (2006).
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They show that in the unbounded case, consistent estimation may be achieved in linear time

using two penalized log-likelihood maximization procedures, namely the Bayesian Information

and the Minimum Description Length criteria.

Probabilistic suffix trees have been recently used by several authors to model scientific data

coming from many different domain such as linguistics, genomics and music, see Begleiter,

El-Yaniv and Yona (2004), Bejerano and Yona (2001), Leonardi (2006) among others.

This paper is organized as follows. Section 2 presents the definitions, notation and the

statement of the theorem. The proof of the theorem, as well as the Markovian approximation,

are presented in Section 3. In Section 4 we discuss the reason why we could not use Rissanen’s

original result.

2 Notations, definitions and result

Let A be a finite alphabet. This will be the state space of all the chains considered in this

paper. We will use the shorthand notation wn
m to denote the string (wm, . . . , wn) of symbols in

the alphabet A. The length of this string will be denoted by |wn
m| = n − m + 1.

Definition 2.1 A countable subset τ of ∪∞
k=1A{−k,...,−1} is a complete tree with finite

branches if it satisfies the following conditions.

• Suffix property. For no w−1
−k ∈ τ , there exists u−1

−j ∈ τ with j < k such that w−i = u−i

for i = 1, . . . , j.

• Completeness. τ defines a partition of A{...,−2,−1}. Each element of the partition coin-

cides with the set of the sequences in A{...,−2,−1} having w−1
−k as suffix, for some w−1

−k ∈ τ .

It is easy to see that the set τ can be identified with the set of leaves of a rooted tree with

a countable set of finite labeled branches.

Given a finite tree, its height is defined as |τ | = max{|w|;w ∈ τ}.

Definition 2.2 A probabilistic suffix tree on A is an ordered pair (τ, p) such that,

• τ is a complete tree with finite branches; and

• p = {p(·|w);w ∈ τ} is a family of probability transitions on A.
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A stationary stochastic chain (Xt) is consistent with a probabilistic suffix tree (τ, p) if for

any infinite past x−1
−∞ and any symbol a ∈ A we have

Pp

{
X0 = a | X−1

−∞ = x−1
−∞
}

= p(a | x−1
−` ) , (2.3)

where x−1
−` is the only element of τ which is a suffix of the sequence x−1

−∞. This suffix is called

the context of the sequence x−1
−∞. The length of the context ` = `(x−1

−∞) is a function of the

sequence. Observe that the suffix property implies that the set {`(X−1
−∞) = k} is measurable

with respect to the σ-algebra generated by X−1
−k .

If X0, X1, . . . is a sample from a stochastic chain consistent with a probabilistic suffix tree

(τ, p) we will say that X0, X1, . . . is a realization of (τ, p). We shall use the shorthand notation

P (ak
1) = P{Xk

1 = ak
1} (2.4)

to denote the stationary probability of the cylinder defined by the finite string of symbols ak
1 .

Definition 2.5 We say that the probabilistic suffix tree (τ, p) is unbounded if τ is countable

but not finite and therefore, the function ` is unbounded.

In the unbounded case, the compactness of AZ assures that there is at least one stationary

stochastic chain consistent with a continuous probabilistic suffix tree. Uniqueness requires

further conditions, such as the ones presented in Fernández and Galves (2002).

Definition 2.6 A probabilistic suffix tree (τ, p) on A is of type A if its transition probabilities

p satisfy the following conditions.

1. Weakly non-nullness, that is

∑

a∈A
inf
w∈τ

p(a | w) > 0 ; (2.7)

2. Continuity, that is

β(k) := max
a∈A

sup{|p(a | w) − p(a | v)|, v ∈ τ, w ∈ τ with w−1
−k = v−1

−k} → 0 (2.8)

as k → ∞. We also define

β(0) = max
a∈A

sup{|p(a | w) − p(a | v)|, v ∈ τ, w ∈ τ with w−1 6= v−1}.

The sequence {β(k)}k ∈ N is called the continuity rate.
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For a probabilistic suffix tree of type A with summable continuity rate, the maximal coupling

argument used in Fernández and Galves (2002) implies the uniqueness of the law of the chain

consistent with it.

Chains consistent with finite probabilistic suffix trees are also called variable length Markov

chains in the literature.

We now present a simplified version of the algorithm Context introduced by Rissanen (1983)

for variable length Markov chains. The goal of the algorithm is to estimate adaptively the

context of the next symbol Xn given the past symbols Xn−1
0 .

We first construct a candidate context Xn−1
n−k(n) where k(n) = C1 log n with a suitable positive

constant C1. The intuitive reason behind the choice of the upper bound length C1 log n is the

impossibility of estimating the probability of sequences of length much longer than log n based

on a sample of length n. Recent versions of this fact can be found in Marton and Shields (1994),

Marton and Shields (1996) and Csiszár (2002). We then shorten it according to a sequence of

tests based on the likelihood ratio statistics. This is formally done as follows.

Let X0, X1, . . . , Xn−1 be a sample from the finite probabilistic tree (τ, p). For any finite

string w−1
−j with j ≤ n, we denote Nn(w−1

−j ) the number of occurrences of the string in the

sample

Nn(w−1
−j ) =

n−j∑

t=0

1
{
Xt+j−1

t = w−1
−j

}
. (2.9)

If
∑

b∈A Nn(w−1
−kb) > 0, we define the estimator of the transition probability p by

p̂n(a|w−1
−k) =

Nn(w−1
−ka)

∑
b∈A Nn(w−1

−kb)
(2.10)

where w−1
−ja denotes the string (w−j , . . . , , w−1, a), obtained by concatenating w−1

−j and the

symbol a. If
∑

b∈A Nn(w−1
−kb) = 0, we define p̂n(a|w−1

−k) = 1/|A|.
We also define

Λn(i, w) = −2
∑

w−i∈A

∑

a∈A
Nn(w−1

−i a) log

[
p̂n(a|w−1

−i )

p̂n(a|w−1
−i+1)

]
. (2.11)

Notice that Λn(i, w) is the log-likelihood ratio statistic for testing the consistency of the

sample with a probabilistic suffix tree (τ, p) against the alternative that it is consistent with

(τ ′, p′) where τ and τ ′ differ only by one set of sibling nodes branching from w−1
−i+1.
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We now define the length of the estimated current context ˆ̀ as

ˆ̀(Xn−1
0 ) = max

{
i = 2, . . . , k(n) : Λn(i,Xn−1

n−k(n)) > C2 log n
}

, (2.12)

where C2 is any positive constant.

Using a random upper bound for length of the candidate context, instead of k(n) = C1 log n

Rissanen (1983) proved the following result.

Theorem. Given a realization X0, . . . , Xn−1 of a probabilistic suffix tree (τ, p) with finite

height, then

P

{
ˆ̀(Xn−1

0 ) 6= `(Xn−1
0 )

}
−→ 0 (2.13)

as n → ∞.

Unfortunately, Rissanen’s definition of the candidate context and the corresponding proof

of the result only applies to the case of a fixed finite probabilistic suffix tree. Using our defi-

nition together with the canonical Markov approximation, we can extend Rissanen’s result for

unbounded probabilistic suffix tree. This is our main result.

Theorem 1 let X0, X2, . . . , Xn−1 be a sample from a type A unbounded probabilistic suffix tree

(τ, p) with continuity rate β(j) ≤ f(j) exp{−j}, with f(j) → 0 as j → ∞. Then, for any choice

of positive constants C1 and C2 in the definition (2.12), there exist positive constants C and D

such that

P

{
ˆ̀(Xn−1

0 ) 6= `(Xn−1
0 )

}
≤ C1 log n(n−C2 + D/n) + Cf(C1 log n) .

3 Proof of Theorem 1

We will use the canonical approximation of the chain of infinite order consistent with (τ, p)

introduced by Fernández and Galves (2002). We start by adapting their definitions and theorem

to the framework of probabilistic suffix trees.

Definition 3.1 The canonical Markov approximation of order k of a chain (Xt)t∈Z is

the Markov chain of order k, X [k] = (X
[k]
t )t∈Z having as transition probabilities,

p[k](a | x−1
−k) := P{X0 = a | X−1

−k = x−1
−k} (3.2)

for all k ≥ 1 and all a ∈ A and x−1
−k ∈ Ak.
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Notice that, when (Xt) is consistent with a probabilistic suffix tree (τ, p), then (X
[k]
t ) is

consistent with a finite probabilistic suffix tree (τ [k], p[k]) where

τ [k] = {w ∈ τ ; |w| ≤ k} ∪ {w−1
−k;w ∈ τ, |w| ≥ k}. (3.3)

Observe also, that for contexts w ∈ τ which length does not exceed k, we have p[k](a | w) =

p(a | w). However, for sequences w−1
−k which are internal nodes of τ , there is no easy explicit

formula expressing p[k](·|w−1
−k) in terms of the family {p(·|v), v ∈ τ}.

The main result of Fernández and Galves (2002) that will be crucial in the proof of Theorem

1 can be stated as follows.

Theorem. Let (Xt)t∈Z be a chain consistent with a type A probabilistic suffix tree (τ, p) with

summable continuity rate, and let (X
[k]
t ) be its canonical Markov approximation of order k.

Then there exists a coupling between (Xt) and (X
[k]
t ) and a constant C > 0 such that

P

{
X0 6= X

[k]
0

}
≤ Cβ(k) . (3.4)

From now on, we will always assume that (τ, p) is of type A with summable continuity rates

β(·) and (τ [k], p[k]) is its canonical Markov approximation of order k.

The proof of Theorem 1 will follow from the following lemma together with a control on the

error of the Markov approximation.

Lemma 3.5 For any choice of positive constants C1 and C2 used in the definition of ˆ̀, we have

P

{
ˆ̀(X

[k]
0 , . . . , X

[k]
n−1) 6= `(X

[k]
0 , . . . , X

[k]
n−1)

}
≤ k(n)

(
n−C2 + D/n

)
(3.6)

where k = k(n) = C1 log n.

Proof.

We know that for fixed (i, w), under the null hypothesis, the statistic Λn(i, w), given by

(2.11), has asymptotically chi-square distribution with |A| − 1 degrees of freedom (see, for

example, van der Vaart (1998)). We recall that, for each (i, w) the null hypothesis (H i
0) is that

the true context is w−1
−i+1.
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Since we are going to perform a sequence of k(n) sequential tests where k(n) → ∞ as n

diverges, we need to control the error in the chi-square approximation. For this, we use a well-

known asymptotic expansion for the distribution of Λn(i, w) due to Hayakawa (1977) which

implies that

P
{
Λn(i, w) ≤ x | H i

0

}
= P

{
χ2 ≤ x

}
+ D/n , (3.7)

where D is a positive constant and χ2 is random variable with distribution chi-square with

|A| − 1 degrees of freedom.

Therefore, it is immediate that

P {Λn(i, w) > C2 log n} ≤ e−C2 log n + D/n .

By (2.12), in order to find ˆ̀(Xn−1
0 ) we have to perform at most k(n) tests. We want to give

an upper bound for the overall probability of type I error in a sequence of k(n) sequential tests.

An upper bound is given by the Bonferroni inequality, which in our case can be written as

P

(
∪k(n)

i=2 {Λn(i, w) > C2 log n} | H i
0

)
≤

k(n)∑

i=2

P{Λn(i, w) > C2 log n | H i
0}.

This last term is bounded above by C1 log n(n−C2 + D/n). This concludes the proof.

We are finally ready to prove Theorem 1.

Let (τ [k], p[k]) be the canonical Markov approximation of order k of (τ, p). Take k = k(n) =

C1 log(n). Then,

P

{
ˆ̀(Xn−1

0 ) 6= `(Xn−1
0 )

}
≤ P

{
ˆ̀(Xn−1

0 ) 6= `(Xn−1
0 ), Xi = X

[k]
i , 1 ≤ i ≤ n

}
+P

(
n⋃

i=1

{Xi 6= X
[k]
i }
)

.

The first term equals to

P

{
ˆ̀(X

[k]
0 , . . . , X

[k]
n−1) 6= `(X

[k]
0 , . . . , X

[k]
n−1), Xi = X

[k]
i , i = 1, . . . , n

}
.

Using Lemma 3.5 this last expression can be bounded by

P

{
ˆ̀(X

[k]
0 , . . . , X

[k]
n−1) 6= `(X

[k]
0 , . . . , X

[k]
n−1)

}
≤ n−C2 + D/n . (3.8)

Inequality (3.4) provides a bound for the second term

P

(
n⋃

i=1

{Xi 6= X
[k]
i }
)

≤ nC β(k(n)) , (3.9)
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where C is a suitable positive constant independent of k(n).

Since we took k(n) = C1 log(n) and by hypothesis β(k) ≤ f(k) exp{−k}, the result follows

immediately from inequalities (3.8) and (3.9).

4 Discussion

The way the algorithm Context is introduced in Rissanen (1983) is slightly different. He first

constructed a candidate context Xn−1
n−M(n) where M(n) is a random length defined as follows

M(n) = min

{
i = 0, 1, . . . , bC1 log nc : Nn(Xn−1

n−i ) >
C2 n√
log n

}
, (4.1)

where C1 and C2 are arbitrary positive constants. In the case the set is empty we take M(n) = 0.

Then,the length of the estimated current context ˆ̀ is estimated as we did, using (2.12).

Imposing that the length of the candidate context is bounded above by M(n) is a technical

condition used by Rissanen to obtain the following upper bound which appears in his proof of

(2.13). Rissanen writes it as

P

{
ˆ̀(Xn−1

0 ) 6= `(Xn−1
0 )

}
≤

P

{
ˆ̀(Xn−1

0 ) 6= `(Xn−1
0 ) | Nn

(
Xn−1

n−`(Xn−1

0
)

)
>

C2n√
log n

}
P

{
Nn

(
Xn−1

n−`(Xn−1

0
)

)
>

C2n√
log n

}

+P

{
⋃

w∈τ

{
Nn (w) ≤ C2n√

log n

}}
. (4.2)

The point here is that Rissanen (1983) does not use the fact that the law of Λn converges

to chi-square distribution as we did. Instead of that, Rissanen provides the following explicit

upper bound for the conditional probability in the right-hand side of (4.2)

P

{
ˆ̀(Xn−1

0 ) 6= `(Xn−1
0 ) | Nn

(
Xn−1

n−`(Xn−1

0
)

)
>

C2n√
log n

}
≤ C1 log n e−C′

2

√
log n , (4.3)

where C1, C2 and C ′
2 are positive constants independent of the height of the probabilistic suffix

tree (τ, p).

With respect to the second term he only observes that, by ergodicity, for each w ∈ τ we

have

P

{
Nn (w) ≤ C2n√

log n

}
−→ 0 (4.4)
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as n → ∞. Since τ is finite the convergence in (4.4) implies the desired result.

In the case of unbounded trees, (4.4) is not enough to assure the result. Now we need

an explicit upper bound for P

{
N

[k(n)]
n (w) ≤ C2n√

log n

}
, where k(n) is the height of the Markov

approximation estimated with the sample of size n. The height k(n) diverges with n and

to assure that the limit in (4.4) is really zero, using Rissanen’s estimation we need to take

k(n) = c log log(n) instead of k(n) = c log(n) .

The fact that k(n) increases very slowly has a consequence on the quality of the Markov

approximation. If k(n) = c log log(n), then to assure that the upper bound (3.9) vanishes as n

diverges, we must assume that the continuity rate of the chain decreases with a super exponential

rate β(k) ≤ exp{− exp ck}} .

Our alternative approach, using directly the chi-square approximation works assuming only

that β(k) decreases exponentially fast. And this together with the canonical Markov approx-

imation provides a very simple proof for the result in case of type A unbounded probabilistic

suffix tree with continuity rate decreasing exponentially fast.
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Instituto de Matemática, Estat́ıstica e Computação Cient́ıfica

Universidade Estadual de Campinas

Caixa Postal 6065

13081-970 Campinas, Brasil

e-mail: nancy@ime.unicamp.br

12


