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Abstract. In this paper we obtain exponential bounds for the rate of convergence of a

version of the algorithm Context, when the underlying tree is not necessarily bounded.

The algorithm Context is a well-known tool to estimate the context tree of a Variable

Length Markov Chain. As a consequence of the exponential bounds we obtain a strong

consistency result. We generalize in this way several previous results in the field.

1. Introduction

In this paper we present an exponential bound for the rate of convergence of the al-

gorithm Context for the class of unbounded variable memory models, taking values on

a finite alphabet A. From this it follows a strong consistency result for the algorithm

Context in this general setting. Variable memory models were first introduced in the in-

formation theory literature by Rissanen (1983) as a universal system for data compression.

Originally called by Rissanen (1983) finite memory source or probabilistic tree this class

of models recently became popular in the statistics literature under the name of Variable

Length Markov Chains (VLMC) (Bühlmann and Wyner; 1999).

The idea behind the notion of variable memory models is that the probabilistic definition

of each symbol only depends on a finite part of the past and the length of this relevant

portion is a function of the past itself. Following Rissanen we called this relevant part

of each past a context. The set of all contexts satisfies the suffix property which means

that no context is a proper suffix of another context. This property allows to represent

the set of all contexts as a rooted labeled tree. With this representation the process is
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described by the tree of all contexts and a associated family of probability measures on

A, indexed by the tree of contexts. Given a context, its associated probability measure

gives the probability of the next symbol for any past having this context as a suffix. From

now on the pair composed by the context tree and the associated family of probability

measures will be called probabilistic context tree.

Rissanen (1983) not only introduced the notion of variable memory models but he also

introduced the algorithm Context to estimate the probabilistic context tree. The way

the algorithm Context works can be summarized as follows. Given a sample produced

by a chain with variable memory, we start with a maximal tree of candidate contexts for

the sample. The branches of this first tree are then pruned until we obtain a minimal

tree of contexts well adapted to the sample. We associate to each context an estimated

probability transition defined as the proportion of time the context appears in the sample

followed by each one of the symbols in the alphabet. From Rissanen (1983) to Galves et al.

(2006), passing by Ron et al. (1996) and Bühlmann and Wyner (1999), several variants

of the algorithm Context have been presented in the literature. In all the variants the

decision to prune a branch is taken by considering a gain function. A branch is pruned if

the gain function assumes a value smaller than a given threshold. The estimated context

tree is the smallest tree satisfying this condition. The estimated family of probability

transitions is the one associated to the minimal tree of contexts.

In his seminal paper Rissanen (1983) proved the weak consistency of the algorithm

Context in the case where the contexts have a bounded length, i. e. where the tree

of contexts is finite. Bühlmann and Wyner (1999) proved the weak consistency of the

algorithm also in the finite case without assuming a prior known bound on the maximal

length of the memory but using a bound allowed to grow with the size of the sample.

In both papers the gain function is defined using the log likelihood ratio test to compare

to candidate trees and the main ingredient of the consistency proofs was the chi-square

approximation to the log likelihood ratio test for Markov chains of fixed order. A different

way to prove the consistency in the finite case was introduced in Galves et al. (2006),

using exponential inequalities for the estimated transition probabilites associated to the

candidate contexts. As a consequence they obtain an exponential upper bound for the

rate of convergence of their variant of the algorithm Context.
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The unbounded case as far as we know was first considered by Ferrari and Wyner

(2003) who also proved a weak consistency result for the algorithm Context in this more

general setting. The unbounded case was also considered by Csiszár and Talata (2006) who

introduced a different approach for the estimation of the probabilistic context tree using

the Bayesian Information Criterion (BIC) as well as the Minimum Description Length

Principle (MDL). We refer the reader to this last paper for a nice description of other

approaches and results in this field, including the context tree maximizing algorithm by

Willems et al. (1995). With exception of Weinberger et al. (1995), the issue of the rate of

convergence of the algorithm estimating the probabilistic context tree was not addressed

in the literature until recently. Weinberger et al. (1995) proved in the bounded case that

the probability that the estimated tree differs from the finite context tree generating the

sample is summable as a function of the sample size. Duarte et al. (2006) extends the

original weak consistency result by Rissanen (1983) to the unbounded case. Assuming

weaker hypothesis than Ferrari and Wyner (2003) they showed that the on-line estimation

of the context function decreases as the inverse of the sample size. A different estimation

procedure, inspired by Csiszár and Talata (2006), was adopted by Leonardi (2007) using

a penalized likelihood algorithm to estimate the context tree. This paper proves that the

estimated context tree truncated at any fixed height approximates the real truncated tree

at a rate that decreases faster than the inverse of an exponential function of the penalizing

term. Therefore, even with the largest possible penalizing term the obtained upper bound

is summable but decreases sub exponentially fast. The main technical ingredient in this

paper is an extension to the unbounded case of the exponential inequalities presented in

Galves et al. (2006).

In the present paper we apply the exponential inequality approach presented in Galves

et al. (2006) and extended in Leonardi (2007) to obtain an exponential upper bound for

the algorithm Context in the case of unbounded probabilistic context trees. We prove that

the truncated estimated context tree converges exponentially fast to the tree generating

the sample, truncated at the same level. This improves all results known until now.

The paper is organized as follows. In section 2 we give the definitions and state the

main results. Section 3 is devoted to the proof of an exponential bound for conditional
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probabilities, for unbounded probabilistic context trees. In section 4 we apply this expo-

nential bound to estimate the rate of convergence of the algorithm Context and to prove

its consistency.

2. Definitions and results

In what follows A will represent a finite alphabet of size |A|. Given two integers m ≤ n,

we will denote by wn
m the sequence (wm, . . . , wn) of symbols in A. The length of the

sequence wn
m is denoted by `(wn

m) and is defined by `(wn
m) = n−m+1. Any sequence wn

m

with m > n represents the empty string and is denoted by λ. The length of the empty

string is `(λ) = 0.

Given two sequences w and v, we will denote by vw the sequence of length `(v) +

`(w) obtained by concatenating the two strings. In particular, λw = wλ = w. The

concatenation of sequences is also extended to the case in which v denotes a semi-infinite

sequence, that is v = v−1
−∞.

We say that the sequence s is a suffix of the sequence w if there exists a sequence u,

with `(u) ≥ 1, such that w = us. In this case we write s ≺ w. When s ≺ w or s = w we

write s � w. Given a sequence w we denote by suf(w) the largest suffix of w.

In the sequel Aj will denote the set of all sequences of length j over A and A∗ represents

the set of all finite sequences, that is

A∗ =
∞⋃

j=1

Aj .

Definition 2.1. A countable subset T of A∗ is a tree if no sequence s ∈ T is a suffix of

another sequence w ∈ T . This property is called the suffix property.

We define the height of the tree T as

h(T ) = sup{`(w) : w ∈ T }.

In the case h(T ) < +∞ it follows that T has a finite number of sequences. In this case

we say that T is bounded and we will denote by |T | the number of sequences in T . On

the other hand, if h(T ) = +∞ then T has a countable number of sequences. In this case

we say that the tree T is unbounded.
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Given a tree T and an integer K we will denote by T |K the tree T truncated to level

K, that is

T |K = {w ∈ T : `(w) ≤ K} ∪ {w : `(w) = K and w ≺ u, for some u ∈ T }.

We will say that a tree is irreducible if no sequence can be replaced by a suffix without

violating the suffix property. This notion was introduced in Csiszár and Talata (2006) and

generalizes the concept of complete tree.

Definition 2.2. A probabilistic context tree over A is an ordered pair (T , p) such that

(1) T is an irreducible tree;

(2) p = {p(·|w);w ∈ T } is a family of transition probabilities over A.

Consider a stationary stochastic chain {Xt : t ∈ Z} over A. Given a sequence w ∈ Aj

we denote by

p(w) = P(Xj
1 = w)

the stationary probability of the cylinder defined by the sequence w. If p(w) > 0 we write

p(a|w) = P(X0 = a | X−1
−j = w) .

Definition 2.3. A sequence w ∈ Aj is a context for the process {Xt : t ∈ Z} if p(w) > 0

and for any semi-infinite sequence x−1
−∞ such that w is a suffix of x−1

−∞ we have that

P(X0 = a | X−1
−∞ = x−1

−∞) = p(a|w), for all a ∈ A, (2.4)

and no suffix of w satisfies this equation.

Definition 2.5. We say that the process {Xt : t ∈ Z} is compatible with the probabilistic

context tree (T , p̄) if and only if

(1) Any w ∈ T is a context for the process {Xt : t ∈ Z}.

(2) For any w ∈ T and any a ∈ A, p̄(a|w) = P(X0 = a | X−1
−|w| = w).

In the unbounded case, the compactness of AZ assures that there is at least one station-

ary stochastic chain compatible with a probabilistic context tree. The uniqueness requires

further conditions, such as the ones presented in Fernández and Galves (2002).
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Definition 2.6. A probabilistic context tree (T , p) is of type A if it satisfies the following

conditions

(1) Weakly non-nullness, that is∑
a∈A

inf
w∈T

p(a|w) > 0;

(2) Continuity, that is

βk → 0 when k →∞,

where the sequence {βk}k∈N is defined by

βk := sup{|p(a|w)− p(a|v)| : a ∈ A, v, w ∈ T with w
k= v}.

Here, w
k= v means that there exists a sequence u, with `(u) = k such that u ≺ w

and u ≺ v. The sequence {βk} is called continuity rate.

For a probabilistic context tree of type A with summable continuity rate, the maximal

coupling argument used in Fernández and Galves (2002) implies the uniqueness of the

law of the chain consistent with it. Then, we will assume here that the continuity rate is

summable, that is

β :=
∑
k∈N

βk < +∞. (2.7)

Given an integer k ≥ 1 we define

Dk = min
w∈T :`(w)≤k

max
a∈A

{ |p(a|w)− p(a|suf(w))| }, (2.8)

and

εk = min{ p(w) : `(w) ≤ k and p(w) > 0 }. (2.9)

In what follows we will assume that x0, x1, . . . , xn−1 is a sample of the stationary sto-

chastic chain {Xt : t ∈ Z} compatible with the probabilistic context tree (T , p). In this

case we will say that x0, x1, . . . , xn−1 is a realization of (T , p).

For any finite string w with `(w) ≤ n, we denote by Nn(w) the number of occurrences

of the string in the sample; that is

Nn(w) =
n−`(w)∑

t=0

1{Xt+`(w)−1
t = w}. (2.10)
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For any element a ∈ A , the empirical transition probability p̂n(a|w) is defined by

p̂n(a|w) =
Nn(wa) + 1
Nn(w·) + |A|

. (2.11)

where

Nn(w·) =
∑
b∈A

Nn(wb) .

This definition of p̂n(a|w) is convenient because it is asymptotically equivalent to Nn(wa)
Nn(w·)

and it avoids an extra definition in the case Nn(w·) = 0.

A variant of Rissanen’s algorithm Context is defined as follows. First of all, let us define

for any finite string w ∈ A∗:

∆n(w) = max
a∈A

|p̂n(a|w)− p̂n(a|suf(w))|.

The ∆n(w) operator computes a distance between the empirical transition probabilities

associated to the sequence w and the one associated to the sequence suf(w).

Definition 2.12. Given δ > 0 and d < n, the tree estimated with the algorithm Context

is

T̂ δ,d
n = {w ∈ Ad

1 : ∆n(w) > δ ∧ ∆n(uw) ≤ δ ∀u ∈ A
d−`(w)
1 },

where Ar
1 denotes the set of all sequences of length at most r. In the case `(w) = d we

have A
d−`(w)
1 = ∅.

It is easy to see that T̂ δ,d
n is a tree. Moreover, the way we defined p̂n(·|·) in (2.11)

associates a probability distribution to each sequence in T̂ δ,d
n .

The main result in this article is the following

Theorem 2.13. Let (T , p) be a probabilistic context tree with summable continuity rate

and let x0, x1, . . . , xn−1 be a realization of (T , p). Then for any integer K and any d

satisfying

d > max
w∈T |K

min {`(v) : v ∈ T , w ≺ v} (2.14)

if h(T ) > K or d ≥ h(T ) if h(T ) ≤ K, for any δ < Dd and for each n > d we have that

P(T̂ δ,d
n |K 6= T |K) ≤

4 e
1
e (|A|+ 1) |A|d exp

[
−(n−d−1)

[min( δ
2 , Dd−δ

2 )− |A|+1
(n−d−1)εd

]2[εd + |A|
n−d−1 ]2C

4|A|2(d + 2)
]
,
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where

C =
1

4e(1 + β)
.

As a consequence we obtain the following strong consistency result.

Corollary 2.15. Let (T , p) be a probabilistic context tree with summable continuity rate

and let x0, x1, . . . , xn−1 be a realization of (T , p). Then for any integer K there exists a n̄

such that, for any n ≥ n̄ we have that

T̂ δ,d
n |K = T |K , (2.16)

where d is given by (2.14) and δ is such that δ < Dd.

3. Exponential inequalities for empirical probabilities

The main ingredient in the proof of Theorem 2.13 is a result of exponential rate of

convergence for the empirical transition probabilities. This result was proven in Leonardi

(2007), for a little different definition of the empirical transition probabilities given by 2.11.

Here we present the proof for our specific setting. The main result in this section is the

following

Theorem 3.1. For any finite sequence w, any symbol a ∈ A and any t > 0 the following

inequality holds

P( |Nn(w)− (n− `(w))p(w)| > t ) ≤ e
1
e exp

[ −t2C

(n− `(w))(`(w) + 1)
]
, (3.2)

where

C =
1

4e(1 + β)
. (3.3)

As a direct consequence of Theorem 3.1 we obtain the following corollary.

Corollary 3.4. For any finite sequence w, with p(w) > 0, any symbol a ∈ A and any

t > 0 the following inequality holds

P
(
|p̂n(a|w)− p(a|w)| > t

)
≤

(|A|+ 1) e
1
e exp

[
−(n−`(w)−1)

[t− |A|+1
(n−̀ (w)−1)p(w) ]

2[p(w) + |A|
n−̀ (w)−1 ]2C

4|A|2(`(w) + 2)
]
, (3.5)

where C is given by (3.3).
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The key property used in the proof of Theorem 3.1 is a mixture property for processes

compatible with a probabilistic context tree (T , p) having summable continuity rate. This

property is stated in the following lemma.

Lemma 3.6. Let {Xt : t ∈ Z} be a stationary stochastic chain compatible with the prob-

abilistic context tree (T , p) that has summable continuity rate. Then, for any i ≥ 1, any

k > i, any j ≥ 1 and any finite sequence wj
1, the following inequality holds

sup
xi
1∈Ai

|P(Xk+j−1
k = wj

1 | Xi
1 = xi

1)− p(wj
1)| ≤ j βk−i−1 . (3.7)

Proof. It is easy to see that for any i ≥ 1,

inf
u∈A∞

P(Xk+j−1
k = wj

1 | Xi
−∞ = u0

−∞xi
1) ≤ P(Xk+j−1

k = wj
1 | Xi

1 = xi
1)

≤ sup
u∈A∞

P(Xk+j−1
k = wj

1 | Xi
−∞ = u0

−∞xi
1).

where A∞ denotes the set of all semi-infinite sequences u0
−∞. The reader can find a proof

of the inequalities above in (Fernández and Galves; 2002, Proposition 3). Using this fact

and the condition of stationarity it is sufficient to prove that for any k ≥ 0,

sup
x∈A∞

|P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞)− p(wj
1)| ≤ j βk.

Note that for all pasts x−1
−∞ we have

∣∣P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞)− p(wj
1)

∣∣
=

∣∣∣∫
u∈A∞

[
P(Xk+j−1

k = wj
1 | X−1

−∞ = x−1
−∞)

− P(Xk+j−1
k = wj

1 | X−1
−∞ = u−1

−∞)
]
dp(u)

∣∣∣
≤

∫
u∈A∞

∣∣P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞)

− P(Xk+j−1
k = wj

1 | X−1
−∞ = u−1

−∞)
∣∣ dp(u).

Then, it is enough to show that

∣∣P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞)− P(Xk+j−1
k = wj

1 | X−1
−∞ = u−1

−∞)
∣∣≤ j βk. (3.8)
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We will proceed by induction on j. For j = 1 we have that∣∣P(Xk = w1 | X−1
−∞ = x−1

−∞)− P(Xk = w1 | X−1
−∞ = u−1

−∞)
∣∣

≤
∑
v∈Ak

P(Xk−1
0 = v)

∣∣P(Xk = w1 | Xk−1
−∞ = x−1

−∞v)

− P(Xk = w1 | Xk−1
−∞ = u−1

−∞v)
∣∣

≤ βk.

Suppose that (3.8) is true for j. We will prove that it is also true for j + 1. Observe that∣∣P(Xk+j
k =wj+1

1 |X−1
−∞=x−1

−∞)− P(Xk+j
k =wj+1

1 |X−1
−∞=u−1

−∞)
∣∣

=
∣∣P(Xk+j =wj+1|Xk+j−1

k =wj
1, X

−1
−∞=x−1

−∞)P(Xk+j−1
k =wj

1|X
−1
−∞=x−1

−∞)

− P(Xk+j =wj+1|Xk+j−1
k =wj

1, X
−1
−∞=u−1

−∞)P(Xk+j−1
k =wj

1|X
−1
−∞=u−1

−∞)
∣∣.

Summing and subtracting the term

P(Xk+j =wj+1 | Xk+j−1
k =wj

1, X
−1
−∞=x−1

−∞)P(Xk+j−1
k =wj

1 | X−1
−∞=u−1

−∞)

we can bound above the right hand side of the last expression by∣∣P(Xk+j−1
k = wj

1 | X−1
−∞ = x−1

−∞)− P(Xk+j−1
k = wj

1 | X−1
−∞ = u−1

−∞)
∣∣

+
∣∣P(Xk+j = wj+1 | Xk+j−1

k = wj
1, X

−1
−∞ = x−1

−∞)

− P(Xk+j = wj+1 | Xk+j−1
k = wj

1, X
−1
−∞ = u−1

−∞)
∣∣

≤ j βk +
∑
v∈Ak

P(Xk−1
0 = v)

∣∣P(Xk+j = wj+1 | Xk+j−1
−∞ = x−1

−∞v wj
1)

− P(Xk+j = wj+1 | Xk+j−1
−∞ = u−1

−∞v wj
1)

∣∣
≤ (j + 1) βk.

This concludes the proof of Lemma 3.6. �

We are ready to prove Theorem 3.1. This proof uses strongly the mixture property in

Lemma 3.6 and the fact that the continuity rate is summable.
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Proof of Theorem 3.1. Let w be a finite sequence. Using the same argument as in Galves

et al. (2006, Theorem 2.5) we have that, for any p ≥ 2 the following inequality holds

‖Nn(w)−(n− `(w))p(w)‖p

≤
(
2p

n−`(w)∑
i=1

n−`(w)∑
l=i

sup
xi−1
0 ∈Ai

|P(X l+`(w)
l = w |X i

0 = xi
0)− p(w)|

) 1
2

≤ (2p(n− `(w))(`(w) + 1)(1 + β))
1
2 .

Then, as in Galves et al. (2006) we also obtain that, for any t > 0,

P(|Nn(w)− (n− `(w))p(w)| > t) ≤ e
1
e exp

[ −t2C

(n− `(w))(`(w) + 1)
]
,

where

C =
1

4e(1 + β)
.

�

Proof of Corollary 3.4. The inequality (3.5) follows from (3.2), as explained in the sequel.

As in Galves et al. (2006) we can see that

∣∣ p(a|w)− (n−`(w)−1)p(wa) + 1
(n−`(w)−1)p(w) + |A|

∣∣ ≤ p(w)(|A|+ 1)
p(w)([n−`(w)−1]p(w) + |A|)

≤ |A|+ 1
(n−`(w)−1)p(w)

.

Then, for all n ≥ (|A|+ 1)/tp(w) + `(w) + 1 we have that

P
(
|p̂n(a|w)− p(a|w)| > t

)
= P

(
| Nn(wa) + 1
Nn(w·) + |A|

− p(a|w)| > t
)

≤ P
(
| Nn(wa) + 1
Nn(w·) + |A|

− (n−`(w)−1)p(wa) + 1
(n−`(w)−1)p(w) + |A|

| > t− |A|+ 1
(n−`(w)−1)p(w)

)
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Let denote by t′ = t− (|A|+ 1)/np(w). Then we have that

P
(
| Nn(wa) + 1
Nn(w·) + |A|

− (n−`(w)−1)p(wa) + 1
(n−`(w)−1)p(w) + |A|

| > t′
)

≤ P
(
|Nn(wa)− (n−`(w)−1)p(wa)| > t′

2
([n−`(w)−1]p(w) + |A|)

)
+

∑
n∈A

P
(
|Nn(wb)− (n−`(w)−1)p(wb)| > t′

2|A|
([n−`(w)−1]p(w) + |A|)

)

≤ e
1
e exp

[
−(n−`(w)−1)

[t− |A|+1
(n−̀ (w)−1)p(w) ]

2[p(w) + |A|
n−̀ (w)−1 ]2C

4(`(w) + 2)
]

+ |A| e
1
e exp

[
−(n−`(w)−1)

[t− |A|+1
(n−̀ (w)−1)p(w) ]

2[p(w) + |A|
n−̀ (w)−1 ]2C

4|A|2(`(w) + 2)
]

≤ (|A|+ 1)e
1
e exp

[
−(n−`(w)−1)

[t− |A|+1
(n−̀ (w)−1)p(w) ]

2[p(w) + |A|
n−̀ (w)−1 ]2C

4|A|2(`(w) + 2)
]
,

where

C =
1

4e(1 + β)
.

We obtain (3.5). �

4. Proof of the main Theorem

Proof of Theorem 2.13. Define

OK,d
n,δ =

⋃
w∈T

`(w)<K

⋃
uw∈T̂ δ,d

n

{∆n(uw) > δ},

and

UK,d
n,δ =

⋃
w∈T̂ δ,d

n

`(w)<K

⋂
uw∈T |d

{∆n(uw) ≤ δ}.

Then, if d < n we have that

{T̂ δ,d
n |K 6= T |K} = OK,d

n,δ ∪ UK,d
n,δ .

The result follows from a succession of lemmas.
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Lemma 4.1. For any w ∈ T with `(w) < K and for any uw ∈ T̂ δ,d
n we have that

P(∆n(uw) > δ) ≤ 2 (|A|+ 1) e
1
e exp

[
−(n−d−1)

[ δ
2 −

|A|+1
(n−d−1)εd

]2[εd + |A|
n−d−1 ]2C

4|A|2(d + 2)
]
,

where C is given by (3.3).

Proof. Recall that

∆n(uw) = max
a∈A

|p̂n(a|uw)− p̂n(a|suf(uw))|.

Note that the fact w ∈ T implies that for any finite sequence u and any symbol a ∈ A we

have p(a|w) = p(a|uw). Hence,

P(∆n(uw) > δ) ≤
∑
a∈A

[
P
(
|p̂n(a|w)− p(a|w)| > δ

2
)

+ P
(
|p̂n(a|uw)− p(a|uw)| > δ

2
)]

.

Using Corollary 3.4 we can bound above the right hand side of the last inequality by

2 (|A|+ 1) e
1
e exp

[
−(n−d−1)

[ δ
2 −

|A|+1
(n−d−1)εd

]2[εd + |A|
n−d−1 ]2C

4|A|2(d + 2)
]
,

where C is given by (3.3). �

Lemma 4.2. For any w ∈ T̂ δ,d
n with `(w) < K we have that

P(
⋂

uw∈T |d

{∆n(uw) ≤ δ}) ≤ 2 (|A|+1) e
1
e exp

[
−(n−d−1)

[Dd−δ
2 − |A|+1

(n−d−1)εd
]2[εd + |A|

n−d−1 ]2C

4|A|2(d + 2)
]
,

where C is given by (3.3).

Proof. As d satisfies (2.14) we have that there exists a ūw ∈ T |d such that ūw ∈ T . Then

P(
⋂

uw∈T |d

{∆n(uw) ≤ δ}) ≤ P(∆n(ūw) ≤ δ). (4.3)

Observe that for any a ∈ A,

|p̂n(a|suf(ūw))− p̂n(a|ūw)| ≥ |p(a|suf(ūw))− p(a|ūw)| − |p̂n(a|suf(ūw))− p(a|suf(ūw))|−

|p̂n(a|ūw)− p(a|ūw)|.

Hence, we have that for any a ∈ A

∆n(ūw) ≥ Dd − |p̂n(a|suf(ūw))− p(a|suf(ūw))| − |p̂n(a|ūw)− p(a|ūw)|.
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Therefore,

P(∆n(ūw) ≤ δ) ≤ P
( ⋂

a∈A

{ |p̂n(a|suf(ūw))− p(a|suf(ūw))| ≥ Dd − δ

2
}

)
+P

( ⋂
a∈A

{ |p̂n(a|ūw)− p(a|ūw)| ≥ Dd − δ

2
}

)
.

As δ < Dd we can use Corollary 3.4 to bound above the right hand side of this inequality

by

2 (|A|+ 1) e
1
e exp

[
−(n−d−1)

[Dd−δ
2 − |A|+1

(n−d−1)εd
]2[εd + |A|

n−d−1 ]2C

4|A|2(d + 2)
]
,

where C is given by (3.3). This concludes the proof. �

Now we can finish the proof of Theorem 2.13. We have that

P(T̂ δ,d
n |K 6= T |K) = P(OK,d

n,δ ) + P(UK,d
n,δ ).

Using the definition of OK,d
n,δ and UK,d

n,δ we have that

P(T̂ δ,d
n |K 6= T |K) ≤

∑
w∈T

`(w)<K

∑
uw∈T̂ δ,d

n

P(∆n(uw) > δ) +
∑

w∈T̂ δ,d
n

`(w)<K

P(
⋂

uw∈T |d

∆(uw) ≤ δ).

Applying Lemma 4.1 and Lemma 4.2 we obtain the inequality

P(T̂ δ,d
n |K 6= T |K) ≤

4 e
1
e (|A|+ 1) |A|d exp

[
−(n−d−1)

[min( δ
2 , Dd−δ

2 )− |A|+1
(n−d−1)εd

]2[εd + |A|
n−d−1 ]2C

4|A|2(d + 2)
]
,

where C is given by (3.3). We conclude the proof of Theorem 2.13. �

Proof of Corollary 2.15. It follows from Theorem 2.13, using the first Borel-Cantelli Lemma

and the fact that the bounds for the error estimation of the context tree are summable in

n for a fixed d satisfying (2.14). �
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Deschamps, Jorma Rissanen and Bernard Schmitt for many discussions on the subject.



EXPONENTIAL INEQUALITIES FOR EMPIRICAL UNBOUNDED CONTEXT TREES 15

References
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