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1. INTRODUCTION

In this paper we present a simplified model of grammar identification, which tries to catch
some of the main features of the process by which a child acquires a language. Formally
this amounts to solve the following statistical question. In a sub-shift of finite type, how
to infer the incidence matrix, given a finite sample chosen according to a Gibbs measure
whose potential is known.

In this introduction we will sketch, in a very simplified way, how the problem is
formulated from the point of view of Linguistics. In the next section we present the
mathematical model and state the theorems. Readers who are only interested in the
mathematical aspects of the problem should go directly to the end of this section for a
general description of this paper and a brief description of the related statistical literature.

In Chomsky’s Principles and Parameters framework, the problem of understanding
language acquisition can be roughly formulated in the following terms. A child has a genetic
inherited linguistic capacity which makes him able to learn a language. This linguistic
capacity is characterized by a finite set of constraints which distinguish natural languages
among all the possible formal languages. This set of constraints is what Chomsky calls the
Universal Grammar. Any particular solution of these constraints is called a grammar and
defines in a precise way a natural language. Therefore, “learning a language” is nothing
but identifying an element in the set of natural grammars. We refer the reader to Chomsky
1986, for a comprehensive introduction to the Principles and Parameters Model.

To identify the parental grammar a learning child is guided by the linguistic infor-
mation available in his environment. Psycho-linguists agree that corrections of wrong
constructions do not play an important role in the learning process (cf. McNeill 1966).
Therefore the model must use only positive evidence as a basis of inference.

The idea that the parental prosody helps the learning child to achieve his identification
task appears recently in the linguistics literature. Informally speaking, the prosody of a
language is its characteristic music, which contains among other things, its typical stress
and intonational patterns. Phonologists commonly accept the assumption that the prosody
of a language depends on its syntax, even if a learning child acquires prosody before fixing
his grammar. Therefore it is natural to suppose that once acquired, prosody provides the
learning child with hints about the parental grammar. This is the point of view we adopt
here. We refer the reader to Galves and Galves 1993, where this point of view is applied
to a concrete linguistic situation.

An identification model must take into consideration the fact that languages change.
Following Lightfoot 1979, grammatical changes occur during the acquisition process. From
time to time a generation of learning children chose a grammar which is different from the
parental one. It is has been argued that some of those changes may have been induced by a
former prosodic change. Therefore the model must account both for the robustness of the
acquisition process, and for the possibility of misidentification driven by some particular
prosodic choices. Our model achieves these two goals.

The learning process can be naturally considered as a random process. The sequence
of sentences the learning child receives from his parents does not follow any deterministic
order (parents do not follow any kind of “manual” to teach a language to their child).
This random process is stationary in time and its law depends on the the parental syntax
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and prosody. Therefore the basis of a reasonable model of language acquisition must be a
probability measure having the language as its sample space and having the syntax and the
prosody as parameters. The Thermodynamic Formalism provides a natural way to express
this. We refer the reader to Ruelle 1978 for a general presentation of the Thermodynamic
Formalism.

The issue we consider here was first addressed in a rigorous mathematical way in Gold
1967 through the identification in the limit model. This was not a probabilistic model and
did not take into consideration prosody as an element playing a role in the identification
process. Gold’s proposal ended by a constat d’échec, since the procedure was unable to
select a unique grammar in any finite number of steps. To overcome this failure, it has been
suggested in the linguistic literature (Berwick 1985, following Angluin 1980) that an extra
principle should be taken into consideration, the so called Subset Principle. However a
probabilistic point of view like the one we adopt here solves the problem in a more natural
way.

In the present paper we restrict our study to what in Chomsky’s hierarchy is called
regular grammars (cf. Chomsky 1963). Since Chomsky 1956, it is well known that regular
grammars are just too rough a concept to catch the subtle properties of natural languages.
However we do believe that our mathematical results express in a simplified way part of
the real story.

Statistical analyses based on entropy considerations go back at least to the seminal
work of Kullback 1959, who showed that the notion of relative entropy appears naturally
in maximal likelihood estimation. However, entropy appears in a different way in our
theorems C and D. Our approach is close to the concept of measure of diversity like the
Shannon index and Rényi’s α-entropy (Rényi 1961). We refer the reader to Read and
Cressie 1988 for more details and relevant bibliography on both topics. We thank an
anonymous referee for pointing out to us the related work of Gzyl 1991. We also mention
the paper of Leroux 1992 for a result related to our theorem A in the case of hidden Markov
chains. As far as we know, our results are the first ones making use of the notion of entropy
for the statistical analysis of Gibbs states over sub-shifts of finite type.

The rest of this paper is organized as follows. In section 2, we recall some basic
definitions from the theory of Gibbs measures and state our results. The proofs of the
theorems are given in sections 3 to 5.
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2. DEFINITIONS AND RESULTS

A lexicon is a finite set Λ. A grammar G acting on the lexicon Λ is a matrix indexed by Λ
and with entries equal to 0 or 1. We will only consider irreducible and aperiodic matrices,
i.e. there is an integer k such that all the entries of the matrix Gk are nonzero. These
matrices are also called primitive in the literature (see Horn and Johnson 1985). We will
denote by G the set of all such grammars.

The language generated by G is the set

L(G) = {(x0, · · ·), xj ∈ Λ, Gxj ,xj+1 = 1, j ≥ 0} .

We introduce a partial order in G in the following way. If G and G′ belong to G we
say that G < G′ if for all pairs (x, y) ∈ Λ2 we have G(x, y) ≤ G′(x, y) and the inequality
is strict for at least one pair. Note that G < G′ is equivalent to L(G) ⊆/ L(G′).

Let the sampler Sn be the map from ΛIN to Λn which gives the first n symbols of an
infinite string.

We are interested in the problem of identifying a grammar in G given a sample pro-
duced by Sn acting on the language defined by a fixed but unknown grammar. It is natural
to consider Sn as a random variable. In order to make this precise, for every G ∈ G we
introduce a probability measure on L(G) equipped with the usual σ-field induced by the
product σ-algebra.

Since the grammar G is the unknown in our problem, we need a canonical construction
of the probability measure. A natural way of doing this is to fix a real valued Hölder
continuous function φ on ΛIN, and to associate to any grammar G ∈ G the Gibbs state
with potential φ. We will denote this Gibbs measure by µGφ . The classical references to
Gibbs measures are Bowen 1975 and Ruelle 1978. An extensive and up-to date reference
is Parry and Pollicott 1990. In particular the reader will find there a proof of the existence
and uniqueness of the measure µGφ for φ in Cα, the Banach space of α-Hölder continuous
functions, equipped with the usual Cα norm, for any fixed α.

We recall that µGφ is the unique measure such that there is a positive constant C > 1
such that for any element x of L(G) and for any integer n we have

C−1 ≤
µGφ ({y : Sn(y) = Sn(x)})

e
−nP+

∑n−1

j=0
φ(σjx)

≤ C , (1)

where P = P (φ,G) is the pressure associated to the potential φ on L(G) (see Theorem 1.2
in Bowen 1975).

¿From now on we will use the shorthand notation [Sn(x)] to denote the cylindrical set
{y : Sn(y) = (x0, · · · , xn−1)}.

For a fixed φ, and for any string x, we define the sequence of Maximum Likelihood
subsets Mn

φ(x) (n ≥ 1) of G by

Mn
φ(x) =

{
G : µGφ ([Sn(x)]) = max

G′∈G
µG
′

φ ([Sn(x)])
}
.



5

We can now define the Maximum Likelihood Identification Procedure: for any
n, given φ and the sample Sn(x) the learner chooses a grammar belonging toMn

φ(x). This
procedure is non ambiguous if Mn

φ(x) is a singleton.
Our first identification Theorem says that the Maximum Likelihood Procedure always

identifies the departure grammar in the limit as n diverges.

Theorem A. For any potential φ and any grammarG the Maximal Likelihood setsMn
φ(x)

converges to {G} for µGφ almost all choices of x, as n diverges.

The above Theorem accounts for the robustness of the learning process. A child which
uses the Maximum Likelihood Procedures to identify the parental grammar succeeds using
a finite sample of positive evidences.

Nevertheless, languages change. Since in a natural language acquisition situation the
identification is done with a fixed n which is biologically defined, it seems reasonable to
think of a model in which the Identification Procedure is based on a large but finite sample.
In this case, the Maximum Likelihood Procedure can give an unambiguous answer which
is nevertheless different from the departure grammar. This is summarized in the following
Proposition, which is trivial and will not be proved.

Proposition B. For any n ≥ 1, G and G′ in G, such that G > G′, and any ε ≥ 0 there
exists a Hölder continuous potential φ such that

µGφ
({
x : G′ ∈Mn

φ(x) but G /∈Mn
φ(x)

})
≥ 1− ε .

This model is not satisfactory, since it only describes changes leading to smaller gram-
mars (i.e. grammars which allow less transitions than the parental one).

Trying to improve the model, we introduce a new procedure which coincides with the
Maximum Likelihood approach in most cases but nevertheless even in the limit of diverging
n can lead to a new grammar, which can be strictly greater than the original one. The
next two Theorems show how this may occur under a Minimum Entropy Identification
Procedure.

Given the Gibbs state µGφ , let h(µGφ ) denote its Kolmogorov-Sinai entropy (see Bowen
1975 for the definition).

The Shannon-McMillan-Breiman Theorem says that the µGφ measure of a cylindrical

set [Sn(x)] is typically of order e−nh(µGφ ). This suggests that a Minimum Entropy Criterium
could be used instead of the Maximum Likelihood Procedure we have just described. As a
matter of fact Theorem C below shows that both approaches coincide for potentials which
are close to the null potential, i.e. potentials belonging to

Or = {φ : ‖φ‖Cα < r}

the Cα ball with radius r centered at the null potential, where r is sufficiently small.
We define the Minimum Entropy Subset Enφ (x) by

Enφ (x) =
{
G : [Sn(x)] ⊂ L(G) and h(µGφ ) is minimal

}
.

We may now introduce the Minimum Entropy Identification Procedure. Given
φ, x, and n the learner chooses a grammar belonging to Enφ (x).
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Theorem C. There exists a positive real number r such that for any potential φ in Or
and any grammar G the Minimum Entropy sets Enφ (x) converge to {G} for µGφ almost all
choices of x, as n diverges.

Theorem D. For any G and G′ in G, such that G < G′, there exists a Hölder continuous
potential φ such that, for µGφ almost every x and for any n, G′ ∈ Enφ (x) but G /∈ Enφ (x).

3. PROOF OF THEOREM A.
Theorem A will be proved as soon as we show that for any potential φ and n large enough
the Maximum Likelihood set excludes both grammars which have an entry smaller than
the original grammar, and grammars which are strictly larger. This is done in the next
two lemmata.

Lemma 1. Let G and G′ be two grammars such that G′ < G. Then

lim
n→∞

µGφ (
{
x : G′ ∈Mn

φ(x)
}

) = 0 .

Proof. This follows directly from the Ergodic Theorem, which says that every event which
has positive probability, does indeed occur.

Lemma 2. For any φ ∈ Cα there is an integer n(φ) such that for any pair G and G′ of
grammars such that G < G′, then for any string x ∈ L(G) we have

µG
′

φ ([Sn(x)]) < µGφ ([Sn(x)])

for all n ≥ n(φ).

Proof. From inequality (1) and the finiteness of G, it follows that there is a constant C
(which depends only on φ) such that for any integer n and any string x ∈ L(G) we have

µGφ ([Sn(x)]) > Cen(P (φ,G)−P (φ,G′))µG
′

φ ([Sn(x)]) .

To conclude the proof it is enough to use the following proposition.

Proposition 3. Let φ ∈ Cα(ΛIN), then if G < G′, we have

P (φ,G) < P (φ,G′) .

Note in particular that in the above proposition the inequality is strict.
Proof. We recall (see Bowen 1975) that the pressure of φ is the logarithm of the largest
eigenvalue of the transfer operator defined on Cβ(L(G)) (0 < β < α < 1) by

LφGψ(x0, x1, · · ·) =
∑

x∈Λ, G(x,x0)=1

eφ(x,x0,x1,···)ψ(x, x0, x1, · · ·) .
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In what follows, if there is no danger of confusion, we shall use the shorter notation
LG instead of LφG.

Note that if G < G′ and ψ is non-negative then LGψ ≤ LG′ψ.
We recall also that in the Banach space Cβ(L(G)), the operator LG has a simple

isolated eigenvalue denoted below by λ(G) which is real and positive, the rest of the
spectrum is contained in a disk centered at the origin with radius strictly smaller than this
number λ(G). It is known that log(λ(G)) = P (φ,G).

Moreover, the associated eigenvector ψG is positive and bounded below away from
zero, and the associated eigencovector αG is a positive measure. Similar results hold of
course for G′, and we are going to prove that λ(G) < λ(G′).

This will follow from the eigenvalue equation for G′ considered on L(G). We have
indeed for x ∈ L(G) the relation

λ(G′)ψG′(x) = LG′ψG′(x) = LGψG′(x) + rG′(x) ,

where
rG′(x) =

∑
x∈Λ ,G(x,x0)=0 ,G′(x,x0)=1

eφ(x,x0,x1,···)ψG′(x, x0, x1, · · ·) .

Note however that for some choice of x0, rG′(x) may be equal to zero. In order to deal with
this problem we iterate the above equality n times where n is the smallest integer such
that all entries of the matrix Gn are non zero (this number is finite since G is irreducible
and aperiodic). We obtain since rG′ ≥ 0 and LG is positivity preserving

λ(G′)nψG′(x) ≥ LnGψG′(x) + Ln−1
G rG′(x) , (2)

where

Ln−1
G rG′(x) =

∑
x−n−1,···x−1∈Λ
G(x−n−1,x−n)=0

G′(x−n−1,x−n)=G(x−n,x−n+1)=···=G(x−1,x0)=1

n∏
j=0

eφ(x−n−1+j ,x−n+j ,···) ψG′(x−n−1, x−n, · · ·) .

Form our choice of n, and the aperiodicity of G, we conclude that for any x ∈ L(G), there
is at least one term in the above sum which is non zero. Moreover, since the function ψG′
is bounded below away from zero (and bounded above since it is continuous), we derive
that there is a number η > 0 such that

Ln−1
G rG′(x) ≥ ηψG′(x) ,

which implies by (2) that
(λ(G′)n − η)ψG′ ≥ LnGψG′

on L(G). Since the eigencovector αG is a positive measure, and since ψG′ is strictly
positive, we have αG(ψG′) > 0. Therefore if we apply αG to the two members of the above
inequality, we get

λ(G′)n − η ≥ λ(G)n .

This implies P (φ,G′) = log λ(G′) > log λ(G) = P (φ,G).
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4. PROOF OF THEOREM C
Let µG0 be the Gibbs state associated to the null potential. We will first prove that the

Minimum Entropy set converges to the original grammar with probability 1 with respect to
µG0 . Theorem C will then follow by continuity of the pressure as a function of the potential
(cf Parry and Pollicott 1990), Theorem A and Lemma 7.

We recall that for a matrix G ∈ G, the eigenvalue with largest modulus is simple and
positive. The associated eigenvalue is the exponential of the topological entropy htop(G)
of the Markov shift, and the associated eigenvalue is a vector with strictly positive entries
(see Horn and Johnson 1985). In the notation of the previous section this corresponds to
the null potential φ = 0 (see Bowen 1975).

We now observe that if G < G′, there is a matrix R with entries equal to 0 or 1 such
that G′ = G + R. However, if htop(G) = htop(G′), it follows form exercise 8.4.15 in Horn
and Johnson 1985 that R = 0, i.e. G′ = G.

The proof of Theorem C is a direct consequence of the following lemmata.

Lemma 4. For any G ∈ G and for any x ∈ L(G)

lim
n→∞

logµG0 ([Sn(x])
n

= −htop(G)

Proof. The result follows directly from the Shannon-McMillan-Breiman Theorem.

Lemma 5. Let G and G′ be two elements of G with the same topological entropy. If
L(G) ⊂ L(G′), then G = G′.

Proof. Let C be the cone of vectors in IRθ with positive coordinates, where θ denotes the
cardinal of the lexicon Λ. We have that for any integer n

GnC ⊂ C and G′
nC ⊂ C .

We will denote by p (or pG) the eigenvector of G corresponding to the largest positive
eigenvalue λ = ehtop(G), normalized by the condition∑

i∈Λ

pGi = 1 .

We also denote by λ′ the corresponding eigenvalue of G′, and our hypothesis implies
that λ = λ′. We will derive a contradiction from the assertion that

L(G) ⊆/ L(G′) .

Since however L(G) ⊂ L(G′), we have G′ = G + B where B is a matrix of dimension θ
with entries equal to zero or one and with at least one non zero entry. We observe that
due to the irreducible and aperiodic property, there is an integer m such that for any pair
of indices (i, j)

Gmi,j > 0 .
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We now fix n = m+ 1, and conclude that for the order among vectors of IRθ associated to
the cone C

G′
m+1

p > Gm+1p+GmBp .

We recall that v1 > v2 iff v1 − v2 ∈ C (see Bowen 1975). ¿From our above choice of m,
since B has at least one non zero entry and since the components of p are strictly positive,
we conclude that there is a strictly positive number η such that

G′
m+1

p > (λm+1 + η)p .

Since G′ maps the cone C into itself we have for any integer k

G′
k(m+1)

p > (λm+1 + η)kp ,

which implies λ′ > λ, a contradiction.

Lemma 6. There is a positive real number r such that if φ ∈ Or, the map G→ h(µGφ ) is
strictly monotone increasing.

Proof. The result follows from the continuity of h(µGφ ) with respect to φ for G ∈ G (cf
Parry and Pollicott 1990) and Lemma 5.

Lemma 7. There is a positive real number r such that for any φ ∈ Or and for any G ∈ G,

lim
n→∞

µGφ ({x : Mn
φ(x) = Enφ (x) = {G}}) = 1 .

Proof. The result follows from Lemma 6.
Theorem C now follows from Theorem A and Lemma 7.
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5. PROOF OF THEOREM D
The proof of Theorem D follows from Lemma 8.

Lemma 8. Given two grammars G and G′ in G with G < G′, there exists a Hölder
continuous potential φ such that

h(µGφ ) > h(µG
′

φ ) .

Proof. The idea of the proof is to find a potential such that the Gibbs state will look like
the invariant measure supported by a periodic orbit (which has of course zero entropy).
As in the previous theorem, the matrix G′ has at least one more entry equal to 1 than
the matrix G. Therefore we can find a periodic orbit for the sub-shift of G′ which is not
admissible for G. Let (y0, · · · , yq−1) be such a periodic orbit with minimal period q. In
other words, we have

G′yj ,yj+1
= 1 for 0 ≤ j ≤ q − 1 , G′yq,y1 = 1

and we can also assume that
Gy1,y2 = 0 .

We now define the function φ as follows. Let E be a positive number to be fixed later on,
we set φ(x0, · · · , xq) = E if xq = x0, and there is an integer 0 ≤ l ≤ q − 1 such that for
any integer 0 ≤ j ≤ q − 1, xj = yj+l (mod q), and φ(x0, · · · , xq) = 0 otherwise. Note that
since φ is a cylindrical function, it is Hölder continuous.

On the set L(G) which is the phase space of the sub-shift associated to G, the function
φ is equal to 0. In this case, the corresponding Gibbs measure has maximal Kolmogorov-
Sinai entropy, i.e. h(µGφ ) = htop(G).

We now consider the Gibbs state on L(G′). We observe that for a fixed positive
number β, the transfer operator LβφG′ associated to βφ on the sub-shift of G′ and given by

LβφG′ψ(x1, · · ·) =
∑

x0,G′x0,x1
=1

eβφ(x0,···,xq)ψ(x0, · · ·) ,

maps the space of cylindrical functions of the first q variables into itself (we will of course
only consider admissible sets of q variables with respect to the matrix G′). This is a
finite dimensional subspace of the space of Hölder continuous function, and if we find in
this subspace a positive eigenvalue with a strictly positive eigenvector, by uniqueness this
eigenvalue must be the exponential of the pressure of βφ.

From now on it will be more convenient to use a matrix notation. Let m denote the
number of sequences of length q admissible by G′. The real valued cylindrical functions
which depend only on the first q symbols form a real vector space of dimension m. It is
easy to verify that in this space the transfer operator can be represented by a matrix Mβφ

which takes the following form

Mβφ = z−1(M0 + zM1)
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where z = exp(−βE), M0 and M1 are matrices with entries equal to 0 or 1. Moreover,
there is a basis of the space IRm denoted by e0, · · · , em−1 such that

M0ej =ej+1 (mod q) for 0 ≤ j ≤ q − 1

M0ej =0 else .

Note that M0 is not primitive, but its spectrum is composed of the eigenvalue 0 with
multiplicity m− q and the qth root of unity which are simple eigenvalues. In particular, 1
is a simple eigenvalue. By analytic perturbation theory (see Kato 1980), we conclude that
for z small enough, the matrix zMβφ has a simple eigenvalue λ(z) which is an analytic
function of z which tends to 1 if z → 0. We also know that the matrix zMβφ is such
that all it’s entries are non negative, and moreover there is a power of this matrix with
all it’s entries strictly positive. This matrix has therefore a real positive eigenvalue which
is simple and is also the unique point in the spectrum with maximum modulus . The
associated eigenvector has strictly positive coordinates. For z small enough we conclude
that this point must be λ(z). If we denote by P (z) the function log λ(z) we have

h(µG
′

φ ) =
(
P + Ez

dP

dz

)
z=e−E

= log λ(e−E) + Ee−E
λ′(e−E)
λ(e−E)

,

and this number tends to zero if E diverges. Therefore, for E large enough, it will be
smaller than htop(G) and the theorem is proven.
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