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Abstract
For a stationary source with finite alphabet, let Rn be the number of non-
overlapping n-blocks of symbols, occurring before the initial n-block reappears.
When the source is ψ-mixing, we prove that the difference between the
expectation of log Rn and the entropy of n-blocks converges to the constant
of Euler divided by − ln(2). This can be considered the correct version of
a conjecture presented in Maurer (1992 J. Cryptol. 5 89–105). Our theorem
generalizes recent results presented in Coron and Naccache (1999 Lecture Notes
in Computer Science vol 1556, pp 51–71), Choe and Kim (2000 Coll. Math.
84 159–71) and Wegenkittl (2001 IEEE Trans. Inform. Theory 47 2480–9), in
the context of Markov chains. We also prove that the difference between the
variance of log Rn and the variance of the probability of n-blocks converges
to an explicit constant as n diverges. The basic ingredient of the proofs is
an upper-bound for the exponential approximation of the distribution of the
number of non-overlapping n-blocks until a fixed but otherwise arbitrary n-
block reappears. This is a new result that is interesting by itself.

Mathematics Subject Classification: 60F05, 60G10, 37A50

1. Introduction

Let Rn be the number of non-overlapping blocks of n symbols produced by a stationary ergodic
source occurring before the initial n-block reappears. When the source is binary and iid, Maurer
(1992) proves that

lim
n→+∞ E(log Rn) − nh = −γ
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where γ is Euler’s constant and h is the entropy of the source. In the same paper, he made
the conjecture that this result should hold for a binary symmetric stationary ergodic source.
However, an example showing that this conjecture was not true even for Markov chains has
been presented in Coron and Naccache (1999).

Recently, Choe and Kim (2000) and Wegenkittl (2001) proved that a modified version
of the conjecture is true for ergodic Markov chains on a finite alphabet. The modification
consisted of replacing the entropy of the source by the entropy of blocks of length n.

In this paper, we prove that this corrected version of Maurer’s conjecture holds in the
much more general setting of ψ-mixing stationary processes on a finite alphabet. We also
prove that the difference between the variance of log Rn and the variance of the probability of
n-blocks converges to an explicit constant as n diverges. Explicit upper bounds for the rates of
convergence are provided for both limits. Moreover, we show that the convergence takes place
exponentially fast when the rate of ψ-mixing is exponential. In particular, we show that for
processes having one-dimensional marginals that are distributed uniformly on the alphabet,
the expectation of log Rn converges to a constant. Again this generalizes Maurer’s result for
independent binary symmetric random variables.

The main tool of our proof is an upper-bound for the exponential approximation of the
distribution of τ̄A, which is the number of non-overlapping n-blocks occurring until a fixed
but otherwise arbitrary n-block A reappears. This is a new result that is interesting by itself.
For recent results on the exponential approximation for mixing processes, we refer the reader
to Galves and Schmitt (1997), Collet et al (1999), Haydn (1999), Hirata et al (1999), Abadi
(2004a) and Abadi (2004b), among others. A review of the field can be found in Abadi and
Galves (2001).

This paper is organized as follows. In section 2, we present the notation and the definitions
and state the results. Section 3 contains the proof of the exponential approximation for τ̄A.
Section 4 contains the proof of the exponential approximation for τ̄A when the process is
conditioned to start with the n-block A. The proof of the main result is given in section 5.

2. Notation, definitions and main result

Let (Xm)m∈Z be a stationary stochastic process taking values on a finite alphabet E and defined
on a probability space (�, F, P). We denote by FI the σ -algebra generated by the cylinders
with coordinates in I , I ⊆ Z.

Let ψ = (ψ(l))l�0 be a sequence decreasing to zero. The process (Xm)m∈Z is called
ψ-mixing if

sup
n∈N,B∈F{0,.,n},C∈F{n+l+j,j�1}

|P(B ∩ C) − P(B)P(C)|
P(B)P(C)

= ψ(l),

where the supremum is taken only for sets B and C, such that P(B)P(C) > 0. The sequence
ψ(l) is called the mixing rate of the process.

Let n be a fixed positive integer. The n-block process (X̄k)k∈Z, taking values on the set of
n-blocks En, is defined by

X̄k := (Xkn, . . . , X(k+1)n−1).

We remark that if the process (Xk)k∈Z is ψ-mixing, then the n-block process (X̄k)k∈Z is also
ψ-mixing, with mixing rate ψ(�) = ψ(�n).

Given a n-block A = (a0, . . . , an−1) ∈ En, we define τ̄A, the first hitting time of A after
the origin, as follows:

τ̄A = inf{k � 1 : X̄k = A} .
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We recall that mixing (at any rate) implies ergodicity, and ergodicity implies that τ̄A is almost
surely finite (see, e.g. Cornfeld et al (1982)).

We define Rn as the first time after the origin that the first n-block reappears, namely,

Rn = inf{k � 1 : X̄k = X̄0}.
We define the entropy of the n-blocks as

Hn = −
∑
A∈En

P{X̄0 = A} log P{X̄0 = A}.

The entropy of the process is defined as the limit

h = lim
n→+∞

1

n
Hn.

The following quantities will appear in the statement of our main theorem. We define

� = lim
ε→∞

∫ ∞

ε

e−t log t dt

and

	 = lim
ε→0

[ω(ε) − (log ε)2 + 2� log ε],

where

ω(ε) = ε
∑
k�1

(log k)2 e−ε(k−1).

We will call P{X̄0} the random variable that takes the value P{X̄0 = A} on the set {X̄0 = A}.
We can now state the main result of this paper.

Theorem 1. Let (Xm)m∈Z be a ψ-mixing process. Then the following inequality holds for
all n ∈ N.

|E(log Rn) − Hn − �| � Cεn, (1)

where εn = max{√ψ(n), e−cn}, and C > 0, c > 0 are suitable constants. Moreover,

|Var(log Rn) − Var(log P{X̄0}) − 	 + �2| � εn.

Remark. In Maurer (1992) and Wegenkittl (2001) the constants � and 	 were denoted C

and D, respectively. We found it more comfortable to use C as a generic constant in different
computations and to use � and 	 to denote the specific constants appearing in theorem 1. In
the same papers, ω(ε) was defined as

ω(ε) = ε
∑
k�1

(log k)2(1 − ε)k−1.

It is a simple exercise to pass from this definition to ours. Our definition is natural since the
basis of our proof is an exponential approximation. The same remark explains the definition
of the function ν(ε), which will appear in the proof of theorem 1.

Theorem 1 implies the following corollary for Markov chains.

Corollary 2. Let (Xm)m∈Z be an ergodic Markov chain taking values on E with entropy h.
Then there exist two positive constants C, c such that

|E(log Rn) − (n − 1)h − H1 − �| � C e−cn.
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The main ingredients of the proof of theorem 1 are theorems 3 and 4. Theorem 3 gives an
exponential approximation for the first time after the origin the process hits a fixed n-block.
Theorem 4 proves the same result for the process conditioned to start in the fixed n-block. We
emphasize that both theorems hold for any fixed n-block. In the rest of the paper, for shorthand
notation and whenever it is clear, we will write ρ(A) instead of P{X̄j = A} for any j ∈ N.
This is justified since the process is stationary.

Theorem 3. Let the process (Xm)m∈Z be ψ-mixing and let A be an n-block, with n a positive
integer. Then, the following inequality holds.

|P{τ̄A > t} − e−ρ(A)t | � C ε(A) f (A, t),

where C is a positive constant, ε(A) = ρ(A)β , 0 < β = β(d), if ψ(�) � 1/�d , for all � � �0,
with d > 0, and ε(A) = √

ψ(n), otherwise. Moreover, f (A, t) = e−C1ρ(A)t , where C1 is
another positive constant.

Given an n-block A such that ρ(A) > 0, we denote PA the conditional probability given
the event {X̄0 = A}.
Theorem 4. Let the process (Xm)m∈Z be ψ-mixing. Then, for all n ∈ N, all A and all t > 0,
the following inequality holds

|PA{τ̄A > t} − e−ρ(A)t | � C [ε(A) + ψ(n)] f (A, t),

where f (A, t) and ε(A) are the same as in the preceding theorem.

Remark. We will refer to P {τ̄A > t} has the hitting time τ̄A and to Q{τ̄A > t} has the return
time τ̄A. Theorem 3 states that the hitting time τ̄A is exponentially distributed with parameter
ρ(A) for every n-block A. Theorem 4 states the same result for the return time. In the literature
(cf Abadi and Galves (2001) and references therein), it is considered a similar quantity: the
hitting time

τA = inf{k � 1 : (Xk, . . . , Xk+n−1) = A},
that is, the first occurrence of the (fixed) n-block A over the whole process and not block by
block as τ̄A is defined. Similarly, the return time is defined over the whole process, when the
process is conditioned to start with the fixed n-block A. We remark that for the hitting time τA,
the exponential approximation holds but with parameter λ(A)ρ(A), where λ(A) is a positive
uniformly bounded factor. See Galves and Schmitt (1997) for the first result on this subject.
Abadi (2001) provides an example for which λ(A) �= 1. He also gives an explicit computable
expression for it. Moreover, Abadi (2004b) shows that the return time, τA, can have even a
law that is not exponential. Thus far, our results establish the different behaviour between the
quantities τ̄A and τA.

3. Poof of theorem 3

Since the n-block process (X̄k)k∈Z is ψ-mixing, it follows from theorem 1 in Abadi (2004a)
that for all t > 0 the following inequality holds:

|P{τ̄A > t} − e−ξAρ(A)t | � Cδ(A) e−(�/2)ρ(A)t , (2)

where δ(A) → 0 when n → 0 and ξA ∈ [�1, �2] and 0 < �1 < 1 � �2 < +∞ are constants
independent of A, n and t . The same theorem implies that δ(A) < ε(A).

We remark that, by the mean value theorem,

|e−ρ(A)t − e−ξAρ(A)t | � |1 − ξA|ρ(A)t e−�1ρ(A)t .

We will refer to

Au: Please check if this sentence needs rephrasing
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Therefore, to prove theorem 3, it is enough to show that |1 − ξA| � ε(A). Let us define

λA = − log P{τ̄A > fA}
fAρ(A)

with fA = 1

ρ(A)α
,

for a suitable α ∈ (0, 1). It has been proved in Galves and Schmitt (1997), for a summable ψ ,
and in Abadi (2001), for any ψ , that the following uniform bound holds:

sup
t

|P{τ̄A > t} − e−λAρ(A)t | � Cε(A), (3)

where λA ∈ [�1, �2] ⊂ (0, ∞), and �1 < 1 � �2 are constants independent of A, n and t .
Inequalities (2) and (3) together imply that

sup
t

|e−ξAρ(A)t − e−λAρ(A)t | � Cε(A).

Taking t = 1/ρ(A), we conclude that |ξA − λA| � Cε(A). Taking C1 = �1/2, it is enough
to show that |λA − 1| � Cρ(A)β to conclude the proof. This is done in the next lemma.

Lemma 5. Let the process (Xm)m∈Z be ψ-mixing. Then there exist positive constants C and
β such that for all n ∈ N and all A ∈ Cn the following inequality holds:

|λA − 1| � Cρ(A)β.

Proof. We will first prove that∣∣∣∣P{τ̄A � fA}
fAρ(A)

− λA

∣∣∣∣ � Cρ(A)β. (4)

By Taylor’s expansion, we have the relation that

1 − e−θ � θ � 1 − e−θ + 2(1 − e−θ )2 (5)

for all θ ∈ [0, 1]. Put

θ = − log P{τ̄A > fA}. (6)

Clearly, θ � 0. Moreover, θ � 1 if and only if P{τ̄A � fA} � 1 − e−1. To check this last
inequality, we observe that

P{τ̄A � fA} �
[fA]∑
i=1

P{X̄i = A} � fAρ(A).

Since ρ(A) converges to 0 as n diverges, it follows that fAρ(A) � 1 − e−1 for all n large
enough. Therefore, replacing (6) in inequalities (5), we deduce expression (4).

We will now prove that∣∣∣∣1 − P{τ̄A � fA}
fAρ(A)

∣∣∣∣ � Cρ(A)β. (7)

For any integer j � 1, write

P{τ̄A = j} = P{τ̄A > j − 1} − P{τ̄A > j}. (8)

By stationarity,

P{τ̄A > j − 1} = P{X̄i �= A; 2 � i � j}. (9)

Expressions (8) and (9) together imply that

P{τ̄A = j} = P{X̄0 = A, τ̄A > j − 1}
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for all positive integer j . Using the above equality, we have the relation that for any j � 1

ρ(A) − P{τ̄A = j} = P{X̄0 = A, τ̄A � j − 1} �
j−1∑
i=1

P{X̄0 = A, X̄i = A}.

Using the ψ-mixing property of the process, this last expression is bounded above by
j−1∑
i=0

ρ(A)2(1 + ψ(in)).

Using this upper-bound we obtain immediately the inequality

| [fA]ρ(A) − P{τ̄A � fA}| �
[fA]∑
j=1

j−1∑
i=0

ρ(A)2(1 + ψ(in)),

where [x] stands for the integer part of x ∈ 	. This last expression is bounded trivially above
by � CfA

2ρ(A)2. From this and the trivial fact that 1/[fA] − 1/fA � 1/fA, inequality (7)
follows. This concludes the proof of the lemma.

4. Proof of theorem 4

By the triangle inequality we have

|PA{τ̄A > t} − e−ρ(A)t | � |PA{τ̄A > t} − P{τ̄A > t}| + |P{τ̄A > t} − e−ρ(A)t |. (10)

To obtain an upper-bound for the first term of the right-hand side of the above inequality, we
use the following triangle inequality, which holds for any t � 2:

|PA{τ̄A > t} − P{τ̄A > t}|
= |PA{X̄k �= A ; 1 � k � t} − P{X̄k �= A ; 1 � k � t}|
� |PA{X̄k �= A ; 1 � k � t} − PA{X̄k �= A ; 2 � k � t}| (11)

+|PA{X̄k �= A ; 2 � k � t} − P{X̄k �= A ; 2 � k � t}| (12)

+|P{X̄k �= A ; 2 � k � t} − P{X̄k �= A ; 1 � k � t}|. (13)

Term (11) is bounded using twice the mixing property by

PA{X̄1 = A, X̄k �= A; 2 � k � t} � ρ(A)ψ(0)(1 + ψ(0))P{X̄k �= A; 2 � k � t}
= Cρ(A)P{τ̄A > t − 1}. (14)

Term (12) is also bounded using the mixing property by

ψ(n)P{τ̄A > t − 1}. (15)

As for (11), term (13) can be bounded by

P{X̄1 = A, X̄k �= A; 2 � k � t} � ρ(A)(1 + ψ(0))P{X̄k �= A; 2 � k � t}
= Cρ(A)P{τ̄A > t − 1}. (16)

A similar upper-bound holds for t = 1. To prove it, we first observe that

|PA{τ̄A > 1} − P{τ̄A > 1}| = |PA{τ̄A = 1} − P{τ̄A = 1}|.
Then we use the the mixing property to conclude that

|PA{τ̄A = 1} − P{τ̄A = 1}| � ψ(0)ρ(A). (17)

Since P{τ̄A > 0} = 1, this last inequality is the upper-bound we wanted for t = 1.
Inequalities (14), (15), (16) and (17) together imply that

|PA{τ̄A > t} − e−ρ(A)t | � C(ψ(n) + ρ(A))P{τ̄A > t − 1},
where C is a positive constant. To conclude the proof of theorem 4, it is enough to apply
theorem 3 to the right-hand side of inequality (10).
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5. Proof of theorem 1

By definition,

E(log Rn) =
∑
t�1

log t P{Rn = t} =
∑
t�1

(log(t + 1) − log t)P{Rn > t}.

Also, by definition

P{Rn > t} =
∑
A∈Cn

ρ(A)PA{τ̄A > t}.

Thus

E(log Rn) =
∑
A

ρ(A)
∑
t�1

(log(t + 1) − log t)PA{τ̄A > t}. (18)

We define ν(ε) = ε
∑

k�1 log k e−ε(k−1). We have the relation that � = limε→∞[ν(ε) +
log ε]. Therefore,

∑
A

ρ(A)
∑
t�1

(log(t + 1) − log t) e−ρ(A)t =
∑
A

(1 − e−ρ(A))ν(ρ(A)). (19)

By the triangle inequality,

|E(log Rn) − Hn − �| � I + II + III,

where the terms I, II and III are defined below.
In view of (18), we define I. We use the mean value theorem and theorem 4 to get an upper

bound for it. Define εn = maxA∈E ε(A). Therefore,

I :=
∣∣∣∣∣∣
∑
A

ρ(A)
∑
t�1

(log(t + 1) − log t)[PA{τ̄A > t} − e−ρ(A)t ]

∣∣∣∣∣∣
�

∑
A

ρ(A)
∑
t�1

1

t
|PA{τ̄A > t} − e−ρ(A)t |

�
∑
A

ρ(A)
∑
t�1

1

t
(ε(A) + ψ(n))f (A, t)

� C (εn + ψ(n)). (20)

To define II, we use identity (19). An upper-bound is obtained with straightforward
computations.

II :=
∣∣∣∣
∑
A

ρ(A)

[
1 − e−ρ(A)t

ρ(A)
ν(ρ(A)) − ν(ρ(A))

]∣∣∣∣

�
∑
A

ρ(A)

∣∣∣∣1 − e−ρ(A)t − ρ(A)

ρ(A)
ν(ρ(A))

∣∣∣∣
�

∑
A

ρ(A) 2ρ(A)ν(ρ(A))

� Cεn. (21)
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Finally,

III :=
∣∣∣∣∣
∑
A

ρ(A)ν(ρ(A)) − Hn − �

∣∣∣∣∣
=

∣∣∣∣∣
∑
A

ρ(A)[ν(ρ(A)) + log ρ(A) − �]

∣∣∣∣∣
� max

A
|ν(ρ(A)) + log ρ(A) − �|

� C e−cn.

Thus, we have established (1). Further,

|Var(log Rn) − Var(log P{Xn
1 }) − 	 + �2| �

∣∣∣∣∣E((log Rn)
2) −

∑
A

ρ(A)ω(ρ(A))

∣∣∣∣∣
+

∣∣∣∣∣
∑
A

ρ(A)ω(ρ(A)) −
∑
A

ρ(A)(log ρ(A))2 − 2�Hn − 	

∣∣∣∣∣
+|H 2

n + 2�Hn + �2 − (E(log Rn))
2| .

In the right-hand side of the above inequality, the first term is bounded by the same
arguments that were used in (20) and (21). The bound for the second one is obtained using
the definition of 	. The upper-bound of the third one is a consequence of inequality (1). This
ends the proof of the theorem.

Proof of corollary 2. We follow the ideas of Wegenkittl’s paper. Let A = (a0, . . . , an−1) ∈ En.
We first recall that for Markov chains one has ψ(n) � C e−cn. Second, we observe that

ρ(A) = P{X0 = a0}
n−1∏
i=1

P{Xi = ai |Xi−1 = ai−1, . . . , X0 = a0}.

Define

Fn = Hn − Hn−1

=
∑

an−1,...,a0

P{Xn−1 = an−1, . . . , X0 = a0} log P{Xn−1 = an−1|Xn−2 = an−2, . . . , X0 = a0}

for all positive integers n, with H0 = 0. Then it is enough to observe that inequality (1) can
be rewritten as ∣∣∣∣E(log Rn) −

n∑
i=1

Fi − �

∣∣∣∣ � εn

to conclude the proof.

6. Final remarks

Remark 1. Maurer’s conjecture was formulated originally using logarithms of base 2, which is
a natural choice when we consider binary sources. We recall that using base 2 for the logarithms,
the values of the constants considered in this paper are � = −0.832 746 · · · = −γ / ln 2, where
γ is Euler’s constant and 	 = 4.117 181 . . ..
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Remark 2. The return time, Rn, is defined considering the non-overlapping adjacent
observations (Xkn, . . . , Xkn+n−1); k � 1. Now, consider n-blocks that are non-
overlapping but are not necessarily adjacent. Let us fix a positive integer M and define the
process

(XM
k )k∈N with XM

k = (XkMn, . . . , X(kMn)+n−1)

with the corresponding return time

RM
n = inf{k � 1 : (XkMn, . . . , X(kMn+n−1) = (X0, . . . , Xn−1)}.

As with to τ̄A, we can define τM
A . Clearly, theorems 3 and 4 hold for τM

A and so does
theorem 1 too. The larger M is, the more mixing is the M-process (XM

k )k∈N, and the limits
in theorem 1 (and theorems 3 and 4) take place faster. Statistically speaking, this means that
considering RM

n has the disadvantage that we need a larger sample for observing the repetition
time, but when this is not a problem, it has the advantage that the convergence given by
theorem 1 for RM

n is faster than the convergence for Rn.

Remark 3. An important result in ergodic theory is the famous Kac’s lemma (e.g. Kac (1947)),
which states that for an ergodic system the expected return time to a measurable set with
positive measure is the inverse of the measure of the event. We present in the next corollary
an estimation for all the moments of the non-overlapping hitting and return times. This a
consequence of the bounds given in theorems 3 and 4. Roughly speaking, if the hitting (or
return) time distribution is close to an exponential distribution with parameter ρ(A), we have
the relation that k!/ρ(A)k ≈ E(τ k

A).

Corollary 6. Let (Xm)m∈Z be a ψ-mixing process. Let k ∈ N. Then the following
inequalities hold:

|ρ(A)kE(τ̄ k
A) − k!| � Ckε(A)

and

|ρ(A)kEA(τ̄ k
A) − k!| � Ck [ε(A) + ψ(n)],

where ε(A) is the same as in theorem 3, and Ck is a positive constant that only depends on k.

Proof. We recall that for a random variable X with exponential distribution with parameter λ,
we have E(Xk) = k!/λk . Now we use the inequality

|E(Xk) − E(Y k)| =
∣∣∣∣∣∣
∑
t�0

((t + 1)k − tk)P{X > t} −
∑
t�0

((t + 1)k − tk)P{Y > t}
∣∣∣∣∣∣

�
∑
t�0

k(t + 1)k−1|P{X > t} − P{Y > t}|

for any pair of positive random variables X, Y . Now, apply the above inequality with X

exponentially distributed and Y = τ̄A. The exponential decay of the function f (A, t) in the
error term in theorem 3 ends the proof of the corollary.
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Toulon et du Var for the hospitality during the preparation of this paper.
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the Núcleo de Excelência ‘Critical phenomena in probability and stochastic processes’ grant
41.96.0923.00. This research was supported partially by the USP-COFECUB agreement. MA
is supported by FAPESP. AG is supported partially by CNPq, grant 301301/79.

References

Abadi M 2001 Exponential approximation for hitting times in mixing processes Math. Phys. Electr. J. 7
Abadi M 2004a Sharp error terms and necessary conditions for exponential hitting times in mixing processes Ann.

Probab. at press http://www.ime.usp.br/˜abadi
Abadi M 2004b Statistics and error terms of occurrence times in mixing processes submitted http://

www.ime.usp.br/˜abadi
Abadi M and Galves A 2001 Inequalities for the occurrence times of rare events in mixing processes. The state of the

art Markov Proc. Relat. Fields. 7 97–112
Choe G and Kim D 2000 Average convergence rate of the first return time Coll. Math. 84 159–71
Collet P, Galves A and Schmitt B 1999 Repetition times for Gibbsian sources Nonlinearity 12 1225–37
Cornfeld I, Fomin S and Sinai Y 1982 Ergodic theory, Grundlehren der Mathematischen Wissenschaften vol 245

(New York: Springer)
Coron J and Naccache D 1999 An accurate evaluation of Maurer’s universal test. Selected areas in cryptography

Lecture Notes in Computer Science vol 1556, pp 51–71
Galves A and Schmitt B 1997 Inequalities for hitting times in mixing dynamical systems Random Comput. Dyn. 5

337–48
Haydn N 1999 The distribution of the first return time for rational maps J. Stat. Phys. 94 5–6
Haydn N 1999 The distribution of the first return time for rational maps J. Stat. Phys. 94 1027–36
Hirata M, Saussol B and Vaienti S 1999 Statistics of return times: a general framework and new applications Commun.

Math. Phys. 206 33–55
Kac M 1947 On the notion of recurrence in discrete stochastic processes Bull. Am. Math. Soc. 53 1002–10
Maurer U 1992 A universal test for random bit generators J. Cryptol. 5 89–105
Wegenkittl S 2001 Entropy estimators and serial tests for ergodic chains IEEE Trans. Inform. Theory 47 2480–9

The authors thank

Au: Editing changes have been made to this sentence, please ensure the meaning is still as intended

Abadi M

Au: Please provide page range

Abadi M 2004b

Au: Please update



Summary of Comments on non161150

Page: 4
Sequence number: 1
Author: 
Date: 4/12/2004 12:28:15 PM 
Type: Highlight

We will refer to
 

Sequence number: 2
Author: 
Date: 4/12/2004 12:28:28 PM 
Type: Note

Au: Please check if this sentence needs rephrasing
 

 
Page: 10
Sequence number: 1
Author: 
Date: 4/12/2004 1:24:41 PM 
Type: Highlight

The authors thank
 

Sequence number: 2
Author: 
Date: 4/12/2004 1:25:06 PM 
Type: Note

Au: Editing changes have been made to this sentence, please ensure the meaning is still as intended
 

Sequence number: 3
Author: 
Date: 4/12/2004 1:26:22 PM 
Type: Highlight

Abadi M
 

Sequence number: 4
Author: 
Date: 4/12/2004 1:26:40 PM 
Type: Note

Au: Please provide page range
 

Sequence number: 5
Author: 
Date: 4/12/2004 1:28:33 PM 
Type: Highlight

Abadi M 2004b
 

Sequence number: 6
Author: 
Date: 4/12/2004 1:28:41 PM 
Type: Note

Au: Please update
 




