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Markov approximations of chains of infinite order

R. Fernández and A. Galves

Abstract. We consider chains whose transition probabilities depend on the whole past,
with summable continuity rates. We show that Ornstein’s d-distance between one such
chain and its canonical Markov approximations of different orders is at worst propor-
tional to the continuity rate of the chain. The result generalizes previous bounds ob-
tained by X. Bressaud and ourselves, while relying on a similar coupling argument.
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1 Introduction

This article addresses the following question: How well can we approximate a
chain of infinite order by a Markov chain of order k? This leads to a second,
technical, question: Which distance should we use to measure the quality of an
approximation?

It is natural to use as Markov approximation a Markov chain whose transition
probabilities can be estimated from a sample of the infinite-order chain. This
is the so-called canonical Markov approximation. The conditional probabilities
of the canonical approximation of order k coincide with the order-k conditional
probabilities of the original infinite-order chain.

The main result of the present article is an upper bound of Ornstein’s
d-distance between a chain of infinite order and its canonical Markov approxi-
mation of any given order. In fact, the bound is proportional to the continuity
rate of the chain of infinite order, whenever the sequence formed by these rates
is summable.

The present result applies to a more general type of chains than those covered
by Bressaud, Fernández and Galves [2] (see remark 4 below). The result actu-
ally applies to any Markov approximation whose transition probabilities satisfy
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a suitable sandwich inequality [(25) below]. In addition, in this work we do not
assume stationarity of the chain. Thus, in particular, our result applies to chains
starting at a finite time from a fixed past.

Our proof is constructive. Following the spirit of the graphical construction of
interacting particle systems introduced by Harris [5, 7], we construct an explicit
coupling between the original chain and its k-step approximation. In this cou-
pling, the probability of coincidence of the chains at a given time is an increasing
function of the length of the immediately preceding period of coincidence. Fur-
thermore, if the chains differ at some time, there is a nonzero probability that
they will become equal at the next instant. Therefore, the coupled processes
tend to coincide most of the time, and separations do not last too long.

Chains of infinite order seem to have been first studied by Onicescu and Mi-
hoc [9] who called them chains with complete connections (chaı̂nes à liaisons
complètes). Their study was soon taken up by Doeblin and Fortet [3] who
proved the first results on speed of convergence towards the invariant measure.
The name chains of infinite order was coined by Harris [6]. We refer the reader
to Iosifescu and Grigorescu [8] for a complete survey, and to our notes with
Pablo Ferrari for the Vth Brazilian School of Probability [4] for an elementary
presentation of the subject from a constructive point of view.

2 Definitions and main result

We consider stochastic processes (Xn)n∈
� taking values in a finite alphabet A

and defined on a probability space (Ω,F , P). We adopt the following nota-
tion. For k ≤ n ∈ Z, xn

k denotes the sequence xk, . . . , xn, and An
k the set

of such sequences. Likewise, xn
−∞ denotes the sequence (xi)i≤n and An

−∞

the corresponding space. Full sequences will be denoted without sub or super-
scripts, x ∈ A

�

. The notation ym
n+1x

n
k indicates the sequence that takes values

xk, . . . , xn, yn+1, . . . , ym.

Definition 1. A system of transition probabilities is a family {Pn( · | · ) : n ∈
Z} of functions Pn : A ×An−1

−∞ −→ [0, 1], such that the following conditions
hold for each n ∈ Z:

(i) Measurability: For each xn ∈ A the function Pn(xn| · ) is measurable
with respect to the product σ-algebra.

(ii) Normalization: For each xn−1
−∞ ∈ An−1

−∞ ,
∑

xn∈A

Pn(xn|x
n−1
−∞ ) = 1 . (1)
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Definition 2. A stochastic process (Xn)n∈
� defined on (Ω,F , P) is consistent

with a system of transition probabilities (Pn) if

P(Xn = xn|X
n−1
−∞ = xn−1

−∞ ) = Pn(xn|x
n−1
−∞ ) (2)

for all n ∈ Z, x ∈ A
�

.

Remark 1. Note that we do not assume stationarity (i.e. Pn may depend on n).

Definition 3. A system of transition probabilities is continuous if for each n ∈
Z and each xn ∈ A

β(s) := sup
n∈

�
sup
x,y

∣∣∣Pn(xn|x
n−1
−∞ ) − Pn(xn|x

n−1
n−s yn−s−1

−∞ )
∣∣∣

−→
s→∞

0 . (3)

The sequence (β(s))s∈ � is called the continuity rate.
A compactness argument shows that every system of continuous transition

probabilities has at least one stochastic process consistent with it.

Remark 2. A stronger notion of continuity, often used in the literature involves
the log-continuity rates

γ(s) := sup
n∈

�
sup
x,y

∣∣∣∣∣
Pn(xn|x

n−1
−∞ )

Pn(xn|x
n−1
n−s yn−s−1

−∞ )
− 1

∣∣∣∣∣ (4)

A system of transition probabilities is log-continuous if γ(s) −→ 0 as s → ∞.

Definition 4. A system of transition probabilities is weakly non-null if

inf
n∈

�

∑

yn∈A

inf
x

Pn(yn|x
n−1
−∞ ) > 0 . (5)

Remark 3. The stronger requirement

inf
n∈

� inf
x

Pn(yn|x
n−1
−∞ ) > 0 (6)

is instead often assumed in the literature.

Definition 5. A stochastic process is a chain of infinite order of type A if
it is consistent with a system of transition probabilities that is continuous and
weakly non-null.

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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Remark 4. This type of chains was already considered by Doeblin and Fortet
[3]. They also considered the chains of type B, defined by transition probabilities
that are log continuous [see (4)] and satisfy the more restrictive non-nullness
condition (6). The approximation result of Bressaud, Fernández and Galves [2]
only applies to chains of type B while the result here applies to the more general
class of chains of type A.

Definition 6. The canonical Markov approximation of order k ∈ N of a
process (Xn)n∈

� is the Markov chain of order k X [k] = (X
[k]
n )n∈

� having as
transition probabilities,

P [k]
n (a |xn−1

n−k) := P(Xn = a |Xn−1
n−k = xn−1

n−k) (7)

for all integer n, k ≥ 1 and all a ∈ A and xn−1
n−k ∈ An−1

n−k.

Definition 7. The distance d between two processes X = (Xn) and Y = (Yn)
is defined as

d(X,Y ) = inf

{
sup
n∈

�
P(X̃n 6= Ỹn) : (X̃, Ỹ ) coupling of X and Y

}
.

This definition naturally extends Ornstein’s to non-stationary chains.
We now state our main result.

Theorem 1. Let X = (Xn)n∈
� be a chain of infinite order of type A with

summable continuity rates (β(s))s≥1. Then there is a constant C > 0 such that,
for all k ≥ 1,

d̄(X,X [k]) ≤ C β(k) ,

where X [k] = (X
[k]
n )n∈

� is the canonical Markov approximation of order k of
the process X .

3 Construction of the coupling

The proof of our theorem is based on the construction of a suitable coupling
between the transition probabilities Pn( · | · ) of the original chain and the prob-

abilities P
[k]
n ( · | · ) of its Markov approximation.

In general, a coupling of two systems of transition probabilities Pn( · | · ) and
Qn( · | · ) is a system of transition probabilities P̃n : A2 × (An−1

−∞ )2 −→ [0, 1]
such that

∑

yn∈A

P̃n

(
xn, yn

∣∣∣ xn−1
−∞ , yn−1

−∞

)
= Pn

(
xn

∣∣∣ xn−1
−∞

)

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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∑

xn∈A

P̃n

(
xn, yn

∣∣∣ xn−1
−∞ , yn−1

−∞

)
= Qn

(
yn

∣∣∣ yn−1
−∞

)
(8)

for all n ∈ Z, all xn, yn ∈ A and all xn−1
−∞ , yn−1

−∞ ∈ An−1
−∞ . [This definition

is, in fact, a particular instance of the notion of coupling among probability
measures.]

We resort to a coupling with the following properties:

(a) it loads the diagonal as much as possible, and

(b) each step of the coupling depends only on the past.

In fact, we shall use the well known maximal coupling (see, for instance, Ap-
pendix A.1 in Barbour Holst and Janson, 1992). We present here a graphical
construction of this coupling which is convenient for our purposes.

Given two trajectories x = (xn), y = (yn) and an element a of the alphabet A,
let us define

ta,n(x, y) := Pn(a |xn−1
−∞ ) ∧ Qn(a | yn−1

−∞ )

ra,n(x, y) := [Pn(a |xn−1
−∞ ) − Qn(a | yn−1

−∞ )] ∨ 0 (9)

sa,n(x, y) := [Qn(a | yn−1
−∞ ) − Pn(a |xn−1

−∞ )] ∨ 0 .

Notice that
either ra,n(x, y) = 0 and sa,n(x, y) > 0

or ra,n(x, y) > 0 and sa,n(x, y) = 0
(10)

and that

ta,n(x, y) + ra,n(x, y) = Pn(a|xn−1
−∞ ) (11)

ta,n(x, y) + sa,n(x, y) = Qn(a|yn−1
−∞ ) . (12)

As a consequence,
∑

a∈A

ta,n(x, y) +
∑

a∈A

ra,n(x, y) = 1 (13)

∑

a∈A

ta,n(x, y) +
∑

a∈A

sa,n(x, y) = 1 . (14)

Identities (13)/(14) enable us to define two partitions of [0, 1], each one formed
by the non-empty sets of the following 2|A| intervals:

{T x,y
1,n , . . . , T

x,y

|A|,n, R
x,y
1,n, . . . , R

x,y

|A|,n} and {T x,y
1,n , . . . , T

x,y

|A|,n, S
x,y
1,n , . . . , S

x,y

|A|,n}

(15)

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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These are intervals of lengths

|T x,y
a,n | = ta,n(x, y) , |Rx,y

a,n| = ra,n(x, y) and |Sx,y
a,n| = sa,n(x, y) ,

for all a ∈ A

We define the transition probabilities

P̃n((a, b) | (xn−1
−∞ , yn−1

−∞ )) :=

{
|T x,y

a,n | if a = b,

|Rx,y
a,n ∩ S

x,y
b,n | if a 6= b

(16)

The properties of this coupling are summarized in the following theorem

Theorem 2. If the chains with transition probabilities P and Q are both of type
A, so is the coupling defined by (16). More explicitly, we have

β̃(s) ≤ const [βP (s) ∨ βQ(s)] , (17)

and
∑

a,b∈A

inf
x,y

P̃n

(
(a, b)

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

≥

≥
[∑

a∈A

inf
x

Pn(a|xn−1
−∞ )

]
∧

[∑

a∈A

inf
x

Qn(a|xn−1
−∞ )

]
. (18)

We remark that, even if the transitions Pn and Qn are of type B, this coupling
is not in general of type B, because there may be pairs (a, b) with

inf
x,y

P̃n

(
(a, b)

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

= 0 .

This happens whenever R
x,y
a,n ∩ S

x,y
b,n = ∅.

Proof.

Non-nullness
∑

a,b∈A

inf
x,y

P̃n

(
(a, b)

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

≥
∑

a∈A

inf
x,y

P̃n

(
(a, a)

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

(19)
But the right-hand side is

∑

a∈A

inf
x,y

[
Pn(a|xn−1

−∞ ) ∧ Q(a|yn−1
−∞ )

]
≥

≥
[∑

a∈A

inf
x

Pn(a|xn−1
−∞ )

]
∧

[∑

a∈A

inf
x

Qn(a|xn−1
−∞ )

]
. (20)

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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Continuity Let us denote

∆m,n(a, b) = sup
x,y,u,w

∣∣∣P̃n

(
(a, b)

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)
−

P̃n

(
(a, b)

∣∣∣ (xn−1
n−mun−m−1

−∞ , yn−1
n−mwn−m−1

−∞ )
)∣∣∣ . (21)

Case a = b:

∆m,n(a, a) = sup
x,y,u,w

∣∣∣ta,n(x, y) − ta,n(xn−1
n−mun−m−1

−∞ , yn−1
n−mwn−m−1

−∞ )
∣∣∣ .

(22)
Using |α ∧ β − α′ ∧ β′| ≤ |α − α′| ∨ |β − β′| we get

∆m,n(a, a) ≤ sup
x,y,u,w

[
|Pn(a|xn−1

−∞ ) − Pn(a|xn−1
n−mun−m−1

−∞ )| ∨

|Qn(a|yn−1
−∞ ) − Qn(a|yn−1

n−mwn−m−1
−∞ )|

]
.

(23)

Hence,
∆m,n(a, a) ≤ βP (m) ∨ βQ(m) (24)

uniformly in n.

Case a 6= b: Computations are similar but longer.

4 Proof of the theorem

We are ready to prove Theorem 1.

4.1 Bounds for the transition probabilities

Let P
[k]
n be the transition probability defined by (7). The following proposition

contains the only property of the canonical approximation needed for the result.

Proposition 3. For each trajectory y ∈ A
�

,

inf
u∈A �

Pn(a | yn−1
n−ku

n−k−1
−∞ ) ≤ P [k]

n (a | yn−1
n−k) ≤ sup

u∈A �
Pn(a | yn−1

n−ku
n−k−1
−∞ ).

(25)

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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Proof. First observe that, by definition, the transition probabilities of the canon-
ical Markov approximations satisfy

P [k]
n (a|xn−1

n−k) = Pn(a|xn−1
n−k) . (26)

The conclusion of the proof is an exercise on conditional probabilities. Indeed,
each conditional probability Pn(a|xn−1

n−k) can be written as an integral of the
function un−1

−∞ 7→ Pn(a|un−1
−∞ ) with respect to a probability measure condi-

tioned on {Xn−1
n−k = xn−1

n−k}. Inequalities (25) follow by taking the correspond-
ing supremum and infimum of the integrand.

Remark 5. In fact, (25) is the only property of the Markov transitions used in
the sequel. Thus, our results apply to any Markov approximation scheme, not
necessarily the canonical one, satisfying (25).

4.2 The proof

Positive probability of coincidence

By the definition of the coupling,

P

(
X̃n = X̃ [k]

n

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

=
∑

a

ta,n(x, y) . (27)

We define λ0 as
λ0 := inf

n

∑

a∈A

inf
x

Pn(a|xn−1
−∞ ) (28)

and observe that, by (18),

∑

a

ta,n(x, y) ≥ λ0 (29)

which is positive because the chain (Xn) is weak non-null.

Probability of remaining coincident

In the sequel we use the short-hand notation

P

(
B

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

:= P

(
B

∣∣∣ (X̃n−1
−∞ , (X̃ [k])n−1

−∞ ) = (xn−1
−∞ , yn−1

−∞ )
)

,

(30)
for B an event measurable with respect to the variables (X̃∞

n , (X̃ [k])∞n ).

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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Lemma 4. If xn−1
n−m = yn−1

n−m then

P

(
X̃n 6= X̃ [k]

n

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

≤ |A|β(k ∧ m) . (31)

Proof. By definition of the coupling

P

(
X̃n 6= X̃ [k]

n

∣∣∣ (xn−1
−∞ , yn−1

−∞ )
)

=
∑

a

ra,n(x, y) . (32)

Inequalities (25) imply

sup
a,x,y

∣∣∣Pn(a |xn−1
−∞ ) − P [k]

n (a |xn−1
n−m yn−m−1

−∞ )
∣∣∣ ≤ β(m ∧ k) . (33)

Hence, in (32),

∑

a∈A

∣∣∣Pn(a |xn−1
−∞ ) − P [k]

n (a | yn−1
n−k)

∣∣∣ ≤ |A|β(k ∧ m) (34)

Let us denote {
β∗(0) = 1 − λ0

β∗(n) = min (β∗(0), |A|β(n)) ,
(35)

Let us introduce the following notation, for integers m ≤ n

Dn
m :=

n⋂

j=m

{X̃j = X̃
[k]
j } . (36)

The previous lemma yields, by straightforward manipulations, the following
bounds:

Lemma 5.

(i) For all integers m ≤ n and ` > 0, and all (x, y) with xm−1
m−` = ym−1

m−` ,

P

(
Dn

m

∣∣∣ (xm−1
−∞ , ym−1

−∞ )
)
≥

n−m∏

j=0

(
1 − β∗(k ∧ (` + j))

)
. (37)

(ii) For all integers k ≥ 1,

P

(
Dn+k−1

n

∣∣∣ Dn−1
n−k

)
≥

(
1 − β∗(k)

)k

. (38)

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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(iii) For all integers k ≥ 1,

P

(
Dn+k−1

n

∣∣∣ [Dn−1
n−k]

c
)
≥

+∞∏

j=0

(
1 − β∗(j)

)
. (39)

Lemma 6.

sup
n

P

(
X̃n 6= X̃ [k]

n

)
≤

supn P([Dn+k−1
n ]c)

∑k−1
j=1

∏k−j
m=1(1 − β∗(m))

(40)

Proof.

P([Dn+k−1
n ]c) = P

(
X̃n+k−1 6= X̃

[k]
n+k−1

)
+

n+k−2∑

`=n

P

(
Dn+k−1

`+1

∣∣∣ X̃` 6= X̃
[k]
`

)
P

(
X̃` 6= X̃

[k]
`

)
. (41)

By (37),

P

(
D

`+j
`+1

∣∣∣ X̃` 6= X̃
[k]
`

)
≥

j∏

m=1

(
1 − β∗(m)

)
. (42)

Replacing this in (41) and taking supremum over n in both sides, we obtain (40).

To conclude the proof of the theorem, we observe that

P

(
[Dn+k−1

n ]c
)

= P

(
[Dn+k−1

n ]c
∣∣∣ Dn−1

n−k

)
P

(
Dn−1

n−k

)

+ P

(
[Dn+k−1

n ]c
∣∣∣ [Dn−1

n−k]
c) P

(
[Dn−1

n−k]
c
)

. (43)

Using parts (ii) and (iii) of Lemma 5, the right-hand side of (43) can be bounded
above by

[1 − (1 − β∗(k))k] +
[
1 −

+∞∏

j=0

(1 − β∗(j))
]
P

(
[Dn+k−1

n ]c
)

. (44)

Hence

sup
n

P

(
[Dn+k−1

n ]c
)

≤
1 − (1 − β∗(k))k

∏+∞
j=0(1 − β∗(j))

. (45)

Bull. Braz. Math. Soc., vol. 33, no. 3, 2002
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Plugging (45) into (40) we finally get

sup
n

P

(
X̃n 6= X̃ [k]

n

)
≤

1 − (1 − β∗(k))k

∏+∞
j=0(1 − β∗(j))

∑k−1
i=1

∏k−i
m=1(1 − β∗(m))

≤
1 − (1 − β∗(k))k

k
[∏+∞

j=0(1 − β∗(j))
]2 . (46)

By definition, β∗(k) is equal to |A|β(k) except, may be, for the first k’s. By
assumption, β(k) is summable, thus kβ(k) → 0 and

1 − (1 − β∗(k))k ≤ const k β(k) . (47)

To conclude, we observe that the product in the denominator is strictly positive,
again by the summability of the β(k).
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