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Abstract. Efficient family classification of newly discovered protein se-
quences is a central problem in bioinformatics. We present a new al-
gorithm, using Probabilistic Suffix Trees, which identifies equivalences
between the amino acids in different positions of a motif for each fam-
ily. We also show that better classification can be achieved identifying
representative fingerprints in the amino acid chains.

1 Introduction

A central problem in genomics is to determine the function of a new discovered
protein using the information contained in its amino acid sequence [1]. Nowadays,
the most popular methods to generate a hypothesis about the function of a
protein are BLAST and Hidden Markov Models (HMM).

Probabilistic Suffix Trees (PST) were first introduced in [2] as a universal
model for data compression. A major advantage of PST is its capacity of ex-
tracting structural information from the sequences under analysis. Recently, an
implementation of PST has been successfully used in protein classification [3,
4], even though its performance decreases with less conserved families. Better
results have been obtained using PST models for sparse sequences [5, 6]. A major
drawback of these algorithms is their high complexity, which makes problematic
their application in very large databases.

We present a new algorithm to estimate Sparse Probabilistic Trees (S-PT).
We also show that the identification of sub-sequences of maximal mean probabil-
ities (fingerprints) increases the classification rates of the PST algorithm. This
is the basis of our F-PST algorithm.

2 The SPST and the F-SPST algorithms

It was suggested in the literature to use PST models to fit protein families.
A PST is a stochastic chain (X0, X1, . . .) taking values on a finite alphabet A

and characterized by two elements. The first element is the set of all contexts.
A context Xn−`, . . . , Xn−1 is the finite portion of the past X0, . . . , Xn−1 for
each time which is relevant to predict the next symbol Xn. Observed that the
length ` of the context depends on the past. The second element is a family of
probability transitions associated to the set of the contexts. Given a context, its



associated probability transition gives the distribution of ocurrence of the next
symbol inmediatly after the context.

In a PST the set of contexts has the suffix property : looking from the present
to the past no context is a suffix of another context. This makes it possible to
define without ambiguity the probability distribuition of the next symbol. The
suffix property enable to represent the set of contexts as a tree. In this tree, each
context c = c

−k, . . . , c
−1 is represented by a complete branch, in which the first

node on top is c
−1 and so on until the last element c

−k which is represented by
the terminal node of the branch.

In a PST model for a protein family, the alphabet A represents the set of
twenty amino acids and the stichstic chains (X0, X1, . . .) are the sequences of
amino acids belonging to the family.

caracterized by two elements. The first element is the set of all relevant con-
texts, which the set of all contexts models More precisely, let (X0, X1, . . .) be a
symbolic sequence taking values on the finite alphabet A representing the set
of the twenty amino acids. A PST model for this sequence PTprobabilistic tree
basis of a PST model is the identification of the sub-sequences Xn−`, . . . , Xn−1,
called contexts, which are relevant to predict the next symbol Xn. The length
of each context depends on X0, . . . , Xn−1, and the set of all contexts can be
represented as a tree. In this tree, each context c = c

−k, . . . , c
−1 is represented

by a branch, whose sub-branch on top is determined by c
−1, the next subbranch

is determined by c
−2 and so on.

A Sparse Probabilistic Tree (SPT) is a PST in which some contexts are
grouped together in an equivalence class. More precisely, the contexts of a SPT
model are sequences of the form An−`, . . . , An−1, where Ai ⊂ A for each i.

The S-PT algorithm works as follows. It starts with a tree consisting of a
single root node. At each step, for every terminal node t with depth less than L

and for every symbol x, the leaf x is added to t, if the sequence xt appears in the
training sequences at least Nmin times. For every pair of new leaves of a node, we
test their equivalence using a log-likelihood ratio test. If the test accepts their
equivalence, the leaves are merged together in a single leaf. The procedure is
iterated with the new set of leaves. It stops when no more leaves can be merged.

To conclude the construction of the SPT we assigned to each leaf a transition
probability estimated by the usual maximum likelihood procedure.

The Fingerprint-PST algorithm estimates the context tree and the transition
probabilities in the same way as the PST. However, to classify a new sequence of
amino acids, F-PST starts by identifying fingerprints defined as follows. Given
a new sequence of amino acids, we look for the sub-sequence of length M with
maximal probability, where M is the median of the already classified sequences
in the protein family. If this maximum is bigger than a pre-defined threshold,
the protein is identified as a member of the family.



3 Results and Discussion

We trained both S-PT and F-PST with a subset of families with more than
1000 sequences in the Pfam-A database, release 15.0 [7]. Then we applied the
resulting models to classify all the sequences in the set Pfamseq. To establish the
family membership threshold, we used the equivalence number criterion [8].
The quality of the model is measured by the number of true positives detected
relative to the total number of proteins in the family.

Table 1 summarizes the classification rates obtained with our S-PT and F-
PST together with the results produced by the PST implementation presented in
[4]. It is clear that F-PST improves PST classification rates in a significant way.
In the case of the S-PT algorithm, these are preliminary results as no attempt
was made to optimize the choice of the parameters. However, it can be seen that
in almost all families with high PST classification rate, the performance was
improved with S-PT.

Figure 2 shows a context tree estimated with the S-PT algorithm for the
AAA family. It is interesting to compare the equivalence classes in the tree with
the classes obtained by grouping the amino acids by their physical and chemical
properties, presented in Fig. 1. The coincidence of many classes obtained with
the two procedures gives an indication of the S-PT ability to successfully retrieve
biological information out of the amino acids sequences.

The preliminary results presented in this paper strongly suggest that these
new algorithms can improve in a significant way the classification rates obtained
with the implementation of the PST algorithm, presented in [4]. We are presently
applying our algorithms to more families in the Pfam database to confirm this
initial encouraging results.
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Fig. 1. A Venn diagram conveying several properties of the different amino acids (ex-
tracted from [9])

Fig. 2. The S-PT tree for the AAA family


