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Abstract. We present a new approach to the bootstrap for chains of infinite
order taking values on a finite alphabet. It is based on a sequential Bootstrap
Central Limit Theorem for the sequence of canonical Markov approximations
of the chain of infinite order. Combined with previous results on the rate of
approximation this leads to a Central Limit Theorem for the bootstrapped es-
timator of the sample mean which is the main result of this paper.
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1. Introduction

It is well known that for processes with good mixing properties the empirical
mean is asymptotically normally distributed (see for example [3]). But this
result cannot be used in most practical circumstances, since to compute the limit
variance of the empirical mean requires the knowledge of the auto-covariances
of all orders, which are, in general, unknown.
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In order to cope with this problem we introduce in the present paper a
new procedure of bootstrap resampling for chains with finite alphabets whose
transition probabilities depend on the whole past, but having good mixing prop-
erties. As in the standard bootstrap procedure, since the bootstrap variance can
be directly estimated from the data, this method allows to construct asymptotic
confidence intervals for the true mean.

The bootstrap resampling we construct uses the excursions of the chain be-
tween successive occurrences of the initial string of k symbols as building blocks
for the bootstrap sample. The bootstrap sample is obtained by concatenating
randomly chosen blocks. These blocks are chosen uniformly and independently
among the first mk excursion blocks. For chains which lose memory exponen-
tially fast we prove a Central Limit Theorem for the empirical mean of the
bootstrap sample, when the length k of the initial reference string as well as the
number of excursion blocks mk diverge with a suitable relation between them.
This is the main result of the article.

The idea behind our procedure is that a typical large sample of the chain
of infinite order behaves essentially as a sample of a Markov chain of order k
suitably chosen. The Markov property of the approximating chain implies that
the successive excursion blocks are independent and identically distributed. This
makes it possible to construct the bootstrap sample by simply concatenating
randomly chosen blocks, exactly as proposed in the original paper by Efron [8]
for the case of i.i.d. random variables.

This idea has already been exploited in the case of Markov chains in [1].
For chains of infinite order with different types of mixing conditions, different
approaches to the bootstrap have been proposed in the papers by Carlstein [6]
and Künsch [13] and thoroughly studied in the recent literature, see for example
[4, 14, 15, 17, 18].

Chains of infinite order seem to have been first studied by Onicescu and
Mihoc [16] who called them châınes à liaisons complètes. Their study was
soon taken up by Doeblin and Fortet [7] who proved the first results on speed
of convergence towards the invariant measure. The name “chains of infinite
order” was coined by Harris [11]. Our proof is based on the upper bound on the
rate of approximation of the chain of infinite order by the sequence of canonical
Markov approximations presented in [10]. We also use the ϕ-mixing property
of the chain of infinite order proven in [5]. We refer the reader to [12] for a
complete survey, and to [9] for an elementary presentation of the subject from
a constructive point of view.

The rest of the paper is organized as follows. In Section 2 we introduce the
notation and the definitions and state the main results. In Section 3 we collect
together a few technical results which will be used in the proof of the theorems.
In Section 4 we prove a central limit theorem for the sequence of canonical
approximating Markov chains. Finally in Section 5 we prove the main result
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which is a bootstrap central limit theorem for the empirical mean of a chain of
infinite order.

2. Notation, definitions and statement of the main result

Let (Xn)n∈Z be a stationary process taking values on a finite alphabet A.
We will use the shorthand notation

p(x0 | x−1, x−2, . . .) = P
(

X0 = x0 | X−1 = x−1, X−2 = x−2, . . .
)

to denote the regular version of the conditional probability of the process. To
avoid long formulas, whenever convenient, we will use the notation a0,l to denote
the sequence (a0, . . . , al) of elements of A. We also use the notation {Xn,n+l =
a0,l} to denote the cylinder set {Xn = a0, . . . , Xn+l = al}. Following Harris [11],
we call this process a chain of infinite order.

We assume that (Xn)n∈Z satisfies the following hypotheses.
H1

min
a∈A

inf
(...,x−2,x−1)∈Aa

p(a | x−1, x−2, . . .) = δ > 0, (2.1)

where Aa = {(. . . , x−2, x−1) : p(a | x−1, x−2, . . .) > 0}.

H2

c = − lim sup
l→∞

1

l
log βl > 0 ,

where
βl = sup

xi=yi

i=−l,...,0

∣

∣p(x0 | x−1, x−2, . . .) − p(y0 | y−1, y−2, . . .)
∣

∣.

Let f : Ar → R be a real observable of the chain, where r is a fixed positive
integer and denote

µ = E
(

f(X1, . . . , Xr)
)

,

the average value of the observable f . We are interested in the fluctuations of
an estimator of µ. To simplify the presentation we can assume without loss of
generality that r = 1, namely the cylinder function f through which we observe
the chain depends only on one coordinate.

To avoid uninteresting pathologies we will assume that the following third
hypothesis holds

H3

σ2 = Var (f(X0)) + 2

+∞
∑

j=1

Cov (f(X0), f(Xj)) > 0 .

We recall that hypotheses H1 and H2 imply that the chain (Xn)n∈Z is
exponentially ϕ-mixing [5]. This last property implies that the series defining
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σ2 is convergent (see for instance Theorem 19.1 in [3]). However it is well known
that this does not imply that σ is strictly positive.

Our bootstrap procedure is defined as follows. For any positive integer k,
the sequence

(

Rj(k)
)

j∈N
of return times of the first string of length k is defined

by
Ri+1(k) = inf

{

n > Ri(k) :
(

Xn, . . . , Xn+k−1

)

=
(

X1, . . . , Xk

)}

,

with R0(k) = 1.
Let ξi(k) be the block of values of the chain from Ri−1(k) up to Ri(k) − 1,

namely
ξi(k) =

(

XRi−1(k), . . . , XRi(k)−1

)

. (2.2)

We will make a uniform i.i.d. selection of the first m blocks ξ1(k), . . . , ξm(k) to
construct a bootstrap sample of the chain. We will take m = mk as a diverging
function of k to be fixed later. This leads naturally to the construction of a
sequence of bootstrap samples indexed by k.

The formal definition is as follows. For every k, let I1(k), . . . , Imk
(k) be mk

independent random variables with uniform distribution in the set {1, . . . , mk}.
The bootstrap blocks are defined as

ξ∗l (k) = ξIl(k)(k),

for l = 1, . . . , mk. The bootstrap sample X∗
1 (k), . . . , X∗

R∗

mk
(k)(k) is constructed

by concatenating the bootstrap blocks ξ∗1(k), . . . , ξ∗m(k)(k). We observe that the

return times of the bootstrap sample assume the values R∗
0(k) = 1 and for

l = 1, . . . , mk

R∗
l (k) = R∗

l−1(k) + RIl(k)+1(k) − RIl(k)(k).

We consider the following sequence of estimators for µ

µ̂k =
1

Rmk
(k) − 1

Rmk
(k)−1

∑

n=1

f(Xn). (2.3)

Its bootstrap counterpart is given by

µ∗
k =

1

R∗
mk

(k) − 1

R∗

mk
(k)−1

∑

n=1

f(X∗
n(k)). (2.4)

Let

σ∗
k =

√

√

√

√

Var
(

∑R∗

mk
(k)−1

n=1

(

f(X∗
n(k)) − µ̂k

) ∣

∣ X1, . . . , XRmk
−1

)

R∗
mk

(k) − 1
,
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where Var denotes the variance. Observe that σ∗
k is a function of the sample

X1, . . . , XRmk
(k) and therefore the above variance is taken with respect to the

independent random variables I1(k), . . . , Imk
(k).

In the statement of our theorems the number of blocks used in the bootstrap
sample is

mk(α) = [eαk],

where α is a positive real number to be suitably chosen later and [·] denotes the
integer part. We will often write mk instead of mk(α).

Theorem 2.1. Let (Xn)n∈Z be a chain of infinite order satisfying hypotheses

H1, H2 and H3 and such that c > 18 ln (1/δ), where δ and c are the constants

appearing in H1 and H2, respectively. Then, for any α ∈ (5 ln(1/δ), c−ln(1/δ)),
for mk = [eαk], and for almost all realizations of the chain (Xn)n∈Z, we have

√

R∗
mk

(k) − 1

σ∗
k

(

µ∗
k − µ̂k

) D
−→ N (0, 1), (2.5)

as k tends to +∞, where
D
−→ denotes convergence in distribution and N (0, 1)

denotes the standard normal distribution.

The proof of Theorem 2.1 is based on the following sequential bootstrap pro-

cedure which is interesting by itself. Let (X
(k)
n )n∈Z, k = 1, 2, . . . be a sequence

of stationary irreducible aperiodic Markov chains of order k = 1, 2, . . . , respec-
tively, taking values in the same finite alphabet A with transition probabilities
denoted by

p(k)(a | b−k,−1) = P(X0 = a | X
(k)
−k,−1 = b−k,−1).

We may assume, without loss of generality, that the Markov chains (X
(k)
n )n∈Z,

for k = 1, 2, . . . are all defined on the same probability space (see for instance [9]).
We define

δ(k) = min
a∈A

inf
(x−k,...,x−1)∈A

(k)
a

p(k)(a | x−1, . . . , x−k)

and
δ = inf{δ(k) : k ≥ 1}, (2.6)

where A
(k)
a =

{

(x−k, . . . , x−1) : p(k)(a | x−1, . . . , x−k) > 0
}

.

For each k we define recursively the sequence of return times
(

R
(k)
j

)

j∈N
by

R
(k)
0 = 1, and for i ≥ 1

R
(k)
i = inf

{

n > R
(k)
i−1 :

(

X(k)
n , . . . , X

(k)
n+k−1

)

=
(

X
(k)
1 , . . . , X

(k)
k

)}

. (2.7)
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Let ξ
(k)
i be the block of values of the chain (X

(k)
n )n∈Z from R

(k)
i−1 up to

R
(k)
i − 1, namely

ξ
(k)
i =

(

X
(k)

R
(k)
i−1

, . . . , X
(k)

R
(k)
i

−1

)

.

We construct a bootstrap sample of the Markov chain (X
(k)
n )n∈Z by perform-

ing an i.i.d. selection of the blocks ξ
(k)
l . The formal definition is the following.

For every k, let I1(k), . . . , Imk
(k) be mk independent random variables with

uniform distribution in the set {1, . . . , mk}. The bootstrap blocks are defined
by

ξ
(k)∗
l = ξ

(k)
Il(k) ,

for l = 1, . . . , mk. The bootstrap sample X
(k)∗
l , l = 1, . . . , R

(k)∗
mk

, is constructed

by concatenating the blocks ξ
(k)∗
1 , . . . , ξ

(k)∗
mk

. We observe that the return times

of the bootstrap sample assume the values R
(k)∗
0 = 1 and for l = 1, . . . , mk

R
(k)∗
l = R

(k)∗
l−1 + R

(k)
Il(k)+1 − R

(k)
Il(k).

We consider the following estimator for µ(k) = E
(

f(X
(k)
1 )

)

µ̂(k) =
1

R
(k)
mk

− 1

R(k)
mk

−1
∑

n=1

f(X(k)
n ). (2.8)

Its bootstrap counterpart is given by

µ(k)∗ =
1

R
(k)∗
mk − 1

R(k)∗
mk

−1
∑

n=1

f(X(k)∗
n ). (2.9)

We define

σ(k)∗ =

√

√

√

√

√

Var
(

∑R
(k)∗
mk

−1

n=1 (f(X
(k)∗
n ) − µ̂(k)) | X

(k)
1 , . . . , X

(k)

R
(k)
mk

−1

)

R
(k)∗
mk − 1

(2.10)

Recall that, as before, this variance is with respect to the independent random
variables I1(k), . . . , Imk

(k).

Theorem 2.2. Let (X
(k)
n )n∈Z, k = 1, 2, . . . , be a sequence of stationary, irre-

ducible, and aperiodic Markov chains of order k = 1, 2, . . . , respectively, taking

values in the same finite alphabet A and satisfying the following hypotheses

δ > 0, (2.11)
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where δ is defined in (2.6), and

lim inf
k→+∞

E

(

(

R
(k)
1 −1
∑

n=1

(

f(X(k)
n ) − µ(k)

)

)2
)

> 0. (2.12)

If α > 5 ln(1/δ) and mk = [eαk], then for almost all realizations of the chains

(X
(k)
n )n∈Z, k = 1, 2 . . ., we have

√

R
(k)∗
mk

− 1

σ(k)∗
(µ(k)∗ − µ̂(k))

D
−→ N (0, 1),

as k tends to +∞.

3. Preliminary results

We first introduce some shorthand notation. We define

Z
(k)
i =

R
(k)
i

−1
∑

n=R
(k)
i−1

(

f(X(k)
n ) − µ̂(k)

)

,

and its bootstrap version is given by

Z
(k)∗
i =

R
(k)∗
i

−1
∑

n=R
(k)∗
i−1

(

f(X(k)∗
n ) − µ̂(k)

)

.

Note that Z
(k)∗
i = Z

(k)
Ii(k).

We use the shorthand E
∗( · ) to denote E

(

· | X
(k)
1 , . . . , X

(k)

R
(k)
mk

)

and Var∗( · ) to

denote Var
(

· | X
(k)
1 , . . . , X

(k)

R
(k)
mk

)

. We recall that, in both cases, the expectation

is taken with respect to the sequence Ii(k), i = 1, . . . , mk, of i.i.d. random
variables uniformly distributed in the set {1, . . . , mk}.

Lemma 3.1. The following equalities hold

E
∗
(

Z
(k)∗
1

)

= 0,

and

Var∗
(

mk
∑

l=1

Z
(k)∗
l

)

=

mk
∑

l=1

(

Z
(k)
l

)2
.
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Proof. By definition,

E
∗
(

Z
(k)∗
1

)

=

mk
∑

n=1

Z(k)
n P

(

I
(k)
1 = n

)

=
1

mk

mk
∑

n=1

Z(k)
n = 0. (3.1)

The second equality follows by a similar computation. 2

It is convenient to introduce a new family of random variables Z̃
(k)
i , where

i = 1, . . . , mk, defined as follows

Z̃
(k)
i =

R
(k)
i

−1
∑

n=R
(k)
i−1

(

f(X(k)
n ) − µ(k)

)

. (3.2)

These random variables are not only identically distributed (as it was already the

case for (Z
(k)
l )), but also they are independent and have zero mean. Moreover

the following relation holds

Z
(k)
l = Z̃

(k)
l +

(

µ(k) − µ̂(k)
)(

R
(k)
l − R

(k)
l−1

)

. (3.3)

We define D
(k)
l = R

(k)
l − R

(k)
l−1 (recall that R

(k)
0 = 1). Similarly, we define

D
(k)∗
l = R

(k)∗
l − R

(k)∗
l−1 .

Lemma 3.2. There is a positive constant C independent of k such that

∣

∣Z
(k)
1

∣

∣ ≤ CD
(k)
1 , and

∣

∣Z̃
(k)
1

∣

∣ ≤ CD
(k)
1 .

Proof. This result follows immediately from the fact that the observable f has
finite range. 2

Lemma 3.3. There is a constant C > 0 such that, for any k ≥ 1, the following

inequality holds

E
(

(µ̂(k) − µ(k))2
)

≤ C
E

(

(D
(k)
1 )4

)

mk
.

Proof. By definition we have

µ̂(k) − µ(k) =

∑mk

l=1 Z̃
(k)
l

∑mk

l=1 D
(k)
l

and therefore, using the Markov property and the stationarity of the chain, we
have

E
(

(µ̂(k) − µ(k))2
)

= mk E

(

(Z̃
(k)
1 )2

(
∑mk

l=1 D
(k)
l

)2

)

+ mk(mk − 1) E

(

Z̃
(k)
1 Z̃

(k)
2

(
∑mk

l=1 D
(k)
l

)2

)

.

(3.4)
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Since
∑mk

l=1 D
(k)
l > mk, and using Lemma 3.2, we conclude that the first term

in the right-hand side of expression (3.4) is bounded above by

C
E

((

D
(k)
1

)2)

mk
(3.5)

where C > 0 is a constant independent of k.
To obtain an upper bound for the second term on the right-hand side of

expression (3.4), we first observe that for mk ≥ 4 we have

E

(

Z̃
(k)
1 Z̃

(k)
2

(
∑mk

l=1 D
(k)
l

)2

)

= E

(

Z̃
(k)
1 Z̃

(k)
2

(
∑mk

l=3 D
(k)
l

)2

)

− E

(

Z̃
(k)
1 Z̃

(k)
2

(

D
(k)
1 + D

(k)
2

)2

(
∑mk

l=3 D
(k)
l

)2( ∑mk

l=1 D
(k)
l

)2

)

− 2 E

(

Z̃
(k)
1 Z̃

(k)
2

(

D
(k)
1 + D

(k)
2

)

(
∑mk

l=3 D
(k)
l

)2( ∑mk

l=1 D
(k)
l

)2

)

.

The independence of Z̃
(k)
1 , Z̃

(k)
2 and

∑mk

l=3 D
(k)
l imply that

E

(

Z̃
(k)
1 Z̃

(k)
2

(
∑mk

l=3 D
(k)
l

)2

)

= 0.

Using again Lemma 3.2, Hölder’s inequality and D
(k)
l ≥ 1, we deduce that

the sum of the absolute values of the two remaining terms is bounded above by

C
E

(

(D
(k)
1 )3

)

m3
k

+
E

(

(D
(k)
1 )4

)

m3
k

, (3.6)

where C is a positive constant independent of k. Since D
(k)
1 ≥ 1, inequalities

(3.5) and (3.6) conclude the proof. 2

Lemma 3.4. For any integer k and any positive real number t the following

inequality holds

P
(

D
(k)
1 > t

)

≤
(

1 − δk
)[t/k]

.

Proof. We observe that

P
(

D
(k)
1 > t

)

≤ P

(

[t/k]
⋂

j=1

{

X
(k)
jk+1,(j+1)k 6= X

(k)
1,k

}

)

.
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Now we rewrite the right-hand side of the above inequality, by conditioning on
the values of the initial k symbols

∑

a1,k

P
(

X
(k)
1,k = a1,k

)

P

(

[t/k]
⋂

j=1

{

X
(k)
jk+1,(j+1)k 6= a1,k

}

| X
(k)
1,k = a1,k

)

.

The second factor in the above sum can be rewritten as

[

1 − P

(

X
(k)
[t/k]k+1,([t/k]+1)k = a1,k |

[t/k]−1
⋂

j=1

{

X
(k)
jk+1,(j+1)k 6= a1,k

}

∩
{

X
(k)
1,k = a1,k

}

)]

× P

(

[t/k]−1
⋂

j=1

{

X
(k)
jk+1,(j+1)k 6= a1,k

}

| X
(k)
1,k = a1,k

)

.

Using (2.11) this last expression can be bounded above by

(

1 − δk
)

P

(

[t/k]−1
⋂

j=1

{

X
(k)
jk+1,(j+1)k 6= a1,k

}

| X
(k)
1,k = a1,k

)

.

The lemma now follows by recursion. 2

Lemma 3.5. There exists a positive constant C such that for any positive

integer r and any positive integer k, the following inequality holds

E
(

(D
(k)
1 )r

)

≤ r! kr
(1

δ

)kr

.

Proof. The result follows immediately from Lemma 3.4. 2

4. Proof of Theorem 2.2

We can now start the proof of Theorem 2.2. We first observe that
√

R
(k)∗
mk

− 1

σ(k)
∗

(

µ(k)∗ − µ̂(k)
)

=

∑mk

i=1 Z
(k)∗
i

√

Var∗
(
∑mk

l=1 Z
(k)∗
l

)

. (4.1)

We want to prove that the right-hand side of (4.1) converges in distribution
to a standard normal distribution, when k → +∞. By the Lindeberg –Feller
Central Limit Theorem for double arrays (see, for instance, [3]), this will follow
once we show that for any ε > 0

lim
k→+∞

E
∗
(

(Z
(k)∗
1 )2 1{(Z

(k)∗
1 )2 > εmkVar∗(Z

(k)∗
1 )}

)

Var∗(Z
(k)∗
1 )

= 0. (4.2)
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Using Lemma 3.1 we can rewrite (4.2) as

lim
k→+∞

∑mk

l=1

(

Z
(k)
l

)2
1
{(

Z
(k)
l

)2
> ε

∑mk

j=1

(

Z
(k)
j

)2}

∑mk

l=1 (Z
(k)
l )

2 = 0. (4.3)

Since

1
{

(

Z
(k)
l

)2
> ε

mk
∑

j=1

(

Z
(k)
j

)2
}

≤

(

Z
(k)
l

)2

ε
∑mk

l=1

(

Z
(k)
l

)2 , (4.4)

the fraction at the left-hand side of expression (4.3) is bounded above by

∑mk

l=1

(

Z
(k)
l

)4

ε
(
∑mk

l=1

(

Z
(k)
l

)2)2 . (4.5)

To prove that expression (4.5) vanishes as k diverges, we will obtain a sequence
of almost sure upper bounds for its numerator and a sequence of almost sure
lower bounds for its denominator.

Lemma 4.1. For any α > 0 and for any v > 1 + 4 ln(1/δ)/α, if mk = [eαk],
then for almost all samples the upper bound

mk
∑

i=1

(

Z
(k)
i

)4
≤ mk

v

holds, for all k large enough.

Proof. Markov’s inequality and Lemmas 3.2 and 3.5 imply that

P

(

mk
∑

i=1

(

Z
(k)
i

)4
> mk

v
)

≤
E

(

(Z
(k)
1 )4

)

mv−1
k

≤
Ck4

mv−1
k δ4k

, (4.6)

where C > 0 does not depend on k. Since by hypothesis α(v−1) > 4 ln(1/δ), we
conclude that the right-hand side of expression (4.6) is summable. This together
with the Borel –Cantelli lemma concludes the proof of the lemma. 2

The next step is to find a lower bound for the denominator.

Lemma 4.2. For any α > 4 ln(1/δ), and for any summable sequence of non-

negative real numbers ηk , k = 1, 2, . . . , if mk = [eαk], then, for almost all

samples, the lower bound

mk
∑

i=1

(

Z̃
(k)
i

)2
≥ mkηk E

(

(Z̃
(k)
1 )2

)

holds, for all k large enough.
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Proof. To simplify the notation, let us call

W (k) =

mk
∑

i=1

(

Z̃
(k)
i

)2
.

By definition we have

E
(

W (k)
)

= mk E
(

(Z̃
(k)
1 )2

)

. (4.7)

Using the fact that the random variables

(

Z̃
(k)
i

)2
− E

(

(Z̃
(k)
1 )2

)

are independent, identically distributed and have zero mean we get

E
(

(W (k))2
)

= mk(mk − 1)
(

E
(

(Z̃
(k)
1 )2

))2
+ mk E

(

(Z̃
(k)
1 )4

)

. (4.8)

Using the inequality of Paley–Zygmund, for 0 < η < 1, together with the
identities (4.7) and (4.8) we obtain the inequality

P
(

W (k) ≥ η E(W (k))
)

≥
(1 − η)2m2

k

(

E
(

(Z̃
(k)
1 )2

))2

mk(mk − 1)
(

E
(

(Z̃
(k)
1 )2

))2
+ mk E

(

(Z̃
(k)
1 )4

)

.

The right-hand side of the above expression can be rewritten as

(1 − η)2
(

1 −
1

mk
+

E
(

(Z̃
(k)
1 )4

)

mk

(

E
(

(Z̃
(k)
1 )2

))2

)−1

. (4.9)

Therefore Lemma 3.2 and hypothesis (2.12) imply that

P
(

W (k) ≥ η E(W (k))
)

≥ (1 − η)2
(

1 −
1

mk
+

C E
(

(D
(k)
1 )4

)

mk

)−1

, (4.10)

where C > 0 does not depend on k. From this it follows immediately that

P
(

W (k) < η E(W (k))
)

≤
−1/mk + C E

(

(D
(k)
1 )4

)

/mk + 2η − η2

1 − 1/mk + C E
(

(D
(k)
1 )4

)

/mk

. (4.11)

Lemma 3.5 and the choice of α imply that the quantity

∣

∣

∣

1

mk
−

C E
(

(D
(k)
1 )4

)

mk

∣

∣

∣
≤

1

2
(4.12)

for k large enough. Therefore inequality (4.11) implies that

P
(

W (k) < η E(W (k))
)

≤ 2
C E

(

(D
(k)
1 )4

)

mk
+ 4η, (4.13)
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for k large enough. Using again Lemma 3.5 it follows from (4.13) that

+∞
∑

k=1

P
(

W (k) < ηk E(W (k))
)

< +∞, (4.14)

for any summable sequence of non negative real numbers ηk, k = 1, 2, . . . . As a
consequence, the lemma of Borel –Cantelli implies that

mk
∑

i=1

(

Z̃
(k)
i

)2
≥ ηkmk E

(

(Z̃
(k)
1 )2

)

, (4.15)

almost surely for k large enough. 2

Lemma 4.3. For any α > 4 ln(1/δ), if mk = [eαk], then, for almost all samples,

the following limit holds

lim
k→+∞

∑mk

l=1

(

Z
(k)
l

)4

(
∑mk

l=1

(

Z̃
(k)
l

)2)2 = 0.

Proof. The result follows at once from Lemmas 4.1 and 4.2 and the Borel –
Cantelli lemma by taking 1 + 4 ln(1/δ)/α < v < 2 and, for instance, ηk = 1/k2.

2

The expression in the statement of the above lemma is similar to (4.5) with

Z
(k)
l replaced by Z̃

(k)
l in the denominator. Therefore to conclude the proof of

Theorem 2.2 we need the following lemma.

Lemma 4.4. For any α > 5 ln(1/δ), if mk = [eαk], then, for almost all samples,

the following limit holds

lim
k→+∞

∑mk

l=1

(

Z
(k)
l

)2

∑mk

l=1

(

Z̃
(k)
l

)2 = 1.

Proof. An elementary computation shows that for any real numbers a and b,
and for any ε > 0 one has

(1 − ε)a2 + (1 − ε−1)b2 ≤ (a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2.

We apply this inequality for each l = 1, . . . , mk with a = Z̃
(k)
l , and b = (µ̂(k) −

µ(k))D
(k)
l . Summing up over l and using identity (3.3) we obtain the inequalities

1 − ε + (1 − ε−1) ζ(k) ≤

∑mk

l=1

(

Z
(k)
l

)2

∑mk

l=1

(

Z̃
(k)
l

)2 ≤ 1 + ε + (1 + ε−1) ζ(k) (4.16)
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where

ζ(k) =
(

µ̂(k) − µ(k)
)2

∑mk

l=1

(

D
(k)
l

)2

∑mk

l=1

(

Z̃
(k)
l

)2 . (4.17)

To conclude the proof it remains to show that ζ(k) converges to zero almost
surely as k diverges.

Using Lemma 3.3, Markov’s inequality and the Borel –Cantelli lemma, it
follows immediately that for any summable sequence of positive numbers ρk,
k ≥ 1, and for almost all samples, the following inequality holds

(

µ̂(k) − µ(k)
)2

≤
C

ρk

[

E
(

(D
(k)
1 )3

)

mk
+

E
(

(D
(k)
1 )4

)

m2
k

]

, (4.18)

for all k large enough, where C is a positive constant independent of k. We also
observe that for the same sequence ρk the inequality

mk
∑

l=1

(

D
(k)
l

)2
≤

mk

ρk
E
((

D
(k)
1

)2)
(4.19)

holds almost surely for all k large enough.
Combining Lemma 4.2 and hypothesis (2.12), we conclude that for any

summable sequence ηk, k ≥ 1, and for almost all sample, the following in-
equality holds

mk
∑

l=1

(

Z̃
(k)
l

)2
≥ Cmkηk, (4.20)

for all k large enough, where C is a strictly positive constant independent of k.
Using inequalities (4.18), (4.19), (4.20), and using Lemma 3.5 we deduce

that for almost all samples, the following inequality holds

ζ(k) ≤ C
exp{−k(α − 5 ln(1/δ))}

ρ2
kηk

for all k large enough, where C is a positive constant independent of k. Since
by hypothesis, α > 5 ln(1/δ), it is enough to take for instance ρk = ηk = 1/k2 to
conclude ζ(k) converges to zero almost surely. Recalling that inequality (4.16)
holds for any fixed ε > 0, the lemma follows. 2

Combining Lemmas 4.3 and 4.4, it follows that almost surely

lim
k→+∞

∑mk

l=1

(

Z
(k)
l

)4

ε
(
∑mk

l=1

(

Z
(k)
l

)2)2 = 0. (4.21)

This implies (4.2) and concludes the proof of Theorem 2.2.
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5. Proof of Theorem 2.1

The basic idea of the proof is to approximate the chain of infinite order by
a sequence of Markov chains of increasing order satisfying the hypotheses of
Theorem 2.2. We will use for this purpose the canonical Markov approximation

(X
[k]
n )n∈Z of the chain (Xn)n∈Z which is the Markov chain of order k whose

transition probabilities are defined by

P [k](b | a1, . . . , ak) := P(Xk+1 = b | Xj = aj , 1 ≤ j ≤ k) (5.1)

for all integer k ≥ 1 and a1, . . . , ak, b ∈ A.
From now on we only consider stationary chains. The sequence of stationary

canonical Markov approximations can be constructed together with the station-
ary chain of infinite order on the same probability space (Ω,F , P). In particular
they can be constructed together using the well-known maximal coupling (see,
for instance, Appendix A.1 in [2]). For details of this construction in the present
context we refer the reader to [10].

Before starting the proof of Theorem 2.1 we will recall a few results from the
literature which will be used in the sequel. The following theorem was proven
by Fernández and Galves in [10].

Theorem 5.1. Let (Xn)n∈Z be a chain of infinite order on the finite alphabet

A and satisfying the conditions

∑

a∈A

inf
(...,x−2,x−1)∈Aa

p(a | x−1, x−2, . . .) > 0 and
∑

l≥1

βl < +∞.

Then the construction of the chains using the maximal coupling satisfies the

following inequality

P
{

X
[k]
0 6= X0

}

≤ βk. (5.2)

The following theorem is a particular case of the main theorem by Bressaud,
Fernández and Galves [5]. For convenience of the reader we will reformulate the
result in the framework in which it will be used in the proofs below.

Theorem 5.2. If hypotheses H1 and H2 are satisfied, then the chain (Xn)n∈Z

is exponentially ϕ-mixing.

For a definition of ϕ-mixing chains we refer the reader to [3]. To make the
connection between the present hypotheses and the assumptions of [5] we note
that hypotheses H1 and H2 imply that the sequence of log-continuity rates (γl)
defined by

γl = max
a∈A

sup
(...,x−2,x−1)∈Aa

xi=yi, i=−l,...,−1

∣

∣

∣

p(a | x−1, x−2, . . .)

p(a | y−1, y−2, . . .)
− 1

∣

∣

∣
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is exponentially decreasing and therefore satisfies the hypotheses of this paper.

We can now start the proof of Theorem 2.1. First of all we will use the
result by Fernández and Galves, mentioned above, to obtain an upper bound
for the probability of discrepancies in the first r symbols for the coupled real-
izations of the chain (Xn)n∈Z and its canonical Markov approximation of order

k, (X
[k]
n )n∈Z. More precisely let us define

∆[k]
r := {X

[k]
t = Xt, t = 1, . . . , r},

which is the set of coincidence up to time r of the chains (X
[k]
n )n∈Z and (Xn)n∈Z.

Lemma 5.1. Let (Xn)n∈Z be a chain of infinite order satisfying conditions H1

and H2 with βl summable. Then there exists a positive constant C such that

P
{(

∆[k]
r

)c}
≤ Crβk .

We will now check that the hypotheses of Theorem 2.2 are satisfied by the

sequence of canonical Markov approximations (X
[k]
n )n∈Z, k ≥ 1.

Lemma 5.2. Under assumption H1 we have

inf{δ[k] : k ≥ 1} ≥ δ,

where

δ[k] = min
a∈A

inf
(x−k,...,x−1)∈A

(k)
a

p[k](a | x−1, . . . , x−k).

Proof. It follows at once from the properties of the conditional probability. 2

This lemma establishes condition (2.11). The proof that condition (2.12)
holds follows from the next three lemmas. Let us define

Zi(k) =

Ri(k)−1
∑

n=Ri−1(k−1)

(

f(Xn) − µ
)

and Z
[k]
i =

R
[k]
i

−1
∑

n=R
[k]
i−1

(

f(X [k]
n ) − µ[k]

)

,

where R
[k]
1 is defined as in expression (2.7) using the chain (X

[k]
n )n∈Z and µ[k] =

E
(

f(X
[k]
1 )

)

.

Lemma 5.3. Under hypotheses H1, H2 and H3 the chain (Xn)n∈Z satisfies

the inequality

lim inf
k→+∞

E
(

(Z1(k))2
)

> 0.
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Proof. Markov’s inequality implies that

E
(

(Z1(k))2
)

≥ u2
P

{

(Z1(k))2 > u2
}

,

for any real number u. Recalling that R1(k) ≥ 1, we obtain the lower bound

E
(

(Z1(k))2
)

≥ u2
P

{ |Z1(k)|
√

R1(k)
> u

}

. (5.3)

By the above mentioned theorem from [5], the process (f(Xn))n is exponen-
tially ϕ-mixing. Therefore it follows from classical results on the Central Limit
Theorem (see for instance Theorems 20.1 and 20.3 from [3])

Z1(k)
√

R1(k)

D
−→ N (0, σ2)

as k diverges. Hypothesis H3 ensures that σ > 0. This implies that for any
fixed u and any k large enough the lower bound provided by inequality (5.3) is
greater than a fixed strictly positive real number. This concludes the proof of
the lemma. 2

We define Dl(k) = Rl(k) − Rl−1(k).

Lemma 5.4. For any integer k, any integer r ≤ 4 and any positive real number

t the following inequalities hold

P(D1(k) > t) ≤ (1 − δk)[t/k] and E
(

(D1(k))r
)

≤ Ckr
(1

δ

)kr

where C is a positive constant.

Proof. The proof is exactly the same as the proofs of Lemmas 3.4 and 3.5. 2

Lemma 5.5. Under the conditions of Theorem 2.1 the sequence of canonical

Markov approximations satisfies the inequality

lim inf
k→+∞

E
((

Z
[k]
1

)2)
> 0.

Proof. We will first derive an upper bound for the modulus of the difference

∣

∣E
(

(Z1(k))2 − (Z
[k]
1 )2

)∣

∣ =
∣

∣E
(

(Z1(k) − Z
[k]
1 )(Z1(k) + Z

[k]
1 )

)∣

∣.

The finiteness of the alphabet A implies that

∣

∣Z1(k) + Z
[k]
1

∣

∣ ≤ C
∣

∣R1(k) + R
[k]
1

∣

∣, (5.4)
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where C = max{|f(a)| : a ∈ A}. We observe also that

∣

∣Z1(k) − Z
[k]
1

∣

∣ ≤

R1(k)∧R
[k]
1

∑

n=1

∣

∣Yn − Y [k]
n

∣

∣ + C
∣

∣R1(k) − R
[k]
1

∣

∣, (5.5)

where Yn = f(Xn) − µ and Y
[k]
n = f

(

X
[k]
n

)

− µ[k].
In the sequel we will no longer specify the different positive constants ap-

pearing in the various estimates. Moreover they will be all denoted by the letter
C. Combining inequalities (5.4) and (5.5) we obtain

∣

∣E
((

Z1(k)
)2

−
(

Z
[k]
1

)2)∣
∣ ≤ C E

(
∣

∣R1(k) − R
[k]
1

∣

∣

∣

∣R1(k) + R
[k]
1

∣

∣

)

+ C E

( R1(k)∧R
[k]
1

∑

n=1

∣

∣Yn − Y [k]
n

∣

∣

∣

∣R1(k) + R
[k]
1

∣

∣

)

.

(5.6)

We will estimate separately each term. For the second term we have

E

( R1(k)∧R
[k]
1

∑

n=1

∣

∣Yn − Y [k]
n

∣

∣

∣

∣R1(k) + R
[k]
1

∣

∣

)

= E

(

1{(∆
[k]
k )c}

R1(k)∧R
[k]
1

∑

n=1

∣

∣Yn − Y [k]
n

∣

∣

∣

∣R1(k) + R
[k]
1

∣

∣

)

≤ C E
(

1{(∆
[k]
k )c}

(

R1(k) + R
[k]
1

)2)
.

Using Schwarz inequality and Lemmas 3.5, 5.1 and 5.4. we obtain the upper
bound

E
(

1{(∆
[k]
k )c}

)1/2
E

(

(R1(k) + R
[k]
1 )4

)1/2
≤ Ck5/2β

1/2
k δ−2k.

We now come to the estimation of the first term in (5.6). Using Schwarz
inequality and Lemmas 3.5 and 5.4 we get

E
(∣

∣R1(k) − R
[k]
1

∣

∣

∣

∣R1(k) + R
[k]
1

∣

∣

)

≤ E
((

R1(k) − R
[k]
1

)2)1/2
E

((

R1(k) + R
[k]
1

))1/2

≤ Ckδ−k
E

((

R1(k) − R
[k]
1

)2)1/2
.

We now have

E
((

R1(k)−R
[k]
1

)2)
= E

(

1{∆
[k]
k }

(

R1(k)−R
[k]
1

)2)
+E

(

1{(∆
[k]
k )c}

(

R1(k)−R
[k]
1

)2)
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and the last term is estimated as above. For the first term, we have

E
(

1{∆
[k]
k }

(

R1(k) − R
[k]
1

)2)

≤ E
(

R1(k) + R
[k]
1

)2
(

1 −

R1(k)∧R
[k]
1 +k−1

∏

j=R1(k)∧R
[k]
1

1{X
[k]
j = Xj}

)

≤ E
((

R1(k) + R
[k]
1

)4)1/2
E

(

1 −

R1(k)∧R
[k]
1 +k−1

∏

j=R1(k)∧R
[k]
1

1{X
[k]
j = Xj}

)1/2

≤ Ck2δ−2k
E

(

1 −

R1(k)∧R
[k]
1 +k−1

∏

j=R1(k)∧R
[k]
1

1{X
[k]
j = Xj}

)1/2

where we have used again Schwarz inequality and Lemmas 3.5 and 5.4. We now
have

E

(

1 −

R1(k)∧R
[k]
1 +k−1

∏

j=R1(k)∧R
[k]
1

1{X
[k]
j = Xj}

)

=
∞
∑

p=1

E

(

1{R1(k) ∧ R
[k]
1 = p}

(

1 −

p+k−1
∏

j=p

1{X
[k]
j = Xj}

))

.

Using Schwarz inequality, stationarity and Lemmas 3.5, 5.1 and 5.4 this is
bounded above by

(

∞
∑

p=1

p2
E

(

1{R1(k) ∧ R
[k]
1 = p}

)

)1/2

E
(

1{(∆
[k]
k )c}

)1/2

≤ E
((

R1(k) + R
[k]
1

)2)1/2
E
(

1{(∆
[k]
k )c}

)1/2

≤ Ck3/2δ−kβ
1/2
k .

Collecting together the above bounds we get

∣

∣E
(

(Z1(k))2 − (Z
[k]
1 )2

)∣

∣ ≤ C
(

k5/2δ−2kβ
1/2
k + k19/8δ−9k/4β

1/8
k

)

.

It follows from this inequality and assumption c > 18 log δ−1 that

lim
k→∞

∣

∣E
(

(Z1(k))2 − (Z
[k]
1 )2

)
∣

∣ = 0.

This together with Lemma 5.3 concludes the proof of the lemma. 2
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In order to prove Theorem 2.1 we need to construct together the bootstrap

samples of (Xn)n∈Z and (X
[k]
n )n∈Z. We recall that we have already assumed

that (Xn)n∈Z and (X
[k]
n )n∈Z are constructed together using the maximal cou-

pling. Now, given two coupled realizations of theses chains we will use the same
realization of the sequence of random indices to choose the blocks entering in the
bootstrap samples of the chains. Formally, for every fixed k ≥ 1 the bootstrap
blocks will be defined as

ξ∗l (k) = ξIl(k)(k) and ξ
[k]∗
l = ξ

[k]
Il(k)

where I1(k), . . . , Imk
(k) are the same independent random variables with uni-

form distribution in the set {1, . . . , mk}.

The next lemma says that the coupled samples of (Xn)n∈Z and (X
[k]
n )n∈Z

coincide up to time Rmk
(k) with overwhelming probability.

Lemma 5.6. Under the hypotheses of Theorem 2.1 we have

lim
k→+∞

P
(

(∆Rmk
(k))

c
)

= 0.

Proof. We observe that for any r > 0 we have

P
(

(∆Rmk
(k))

c
)

≤ P
(

(∆r)
c
)

+ P
(

Rmk
(k) > r

)

. (5.7)

By Lemma 5.1 the first term in the right-hand side of (5.7) is bounded above
by Crβk .

It follows from Lemmas 5.4 and 5.2 that the second term of the right-hand
side of (5.7) is bounded above by

mk P
(

D1(k) > r/mk

)

≤ mk

(

1 − δk
)[r/(kmk)]

.

We now set r = λk2mkδ−k, where λ is a fixed number strictly larger than α.
With this choice of r the two terms in inequality (5.7) tend to 0 when k diverges.
This concludes the proof of the lemma. 2

We can now conclude the proof of Theorem 2.1. First of all we observe that

√

R∗
mk

(k)

σ∗
k

(µ∗
k − µ̂k) =

σ[k]∗

σ∗
k

√

R∗
mk

(k)

R
[k]∗
mk

√

R
[k]∗
mk

σ[k]∗
(µ[k]∗ − µ̂[k])

+

√

R∗
mk

(k)

σ∗
k

(µ̂[k] − µ̂k)

+

√

R∗
mk

(k)

σ∗
k

(µ∗
k − µ[k]∗).
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Lemma (5.6) ensures that last two terms are equal to zero with probability
tending to 1 when k tends to infinity. Theorem 2.2 implies

√

R∗
mk

(k)

R
[k]∗
mk

√

R
[k]∗
mk

σ[k]∗

(

µ[k]∗ − µ̂[k]
) D
−→ N (0, 1).

Finally we observe that Lemma (5.6) ensures that

lim
k→∞

P

(

σ[k]∗

σ∗
k

√

R∗
mk

(k)

R
[k]∗
mk

= 1

)

= 1.

This concludes the proof of Theorem 2.1.
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