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In this note the long-standing problem of the definition of a Poisson bracket in the 
framework of a multisymplectic formulation of classical field theory is solved. The new 
bracket operation can be applied to forms of arbitary degree. Relevant examples are discussed 
and important properties are stated with proofs sketched. 
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1. Introduction 

Multisymplectic geometry provides a mathematical framework to describe classi- 
cal field theory geometrically. Within this formulation it is not necessary to break 
manifest Lorentz covariance nor is there a need to use concepts from infinite di- 
mensional geometry. The formalism dates back to the early work by De Donder, 
Dedecker, and Weyl. By now the exploration of its geometrical aspects has reached 
an elaborated stage, and a number of excellent reviews of this are available to the 
reader ([l], for a comparison to different approaches see [2]). In this article, we 
propose an algebraic structure that mimics closely the Poisson algebra of classical 
mechanics. 

Consider a classical field vi (x), i = 1, . . . , N, with N internal degrees of freedom 
over n-dimensional space-time M. Let L(x”, (pi, aptpi) denote the Lagrange density. 
The corresponding equations of motion are (& denotes the total derivative w.r.t. xl*) 

[I871 
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Introducing new field variables - the multimomenta - by 

n = _C- , aapqi 

and the De Donder-Weyl Hamiltonian by 

H(#, cpi, lr”) = n; apvi - L, 

(2) 

(3) 

one can easily verify that 
Donder-Weyl equations 

aH 
a$ 

the equations of motion (1) are equivalent to the De 

di aH d 
=GCP’ a(p’=- p? (4) 

provided certain regularity conditions hold for L. 
Note the remarkable similarity with the Hamiltonian equations of motion of me- 

chanics. The difference one encounters lies in the fact that there are n multimomenta 
associated to each degree of freedom I#. Of course, for n = 1 one recovers the case 
of (time-dependent) Hamiltonian mechanics. 

Furthermore, as the fields are sections of some possibly nontrivial fibre bundle 
& + M, the notion of derivatives allpi of the fields does not exist in a natural way. 
Rather, one has to use the theory of first jet bundles [lo] and - later on - their 
afhne duals J*E. For the sake of brevity we list the relevant objects occurring in 
multisymplectic geometry in a table, thereby comparing the individual items to their 
counterparts in the symplectic formulation of time-dependent mechanics. 

time-dependent mechanics field theory 

extended configuration space configuration bundle 

&=Rx& ~-FM” 

extended tangent space ftrst jet bundle 

Rx TQ J’& 

P = (W x T*Q) x W P = J*& 

(t, 4’7 Pi, E) WL, 4’9 P,“7 P) 

canonical l-form multicanonical form 

8 = pi dq’ + E dt 0 = $ dq’Ad”xg + p d”x 

s ymplec tic form multisymplectic form 

w = -de = dq’hdpi - dEhdt o = -de = dqi~d$~d”x~ - dphd”X 
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The multicanonical form 8 can be defined in an intrinsic way. We shall not elaborate 
on this but instead mention that there is a vector field C on P, the scaling or Euler 
vector field of the vector bundle P + E, 

(5) 

that satisfies 
i(Z)0 = -8. (6) 

P, together with w and 0, is an example of an exuct multisymplectic manifold. 
Note in particular that o is nondegenerate on vector fields. 

There is a natural projection from the extended multiphase space P to the ordi- 
nary multiphase space @ given by (we just write down the coordinate expression) 

P + P, wL, qi, p”, p> I+ w, qi, $1. (7) 

The dimension of P is one less than that of P. The ordinary multiphase space has 
been used by Kanatchikov [6], EcheverrIa-Enrfquez et al. [3] in their work. It shows 
the unpleasant feature of not carrying a canonical multisymplectic structure. To 
circumvent this problem, the use of equivalence classes of forms has been proposed 
in [6]. The corresponding factorization removes the unwanted ambiguities. However, 
as calculations with equivalence classes turn out to be somewhat cumbersome, one 
can proceed along different lines [8]: With the help of co~ections in & and TM, 
the analogues 8” and a” of the above items can be defined and one has 

CL)“= (  -d"B" 

where d” is an exterior derivative along the fibres of P + M acting on forms 
on P. 

2. Poisson forms 

It is natural to study solutions of the equation 

i(Xf)w = df . (9) 

As the multisymplectic form o is an (n + 1)-form, f can be an r-form, r = 
O,l,...,(n - 1). Correspondingly, Xf has to be an (n - r)-vector field, Xf E 
A”-‘X(P). Note that w is degenerate on multi-vector fields of tensor degree higher 
than 1 (otherwise it would have to be the volume form on P). Consequently, XJ 
is not uniquely determined by f, nor is f fixed by Xf . Moreover, it is known 
that there are conditions on f which have to be met for an Xf to exist. These 
restrictions concern the dependence of the coefficients of F on the multimomenta 
p”. If the pair (Xf , f) forms a solution of (9) then f is called Hmniltonian form 
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and Xf Hamiltonian multi-vector jeld. With the definition of the Lie derivative 
along an r-vector field Y, 

Ly = d i(Y) - (-l)“i(Y)d, (10) 

one can formulate necessary and sufficient conditions for an multi-vector field X 
to be a Hamiltonian multi-vector field associated to some Hamiltonian form. More 
precisely, if X denotes such a Hamiltonian multi-vector field, then 

Lxw=O, 

and if 
Lxe=o 

then X is a Hamiltonian r-vector field associated to 

(11) 

(12) 

f = J(X) = (-l)‘i(X)8. (13) 

Multi-vector fields satisfying (12) are called exact Hamiltonian multi-vector fields. 
Typical examples of Hamiltonian forms will be discussed below. 
As already mentioned the Hamiltonian multi-vector field Xf is not fixed by f. 

However, as we shall see in a moment, the definition of a bracket operation between 
Hamiltonian forms will involve contractions of Hamiltonian multi-vector fields with 
Hamiltonian forms. This results in an undesirable dependence on the choice of the 
Hamiltonian multi-vector field. We therefore restrict the Hamiltonian forms further. 

DEFINITION 1. A Poisson form f on P is a Hamiltonian form that in addition 
satisfies 

i(Y)o=O 3 i(Y)f =0 (14) 
for all multi-vector fields Y on P. Equivalently, for a Poisson form f there exists 
a multi-vector field 2 on P with 

i(Z)o=f. (15) 

&MARK. For exact Hamiltonian r-vector fields Xf, one has 

J(Xf) = i(XfAC) w . (16) 

To show that the notion of a Poisson form is nonempty we give a list of 
examples that have been discussed in the literature. 

Functions on P are Poisson. If in addition a function f is of the form 

f(~‘, $9 P”, P) = -H(x@, $9 P”) - p t (17) 

then it admits a Hamiltonian n-vector field X that is locally decomposable, 

X=ZtA’*‘“Zn, z, E X(P). (18) 
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The solutions of the De Donder-Weyl equations with H as above define a tangent 
space at every point of P that is spanned by the collection of the Z,. The converse, 
i.e. the integration of the Z, to a solution of the De Donder-Weyl equations can 
be performed if additional conditions are fulfilled (for details, see [9]). 

A form 1 on the ordinary multiphase space ? is called horizontal if it vanishes 
on ‘vector fields that are vertical w.r.t. the projection onto M. Kanatchikov has 
studied such horizontal forms on p that in addition satisfy 

i(rii)w” = d”f . (19) 

In the sequel we will refer to such forms as Hamiltonian forms b la Kanatchikov. 
One can show that they are in one-to-one correspondence with horizontal Hamilto- 
niau forms f on P, where f is the pullback of j. Obviously, horizontal Hamilto- 
nian forms on P are Poisson. 

Let &- be a vector field on the configuration bundle & which is projectable 
onto M. There is a canonical lift of & to P. The resulting vector field .$ is the 
generator of a special canonical transformation on 

L& 8 = 0. 

Consequently, 
JG) = i&) 0 

is Poisson. Moreover, let X1, X2 be commuting 
Then one can show 

LX,AX$ =o, 

P. One has 

(20) 

(21) 
exact Hamiltonian vector fields. 

(22) 
and one obtains examples J(Xr~\x2) of Poisson forms of intermediate tensor degree. 
These forms can be viewed as the counterparts to higher dimensional orbits of 
transformations. 

There is a canonical projection from Hamiltonian (n - r)-forms onto Poisson 
(n - r)-forms with exact Hamiltonian r-vector fields, given by 

f t+ (-l)‘-‘i(Xf)8, Xf H Xf + m, Xfl . (23) 
Obviously, this map does have a kernel. However, it has not been clarified yet 
whether there exist Hamiltonian multi-vector fields that are not Poisson. 

3. Poisson brackets 
Before we turn to the definition of a bracket operation between Poisson forms 

let us briefly recall the canonical extension of the Lie bracket of vector fields to the 
algebra of multi-vector fields. This composition is known under the name Schouten 
bracket. The defining formula: are (let X, Y, Z be multi-vector fields of respective 
tensor degree r, s, t) 

[X, YA Z] = [X, Y] A z + (-l)(r-l)s YA [X, Z], 
(24) 

[Y, X] = - (-l)(r-l)(s-l) [X, Y]. 
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Moreover, one requires that it coincide with the standard Lie bracket on vector 
fields. This fixes the bracket. An important consequence of these properties is a 
graded Jacobi identity 

(-l)(r-l)+l) [X, [Y, Z]] + cyclic perm. = 0. (25) 

In addition, one can derive the following formula relating Lie derivative and Schou- 
ten bracket: 

L[, y] = (-l)(r-l)(s-‘) L,L, - L,L,. (26) 
Now lets turn to the definition of a bracket operation for Poisson forms. Let f, 

g, h he Poisson forms with associated Hamiltonian multi-vector fields Xf, X,, and 
Xh of respective tensor degree r, s, t. 

An obvious ansatz for the Poisson bracket is given by 

If, s]’ = (-l)‘i(Xf) i(X,) w. (27) 

This formula has been suggested by many authors. It shows the desired properties 

{f, $7)’ = -(-l)“_‘“s-“{g, f}‘, 

Xlf,Rl’ = [X,? Xf I . 

However, it does not satisfy a graded Jacobi identity that meets with (25): 

(28) 
(2% 

(-l)(‘-I)(‘-“(f, {g, h}‘}’ + cycl. perm. = (-l)(‘-I)“-“+“d(i(Xf) i(X,) i(Xh) 0) . 

(30) 
Moreover, hideous additional terms occur in the composition of two generators of 
transformations (let X, Y be exact Hamiltonian multi-vector fields of degree r 
and s), 

{J(X), J(Y)}’ = J([Y, X]) - (-l)(S-‘)‘d(i(Y) i(X) 8. (31) 
If d has trivial cohomology one can use (30) as a starting point for the construction 
of an Z(oo)-structure. 

We propose a modification of (27) which preserves (28) and (29) but cures the 
anomalous terms in (30) and (31). 

DEFINITION 2. Let f and g be Poisson forms with respective Hamiltonian multi- 
vector fields X, and X,. Then their bracket {f, g} is given by 

{f, g} = - Lx,g + (-l)(‘_‘)(“-‘)Lx,f - (-l)(‘+Lxf”*, 8, (32) 

where Xf and X, are multi-vector fields of degree r and s, respectively. Equiva- 
lently, 

{fTgl=(-l)‘i(X,)i(Xf)o (33) 

+ d (-l)(r-l)(s-l) i(X,) f - i(Xf)g - (-1) 
( 

(‘-‘)‘i(X8)i(Xf)f3). 
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PROPOSITION 1. Let f, g, h be Poisson forms with respective Hamiltonian r-, 
s-, and t-vector ftelcts Xf, X, and Xh. Then the following properties hold: 

1. The bracket {f, g} does not depend on the particular choice of Xf and X,. 
2. X(f,g) = [X,, Xfl. 
3. The bracket {f, g} of two Poisson forms f, g is again a Poisson form. 
4. The bracket is graded antisymmetric, 

If, gl = -(-l)+““-‘){g, f }* 

5. It satisfies a graded Jacobi identity, 

(-l)“-l”‘-l’{f, {g, h}} + cyclic perm. = 0. 

6. For exact Hamiltonian multi-vector fields X, Y, one has 

tJ(X), J(Y)1 = JW, Xl). 

7. Let f, g be Hamiltonian forms ri la Kanatchikov, Xi and Xi be their multi- 
vector fields (of tensor degree r and s) according to (19). Then i(Xf) i(Xg) w” 
is again Hamiltonian o la Kanatchikov and can be pulled back to P, where 
it coincides with the bracket {f, g} of the pulled back forms f and g. 

Proof: While the proofs of items 14, 6 are obvious, the demonstration of 
the graded Jacobi identity is rather lengthy. It follows from the properties (25) and 
(26). A calculation in coordinates shows the last statement. The details of the proofs 
are contained in [4]. Cl 

REMARK. The definition and the proposition (except the last statement) do not 
involve any properties other than 

o=-de, i(Z)0 = -8. (34) 

Hence the construction can be carried over to arbitrary exact multisymplectic man- 
ifolds, in particular to the direct treatment of higher order Lagrangeans [5]. 

The notion of a Poisson bracket is not completely justified as no product struc- 
ture has been identified yet. One can show that a horizontal Poisson form of degree 
r has to be polynomial in the multimomenta of degree (n - r) or less. Hence, the 
product of a Poisson r-form and a Poisson s-form can be at most an (r+s-n)-form. 
There are two candidates for such a composition: Kanatchikov’s o-product [7] 

f ??g = *-‘(*fA*g), (35) 

where * is a Hodge operation on M, acting on horizontal forms on P, and - on 
the side of multi-vector fields - the map 

X,Y H XAY. (36) 
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One can show that both maps do not coincide. While the former does yield a 
Poisson form and satisfies a graded Leibniz rule, the latter cannot be carried over 
to Poisson forms. This can be seen from the identity 

Lx,r\xp = fd{.f, RI. (37) 

However, the extension of the o-product to general Poisson forms is problematic. 
If such an extension is viable at all, it requires the use of a connection. Moreover, 
the product of two functions will always give zero which makes it impossible to 
view it as a generalisation of the product of functions in symplectic geometry. 

4. Conclusions 

Multisymplectic geometry provides a covariant Hamiltonian formalism for clas- 
sical field theory. It uses elements from finite-dimensional differential geometry 
throughout. There is a close resemblance to the formulation of time dependent 
Hamiltonian mechanics. However, there are a number of features that do not occur 
in mechanics. 

In particular there is a correspondence between forms and multi-vector fields 
that replaces the interplay of functions and Hamiltonian vector fields of symplectic 
geometry. Forms of degree 12 - 1, where 12 is the dimension of space-time, come in 
very naturally when considering symmetry transformations. Remember that according 
to Noether’s theorem there is a conserved charge for every symmetry, and this 
charge is obtained through integration over (n - l)-dimensional hypersurfaces of 
space-time. On the other hand, as solutions of the field equations are objects of 
dimension higher than 1, we expect n-vector fields to replace the Hamiltonian vector 
fields of mechanics. This is indeed the case. 

These considerations show that there is a need to have a (Poisson) bracket 
operation for forms at hand, and in view of later quantisation attempts this struc- 
ture should obey a Jacobi identity. In this note we have proposed such a bracket 
for Poisson forms defined in the text. We have shown that all relevant exam- 
ples occurring in the geometrical formulation of classical field theories are in- 
deed Poisson forms. Moreover, the proposed operation does satisfy a graded Ja- 
cobi identity that is closely related to the Jacobi identity of the Schouten bracket 
of multi-vector fields. We have shown that the bracket operation closes on Pois- 
son forms and contains as a particular case the Gerstenhaber algebra introduced 
by Kanatchikov [7]. Furthermore, with this structure at hand, one is now able 
to algebraically investigate symmetry transformations, including space-time transla- 
tions. 

The construction is independent of the particular structure of the exact multisym- 
plectic manifold under consideration. Therefore, it is possible to apply the results 
to field theories beyond first order Lagrangians, i.e. to gravity as an example. It 
would be of interest to study the treatment of constraints in this context. These 
matters are currently under investigation. 
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