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A new Poisson bracket for Hamiltonian forms on the full multisymplectic phase 
space is defined. At least for forms of degree n - 1, where n is the dimension of 
space-time, Jacobi 's identity is fulfilled. 
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1. I n t r o d u c t i o n  

The  m a i n  idea  of the  mu l t i symplec t i c  fo rmula t ion  of classical  field t heo ry  defined by 
a Lag rang ian  dens i ty  £ consis ts  in t r ea t i ng  space and t ime  der iva t ives  of fields on an 
equal  footing. T h e  advan t age  of th is  approach ,  as c o m p a r e d  to  the  common  canonica l  
formula t ion ,  is twofold: 

• Lorentz  covar iance  is mani fes t  and  au toma t i c ,  

• phase  space is f in i te-d imensional .  

Also twofold are  the  d i sadvan tages :  

• the  i n t roduc t i on  of several  "conjuga te  momen ta"  7r~ = 0 £ / 0 0 ~  i assoc ia ted  to 
every field componen t  ~i  des t roys  the  usual  dua l i t y  be tween  fields and  momen ta ,  

• quan t i za t i on  is unclear  in t i le  nml t i symplec t i c  formalism.  

• Invited lecture of the XXXII Symposium on Mathematical Physics, Torufi, June 6--10, 2000, delivered 
by H. R6mer. 
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A first step towards multisymplectic quantization is the formulation of multisymplec- 
tic Poisson brackets. Pioneer work in this direction has been done by Kijowski [1] (see 
also [2]). We [3] were motivated by recent innovative work of Kanatchikov [4] that  will be 
briefly sketched below. For a general comprehensive presentation of the multisymplectic 
formalism, including references to the early literature on the beginnings of the subject, 
which date back to the second decade of the 20 th century, see [5]. 

In terms of the covariant De Donder Weyl Hamiltonian, 

T/ = 7r~0t,~ i - /2, (1) 

the equations of motion can be brought into the form 

07-I 
- ( 2 )  

0 ~  
- OuTr ~ . (3)  

0 p  ~ 

The geometry of the multisymplectic phase space P can briefly be described as follows. 
7r 

Let the field p be a section of a fibre bundle E ----* M over an n-dimensional space-time 
manifold M with fibre dimension N. Let (xU)t,=l ...... be local coordinates oil M and 
(qi)i=a ..... g be local coordinates on the standard fibre. The (first) jet bundle J (E)  of E 
is an affine bundle of fibre dimension n N  over E and a bundle without special structure 
and fibre dimension n N  + N over M. Local coordinates for J (E)  can be writ ten as 

Xtt i i q ,  q . ) ,  (4) 

where it is understood that  the coordinates of the (first) jet of a section ~ of E at the 
point x are given by 

, ' = 0 . ~ ( x )  (5)  x u qi = ~ i (x) ,  qu 

The multisymplectic phase space P is given by the total  space of the (first) cojet bundle 
J* (E) of fibrewise affine mappings 

J (E)  ) 7c* E (A n T ' M )  (6) 

into n-forms over M. J* (E) is a vector bundle of fibre dimension n N  + 1 over E. 
Representing such a fibrewise affine mapping in the form 
coordinates for J*(E) can be writ ten as 

t~ (xt,, qi, Pi , P)" 

The dimension of the multisymplectic phase space is 

d i m P  = (U + 1)(n + 1). 

q. ' ' (Pi q. + P) dnx, local 

(7) 

(8) 
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Of fundamental  importance are the canonical n-form 0 and the multisymplectic (n + 1)- 
form w on J*(E) :  these can be defined intrinsically and have the coordinate expression 

0 = p~ dq i A dnxt,  - p d n x ,  (9) 

w = - dO = dq i A d p ~ A d n x u  + dp A d n x  = w V + dp A d n x ,  (10) 

where d'~xt, = i o d n x  arises by contraction of the volume clement d'~x with O. [5]; ~ v  is 
an abbreviation for the "vertical part"  of w (which, in contrast to w itself, has no intrinsic 
meaning). 

P is a field theoretic generalization of the doubly extended phase space of ordinary 
mechanics, whereas the submanifold 

P~t : { z •  P [ p : T Y ( z ) } ,  (11) 

carrying forms 0~, wn and w V obtained by restriction from the forms 0, w and a~ V on P,  
respectively, generalizes the extended phase space of mechanics: this is the space used 
in Kanatchikov's  approach [4]. First, the direct generalization of the Hamiltonian vector 
fields of classical mechanics associated with given Hamiltonians are n-multivector fields 
X ~  such tha t  

i x ~  w v = d V ~ ,  (12) 

where 

dV := dqi A__O 0 . (13) 
Oq ~ + dp~ A Op~ 

Moreover, Kanatchikov defines Hamil tonian forms  of degree p and Hamil tonian multi- 
vector fields of degree n - p to be p-forms F and (n - p)-nmltiveetor fields X tha t  can 
be related through the fornmla 

i x ~ v  = d V F ,  (14) 

with the additional restriction that  the form F should be horizontal. Of course, when 
p > 0, not every p-form is Hamiltonian because Eq. (14) imposes a strong integrability 
condition on F. Finally, in analogy with classical mechanics, Kanatchikov defines a 
generalized Poisson bracket between Hamiltonian forms of arbi trary degree by 

{ F 1 , ~ 1 }  = ( - 1 ) ~ - P i x F ,  ix~,~cz~. (15) 

This bracket is well defined because F determines X~ up to an element in the kernel of 
aJ V. Moreover, it can be checked that  Jacobi 's  identity is fulfilled. 

The approach of Kanatchikov provides an important  step forward in multisymplectic 
dynanfics, but it suffers from two evident shortcomings. 

• The restriction to Pvt and horizontal/vertical splitting do a great deal of violence 
to the multisymplectic structure and introduce nongeneric features like d v (which 
may be the price for formulating dynamics in a Poisson Hamiltonian framework). 
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• The assumption of horizontality of Hamiltonian forms is too restrictive, as can be 
seen by considering the mul t imomentum map [5] which provides (n - 1)-forms as- 
sociated to generators of symmetries (Noether currents). Horizontality excludes 
symmetries associated with nontrivial transformations of space-time and an ade- 
quate t reatment  of the energy-momentum tensor. 

As far as the first point is concerned, the situation has been alleviated by recent work of 
Paufler [6} who has shown that  a vertical exterior derivative d u can always be defined 
and that  the bracket (15) does not depend oil the ambiguities inherent in its definition. 

Our proposal [3] is to completely avoid all these problems by working directly on the 
full multisymplectic phase space P = J*(E). Hamiltonian forms f and Hamiltonian 
multivector fields X I are defined on P, without any horizontality restriction on f ,  and 
are related by means of the full multisymplectic form w, according to 

ix f  w = dr. (1(3) 

2. H a m i l t o n i a n  m u l t i v e c t o r  f i e l d s  a n d  f o r m s  

The Lie derivative of differential forms along vector fields can be generalized to a Lie 
derivative of differential forms along multivector fields, defined as the graded commu- 
tator  between the exterior derivative d and the respective contraction operator: for a 
p-multivector field X on P,  

= [d, ix](~ = ( d i x - ( - 1 ) P i x d ) c ~ .  L x  c~ (17) 

011 the other hand, we have the Schouten bracket between multivector fields, which is the 
(unique) extension of the Lie bracket between vector fields by graded derivations (pro- 
vided one uses an appropriately shifted degree). These operations satisfy the following 
relations: 

[d, nx] = L x  - ( - 1 ) P L x d  = 0, (18) 

i[x,y]ct = ( - 1 )  (p-1)(q-1) ( L x i y  - (-1)(p-1)qiy Lx )c~ ,  (19) 

L[x,y]ct : ( - 1 )  (p-1)q ( L x L y  - ( -1 ) (p -1 ) (q -1 )LyLx )o~ .  (20) 

A nmltivector field X oil P is called locally Hamiltonian or multisymplectic if 

L x  w = 0. (21) 

A direct consequence of Eq. (17) is 

LEMMA. Evew Hamiltonian multivector field is multisymplectic. 

From Eq. (19) we readily infer another lemma. 

LEMMA. The Sehouten bracket [X, Y] of two multisymplectic multivector fields X 
and Y is Hamiltonian. 
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Proof: 

i[x,y]W = ± [ i y , L x ] w  = + L x i y w  

= ± i x d i y w ± d i x d i y w  

= ± d i x i y w .  

In what follows, we shall consider mainly vector fields, rather than the more general 
multivector fields, on M, E, J (E)  and J*(E).  In particular, Hamiltonian vector fields 
X on J*(E) will play a prominent role. Their associated Hamiltonian forms f are of 
degree n - 1, and the Poisson bracket of two Hamiltonian (n - 1)-forms will again be a 
Hamiltonian p-form. (More generally, the Poisson bracket of a Hamiltonian (n - 1)-form 
with a Hamiltonian p-form will again be a Hamiltonian p-form.) 

We begin with vector fields XM on M and vector fields XE on E: they generate 
diffeomorphisms of M and of E, respectively. E being not just any manifold but the 
total space of a fibre bundle E ~ M, there are two special classes of vector fields on E, 
namely projectable vector fields that  generate bundle automorphisms of E (covering dif- 
feomorphisms of M) and vertical vector fields that  generate strict bundle automorphisms 
of E (covering the identity on M). By definition, a vector field XE on E is projectable 
(or more precisely, M-projectable) iff there exists a vector field XM on M such that  

= ( 2 2 )  

for all e C E, and is vertical if this formula holds with XM = 0. In local coordinates 
(x u) on M and (x u, qi) on E, writing 

0 
XM = X ~ -  

OX p ' 
(23) 

(24) X z  = X ~ 0~ + X i O  
Ox~' Oq ~ ' 

we see that XE is projectable iff the X ~ are independent of the fibre coordinates qi and 
that XE is vertical iff the X ~ vanish. Now the jet bundles J (E)  and the cojet bundle 
J*(E) are bundles over E for which we have the following. 

THEOREM. Bundle automorphisms qDE of E over M can be lifted to bundle auto- 
morphisms ¢J(E) of J (E)  and qDj.(E ) of J*(E) over E. Similarly, M-projectable vector 
fields XE on E can be lifted to E-projectable vector fields Xj(E) on J (E)  and Xj . (E)  on 
J*(E).  

Proof: These statements can all be inferred from the following formula, which de- 
scribes how a bundle automorphism ~E of E over M is lifted to a bundle automorphism 
qSj(E) of J (E)  over E, namely simply by taking the derivative. Indeed, we may think of 
a point ue C Je(E) as the jet or derivative Tm~ of a local section ~ of E at m satisfying 
e = ~(m), so in particular, u~ is a linear map from TraM to TeE. Correspondingly, we 
may set 

4)j(E) U~ = T¢4)E o ue o (T,~OM) -1 . (25) 
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In local coordinates, the lifting of projectable vector fields is given by 

and 

xj( ) = x .  ° -  + o ( o x '  
Oxt' Oq ~ - \ OqJ q~ 

OX~ ~ OX~ ~ O 
Ox. q" + Oxu ] Oq;' 

~x~ + Oq i \ Oq i pj - Ox ~ pi + ~ P i j  Op~ 

_ ( o x '  . ox~  ) o 
\ Ox" Pi + Ox ~ p ~p " 

(26) 

(27) 

Just  as in ordinary mechanics on cotangent bundles, one uses this lift to define the 
rnultimomentum map [5] which to each projectable vector field XE on E associates the 
(n - 1)-form J ( X E )  on J*(E)  defined by contraction with the canonical n-form 0: 

J(xE)  = ix,.(E) o. (28) 

Now invariance of 9 under bundle automorphisms of J* (E) that  arise from bundle auto- 
morphisms of E by lifting implies that  

LXj.(E) cz = 0, (29) 

so that 

ix~.(E) ~ = dJ (X~ ) ,  (30) 

which means that  J (XE)  is a Hamiltonian (n - 1)-form. In coordinates one finds [5] 

J ( X z )  = ( p f X  i + p X  #)d'~x.  - l ( p~X ,  - p•X u) dq i A d n x . . .  (31) 

The first term on the right-hand side of this equation, the only one present in Kanatchi- 
kov's approach, corresponds to internal symmetry  transformations, whereas the renmin- 
ing terms describe transformations (diffeomorphisms) that  act nontrivially on space-time; 
it is from this part  of the mul t imomentum map that  one extracts the energy momentum 
tensor of field theory [7]. 

3. H a m i l t o n i a n  forms  o f  d e g r e e  n -  1 and  the ir  P o i s s o n  bracket  

In the previous section, we saw that  the mul t imonmntum map, which encompasses 
the energy-momentum tensor as well as the Noether currents associated with any kind of 
continuous symmet ry  in field theory, produces Hamiltonian ( n -  1)-forms. The structure 
of all Hamiltonian (n - 1)-forms is completely described by the following. 

THEOREM [3]. Hamiltonian ( n -  1)-forms on J*(E)  are the sum of three contribu- 
tions: 

1. the Noether current J (XE)  associated to a projectable vector field XE  on E, 
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2. the pull-back of a horizontal (n - 1)-form on E to J*(E),  

3. any closed (n - 1)-form on J*(E).  

In local coordinates, this decomposition (which is of course not unique) can be writ ten 
explicitly as follows. Let 

x ~  = x . °  + x ~ a  (32) 
Ox~ Oq ~ 

be a projectable vector field on E and 

fo = fo ~ dnxt, (33) 

be an (n - 1)-form on J*(E) obtained from a horizontal (n - 1)-form on E (with the 
same local coordinate expression) by pull-back: this means that  the coefficient functions 
X ~ depend only on the variables x ~ while the coefficient functions X i and f0 ~ depend 
only on the variables x ~ and qJ. Define 

f = J (XE)  + fo, (34) 

so 

1 (p~,X~ , _ p~XU ) dq i A dnxu~, (35) f = (p~X i + p X  t' + fg)d~xt ,  - -~ 

Then f is a Hamiltonian (n - 1)-form, and the corresponding Hamiltonian vector field 
X I reads 

x ¢ = x . O +  O 
Ox" ~ q i -  \ Oqi j 

o z .  o x  ~ . o x .  o fg '~  o 

Ox~ pr + ~ p~ + ~ p + o¢ ] Opf 

[" OX i , OX ~" Of~ ~ 0 (36) 

We shall also write these expressions for f and for X I  in the form 

1 f ~ ,  dq~ A dnxt,~,, f = f"dnx~, + (37) 

and 
_ Of" 0 1 Of" 0 ( O f "  Off"'~ 0 Of" 0 

X I  019 Ox~ + ] . (38) n cgp~ Oq i \ Oq i Ox ~' Op~ Ox• Op 

The theorem claims that  up to a closed ( n -  1)-form, f is the most general Hamiltonian 
(n - 1)-form f on J*(E). Note the integrability constraints that  express themselves 
through the dependence of the coefficient functions on the variables p~ and p, which is 
a n n e  (linear plus constant).  

For the definition of a Poisson bracket between Hamiltonian (n - 1)-forms f and g, 
the first idea would be to set 

{ f ,g} '  = ixgix~ w, (39) 
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since this gives 

[ x s , x . ]  = - ( 4 0 )  

But  this bracket satisfies Jacobi ' s  identi ty only up to an exact term, 

{ f , ( g , h ) ' } '  + { g , { h , f } ' } '  + { h , { f , g } ' } '  = d ( i x s i x  ix, O) . (41) 

This disease can be cured [3] by adding a correction term, which is a uniquely defined 
exact  (n - 1)-form in order to guarantee  that ,  as before, 

[Xf,  X.]  - X( fm} .  (42) 

Explicitly, 

{ f , g}  = i x ,  i x s w  + d ( i x ~ f  - i x s 9 -  i x ,  i x  IO) . (43) 

It  can be checked [3] tha t  this new bracket does satisfy Jaeobi 's  identi ty and hence 
provides the space of Hamil tonian (n - 1)-forms on J*(E)  with the s t ructure  of a Lie 
algebra. By an explicit calculation in local coordinates  using the above expressions for 
f ,  X s and analogous ones for g, Xg, one finds 

[OX" gu _ f ,  OVa" Of"  y i  _ X ~ Og" ] 
{ f ,g}  = Lax ,  Ox ~ + ~ O~q~ J d'~x~ 

y ,  
[[ 'OX" . f" OY'~'~ " { O X ~ ' Y  p - x p O Y " ' ~  (44) 

- LK -y  ' - o<,, ; + t 0 . .  0 x . . ,  

( o x ' v .  _ oV' ] l  
- p \ Oq i Oq i ] j  dq i A d"xu , .  

The calculation shows tha t  the correction terms in the definition of the new bracket lead 
to s trong cancellations and great ly simplifies the final result. 

In order to extend the new Poisson bracket to Hamil tonian forms of a rb i t ra ry  degree, 
two problems need to be solved. 

• Eq. (43) ha~s to be modified by introducing signs depending on the degrees of the 
Hamil tonian forms such tha t  a graded version of Jacobi ' s  identi ty still holds. 

• For forms f of degree other  t han  n - 1, df no longer determines the Hamil tonian 
mult ivector  field X f  uniquely. This ambigui ty  has to be fixed in a consistent way. 

These questions are presently under  investigation. 
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