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We review the definition of instanton (= pseudoparticle) solutions and their import- 
ance in the context of notmbelian gauge (ffi Yang-Mills) theories, as well as the recent 
progress, due to Atiyah and Ward, in their construction, using the Penrose twlstor transform 
and methods of algebraic geometry. In particular, we present a proof of the theorem of 
Atiyah and Ward on the correspondence between SU(2) instanton solutions ove~ the 4-sphere 
and certain algebraic 2-dimensional complex veb'~r bundles over complex projective 3-space. 

1. Introduction 

During the last two years, the instanton problem, first formulated by Belavin, Polya- 
kov, Schwarz and Tyupkin [1], [2], has received a great deal of attention both from 
physicists and mathematicians. The present review will therefore begin with a brief dis- 
cussion of its position and importance in field theory. Sections 2-3 explain the context 
of gauge theories--as models of field theory--in which it arises and discuss some of its 
elementary aspects. Sections 4-7 are devoted to the progress that has been made in its 
solution so far, and especially to the beautiful recent work of Atiyah, Hitchin, Singer 
and Ward [3], [4], [5], [6]. There are no new results. 

Recall first that in classical field theory, a system can be specified by its action func- 
tional S, defined on some set A of dynamical variables. The variational principle then 
states that the possible classical configurations of the system are the extremals of  this 
action, which coincide with the solutions of the corresponding Euler-Lagrange field 
equations. On the other hand, for the definition of the corresponding quantum field theory, 
one usually starts flora (formally) the same action functional S. Following the procedure 
of Feynman path integral quantization, one then has to construct a probability measure 
dp on A such that the vacuum expectation value of any (observable or nonobservable) 
functional 0 on A is given by 

<01 10> = I O.1) 
-4 

Since one is in general unable to perform such a functional integral explicitly, one tries 
to extract information about the qualitative behaviour of the correlation functions 

* Supported by the Studienstiflung des deutschen Volkes. : 

[3591 



360 M. FORGER 

(0 [ d~qu~ntl O) from a detailed investigation of the classical theory, hoping that eventually 
one might thus find a key to at least a qualitative understanding of certain phenomena 
in elementary particle physics, and in particular of the presently fundamental problem 
of quark confinement. It is certainly not unrealistic to believe that such an extraction 
should be pc~,ible in principle, since the classical theory is in some sense a limit of the 
quantum theory as ~ ~ O, and the limiting procedure cannot destroy these iaformatious 
entirely. 

It should be mentioned here that whereas field theory admits a direct physical inter- 
pretation only in the Minkowski domain (i.e. over a space with a Lorentz metric + - ... - 
or + ... + - - ,  according to convention), the ftmctional integration technique works--  
if at all--only in the Euclidean domain (i.e. over a space with a P4emann metric + ... +). 
But the models in field theory studied so far are all defined over flat space, and in this 
case there is a one- to ,he  correspondence between the theories in the Minkowski domain 
and in the Euclidean domain, based on complex analysis in a common fiat complex space 
containiag Minkowski space and Euclidean space as two different real subspaces. Curiously 
enough, this correspondence can be made precise on the quantum level (in the axiomatic 
approach ~t la Wightman and Osterwalder/Schrader as well as to every order of perturba- 
tion theory), but is rather formal on the classical level since it usually does not contain 
any reasonable relation between Cauchy initial value problems in the Minkowski domain 
and boundary value problems in the Euclidean domain. This leads us to expect the informa- 
tion on the qualitative behaviour of the correlation functions inherent in the two versions 
of the classical theory to be different from each other, at least under appropriate initial 
resp. boundary conditions. 

These arguments provide a motivation for investigating the classical Minkowski and 
Euclidean versions of models in field theory. In the Euclidean case---on which we shall 
concentrate from now on since the instanton problem falls into this class---(l.l) suggests 
that one should first look for the minima of the action which may be expected to give 
the leading contributions to the functional integrals: In fact, experience with explicitly 
soluble models of  field theory leads us to believe that in most cases (where the (Euclidean) 
action S is positive definite), the measure dp is sufficiently well-behaved not to cancel 
the effect of  the exponential damping factor exp( -S) .  However, there may exist sub= 
sidiary conditions such that apart from the absolute minimum,i all the minima relative 
to some fixed value(s) for the functional(s) defining the subsidiary condition(s) give contri- 
butions to the functional integrals which are of the same order of magnitude and so cannot 
be neglected. Polyakov has argued [7] that this actually happens in the case of the instanton 
problem, where the subsidiary condition is given in terms of the "instanton number" 
or "winding number" and is of  a topological nature. 

To be slightly more specific, let us recall that instantons--also called pseudoparticles-- 
are minima of the action, or equivalently, solutions to a certain natural system of first 
order nonlinear partial differential equations in classical 4-dimensional Euclidean pure 
gauge theories. (Compare Sec. 2 for the terminology.) In the context of nonabelian quantum 
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gauge theories, their existence indicates [8], [9] that via a tunnelling effect, the apparent 
degeneracy of  the vacuum is removed, and various forms of  symmetry breaking occur, 
without the generation of additional (unwanted) Goldstone bosons. For more details, 
we refer the reader to the review papers [10], [11] where the role of classical solutions 
of  the field equations for a nonperturbative analysis of quantum field theories is dis- 
cussed extensively. 

2. Gauge theories and characteristic classes 
Since the geometric formulation of classical gauge theories in terms of connections 

in principal bundles and associated vector bundles, etc., is by now well understood [12], 
[13], [14], [15], we give only a brief review of the definitions. For the mathematical con- 
cepts involved, we refer the reader to the standard literature [16], [17]. 

To define a classical (Euclidean resp. Minkowski) pure gauge, or Yang-Mills, theory 
(in d dimensions), we have to be given the following data: 

(a) A base space B, which is an oriented (d-dimensional) manifold, equipped with 
a (Riemannian resp. Lorentz) metric g. Then B also carries a natural volume form 8, 
defined as taking the value + 1 on any positive orthonormal frame. Moreover, given any 
Riemannian real vector bundle E over B, the usual pointwise operations of  the Hodge 
theory can be generalized from ordinary to E-valued differential forms to yield 

(i) an exterior product ^ E taking an E-valued p-form u and an E-valued q-form fl to 
an ordinary (p+q)-form r, AEj8 (using only the Riemannian metric on the fibres 
of E here), 

(ii) an inner product ( ' ,  .) taking an E-valued p-form u and an E-valued q-form ~ to 
a function (u,/~) ((0~,/~) = 0 if p ~ q), 

(iii) a star operator • taking an E-valued p-form ~ to an E-valued (d-p)-form ,~, 

satisfying 

• ,0~ = (-1)Pcd-P)+su, 0~^~./~ = ~^E*0~ = ( -  1)s(u,~)e (2.1) 

for E-valued p-forms u, ~. Here, s denotes the dimension of the maximal subspace on 
which g is negative definite (i.e. s -- 0 resp. s = d -1 ) .  

Co) An internal symmetry group or gauge group (7, which is a compact Lie group, 
equipped with a positive definite inner product (., .) on its Lie algebra g, invariant under 
the adjoint representation Ad of G on g. (If G is also semisimple, we choose (-, .) to be 
the negative of the Killing form, i.e. - (X, Y) -- tr ad(X) ad (Y) for X, Y E g.) 

The dynamical variable is now an equivalence class [P, A] of pairs (P, A), where P 
is a principal G-bundle over B and A is a Connection form on P, with (P, A) and (P', A') 
equivalent iff there exists an afflne isomorphism of principal G-bundles with connection 
between (P, A) and (P', A'). We call this equivalence "gauge equivalence" since an iso- 
morphism of this type is known among physicists as a (global) gauge transformation, 
at least in the case of  trivial bundles. The principle of  gauge invariance then states that 
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all physically Observable quantities given in terms of  the pair (P, A) are in fact gauge 
invariant, i.e. depend only on its gauge equivalence class [P, A]. In particular, this applies 
to the Yang-Mills action S which is defined as follows: 

The connection form A, which is an Ad-covariant, g-valued 1-form on P appropriately 
normalized on vertical tangent vectors, determines the curvature form F as the horizontal, 
Ad-covariant g-valued 2-form 

F = dA+½[A, .4] (2.2) 

on P. Now F c a n  also be considered as a 2-fozm on B, taking its values in the Riemannian 
real vector bundle P x a g  over B associated to P and the adjoint representation Act of G 
on g, with its Riemanuian metric induced from the Ad-invariant positive definite inner 
product (., . ) o n  g. Hence the operations mentioned under (a) above can be applied to 
define the Yang-Mills action density (F, F)e = ( -1 ) 'FA 0 *F as a gauge invariant or- 
dinary d-form on B. (A s is an abbreviation for A~xag-) Up to a normalization factor 

depending on the specific choice of the gauge group G and the inner product (., -) on its 
Lie algebra g and involving the coupling constant of the theory, its integral is the Yang- 
Mills action 

S = const I (F, F)e = cons t ( -  1)' I FAa .F.  (2.3) 
B B 

The extremals of this action are the solutions to the so-called flee Yang-Mills equations 
D *F = 0. (2.4) 

Sometimes, following the example (G = U(1)) of Maxwell theory, one also considers 
the Bianchi identity 

DF = 0 (2.5) 

as part of the Yang-Mills equations. Here, D denotes the covariant exterior derivative 
in the vector bundle P x ~ g  associated to the connection form A on the principal G- 
bundle P. 

Before proceeding further, we want to explain briefly why the classical gauge theories 
described above are called "pure", and why the Yang-Mills equations (2.4) are called 
"free". The reason is that the dynamical variable contains only a multiplet A of gauge 
fields, but no multiplet ~ of matter fields (and/or Higgs fields), and that the r.h.s, of  (2.4), 
which in the more general ease is a source term, vanishes. In fact, if more generally we want 
to define a classical (Euclidean resp. Minkowski) gauge, or Yang-Mills, theory (in d 
dimensions), we have to be given as additional data: 

(c) A unitary representation of  G on a fiuite-dimensional complex vector space E. 
The dynamical variable is then a gauge equivalence class [P, A, ~] of triples (P, A, ~,), 

where P, A are as before and ~o is a section of a Hermitian vector bundle E over B, with 
(P, A,  ~o) and (P', A', ~o') gauge equivalent iff there exists an isomorphism between (P, A) 
and (P', A') as before and such that ~ and ~o' are related by the induced vector bundle 
isomorphism between E and E'. (E is the associated vector bundle P×GE over B if ~0 
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is to contain only scalar matter fields, and--assuming that w2(B) -- 0 and choosing a spin 
structure on B--its tensor product with an appropriate spinor bundle over B if ~0 is to 
contain arbitrary spinor matter fields.) Moreover, the action functional contains additional 
terms involving ~0 and its covariant derivative D~, and its extremals are the solutions 
to the Yang-Mills equations D *F = j ,  D F  -- 0, where the source term j is the matter 
field current whose definition also involves ~0 and its covariant derivative DV, plus a partial 
differential equation for ~0. CIlds is the covariant Klein--Gordon equation if ~o contains 
only scalar matter fields, and an appropriate covariant higher spin equation, such as the 
covariant Dirac equation, if ~0 contains arbitrary spinor matter fields.) For more details, 
see [181.  

In the following, according to what has been said in the Introduction, B is assumed 
to be Riem~nni~n, i . e .  s = O. 

We now turn to the problem of choosing appropriate boundary conditions. Of course, 
the action is always finite i fB  is compact. However, it turns out that even if B is not com- 
pact, one can often find a suitable compactification, i.e. a compact base space B contain- 
ing the noncompact base space B as an open dense oriented submanifold, such that the 
Riemann metric g on B is equal or at least conformally equivalent to the restriction of  the 
Riemann metric g, on B to B. Then for any pair (P,  A) which arises from a pair (if, A) 
by restriction (with P resp. P a principal G-bundle over B resp. B and A resp. A a con- 

nection form on P resp. P), the action is finite; in fact, 

S = S(P,  A) = S(P,  a)  < Qo. (2.6) 

In other words, the existence of an extension (P, A) of  (P, A) over the given compactifica- 
tion B of B (a geometric boundary condition) implies the finiteness of the action of (P, A) 
(an integrability requirement and hence an analytic boundary condition). Whether or 
to what extent the converse is true, is---even in very special cases--still an open problem. 

The fact that the geometric boundary condition has turned out to be much easier 
to handle than the analytic boundary condition constitutes the prime motivation for 
considering classical Euclidean gauge theories over compact rather than noncompact 
base spaces. Of course, if the theory is originally defined over a noncompact base space B, 
additional criteria concerning the choice of the compactification B should be given. For 
example, the instanton problem was originally formulated over B = R ~ [2], but the 
physicists' arguments and computations all amount to working over the one-point compact- 
ification B = S*, which in some sense is the "simplest" and "minimal" one. The usual 
argument here is that this compactification is natural due to the eonformal invarianee 
of  the problem. Strictly Sl~eaking, however, one can only talk about conformal invariance 
if one is able to lift the action of  the conformal group from the base space B to the principal 
G-bundle P over B (we omit the bars here); this is the typical lifting problem one faces 
whenever one investigates space-time symmetries in classical gauge theories. Now such 
a lifting will not exist in general--there is an obstruction which can be expressed in terms 
of  cohomology--but it does of  course exist and is unique up to a bundle automorphism, 
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i.e. a (global) gauge transformation, if P is trivial. Actually, as long as one is dealing 
with equationsMsueh as the free Yang-Mills equations---which involve only the curva- 
ture F a n d  not the connection A, it is sufficient to lift to P ×  og rather than P itself, which 
is certainly possible if P × o g rather than P itself is trivial. This situation occurs if P admits 
a reduction of structure group from G to the centre of G, and in particular if G is Abelian, 
so that in Abelian theories such as Maxwell theory, the problem disappears. 

As a consequence of their intrinsically geometric nature, classical gauge theories admit 
interesting invariants which come from the topology of the bundles involved and are 
usually expressed in terms of  characteristic classes. FoUowing the construction leading 
to the Well homomorphism [16], [17], let us recall briefly how these are defined: 

Let F ¢ (V'g*)t be a symmetric invariant of degree r on the Lie algebra g of G,,con- 
sidered as an Ad-invariant homogeneous polynomial of degree r or as an Ad-invariant 
symmetric r-linear functional on g. (Both interpretations are equivalent by polarizing 
resp. by restricting to the diagonal.) Then formally inserting the (P × o g)-valued curva- 
ture 2-form F on B into each slot of F, one obtains a gauge invariant ordinary 2r-form 
F(F  . . . .  , F) on B, which due to the Bianchi identity (2.5) for F is closed and hence defines 
a 2r-dimensional de Rham cohomology class [F(F, .... F)] e H~'(B, R) on B, called the 
characteristic class of P associated to F. This terminology is justified in view of the theorem 
of A. Well which states that the latter is in fact independent of the connection form A 
and hence a topological invariant of the underlying principal G-bundle P. The resulting 
correspondence 

(v~,)~ = • (v,g*), ~ • H2"(B, R) = ~""(B, s) 
,~0 ,~0 (2.7) 
F ~ [ r ( F  . . . . .  F)] 

is known as the Weil homomorphism. 
More explicitly, the form _P(F, ..., F) is defined as follows: Observe that due to its 

Ad-invariance, _P defines a symmetric r-linear functional Pb on the fibre of the associated 
vector bundle P x o g  over b, for any b e B; this family can be viewed as a vector bundle 
map from the vector bundle (P x o g) ® ... ® (P x o g) (r factors) to the trivial vector 
bundle B x R. Then using a generalized exterior product, F(F . . . . .  F) is given by 

r ( F  . . . . .  ~ b ( U ,  . . . .  , u , , )  

= C½)" ~ ( -  1)'rb{e~(u..;', Uoc~,) .... ; r~(uoc~._., ".c~.~)} (2.8) o l~ation 
of(L...,~) 

for b ~ B, It t ,  ..., u2, e TbB. 

In most cases, G = GL(n, C) is a matrix Lie group. Then the adjoint representation 
of  GL(n, 6") on gl(n, C), restricted to G, leaves g invariant and induces the adjoint rep- 
resentation of G on ft. Hence an AdoLcn, cg-invariant homogeneous polynomial of degree 
r on gl(n, C) restricts to an Ado-invariant homogeneous polynomial of degree r on g. 
Examples of the former are given by the rth characteristic coefficient Cr and the rth trace 
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coefficient Tr,: 

Co(I') = 1, C,(X) = ~ Xil ... hi,, 
l~ l t<. . .<l ,~n 

Tro(X) -- n, Tr,(JO = ~ 2~ (2.9) 
l ~ l ~ n  

for Xegl (n ,  C) witheigenvalues~, ..., ~n (counted according to their 
multiplicities). 

Up to normalization constants, these yield the rth Chem class c, and the rth com- 
ponent ch, of the Chern character, explicitly represetned by the differential forms 

c,  = - - ~ -  c , ( F  . . . .  , ~ (2.1o) 

and 

ch, -- - Tr,(F, ..., F), (2.11) 

respectively; in particular, cht = ct and ch2 = -c2+c~/2 .  Moreover, the associated 
vector bundle P x og can be considered as a vector subbundle of  the endomorphism bundle 
Pxagl(n, C) of the associated vector bundle Pxo&, i.e. each fibre of  Pxog (resp. 
P x a gl(n, C)) can be considered as a Lie algebra of  linear transformations (resp. as the 
Lie algebra of  all linear transformations) on the corresponding fibre of P x ~ &.  Therefore 
one also has 

(iv) an exterior product ^ taking a (P x a gl(n, C))-valued p-form u and a (P x o gl(n, C))- 
valued q-form ~ to a (Pxogl(n, C))-valued (p+q)-form a^~8 (using "matrix multi- 
plication"), 

which leads to the following form of (2.11): 

1 ' 
ch, = ( - -~-~-)  - ~  t r F ^  ... ^ F .  (2.12) 

In particular, the first two Chern classes of  the associated vector bundle P x o & are re- 
presented by the differential forms 

and 

1 
ct = - 2~i t rF  (2.13) 

1 
c2 = ~-~-f~2trF^F, if q : SL(n, C), (2.14) 

since G ~ SL(n, G") implies cI -- 0. From topology, the Chern classes cr are actually 
known to be integral, i.e. to belong to H~'(B, Z) ~ H~'(B, R). 

For many physicists, cohomology classes are still a somewhat mysterious kind of in- 
variant; they would prefer numbers. Fortunately, if B is compact, there is a canonical 
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isomorphism 

f: ~ ( ~ ,  R) - ,  
[o,l-~ S~, (2.15) 

B 

under which /P(B,  Z) corresponds to Z) so that real resp. integral cohomology classes 
in the top dimension correspond to real numbers resp. integers. Now the interesting values 
for the dimension of B are d = 2 and d = 4, since for models in field theory the 2-dimen- 
sional version often serves as a good training ground for the 4-dimensional one. Although 
this is indeed the case here and rather complete results can be obtained [6], we shall-- 
mainly because of the limited amount of space available--turn directly to the 4-dimensional 
problem. 

3. Formulation of the instanton problem 

In four dimensions, we can integrate the characteristic class of P associated to the 
symmetric invariant (-, .) of degree 2 on fl, obtaining a topological invariant 

= const I (F, ,F)e = const I F A , F ,  (3.1) k 
B B 

called the instanton number or winding number; notice the similarity with the definition 
of the action 

= const I (e, F) ,  = const I F ^ ,  , e ,  (3.2) S 
B B 

also on the level of densities. Since the star operator is an isometry with respect to the inner 
product (., .), the inequality 

0 ~< (F±  , F , F ±  , F )  = ( F , e ) ± 2 ( F , . ~ 3 + ( . F , , ~  = 2 ((F, e)  + (F, . e ) )  (3.3) 

implies the important relations 

+ ( F , . F )  = (F ,F)  ¢~ * F =  + F ,  
and (3.4) 

- ( F , , ~  = (F ,F)  ¢~ , F =  - ~ ,  
I ( r , , ~ l  ~< (F ,F)  

which can be integrated to yield 

Ikl ~< S 
+ k =  S ¢~ * F =  +F, 

and - k --- S ¢~ * F = - ~. (3.5) 

Therefore, the minima of the action are the solutions to the so-called self-dual or anti- 
self-dual equations 

• F = F  or * F f f i - F  (3.6) 

according to whether k ~ 0 or k ~< 0, respectively, and these are the instanton solutions 
(occasionally called instanton or anti-instanton solutions, respectively) we are interested in. 

Evidently, minima of the action are exlremals while it is still an unsolved and partially 
controversial question whethe, there exist extremals of the action which are not minima. 
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From the point of  view of partial differential equations (for the connection form), the 
Bianchi identity (2.5) makes it evident that a solution to the first order system (3.6) is 
also a solution to the second order system (2.4), while it is not surprising that the converse 
is a nontrivial problem. 

To be more specific about the common normalization constant in O. 1) and 0.2), let 
us assume that G is the simple Lie group SU(n) whose Killing form --which coincides 
with that o f  its complexification SL(n, C)--is given by 

-(X' ,  If) = tr ad(X)ad(Y) ffi 2ntrXY for X, Yesu(n).  0.7) 

This implies the following relation between the products h a of  Sec. 2, (i) and A of Sec. 2 
(iv): 

=Agp = --2ntr~A/~ (3.8) 

for any (P × ,u¢,,su(n))-valued p-form ~ and any ( e  × svc,)su(n))-valued q-form/~. Hence 
choosing the normalization constant to be 1/16n2n, we obtain 

1 I 
16~n m 

1 S =-~-i-~2 tr F A F , 
B 

k = 

0.9) 
S =  16~  n 

Thus - k  is the integral of  the second Chern class ca(E) of  the associated vector bundle 
E -- Pxsu¢, )&;  in particular, k is an integer. From now on, we shall identify c2(E) and 
- k ifnot explicitly stated otherwise. Moreover, in this case k is actually the only topological 
invariant of  the theory: 

PItOPOSITION I. I f  B is connected, the integer k determines the principal SU(n)-bundle P 
completely up to an isomorphism. 

Proof: Step 1 : n ffi 2. Given a principal SU(2)-bundle P over B, form the associated 
complex vector bundle E -- P × Bu¢2~ C~ over B and---considering it as an oriented Rieman- 
nian real vector bundle Ej¢ over B--the corresponding oriented sphere bundle S over B; 
then since SU(2) acts on S 3 = R* _-_ C ~ transitively and without fixed points, there is 
a natural isomorphism of  P onto S (as fibre bundles over B). Now S admits a section, 
and hence P is trivial, iff the Euler class Zs of  S vanishes. But Zs = pf(E~) ffi c2(E). 

Step 2: n > 2. Since on the level of  isomorphism classes, there is a one-to-one cor-  

respondence 

principal SU(n) bundles 

over B 4-, 

P ~-, 

n dimensional complex vector bundles 

over B with c~ --- 0 

E -- P×su(~)C ~ 

it suffices to show that if c2(E) = 0, E must be trivial. But as B is 4-dimensional, E can 
always be decomposed in the form E --- F ~  G with G the ( n -  2)-dimensional trivial complex 
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vector bundle over B, and c x (F) -- e l (E) = 0. Therefore c 2 ( F ) - - c 2 ( E ) =  0, and by 
Step 1, F is trivial. Hence so is E. • 

Let us finally state precisely what we mean by "the instanton problem": Given a compact 
4-dimensional base space B, a gauge group G ~ GL(n, C) and an integer k, it is the pro- 
blem of determining the minima of the action (3.2) under the subsidiary condition (3.1), 
i.e. the self-dual (if k t> 0) resp.anti-self-dual (if k ~ 0) con~ctions in principal G-bundles 
P over B with prescribed iustanton number k. More explicitly, it can be broken up into 
a couple of  questions of  increasing difficulty: 

(1) Do solutions exist, i.e. is the minimum attained? 

(2) What is the local structure of  the space of solutions, i.e. its dimension, and is it 
locally "regular", i.e. a manifold? 

(3) What is the global structure of  the space of  solutions, e.g. is it connected, simply 
connected, ... ? 

(4) Can one give an explicit construction which yields the most general solution? 
Here, "solutions" really mean "gauge equivalence classes of  solutions", also called 

"moduli" in the mathematical literature. Notice also that using pull-back via an orientation 
reversing dilfeomorphism on B--such as the antipodal map on S 4, for example--if 
necessary, one can assume without loss of generality that k >I 0 or that k ~ 0. Of course, 
this requires B to be reversible; a necessary condition is that the signature of B vanishes 
(cf. [17], Vol. I, p. 206). 

The interesting---and hopefully typical---case where attention has concentrated and 
results have been obtained is B = S4 (the "simplest" compact 4-dimensi6nal manifold) 
and G = SU(2) (the "simplest" compact nonabelian Lie group). The following sections 
will describe these results and provide at least partial answers to questions (I)-(4) above. 
However, it seems perhaps useful first to indicate the close analogy with the basic problem 
in the Hodge theory of harmonic forms, where on the space ~P(B) of ordinary p-forms 
to (as the set of dynamical variables) over a compact oriented Riemannian manifold B 
(as base space), one considers the square of  the L2-norm 

ttol 2 -- S (o',to) • = S*to^  (3.10)  
B B 

(as the action functional) and the de Rham cohomology class 

[to] e HP(B, R) (3.11) 

(as the analogue of  the winding number k or rather the corresponding cohomology class), 
and again asks for the minima of the action (3.10) under thesubsidiary condition (3.11), 
i.e. for the p-forms to on B with minimal L2-norm and prescribed cohomology class [co] -- c. 
As a consequence of  the Hodge decomposition theorem [19], it turns out that there is 
actually a unique minimum, namely the unique harmonic form too on B with cohomology 
class [tOo] -- c. For p = 2, the analogy becomes even closer if one considers - /zo -- F 
as the curvature form of a connection form A in a principal U(l)-bundle P over B (thus 
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changing the set of dynamical variables from the space I~2(B) to the set of gauge equiv- 
alence classes of pairs (P, A)), forcing [oJ/2n] to be integral, i.e. to belong to H2(B, Z) 

HZ(B, R), since it is just the first Chern class of the associated complex line bundle 
P x v(l)C. Notice, however, that the subsidiary conditions---although they look similar-- 
are by no means identical, so that the resulting partial differential equations (zloJ = 0 
and • F = + F, respectively) for a minimum are-also different; in particular, the former 
is of second order, but linear (since U(1) is abelian), while the latter is of first order, but 
nonlinear (whenever G is nonabelian). This is the main reason why the instanton problem 
can be considered as substantially more difficult than a proof of the Hodge decomposi- 
tion theorem, which already is a deep theorem in harmonic analysis. 

4. Explicit solutions and deformation theory (a brief survey) 
The first instanton solutions for [kl -- I were given by Behvin, Polyakov, Schwarz 

and Tyupkin [2]. Later, t'I-Iooft (unpublished) exhibited an "Ansatz" which was exploited 
by Jackiw, Nohl and Rebbi [20] to find an n(k)-parameter family of instanton solutions 
for any k ~ 0, where 

n(4-1) = 5, n(-I-2) = 13, n(k) = 51k1+4 for Ikl i> 3. (4.1) 

We leave it to the reader to translate their formulae from R 4 to S ", using the conformal 
embedding R 4 ~ S 4 defined by stereographic projection and a suitable transition function 
for the principal SU(2)-bandle over S 4 classified by the integer - k .  

At about the same time, Jackiw and Rebbi [21] and Schwarz [22] proved independently 
that for any k # 0, the dimension of the space of instanton solutions (moduli) is actually 

r(k) = 8 Ikl- 3. (4.2) 

This value for r(k) had actually been conjectured before using the physical picture that an 
instanton solution with instanton number k is really a "multiinstanton" suitably composed 
(in a nonlinear fashion) of k "single instantons", and that each of these is determined 
by 4 position parameters for its "centre of mass" + 1 scale parameter for its "size" + 3 
orientation parameters for its "orientation" in the 3-dimensional Lie algebra su(2); finally, 
3 parameters have to be subtracted for the "overall gauge freedom" since we are only 
looking for gauge equivalence classes of sohtions. The idea of the proof is to appropriately 
linearize the field equations (3.6) around some given solution and thus to obtain an elliptic 
linear differential operator whose analytic index is, due to a vanishing theorem, r(k) and 
whose topological index is 8 Ikl-3. (4.2) then follows from the Atiyah-Singer index 
theorem. The final step in this direction was taken by Atiyah, Hitchin and Singer [3] 
who applied an integrability theorem of Kuranishi [23] which justifies the linearization 
procedure, thus proving the following 

~ l ~ M  1 [3]. The space of  SU(2)-instanton solutions (modulo over S 4 with instanton 
number k ~ 0 is a real analytic manifold of  dimension 8 Ikl- 3. 

This deformation theoretical approach can obviously be generalized to other base 
spaces than S 4 and other gauge groups than SU(2), and results in this direction have 
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recently been obtained [24], [25]. On the other hand, it tellsus nothing about the global 
structure of the manifold of solutions, or about methods for explicitly constructing the 
most general solution. There is, however, a different approach due to Atiyah and Ward 
[5], which goes a long way towards an answer tO those global questions, and which is 
based on the observation that using the Penrose twistor transform, one can translate the 
instanton problem over S* into a problem in algebraic geometry. 

5. The Peru.me ~ trm~erm 

To apply methods of  algebraic and/or analytic geometry, it is clearly necessary to 
introduce some sort of  complex structure into the theory. But S 4 does not admit a complex 
structure, not even an almost complex structure, so that we face the problem of "complexi- 
fying" S" in some natural and minimal way. One way to motivate the particular procedure 
we have in mind is the following: 

Given a 2n-dimensional oriented Riemannian manifold X, let B.otz.) (X) be its positive 
orthonormal frame bundle, which is a principal SO(2n)-bundle over X. According to the  
general definition of  G-structures on manifolds, an almost complex structure on X, com- 
patible with the given orientation and the Riemann metric on X, is a reduction of structure 
group of Bso(2~)(X) from SO(2n) to U(n), which is well known to exist iif the associated 
fibre bundle Bao(2,)(JOXso(2,)SO(2n)/U(n), with typical fibre the homogeneous space 
SO(2n)/U(n), admits a section. Observe also that SO(2n)/U(n) is precisely the set of  all 
complex structures on the vector space R 2", compatible with the standard orientation 
and Riemann metric on R 2". Moreover, if n == 2, 

SO(4)/U(2) --- (SU(2)x SU(2))/Z2/(SU(2)× U(1))/Z2 ~- SU(2)/U(1) ~ S 2. (5.1) 

For X - -  S*, this associated fibre bundle can be described in several other ways: 
As a complex vector space, the (noncommutative) field H of quaternions is just C 2, 

i.e. there is an isomorphism 

C 2 --, H 
(5.2) 

(zt, z2) = (xl + iyj., xz + iy2) v-~ zt  + zz j  = xx + iYl +jx2 + ky2 = z l - j ~  

inducing a corresponding isomorphism C 2"+2 ~ H a+t, for any n. Since C = H, this 
isomorphism factors to yield a map 

~,:  CP ~'+t -- Cz"+2/C-  {0} --, H " + t l H -  {0} = t iP"  (5.3) 

of  projective spaces which actually turns CP 2"+t into a fibre bundle over HP" with typical 
fibre CP t = 82 and makes the diagram 

$4n+3 

¢" "~ (5.4) 

CP 2"+x ~ HP" 

commutative, where the vertical arrows are the complex and quaternionic Hopf fiberings, 
respectively. More explicitly, observe that under the canonical projection from C 2"+2 
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to C P  2"+1' the set of  projective lines, i.e. of  lines in C P  ~+1, corresponds to the Grass- 
mannian G2.2,+2 of  2-planes in C ~"+2, and that the antilinear antiinvolution of  left multi- 
plication by j in C 2"+~ ~ / T  '+1 factors to yield an antilinear involution o on C P  ~+1. 

o is a "real structure" on C P  z'+x different from the ordinary "real structure" on C P  ~+1 

induced by the usual complex conjugation on C~+2;  in terms of  Lie groups, these two 
"real structures" correspond to the two different real forms SU(2n+2) and SL(2n+2,  R) 
of  SL(2n+2,  C), consisting of  those matrices in SL(2n+2,  C) which commute with left 
multiplication by j and with the usual complex conjugation, respectively. Notice that o 
has no real (i.e. o-stable) points since for any nonzero vector z ¢ C 2n+~, z and jz  are linearly 
independent and so cannot represent the same point in C P  2"+~, but o does have real 
(i.e. o-stable) lines which under the canonical projection from C 2"+z to C P  ~+1 correspond 
to the 2-planes in C 2n+2 generated by z and jz, i.e. to the 2-planes Hz ,  for some nonzero 
vector z E C2"+L Hence these real lines are precisely the fibres of  0~. and of  the form 
H z f C - { 0 }  for some nonzero vector z a C 2"+2, implying that they are isomorphic to 
C P  ~ ~- S 2 and that under this isomorphism, o acts on them as the antipodal map on S 2. 
Explicitly, we use stereographic projection from the north pole (0, 1) as the second map 
in the sequence 

C P  ~ -  ([0, 1]} -~ C -~ R 2 -~ S 2 -  {(0, 1)) 

zSZ2lztl 2 [2~Z21zl 2 - I z ,  Izl 2 1  2 + Iz2l 2 .) (5.5) [zl, z~] ~ z r l z 2 -  , - . \  , 

which extends to an explicit diffeomorphism C P  ~ ~ S 2, so that 

C p  I ~ C p  1 S 2 ..., S 2 
[zx, z2] ~ [ -  ~ ,  ~ ]  corresponds to a ~ - a. 

In particular, if n = 1 where l i p  ~ ~- S +, we see that complex projective 3-space C P  3 

is a fibre bundle 
~:  C P  3 ~ S + ($.6) 

over the 4-sphere S +. Explicitly, we use steteographic projection from the north pole (0, 1) 
as the second map in the sequence 

l i P  ~ -  ([0, 1]} ~ H = R + 

[z~ +z2j ,  z3 + z , ] ]  4-, (zt  +z2j ) -~(z3+z , . i )  = ~ z 3 + z 2 ~ + ( ' ~ z , - z 2 z - D ]  
Izd 2 + Iz21 2 

--. S + -  {(0, 1)} 

,--, iz~12 +lz2l~ +lz~12 +lz ,  l 2 , ¥1zxl2 +lz~12 +lz~lZ +lz,,l ~ (5.7) 

which extends to an explicit diffeomorphism H P  ~ ~ S +, so that ~ is given by the formula 
~,([z,, z~, z~, z,]) 

( 2{ -~za- l - z~~- I - ( -~z ,~ - - z2z - '~ j }  -Izxl2-1z21"+lznl'+lz+l" ) 
--- izal2+lz=12+lz~12+lz+l ~ , +lzxl=+lz21=+lzal=+lz+l= . (5.8) 
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One can show that the fibration ~ is actually isomorphic to the associated fibre bundle 
B,o(4)(S 4) x so~4) SO(4)/U(2). The fact that S 4 does not admit an almost complex structure 
can therefore be expressed as the statement that ~ does not admit a section, and CP 3 
can indeed be viewed as a "natural" and "minimal" "complexification" of S ' ,  in particular 
as the conformal structure is also preserved: 

To see this, we use a different approach which is based on Penrose's concept of twistors, 
but ultimately leads to the same formula (5.8): Given a 4-dimensional complex vector 
space T-cal led twtstor space--with a basis el,  e~, e3, e~ and the volume co -- el ^ e2 ̂  
^ e 3 ^ e 4  ~A4T ,  consider the 6-dimensional complex vector space A 2 T  with the basis 
e12, e~3, e14, e23, e24, e34 (ey~ = ejAe~) and the nondegenerate symmetric complex 
bilinear form • given by 

(u" v)co = u ^ v  for u, v cA2T. (5.9) 

A 6-dimensional real subspace K, (resp. R.r) of A 2 T  on which • induces a nondegenerate 
symmetric real bilinear form of signature + (resp. - + - -  + - )  is then 
defined as the eigenspace for eigenvalue 1 of the antilinear involution ~ (resp. 3.) on ,/12T 
that arises from left multiplication by j on  T ~ C 4 ~ H 2 via the wedge product (resp. 
from a nondegenerate Hermitian sesquilinear form of signature + - + - on T via the 
wedge product and a complex analogue of the definition of the star operator). In this 
subspace we have the projective space PLI.s  (resp. PL2,4) of null lines, i.e. of lines on 
the light cone Ll,s = {u ¢ Ro/ u. u = 0} (resp. L2,4 = {u ~ R ± / u  • u = 0}), which is 
known to be the conformal compactification of Euclidean (resp. Minkowski) 4-space 
R' ,  and there are isomorphisms 

S 4 -* PLI,s  S i x  S 3 "-* PL2,4 
a ~ [a, 1] (resp. (e~÷ ' a) ~, [al, cos~, a2, a~, sin~b, a4] )" (5.10) 

Points in this conformal compactification can be uniquely represented by 2-planes in 
T --- C* which are spanned by z and j z  for some nonzero vector z ¢ C* (resp. which are 
null with respect to the Hermitian form on C4), or equivalently, which are spanned by 
vectors x, y ¢ C 4 such that x ^ y  ¢ R~ (resp. R±); in fact, this defines a diffeomorphism-- 
the so-called Penrose twistor transform--from a real submanifold of the Grassmannian 
G2., of 2-planes in C 4 onto the conformal compactification S 4 ~- PL~,s (resp. S ~ x S "~ 
~-PL, ,4)  of R' .  (For more details on the Minkowski version of all these statements, 
see e.g. [26].) Now projecting any point of CP 3 onto the unique real line in CP 3 (with 
respect to (7) passing through it, and applying the Penrose twistor transform to the resulting 
2-plane in C*, one recaptures (5.8). 

It is also useful to observe that the Penrose twistor transform really extends into the 
complex domain: In fact, PL~.s and PL2,4 are both real submanifolds of the complex 
manifold PL~ of null lines in A 2 T  (with respect to .), which in turn is a 4-dimensional 
complex quadric in the 5-dimensional complex manifold CP s of all lines in A2T, and 
the Penrose twistor transform is actually a biholomorphic diffeomorphism from G2,4 
onto P L  c. 
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6 .  1usmmoms and vector lmmales over CP 3 

The fibration ~: CP s --, S 4 described in the previous section is the crucial tool in the 
proof of  the following 

TI~OREM 2 [5]. There is a one-to-one correspondence between 
(i) SU(2)-antiinstanton solutions (moduli) over S 4 with instanton number k < O, i.e. 

gauge equivalence classes o f  anti-self-dual connections .4 in a principal SU(2)-bundle 
over S 4, with second Chern class - k  > O, 

and 

(ii) isomorphism classes o f  holomorphic 2-dimensional complex vector bundles E over CP s 
with first Chern class cI(E) = O, second Chern class cz(E) = = k > 0, and subject 
to the following two conditions: 

(I 7 Triviality Condition: The restriction o f  E to any real line in CP s (with respect to ~), 
i.e. to the fibres of  ~, is (holomorphically) trivial. 

(2) Unitarity Condition: E has a (holomorphic) "symplectic structure" ~: E ~ ~*E. 

Remark 1. Given a holomorphic 2-dimensional complex vector bundle E over CP s 
with first Cheru class el(E) = 0, its restriction to any line I in CP s decomposes into the 
direct sum of two holomorphic complex line bundles L,(1) and Lz(l) over 1; moreover, 
the Ll(l) are essentially unique and determined by an integer ks(l), corresponding to the 
first Cheru class cl (Ll(1)) [27]. (Observe that 1 ~- CP 1 ~- S z, whether I is real or not.) 
While kx(1)+kz(1), corresponding to the first Chern class cx(EI/), is a topological in- 
variant and hence invariant under deformations of 1, actually kx(l)+k2(l)  = 0 for all 1 
since cx(E) -- 0, k x ( l ) - k z ( l )  may jump under deformations of 1, and we call 

J = {/line in CP3[ kx(1)-k2(1) ~ 0} (6.1) 

the set o f  jumping lines of E. It is then obvious that 

El l  is (holomorphically) trivial .:~ l ~ J ,  (6.2) 

so that the triviality condition is equivalent to the nonexistence of  real jumping lines. 
Now apply the Penrose twistor transform, which takes lines in CP s to points in the complex 
quadric P L f  = CP s and the real lines in CP s to points in the real submanifold S 4 ~- PLI,s 
of  P L f ,  as described in Sec. 5. Then intuitively speaking, one could say that it takes the 
bundle E--whether it satisfies the triviality condition or not--to some sort of"meromorphic 
connection" A with "curvature" F over P L f ,  and the jumping lines of E to the poles of  A 
and F, so that the triviality condition keeps these singularities away from the real domain. 

Remark 2. Given a 2-dimensional complex vector bundle E over B, a symplectic 
structure resp. real structure on Ecan  be defined as an antilinear automorphism ~: E --* E 
such that ~ = - 1 resp. ~2 = + 1. This terminology is based on the fact that ~ can be 
viewed as a reduction of  structure group of  the principal GL(2, C)-bundle L of  linear 
frames of  E from GL(2, C) to its "symplectic" real form GL(1, H)  resp. to its "real" 
real form GL(2, R). We shall only encounter the situation where E comes with a natural 
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volume to, i.e. a nowhere vanishing section to of A2E, and where ~ is compatible with m 
in the sense that (~ ̂  ~)(oJ) = ¢o. Then to defines a reduction of structure group P of L 
from GL(2, C) to SL(2, C), and ~ can be viewed as a further reduction of  structure group 
Q= resp. ~ of the principal SL(2, C)-bundle P from SL(2, C) to its "symplectic" real 
form Sp(1) resp. to its "real" real form SL(2, R). In fact, using ~ to transform frames 
yields an involutive automorphism ~: P--* P which is s-covariant, i.e. satisfies 5(p" g) 
- ~(p)" x(g) for p e P, g ~ SL(2, C), where x is the homomorphism 

u: SL(2, C) -~ SL(2, C) ~: SL(2, C) ~ SL(2, C) 
g ~ g , - i  resp. (6.3) g ~ 

and this establishes a one-to-one correspondence between the ~'s and the 5's. Moreover, 
Q" resp. Q" is precisely the set of fixed points of 5, and conversely, Q" resp. Q" determines 5 
completely. Finally, in the sympleetic case, one knows that Sp(1) ~ SU(2), and indeed 
symplectic structures b are in one-to-one correspondence with Hermitian structures 
( . ,  ") via the formula 

~u ̂  v = <u, v)  for u, v ~ Eb, b E B. (6.4) 

Remark 3. For holomorphic vector bundles over complex manifolds, symplectic 
or real structures as defined in Remark 2 are incompatible with analyticity: they are anti- 
holomorphic vertically (~ is fibrewise antilinear, and 6 is a-covafiant, with x antiholo- 
morphic), but holomorphic horizontally (~ and 5 induce the identity on the base). There- 
fore, given a holomorphic 2-dimensional complex vector bundle E over CP a, with a holo- 
morphic volume to turning P into a holomorphic principal SL(2, C)-bundle over CP 3, 
we use pull-back via the antiholomorphic involution a on CP a and define a holomorphic 
"symplectic structure" resp. "real structure" on E to be a holomorphic isomorphism ~: 

- -  A 

E - ,  ~*E such that ~2 = - 1  resp. ~2 = +1, or using a to transform frames, to be an 
involutive holomorphic isomorphism ~: P ~ ¢.~x. (Observe that if E resp. P are holo- 
morphic bundles over CP 3, the conjugate manifolds Eresp. P~ are holomorphic bundles 
over the conjugate manifold CP a ; the superscript x indicates that in order to obtain a holo- 
morphic action of  SL(2, C), one defines right translation by g on P~ to be right translation 
by x(g) on P. Now ¢ being antiholomorphic, ~*E resp. ~*P~ are holomorphic bundles 
over CPS.) Concretely, for z ~ CP 3, ~rz resp. 5, is an isomorphism ~ :  Effi --, ~( , )  resp. 
v - -  A 

~ffi: Pffi ~ P~(o, i.e. an antilinear isomorphism cz: E , - ,  E¢(,) resp. a ~¢-covariant iso- 
morphism 5~: Pffi -~ P-(o, depending holomorphically on z. Of course, this definition 
gives up the direct interpretation of Remark 2 in terms of reductions of structure group--- 
hence the quotation marks--, but as will become clear below, it comes in again through 
the back door via the tr!viality condition of  Theorem 2. 

Proof of  Theorem 2: We shall now explain the ideas involved in the proof of Theorem 
2. For convenience, symbols carrying a ,~ will refer to bundles over S 4, while other symbols 
will refer to bundles over CP s. 
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First, given a principal SU(2)-bundle (~ over S 4, we can pull it back to a principal 
SU(2)-buadle Q over C P  s via ~. Complexifying the group, i.e. extending the structure 
group of  both bundles from SU(2) to SL(2, C), we obtain principal SL(2, C)-bundles 

over S 4 and P over C P  3 together with embeddings Q c_~ /~, Q ~ Pand a commutative 
diagram 

(6.5) 

We also have the associated 2-dimensional complex vector bundles 

E - -  /3 XsL(2,OC2 = QXsu(2) C 2 over S" (6.6) 
and 

E ---- P x s u 2 . o C 2 =  Q Xsu(~ ) C 2 over  CP s (6.7) 

with the commutative diagram 

t (6.8) 
Cp3  -?, $4 

By construction, the bundles over C P  3 are (smoothly) trivial over the fibres of  ~. E and E 
carry natural volumes ¢~ and o,  i.e. nowhere vanishing smooth sections of A2E and A2E, 
defining the reduction/~ and P of  structure group of the bundle of linear frames of 
and E from GL(2, C) to SL(2, C), respectively, and o -- 0~*~. Finally, writing 

Q ffi = { ( z ,  o c P  3 × = 

P = 0**/; = {(z,/~) E C P  3 u P /0~( z )  -- ~(,b)}, (6.9) 

the reduction Q of structure group of P from SL(2, C) to SU(2) defines a "symplectic 
structure" 

3: P --, P" 
(z, ~. g) ~-, (aCz), ~.x(g)) (6.10) 

on P in the sense of  Remark 3. (Observe n o ~ = ~r, P -- n*/~ =, o~P" -~ P'~; the bar 
is superfluous since we have not yet introduced any complex structure.) 

Conversely, start from a holomorphic 2-dimensional complex vector bundle E over 
C P  3 which is Cnolomorphically) trivial over the fibres of ~. For x E S*, consider the space 
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Ex of holomorphic sections of E[ ~r-1 (x); it is a 2-dimensional complex vector space since 
=-l(x)  g S" and by Liouville's theorem, such a section is uniquely determined by its 
value at a single point z ¢ =-l(x). This defines a smooth 2-dimensional complex vector 
bundle E over S" such that E _-_ ~r*E; the canonical isomorphism here is given by evalua- 
tion of a section at a point. Now if cl(E) = 0, the holomorphic complex line bundle 
A2E over CP 3 is (holomorphically) trivial and hence admits a nowhere vanishing holo- 
morphic section ~, uniquely determined up to a nonzero scalar factor. In particular, 
for x ¢ S' ,  oJl,,-l(x) is a nowhere vanishing holomorphic section of AZEl=-~(x) and can 
be identified with a nonzero element &x ofA2Ex. This defines a nowhere vanishing smooth 
section ~5 of the complex line bundle .4z/~ over S' ,  uniquely determined up to a nonzero 
scalar factor. Finally, for x ¢ S" the "symplectic structure" ~ on E induces a holomorphic 
isomorphism ~x: E [ ~ - ' ( x ) - ,  ¢*E[~r-l(x), and hence an antilinear isomorphism ~x: 
J~= - ,  E= such that ~ -- - 1  by 

(~u)(z) = ~,(u(cfz)) for ucE~, z ~ - ~ ( x ) .  (6.11) 

This defines a smooth antilinear automorphism ~: E - ,  E such that ~ = - 1. Now using 
the volume & and the symplectic structure ~r on E to reduce structure groups as described 
in Remark 2, we are--up to canonical isomorphisms--back to the previous situation. 

In the following, we write .4 resp. A for a connection 1-form in 0 resp. Q as well as 
in t '  resp. P, with P resp. F the corresponding curvature 2-form, and ~]/F on P resp. A/F 
on P is given by extending AfF on (2 resp. A/F on Q from Q to i '  resp. from Q to P. 

With these rather technical preliminaries out of the way, the proof of Theorem 2 is 
based on the following sequence of propositions: 

I~OH3SrnON 2. There is a one-to-ane correspondence between connections A in Q 
and almost complex structures J on the total space P which are compatible with the bundle 
structure, given by the requirement that the horizontal subspaces of A in P are complex 
subspaces of the tangent spaces to P, i.e. stable under J, or equivalently, that the connection 
1-form A on P is of  type (1,0). 

For the idea of the proof, cf. e.g. [16], Vol. II, pp. 178-180. 

Remark 4. Compatibility of an almost complex structure J: TP ~ TP on P with the 
bundle structure means that 

(i) J is SL(2, C)-covariant; 

(ii) J turns the projection Q: P ~ CP 3 into an almost complex map; 

(iii) J maps the vertical bundle VerP of P onto itself and makes the diagram 

VerP alv,~p VerP 
T 

P×sl(2, C ) ~  P×sl(2, C) 
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commutative, where the vertical maps are the usual trivialisation 

PxsI(2 ,  C) --, VerP 

d 
(p,X) ~-, -d~- (p • exp tX)l,= o 

of VerP [16], [17], and Jo is multiplication by i in the complex Lie algebra sl(2, C). 
The theorem of Newhnder-Nirenberg [16] states that the almost complex structure 

J on P is integrable--and hence turns P into a holomorphic principal SL(2, C)-bundle 
over CP3--iff its torsion N = N(J) vanishes, i.e. iff 

N(X, t") = 2 {[JX, JY] - [X, I"] - J[X, JY] - J[JX, Y]} = 0 (6.12) 

for all vector fields 2", Y on P or--which is sufficient--for all invariant vector fields 2", Y 
on P. Due to Remark 4, (iii), (6.12) is automatically satisfied on vertical vector fields, 
and due to Remark 4, (ii) and the fact that the curvature F of A determines the vertical 
component of  the Lie bracket between two invariant horizontal vector fields, we obtain 

PROPOSmON 3. With the notation of  Proposition 2, J has no torsion iff  F on P is of 
type (1, 1), i.e. (6.12) holds for all vector fields X, Y on P iff 

F(JX, s-Y) = F(X, Y) (6.13) 

for all vector fields X, Y on P. 

For a more detailed proof of a similar statement, cf. [16], pp. 180-181. 

Remark 5. Propositions 2 and 3 of course apply to a more general situation: In fact, 
one can replace CP s by any complex manifold and the structure groups SU(2) of  Q and 
SL(2, 6") of P by any real Lie group K and complex Lie group G, respectively, such that 
K ~ G and the Lie algebra of  K is a real form of the Lie algebra of  G. 

The crucial observation, based on the specific form of the fibration ~: CP 3 --, S" 
and originally due to Ward, is now 

PROPOSmON 4. With the notation as before, assume that A on Q (and P) is the pull- 
back of  a connection 1-form ~1 on Q (and 1 ~) via ;I, so that F on Q (and P) is the pull-hack 
of  the curvature 2-form F on Q. (and P) via 4. Then F satisfies the anti-self-dual equation 
• F = - F o r t  Q, or equivalently, on 1 ~, i f fFon  P is of  type (1, 1), i.e./ff(6.13) holds for 
all vector fields X, Y on P. 

Quite independently of this result, the assumption occurring at the beginning of  Prop- 
osition 4 can also be translated. In fact, any point ~o ¢ Q c / ~  defines a section 

so: ~r-x(x) - '  Ql~- ' (x )  = PI~- ' (x )  
z ~ (z, qo) (6.14) 

of  Ql~-l (x)  = ~r-*(x)×Qx c P l ~ - * ( x )  = ~-* (x )x l ' x ,  where x = ~(~o) ¢ S  4, and we 
have 
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PROI'OSXTION 5. With the notation as before, A on Q, or equivalently, on P, is the pull- 

back o f  a connection 1-form .4 on 0., or equivalently, on P, via ~ i ff" the almost complex 

structure J on P is trivial over the fibres o f  ~. More explicitly, 

So is almost complex ¢:. s~J = ( Y  on ~- l (x ) )  ¢~ s*A = 0 

for any section so of P [~ - l (x )  as above 
is equivalent to 

A = ~*A for some connection 1-form A. 

Hence starting from an anti-self-dual connection .4 on the principal SU(2)-bundle 
over S 4, one ends up with a complex structure on the principal SL(2, C)-bundle P 

over CP 3 which is trivial over the fibres of  n, so that E becomes a holomorphic 2-dimen- 
sional complex vector bundle over CP 3, (holomorphically) trivial over the fibres of  ~r 
and equipped with a natural holomorphic volume ~o (thus in particular, cl(E) = 0). More- 
over, the "symplectic structure" ~: E --, o*E on E is holomorphic since by construction, 
~: P --, a ' P "  preserves the horizontal spaces of  A on P and hence is holomorphic. The 
converse direction of  the proof is now also clear, and the second Chern classes involved 
yield the same integer since Chern classes are natural under pull-back. This complete s 
the proof  of  Theorem 2. • 

Remark 6. As has become clear from the proof, the central idea behind Theorem 2 
is to use fibration n:  CP s --, S 4 for coding connections over S 4 into almost complex 
structures on the total spaces of  2-dimensional complex vector bundles over CP 3, compatible 
with the bundle structure. The reason why this idea has something to do with instantons 
is Ward's observation that the anti-self-dual equation (3.6) for a connection, which (in 
local coordinates)is  a system of  nonlinear first order partial differential equations for 
its components, is precisely the integrability condition (6.12) for an almost complex struc- 
ture, which (in local coordinates) is a system of  linear first order partial differential equa- 
tions for i ts  components; the nonlinearity has been "eaten up" by the Penrose twister 
transform. In other words, this transformation is precisely "the right" Gelfand integral 
transform 1 for the SU(2) instanton problem over S 4, transforming it into a problem in 
algebraic geometry which we shall discuss briefly in the next section. In fact, this is true 
more generally for the SU(n) instanton problem over S 4 with n >I 2 (one only has to 
change the "symplectic structure" to a "Hermitian structure" providing for the reduction 
of  structure group from SL(n, C) to SU(n)), but the amount of  knowledge about the 
corresponding problem in algebraic geometry depends drastically on n: there is quite 
a lot of  information if n = 2, but almost nothing is known if n/> 3. 

I am indebted to V. Guillemin, D. Kazhdan and S. Sternberg for introducing me to the concept 
of Gelfand integral transforms as the general picture behind practically all the presently known techniques 
of explicitly solving nonlinear partial differential equations, in particular behind the inverse scattering 
method (d la Gelfand-Levitan-Marchenko/Lax). If chosen suitably--which is part of the problem and 
tmfortunately has to be done case by case.--it transforms the original problem into a simpler one which 
can then eventually be solved. 
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7. I m t u t o n s  and algebraic curves in CP ~ 

:' L e t  us mention first that Serre's basic theorems on the relation between analytic and 
algebraic geometry [28] imply that in the statement of  Theorem 2, (ii), the term "11o1o- 
morphic" may be replaced by the term "algebraic"; thus Theorem 2 indeed provides 
a translation of  the SU(2) instanton problem over S 4 into a classification problem in 
algebraic geometry. Lack of  space and the incompetence o f  the author prevent us from 
going into a detailed discussion o f  the progress that algebraic geometers have recently 
made in the area [29], [30], [31], [32], so let us just mention that 

(1) The manifold of  solutions for k = 1 2 is the 5-dimensional unit ball, i.e. the interior 
of  the 4-sphere in R s. In particular, it is connected, simply connected, and a single 5-di- 
mensional orbit under the action of  the conformal group SO(5, 1). 

(2) The manifold of  solutions for k ~- 2 ~ is a 13-dimensional manifold which is con- 
nected, but doubly rather than simply connected (i.e. the fundamental group is Z2), and 

of  12-dimensional orbits under the action c~f the conformal a one-parameter family group 
SO(5, I) [32]. 

L However, we do want to sketch the role of  algebraic curves in this context and their 
interpretation in terms of  "instanton physics". 

Algebraic curves enter the picture as the sets o f  zeros of  suitable algebraic sections. 
More precisely, let E be an algebraic 2-dimensional complex vector bundle over CP 3 

satisfying the conditions of  Theorem 2, (ii), let H be the canonical line bundle over CP 3 

determined by any hyperplane section, and let H -1 = H* be its dual, so that H -1 is the 
universal line bundle over CP 3, i.e. 

point in g -~ = (line in C' ,  vector on that line), 

and c t ( H ) =  1. For  1 ¢ Z, set 

lEE®H® ... @ H  ([ll times) for 1 > O, 
E(I) = E O H : =  for 1 ffi 0, (7.1) 

[ E ® H - X ®  ... ® H  -1 ([1[ times) for 1 < 0. 

Then for l < 0, E(I) has no nonzero algebraic 3 sections. (Indeed, given an algebraic 3 
section s o f  E(I), then restricting to any real line L _~ CP ~ ~- S 2 in CP 3, E(1)[L ~_ HI[L(~ 

~HZlL  since ElL  is trivial, so that s[, corresponds to two algebraic 3 sections of  HilL  
which must vanish identically if I < 0.) I f  k > 0, one can even show that E itself has no 
nonzero algebraic 3 sections either, implying that E is a stable bundle, which is equivalent 
to the statement that End(E) does not admit any algebraic 3 sections, i.e. that E does not 
admit any algebraic 3 vector bundle maps E - ,  E, except constant multiples of  the identity 
[31]. On the contrary, for a suitable integer I > 0, E ( I ) d o e s  have nonzero algebraic 3 
sections s vanishing along smooth algebraic curves T' in CP 3. (The idea is that E always 

In this section, the integer k will s tand for minus the instanton number,  so that  ¢2{E) ffi k > 0. 
3 Recall that in all these cases, algebraic ---- holomorphic and  rational --- mexomm'phi¢ [28]. 
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admits rationaP sections, and that tensoring with a sufficiently high power of H, one can 
remove the singularities; recall that the algebraic s sections of H over CP 3 correspond 
to the homogeneous polynomials of degree l on C*.) 

The curves F arising in this way are not arbitrary. Indeed, identify CP s with the zero 
section in E(l), then over CP ~ c E(I), the tangent bundle TE(I) of  the total space E(l) 
decomposes naturally into the vertical and a horizontal part: 

r E ( t ) l C P  3 ffi Ver E(l)lCPSOI-Ior E(l)lCP 3 ~- E(I)O T(CPS). (7 .2 )  

B u t / '  is precisely the set o f z  e CP s such that s(z) e CP s, so that we obtain a commutative 
diagram 

T(CPS)lF ra[r TE(1)IF --4b 

~, ~, vertical projection in (7.2), (7.3) 
N(F)  T(CP3) II ' ITT E(1) II' 

where N(/') is the normal bundle of F, showing that the derivative Ta of the section s, 
restricted to P, induces an isomorphism 

N(/3 -- z q ) l r .  (7.4) 

In particular, taking wedge products and observing that A2E is trivial since c~ (E) = 0, 
we obtain isomorphisms 

A23r(P) = A2E(I)IF ffi (A2E®HZ~)JP = n2~jF. (7.5) 

Notice also that wr i t ing/ '  as the disjoint union of its connected components 

/ '  = / " l u  ... u/ ' , ,  (7.6) 

any other isomorphism between A2N(P)  and H2Z[/' is then uniquely determined by r 
nonzero scalars ~tl, ..., ~, e C. Hence a necessary condition on the algebraic curve /"  
to arise as the set of  zeros of an algebraic section s as above is that the second exterior 
power dI2N(P) of its normal bundle N(P) is the restriction to F of an even power of the 
canonical line bundle H over CP 3. 

The restrictions on the possible curves / '  can also be expressed numerically in terms 
of  the formulae 

$. 

(l-2)dz = g ~ - l ,  ~.~di = k + l  2 (7.7) 

for the degree di and the genus g~ of the component curve F~. (In particular, the first 
of  these is a direct consequence of the isomorphisms (7.5) and 

A22~(F) ~- A ~ (T(CP3)IF)IAIrF =~ g'lI '®r*l" = H*IF®Kr,  (7.8) 

where Kr is the canonical line bundle (divisor class) over / ' ,  by taking the first Chern 

3 Recall that in all these cases, algcbraicffi=holomorphi¢ and rationalffimeromorphic [28]. 
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class.) Now let us fix a certain value for the instanton number, i.e. for the integer k. Then 
we obtain some value for the integer l, which is conveniently chosen to be as small as 
possible, i.e. I is to be the smallest positive integer such that for any algebraic 2-dimen- 
sional complex vector bundle E over CP s satisfying the conditions of Theorem 2, (ii), 
E(l) admits nonzero algebraic sections s vanishing along smooth algebraic curves F. An 
estimate for I in terms of  k is given by the following 

C o l ~ ' r u J ~  ([32], proved for k ~< 9). It suffices to take I to be the smallest positive 

integer such that l < ~/3-'k--~-- 2 (see also (7.11) below). 

Given k and 1, equation (7.7) puts upper bounds on the degrees and genera of the 
curves that can appear. The simplest ease is l = 1, where due to g~ >I 0, d~ t> 1 

g~- I  -- -d~ ~ g~ ffi 0, d~ ffi 1 and r -- k + l .  (7.9) 

(Observe that conversely, g~ - - 0  for any one i implies dt = 1/2- / ,  hence 1-- 1, and 
(7.9) holds.) Therefore,/ 'consists of  k +  1 lines in CP 3. If l I> 2, (7.7) imposes no restric- 
tion on the dl which would prevent the gt and d~ from assuming their maximal value g 
and d, respectively, when/ ' i s  connected, i.e. when r = 1, and 

= ( t - 2 ) ( k + t 2 ) + l ,  a =  k + l  2, (7.10) 

so that we obtain the following table: 

k I 1 2  3 4  5 6 7 8 9 

(7.11) 
g[ I  0 0 1 1 15 16 1749 51 

d[[  1 1 7 8 14 15 16 24 25 

Of course, the procedure of associating curves with bundles described above is highly 
redundant since the same bundle E gives rise to many nonzero algebraic sections s in 
E(l) (their number increases with l), and hence to many curves _P. This redundancy is 
perhaps most transparent in the statement that E is trivial iff/" is the complete intersec- 
tion of two algebraic hypersurfaces in CP 3. Conversely, however, one can associate bundles 
with curves in an essentially unique way: In fact, given a smooth algebraic curve/"  in 
CP s, cover/" by open sets in CP s such that any one of them meets at most one connected 
component of / ' .  Moreover, assume that on any one of them, say U, the ideal of  regular 
functions vanishing along Ur~F is generated by two relatively prime homogeneous poly- 
nomialsf~ ,f2 (restricted to U); then if on any other one, say/I, the ideal of  regular func- 
tions vanishing along Vr~_r'is generated by two relatively prime homogeneous polynomials 
gx, g~ (restricted to V), one obtains a regular GL(2, C~-valued transition function hvv 
on Ur~V: [2'] (hu')'qrfq 

, = t(h,J,,),, Lf,  J on UnV. t7.12 
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These transition functions define an algebraic 2-dimeusional complex vector bundle E '  

over an open neighbourhood of f '  in CP 3, with on U, g2 on V, etc., fitting together 

to yield an algebraic section s of E '  such that s-x(0) = F. Now if f '  satisfies conditions 
on its normal bundle of  the type mentioned above, E'  and s can be extended to all of  CP 3, 
and the nonzero scalars ;tl . . . . .  ~, ¢ C mentioned above appear again (up to a common 
factor), guaranteeing uniqueness (up to an isomorphism). Finally, tensoring with an 
appropriate power of H, one kills the first Chern class of E'  and recovers E. 

Returning to the situation where _F is given in terms of E, [ and s as before, observe 
that restricting to C P 3 - F ,  s generates a trivial line subbundle 0 of E(l), and there is an 
exact sequence 

8 H21 (7.13) 0 -+ 0 "-* E(l) -" --, 0 

of algebraic complex vector bundles over C P 3 , F ,  in which the second map is givenby 
taking the wedge product w i~  ~v (recall A2E(l)  ~- H 21 since/12E is trivial). Hence over 
CP 3 -  F, E(l) is an extension of  0 by H 2t; such extensions are classified by elements of the 
first sheaf cohomology group H I ( C P 3 - I  ', H-2t).  From the Penrose theory of twistors 
one knows that these elements in turn correspond to certain solutions of the Maxwell 
equations for spin ( l -  1) fields if I >t 2, and to scalar densities satisfying the Laplace equa- 
tion if l = 1. These solutions ~ have singularities onthe surface/~in S 4 which corresponds 
to F. The exact type of the singularities is not yet known, but very probably ~b has to be 
a distributional solution of  the corresponding inhomogeneous equation with the O-func- 
tion o f ~ a s  a source tenn. 

The algebraic geometry thus leads to the series of Ans~tze At of  Atiyah and Ward 
[5]. Unfortunately, when / t> 3, the curves f '  will be of high genus (cf. (7.11)), so that 
the surfaces of  singularity f,r will become rather complicated; moreover, in general there 
seems to be no natural way to incorporate the reality conditions imposed in Theorem 2,  
(ii). For / - 1, the Ansatz A~ coincides with the one of t 'Hooft: In this case, according 
to what has been said above, F is a set of k +  1 lines in CP 3, and we also have to fix k +  1 
nonzero scalars ;tl . . . . .  ~ + t  ~ C to determine the solution; the reafity conditions then 
amount to the lines being real with respect to ¢ - -so  that/~ is just a set of  k + l  points 
in S 4 - -and  to ~1 . . . .  , ~t+l being real and positive. These are precisely the "position" 
and "scale" parameters in t 'Hooft's Ansatz [20]. 

8. Further eommmts 

Although the results of Atiyah and Ward have opened up a new approach to the 
instanton problem through methods of algebraic geometry, many questions remain open. 
For example, algebraic geometry can be expected to shed new light on the striking analogy 
between self-dual or anti-self-dual gauge fields in four dimensions (compactified to S 4) 
and the nonlinear (r-model in two dimensions (compactified to $2). Both seem to be ex- 
cellent candidates for completely integrable systems (in the Euclidean sense), for which 
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as yet no examples in four dimensions are known. A first step in this direction is the recent 
discovery o f  B~icldund transformations [33], [34] for the Yang-MiUs fields, based on the 
Atiyah-Ward Ans~ltze. New conserved currents--another  characteristic feature o f  complete 
integrabilityDhave not yet been found. These questions would o f  course become even 
more important  should one be able to prove that any solution to the free Yang-Mills 
equations is actually self-dual or anti-self-dual. 
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