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We propose new definitions of the concepts of a multisymplectic structure and of a
polysymplectic structure which extend previous ones so as to cover the cases that are of
interest in mathematical physics: they are tailored to apply to fiber bundles, rather than
just manifolds, and at the same time they are sufficiently specific to allow us to prove
Darboux theorems for the existence of canonical local coordinates. A key role is played
by the notion of “symbol” of a multisymplectic form, which is a polysymplectic form
representing its leading order contribution, thus clarifying the relation between these
two closely related but not identical concepts.
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1. Introduction

Multisymplectic geometry is increasingly recognized as providing the appropriate
mathematical framework for classical field theory from the hamiltonian point of
view — just as symplectic geometry does for classical mechanics. Unfortunately,
the development of this new area of differential geometry has for a long time been
hampered by the lack of a fully satisfactory definition of the concept of a multi-
symplectic structure, which should be mathematically simple as well as in harmony
with the needs of applications to physics; the same goes for the closely related
notion of a polysymplectic structure.
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The main goal of this paper is to provide such a definition and establish a general
relation between the two types of structure.

To set the stage, let us consider a simple analogy. The symplectic forms encoun-
tered in classical mechanics can locally all be written in the form

w = dq' A dp;, (1.1)

where ¢',...,¢",p;,...,py are a particular kind of local coordinates on phase
space known as canonical coordinates or Darboux coordinates. Introducing time
t and energy E as additional variables (which is essential, e.g., for incorporating
non-autonomous systems into the symplectic framework of hamiltonian mechanics),
this equation is replaced by

w = dq'ndp; + dE A dt, (1.2)

where t,¢%,...,¢",p;,...,pn, E can be viewed as canonical coordinates on an
extended phase space. Similarly, the multisymplectic forms encountered in classical
field theory over an n-dimensional space-time manifold M can locally all be written
in the form

w = dindp?Ad”xu —dpnrdz, (1.3)

where z*,¢*,pl',p (1 < p < n,1 < i < N) can again be viewed as canonical
coordinates on some extended multiphase space. Here, the z* are (local) coordinates
for M, while p is still a single energy variable (except for a sign), d™z is the (local)
volume form induced by the z# and d"x, is the (local) (n—1)-form® obtained by
contracting d"z with 0, = 0/0xH:

d"r, = i, d"x.
0 0,

The idea of introducing “multimomentum variables” labeled by an additional space-
time index g (n multimomentum variables p)' for each position variable ¢') goes
back to the work of de Donder [1] and Weyl [2] in the 1930’s (and perhaps even
further) and has been recognized ever since as being an essential and unavoidable
ingredient in any approach to a generally covariant hamiltonian formulation of
classical field theory. Understanding the proper geometric setting for this kind of
structure, however, has baffled both mathematicians and physicists for decades,
as witnessed by the large number of different proposals for an appropriate global
framework that can be found in the literature.

The by now standard example of a globally defined multisymplectic structure
starts out from an arbitrary fiber bundle E over M called the configuration bundle
(since its sections are the basic fields of the field theory under consideration) and
whose typical fiber is an N-dimensional manifold @ representing the configuration
space, as in mechanics. Following [3,4], for example, consider the vector bundle
N} T*E of n-forms over E that are (n — 1)-horizontal (i.e., that vanish whenever

Some authors prefer to write d"flxu, but d"z,, is shorter.
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contracted with more than 1 vertical vector field), with projection onto E denoted
by nf: its total space carries a naturally defined n-form 6 which we shall refer to
as the multicanonical form, given by

0,(vy,...,v,) = (Tl vy,....,Ta0-v,) (1.4)

e n

for a € N} T*E and vy,...,v, € T, (A} T*E), and which gives rise to a closed
(n+1)-form w = —df. This is the “standard” multisymplectic form encountered in
the (first order) covariant hamiltonian formalism of classical field theory. However,
the construction can be easily extended to the more general situation of the vector
bundle /\rk_l T*E of k-forms over E that are (k+1—r)-horizontal (i.e., that vanish
whenever contracted with more than r — 1 vertical vector fields), with projection
onto E denoted by Tl'rli 1, where 1 <r <k and k+1—7r < n: its total space carries
a naturally defined k-form 6 which we shall again refer to as the multicanonical
form, given by

0, (vys..yvp) = a(TymXy vy, .., Tomm ) ) (1.5)

for a € /\rk_1 T*E and vy,...,v, € Ta(/\rk_1 T*E), and which gives rise to a closed
(k+1)-form w = —d# . In order to keep the terminology simple, we shall maintain
the term “multisymplectic form” even in this case.

The usual local coordinate expressions can be obtained by starting out from
local coordinates (2#,q") for E composed of local coordinates z* for M and local
coordinates ¢* for Q) together with a local trivialization of F over M: these give rise
to canonical local coordinates (z*, ¢°, pt',p) for /\;L T*E in which

0 = pjdg'rd"x, + pd'z, (1.6)
S0
w = dindp?Ad"xu —dprndz, (1.7)
and more generally, to canonical local coordinates (JJ”,qi,pil...is;m,,,,‘kﬂ), with
0<s<r—1,for /\rk_1 T*E in which

1 1 ) .
"= sz:% gm Pivie o pn A4 A oondg" Adatt Ao dathme s (1.8)
SO
=1 1
w o= — ZO ;m dpi1~~~is§ﬂl---ﬂk—s/\dqlll\ coondg o adxtt A LA datees,
o

(1.9)

In a more general context, when /\T]i1 T*E is replaced by a manifold P which
is only supposed to be the total space of a fiber bundle over a base manifold M,
Darboux’s theorem guarantees the existence of canonical local coordinates in which
w is given by the expression in Eq. (1.9), under appropriate conditions on the form w.
The central question is to figure out what precisely are these conditions.
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A naive first guess would be to simply require the form w to be closed and
non-degenerate. However, unlike in the symplectic case, these conditions alone are
far too weak to guarantee the validity of a Darboux theorem, even at the purely
algebraic level. For certain purposes, they may be sufficient to derive results that
are of interest (for an example, see [5—7]), but this version of the definition of a
multisymplectic structure — even though often adopted in the literature, mostly
for lack of a better one — is clearly inadequate. What is needed is an additional
algebraic condition.

An indication of what should be this additional algebraic condition can be found
in [8], but the Darboux theorem proved there covers a special situation which
is disjoint from the case of interest for the applications to physics because the
structure of the underlying manifold as the total space of a fiber bundle over space-
time and the corresponding horizontality conditions are completely ignored. More
specifically, [8] deals with a multisymplectic form w on a manifold, viewed as the
total space of a fiber bundle whose base manifold M is reduced to a point, so
that the pertinent horizontality condition becomes empty; this corresponds to the
choice n = 0, r = k + 1 and implies that the corresponding expression (1.9) for w
in canonical local coordinates takes the form

w = dp“ _Adg™ A L adg (1.10)

In some sense, this does generalize the concept of a symplectic form to forms of
higher degree, but in a direction that is far away from the concept of a multi-
symplectic form as encountered in classical field theory, where, as we have seen
above, n = k, r = 2. This discrepancy with the traditional use of the term “multi-
symplectic” since the mid 1970’s [11-14], which was recognized and clearly stated
only much later [9] (see also [10], for example), has created a great deal of confu-
sion in the literature. Clearly, the incorporation of both cases in the more general
scheme treated here serves to overcome this unpleasant situation.

The general idea of our approach is to combine the methods developed in [8]
with a new and more profound understanding of the link between multisymplectic
and polysymplectic structures.

Polysymplectic structures in the hamiltonian approach to classical field theory
seem to have been introduced in [15] and have been further investigated in [16]
(where they were called “k-symplectic structures” — a terminology that we shall
not follow in order not to increase the already existing confusion). Roughly speak-
ing, polysymplectic forms are vector-valued analogues of symplectic forms. More
generally, the polysymplectic forms to be introduced in this paper are vector-valued
analogues of the forms studied in [8].

The standard example of a globally defined polysymplectic structure is the one
on the bundle T*FE ® T of T-valued 1-forms over a manifold E, with projection
onto E denoted by 7!, where T is a fixed finite-dimensional auxiliary vector space:
its total space carries a naturally defined T-valued 1-form 6 which we shall refer to
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as the polycanonical form, given by
O,(v) = a(Tyr'-v) (1.11)

for « € T*"E® T and v € T,(T*E ® T), and which gives rise to a closed T-
valued 2-form w = —d#. This is the “standard” polysymplectic form introduced,
for instance, in [15]. Again, the construction can be easily extended to the more
general situation of the vector bundle /\k T*E @ T of T-valued k-forms over E,
with projection onto E denoted by 7*: its total space carries a naturally defined

T-valued k-form 6 which we shall again refer to as the polycanonical form, given
by

0, (vy,...,0) = a(T7"-vy,...., T, 7" v) (1.12)

for a € /\k T*E®T and vy,...,v, € Ta(/\k T*E ®T), and which gives rise to a
closed T-valued (k+ 1)-form w = —df. In order to keep the terminology simple,
we shall maintain the term “polysymplectic form” even in this case.

In terms of the usual local coordinates (¢*,p;) for T*E and an arbitrary basis
{a|1 < a<n}of T, we have

0 = pldgee,, (1.13)
SO
O = dg' ndp? ® é,, (1.14)
in the special case k = 2, and
H 1 a i i N
0 = 71 Pl dg" A ... ndg'™t ® é,, (1.15)
SO
b= L dg" dg™ © é 1.16
W = =g i AN ndg ® &, (1.16)

in the general case of arbitrary k. In a more general context, when /\k T*E®T
is replaced by a manifold P, Darboux’s theorem guarantees the existence of canon-
ical local coordinates in which @ is given by the expression in Eq. (1.16), under
appropriate conditions on the form @. Again, the central question is to figure out
what precisely are these conditions.

It should be pointed out that for the special case k = 2, this problem has
been solved in [16], but the fundamental role of what we call the polylagrangian
subbundle is not fully appreciated there. As it turns out, this object and its basic
properties are the key to the entire subject, allowing to generalize the proof of
Darboux’s theorem not only from the special case k = 2 to that of arbitrary k, but
also from polysymplectic structures on manifolds to polysymplectic structures on
the total spaces of fiber bundles — a concept that conveys a precise mathematical
meaning to the idea of a “smooth family of polysymplectic structures” (each fiber is
a polysymplectic manifold in such a way that the entire structure depends smoothly
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on the points of the base manifold). This extension is particularly useful in that
it finally allows to formulate in precise mathematical terms what is the relation
between multisymplectic and polysymplectic structures: the latter appear as the
“leading order term” of the former, through a simple formal construction that we
introduce below and propose to call the “symbol” because it strongly resembles the
construction of the symbol of a differential operator.

2. Polysymplectic Forms on Vector Spaces

We begin by briefly recalling a few basic notions involving vector-valued alternating
multilinear forms. Given finite-dimensional real vector spaces® V and T', we consider
T-valued (k + 1)-forms @ on V,

e N vre T (2.1)
The contraction of such a form & is the linear map &° : V — /\k VT given by
1,w, (2.2)

and the kernel of & is defined to be the kernel of &°: ker & = ker &”. If this kernel
is {0}, we say that & is non-degenerate. Next, given a linear form t* € T* on T,
the projection of & along #* is the ordinary (k 4 1)-form on V given by®

wp = (t*,0). (2.3)
Note that w;, depends linearly on t*, so if we choose a basis {é1,...,6a} of T, with
dual basis {é!,...,é"} of T*, we have
w=w'e, with w'=ws, (1<a<<n). (2.4)
Then it is clear that
ker w = ﬂ ker w;, = ﬂ ker w®. (2.5)
Fre T a=1

Now suppose that L is a subspace of V and ¢ is an integer satisfying 1 < ¢ < k;
then extending the definition given in [9] from ordinary to vector-valued forms, we
define the ¢-orthogonal complement of L (with respect to @) to be the subspace
L%* of V given by

L = {veV | i, ...1,,& =0 forall vj,...,v,eL}. (2.6)

bTn order to simplify the presentation, we assume all vector spaces involved to be real and finite-
dimensional: the extension to vector spaces over an arbitrary field of characteristic 0 is straightfor-
ward, and generalization to the infinite-dimensional setting, which requires imposing appropriate
continuity conditions from functional analysis, will be left to a possible future investigation.
¢Throughout this paper the symbol (.,.) will stand for the natural bilinear pairing between a
vector space and its dual.

dWe discard the trivial case ¢ = 0 since extrapolating the definition to this case would lead to the
conclusion that L0 is simply the kernel of &, independently of the subspace L of V.
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Note that these orthogonal complements form an increasing sequence under inclu-
sion:

L¥Y c...c LY. (2.7)

We say that L is (-isotropic (with respect to @) if L € L and is maximal
{-isotropic or, more briefly, ¢-lagrangian (with respect to @) if it is maximal in
the partially ordered set formed by the ¢-isotropic subspaces of V; it is a simple
exercise to check that, as usual, this is the case if and only if L = L“¢ If ¢ = 1,
we omit the prefix 1 and may conclude that a subspace L of V' will be isotropic if
and only if®©

(L) c & (V)n (N'LYeT (2.8)
and will be maximal isotropic if and only if ker @ C L and

. . k p

& (L) = &"(V)n (N'LY)&T. (2.9)
(For explicit proofs of these elementary statements, the reader may consult [17].)
At first sight, the intersection with the subspace &”(V') on the right-hand side
of these relations may seem strange, in particular since in the inclusion stated in
Eq. (2.8) it is really superfluous, but that is by no means the case for the equality
stated in Eq. (2.9). Rather, omitting this intersection leads to a strengthened form

of Eq. (2.9) which turns out to provide the key to the theory of polysymplectic
forms:

Definition 2.1. Let V and T be finite-dimensional vector spaces (dimT =n),
and let & be a non-vanishing T-valued (k + 1)-form on V. We say that @ is a
polypresymplectic form of rank N if V' admits a subspace L of codimension N
which is polylagrangian, i.e., such that

(L) = (N'ILY) e T. (2.10)

If @ is non-degenerate, we call it a polysymplectic form. The “standard” case of
main interest is when @ is a 2-form, i.e., k = 1.

As a first property of polypresymplectic forms, we note that a polylagrangian
subspace, when it exists, contains the kernel of & and hence really is a special type
of maximal isotropic subspace. But more than that is true.

Proposition 2.1. Let V and T be finite-dimensional vector spaces (dimT =n),
and let & be a T-valued polypresymplectic (k + 1)-form on V of rank N, with
polylagrangian subspace L. Then N > k, and L contains the kernel of & as well
as the kernel of each of the projected forms w,, (B e T*\ {0}):

ker @ C ker Wy,

c L forall i*eT*\{0}. (2.11)

eThroughout this paper, the symbol .1 will denote the annihilator of a subspace, i.e., given a
subspace L of a vector space V, LL is the subspace of its dual space V* consisting of the linear
forms on V' that vanish on L.
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Proof. First we observe that if N < k, we have A\"LL = {0}, so both sides of
Eq. (2.10) vanish, i.e., L is contained in ker & and hence ker & has codimension < k
in V, implying @ = 0, since the (k+1)-form on the quotient space V/ker & induced
by & vanishes identically. (More generally, this argument shows that a nonvanishing
vector-valued (k4 1)-form does not permit isotropic subspaces of codimension < k.)
Thus supposing that dim L+ = N > k, we can for any vector v € V \ L find a
linearly independent set of 1-forms vj,...,v; € LT such that (v{,v) = 1 and
(vF,v) =0 for i > 1. Given * € T*, take £ € T' such that (i* ) = 1. According
to the definition of a polylagrangian subspace, there is a vector u € L such that

i,w = viA...Aavpet = iiwn. = vaa .. nvp # O,

and so v ¢ ker w;,. Hence it follows that ker @ C ker w; C L. ]

On the other hand, considering the case of main interest, which is that of 2-
forms, it must be emphasized that, as shown by the counterexamples presented in
Appendix A, by far not every vector-valued 2-form is poly(pre)symplectic, which
means that in contrast to lagrangian subspaces, a polylagrangian subspace need
not exist, and even if it does exist, not every lagrangian subspace is polylagrangian.
However, there is a simple dimension criterion that allows to decide whether a given
isotropic subspace is polylagrangian:

Proposition 2.2. Let V and T be finite-dimensional vector spaces (dimT =n),
and let & be a mon-vanishing T-valued (k + 1)-form on V. Given any subspace
L of V, with dim(V/L) = N, such that N > k, the following statements are
equivalent:

e L is a polylagrangian subspace and & is a polypresymplectic form of rank N .
e L contains ker w, is isotropic and has dimension

dim L = dim ker @ + n (Z) (2.12)

Proof. Taking into account that, for any isotropic subspace L of V' containing the
kernel of &, the contraction map &” induces an injective linear map of L/ker &
into (/\kLL) @ T , the result follows from an elementary dimension count. (|

It may be worthwhile to point out that Eq. (2.12) and, in particular, the ensuing
dimension formula for V,

N
dim V = dim ker @ + n (k) + N, (2.13)

should perhaps best be read as a restriction on the dimension of a vector space in
which a polysymplectic form @ of given degree k41 which combines a given number
7 of scalar (k + 1)-forms into a single vector-valued form can exist. In particular,
in the standard symplectic case where we have k = 1, n = 1 and a trivial kernel,
Eq. (2.13) reduces to the familiar statement that symplectic vector spaces must have
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even dimension, 2NV, and their lagrangian subspaces must have dimension equal to
one half of that, V.

More generally, the case of ordinary or scalar polysymplectic forms (dimT =1)
has been studied in the literature [8-10] under the label “multisymplectic forms”,
but there, the concept of polylagrangian subspace appears only implicitly, namely
through the dimension criterion formulated in Proposition 2.2 above, which is
employed as a definition, so that it remains unclear how to extend this purely
numerical recipe to other situations, in particular when w is taken to be a vector-
valued form (dim 7" > 1). The main statement here is

Proposition 2.3. Let V' be a finite-dimensional vector space and let & be a scalar
polypresymplectic (k + 1)-form on V' of rank N, with polylagrangian subspace L.
Then any isotropic subspace L containing the kernel of & and such that

- N -1
dim L > dimkerdz—f—( 3 )—f—l (2.14)

is contained in L. In particular, if N >k > 1, L is unique.

Remark 2.1. Note that the uniqueness statement for L is of course false for sym-
plectic forms (k = 1) and also for volume forms (N = k): in both cases, isotropic
subspaces L satisfying the dimension condition (2.14) do not exist, and there is no
restriction whatsoever on the relative position of lagrangian subspaces (which for a
symplectic form on a (2V)-dimensional space are N-dimensional and for a volume
form are one-dimensional).

Proof. Obviously, passing from V to the quotient space V/ ker @ if necessary, and
taking into account the previous remark, we may assume without loss of gener-
ality that & is non-degenerate and also that N > k > 1. Following [8,10], we
begin by showing that any isotropic subspace of V' of dimension greater than 1
must intersect L non-trivially. Indeed, if v; and v, are linearly independent vectors
in V' such that the two-dimensional subspace span(vy,v,) generated by v; and v,
satisfies span(vy,v,) N L = {0}, we can find a basis {e;,...,ey} of a subspace
of V' complementary to L such that e; = v, and ey = vy ; then denoting the corre-
sponding dual basis of L* by {e!,..., eV}, we use the fact that L is polylagrangian
to conclude that there exists a vector u in L such that i,& = e'a ... ane¥ so

w(u,eq,...,e;) = 1 and hence i, i, & cannot vanish, i.e., span(v;,vy) cannot be

U1 <
isotropic. Using this result, we conclude that if L is any isotropic subspace of V,
then the codimension of LN L in L is at most 1, so

dim(L+L) — dimL = dimL — dim(LNL) < 1.
Suppose now that L is an isotropic subspace of V such that

dim(L+L) — dimL = dimL — dim(LNL) = 1.
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Then L + L has codimension N — 1 in V and hence
ko~ 1 N -1
di L+L =
1m /\ ( + ) ( i ),
whereas, by hypothesis,

dim(LNL) > (Nk_l)

which contradicts the fact that the linear isomorphism &°|p : L — N L+ maps
the subspace L N L of L injectively into the subspace /\k (i + L)J' of /\kLJ-. O

What is remarkable is that the above uniqueness statement remains valid for vector-
valued polypresymplectic forms (dim7" > 1) and that in this case it becomes true
even when k = 1 or N = k: this is a consequence of the following explicit construc-
tion of L.

Theorem 2.1. Let V and T be finite-dimensional vector spaces such that
dimT = 7 > 2, (2.15)

and let & be a T-valued polypresymplectic (k + 1)-form of rank N on V, with
polylagrangian subspace L. Then L is given by

L= ) keruw,. (2.16)

t*e T*\{0}
and, in particulcw:, is unique. In terms of a basis {é1,...,éx} of T with dual basis
{et,...,e"} of T*,
L =kero @K ®...0K,, (2.17)
and for 1 <a < n,
L = kerw* @ K,, (2.18)

where for 1 < a < n, K, is a subspace of V chosen so that
ﬂ ker w® = ker 0 @ K. (2.19)

b=1
b#a

The dimensions of these various subspaces are given by

dim ker w® = dim ker @ + (7 — 1)(27), dim K, = <JZ> (2.20)

The idea of the proof is that when @ is decomposed into a bunch of scalar forms,
then even when @ is non-degenerate, the kernels of these individual forms will be
quite big, so we look at their intersections, which are still rather big, so we go
down all the way to look at the spaces K, obtained as the intersections of all these
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kernels except kerw®: the essential point is then that the condition that L should
be polylagrangian forces L to be the direct sum of these subspaces. The details,
suitably generalized to include the case where @ is allowed to be degenerate, follow.

Proof. Fix abasis {é1,...,é5} of T with dual basis {et,...,ée"} of T* and, recall-
ing Eq. (2.5), choose subspaces K, of V (a = 1,...,n) as indicated in Eq. (2.19).
Then the subspaces ker @ and K,...,K, of V have trivial intersection, so their
sum is direct and defines a subspace of V' which we shall, for the moment, denote
by L’. According to the previous proposition, L’ C L. To show that L' = L, it
is therefore sufficient to prove that dzb(L) C dzb(L’), since both L and L’ contain
ker @. Using the definition of a polylagrangian subspace, we conclude that we must
establish the inclusion

NI eT c (L)

But the equality in Eq. (2.10) guarantees that for any a € N'LL andfor 1 <a <n,
there is a vector v, € L such that

Then
i, 0" = a(é,) = da,
so we see that
7
k ~b
v, € er w
b=1
b#a

Decomposing v, according to Eq. (2.19), we find a vector u, € K, such that

L, w=aeeé,,

so a®é, €W’ (K,) C &’ (L). Conversely, if u, € K, C L, then i, &* =0 for b # a
and hence i, @ is of the form a®é, for some a € /\kLJ-. Thus we conclude that
&" maps K, isomorphically onto (/\kLJ') ® span(é,), where span(é,) denotes the
one-dimensional subspace of T generated by é,, which proves the second formula

in Eq. (2.20). Finally, we observe that combining Eqs (2.5) and (2.19) gives
ker w* N K, = {0},

so that Eq. (2.18) follows from Eq. (2.17), whereas the first formula in Eq. (2.20)
is now a direct consequence of Egs (2.12) and (2.18). O

Another fundamental property of polypresymplectic forms is that the poly-
lagrangian subspace has a particular type of direct complement.
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Theorem 2.2. Let V and T be finite-dimensional vector spaces and let © be a
T-valued polypresymplectic (k + 1)-form of rank N on V', with polylagrangian sub-
space L. Then there exists a k-isotropic subspace E of V complementary to L, i.e.,
such that

V = EoL. (2.21)

Proof. Let Ej be a k-isotropic subspace of V' of dimension N’ with EyN L = {0}.
(For instance, as long as N’ < k, Ey can be any subspace of V with EyNL = {0}.)
If N' = N, we are done. Otherwise, choose a basis {ey, ..., ey} of a subspace of V
complementary to L such that the first N’ vectors constitute a basis of Ey, and de-
note the corresponding dual basis of L+ by {e!,...,e"N}. We shall prove that there
exists a vector u € V'\ (Ep @ L) such that the subspace E; of V spanned by u and
Ey is k-isotropic and satisfies £y N L = {0}; then since dim F; = N’ + 1, the state-
ment of the theorem follows by induction. To this end, consider an arbitrary basis
{é,]1<a<n} of T with dual basis {é%| 1 < a < 7} of T* and, choosing any sub-
space L’ of L complementary to ker o, use the fact that L is polylagrangian to con-
clude that there exists a unique basis {elt* |1 <a<n,1<i; <...<ip <N}

of L' such that
QP(el) = el net ® 8,

Thus, for 1 <i; <...<ip <N and 1 <71 <...<jr <N, we have

b 7/17/k _ b il ik
wieg e eg) = 0a 05 L Gk
Therefore, the vector
_ _ l a ’Ll’Lk
U = enyq k'w (Enr41:€iyy- o064, ) €L

does not belong to the subspace Ey & L and, for 1 < j; < ... < jr < N, satisfies

b
w’(u,ejy..05€5,)
= WY ) — 1 a( ) wb(ein i )
= wW(enry1:€jy5-- -5 €5, o @en i) Weq 1€y s €y
= 0,
which implies that since the subspace Ey spanned by e, ..., ey, is k-isotropic, the
subspace F; spanned by eq,...,ey, and u is so as well. O

Example 2.1 (The Canonical Form). Let E and 7' be vector spaces of dimen-
sion N and n, respectively. Set

Vo = Eo ((NE)eT). (2.22)

The canonical polysymplectic form of rank IV is the non-degenerate T-valued
(k + 1)-form @, on V;, defined by

k
@0((U0aao®f0)’-~-a(ukaak®fk)) = Z(_l)iai(um"~7ﬂ\i7"'7uk) £ (2:23)
i=0

K2
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Again, the “standard” case of main interest is when @, is a 2-form, i.e., k = 1. (For
scalar forms, where T' = R, this construction can be found, e.g., in [8-10].)

To justify this terminology, note that it is a straightforward exercise to show that
Wy is non-degenerate and that, considering £/ and

L= (NE)oT (2.24)
as subspaces of V{), we have the direct decomposition V[ = E @& L where
L is polylagrangian and F is k-isotropic. (2.25)

In terms of bases, let {é,|]1 < a < n} be any basis of T with dual basis
{é*|1 <a<n} of T* and let {e;|1 < i < N} be any basis of E with dual
basis {e'|1<i< N} of E*. For 1<a<n and 1<i; <...<i, <N, define

ik- 5 j—
Aoner®e,, el = e A Ag ®EN

1.0 i1
e, = e

This provides a basis {e;, el |1<a<n,1<i<N,1<i; <...<i, <N}
of V, with dual basis {e’,ef ; [1<a<n,1<i<N,1<i<...<ip<N}
of Vi, both of which we shall refer to as a canonical basis or Darboux basis,
such that

1 . .
CDO = H (6?1...ik- /\6“ AERRRA elk) ® éa' (226)

Now it is easy to derive the algebraic Darboux theorem for general polypre-
symplectic forms: let {é,]1 < a <7} be an arbitrary basis of T, with dual basis
{é]1 < a < a} of 7% and let {e;|1 < i < N} be an arbitrary basis of a
k-isotropic subspace E complementary to L in V, with dual basis {e’|1 <i < N}
of L+ = E*. Choosing an arbitrary subspace L’ of L complementary to ker & and
taking into account the identity (2.10), we define a basis {el% | 1 < a < 7,
1<ip<...<ix <N} of L' by

QPelrir) = e a . ne ® é,.

It is easy to see that the union of this basis with that of E gives a canonical basis of
V' (or more precisely, of E® L', which is a subspace of V complementary to ker o).
Thus we have proved!

Theorem 2.3 (Darboux Theorem for Polypresymplectic Vector Spaces).
FEvery polypresymplectic vector space admits a canonical basis.

fClearly, the inductive construction of a k-isotropic subspace E complementary to the poly-
lagrangian subspace L, as presented in the proof of Theorem 2.2, provides an explicit iteration
procedure for building canonical bases in a way similar to the well known Gram-Schmidt ortho-
gonalization process.
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3. Multisymplectic Forms on Vector Spaces

In this section we deal with ordinary alternating multilinear forms which are par-
tially horizontal with respect to a given vertical subspace. To explain what this
means, assume that we are given a finite-dimensional real vector space W together
with a fixed subspace V' and a projection 7w from W to another finite-dimensional
real vector space T which has V as its kernel, so that T"= W/V, i.e., we have a
short exact sequence of vector spaucesb

0 —V — W 5% T — 0. (3.1)

Motivated by standard jargon of fiber bundle theory, we shall refer toW as the
total space, V' as the vertical space and T as the base space. Then an r-form
a € N"W* on W is said to be (r — s)-horizontal (with respect to 7), where
0 < s < r, if its contraction with more than s vertical vectors vanishes, i.e., if

iy, oondyyy, 0 = 0 for vy,... 0, €V. (3.2)

The vector space of (r — s)-horizontal r-forms on W will be denoted by AL W*.
Note that as s is varied (with r fixed), these spaces form an increasing sequence 8
under inclusion:

NT = \NgW* c...c Abw* c...c ALw* = N W~ (3.3)

At the two extremes, we have /\: W* = A W* since the condition of 0-
horizontality is void, whereas the space /\g W* of fully horizontal r-forms on W,
which are precisely the horizontal r-forms as defined in [18,19], is canonically iso-
morphic to the space N T* of all r-forms on T': /\g W* = A" T*. This canonical
isomorphism is simply given by pull-back with the projection 7, i.e., ay, = T ap
or

oy (wy, .. ,w,.) = ap(r(wy),...,m(w,)) for wy,...,w, € W. (3.4)
Its inverse is given by o, = 5oy, or
ap(ty, ..., t.) = aw(s(ty),...,s(t,)) for t,,...,t, €T, (3.5)

where s is any splitting of the exact sequence (3.1), i.e., any linear mapping from
T to W such that mos = idp.P

Extending this construction to partially horizontal forms leads us naturally to
the concept of symbol, which will provide the link between polysymplectic and
multisymplectic structures.

8The first few terms of this sequence may be trivial, since AL W* = {0} if s <r —dimT.
b1t is a straightforward exercise to verify that the expression on the right-hand side of Eq. (3.5)
does not depend on the choice of the splitting s when ay;, is horizontal.
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Definition 3.1. Let W, V and T be finite-dimensional vector spaces related by
the short exact sequence (3.1). The symbol of an (r — s)-horizontal r-form o on W,
a € /\Z W+, is the A °T*-valued s-form ¢ on V, & € A*V*@ N~ °T*, given by

G(vy,...,v,) = i, ... i, a for vy,... v, €V. (3.6)

Explicitly, we may use Eq. (3.5) to arrive at the following formula for & in terms
of a:

vy, ) (b b)) = alvy,. v, 8(t), . 8(t_y)

(3.7)
for vy,...,v, €V, ty,...t,_, €T,

where, once again, s is any splitting of the exact sequence (3.1).! It follows that
passage to the symbol can be regarded as a projection, from the space /\: W* of
(1 — s)-horizontal r-forms on W to the space A’ V* @ A" °T* of s-forms on V
with values in the space /\"°T™* of (r— s)-forms on T', whose kernel is the subspace
Ao W* of (r — s + 1)-horizontal r-forms on W.

If we introduce a basis {e},....,eV ef ... el} of W such that the first m
vectors span V' while the last n vectors span a subspace complementary to V' and
hence isomorphic to T, then in terms of the dual basis {el,,... e er, ... ek}
of W*, an arbitrary form o € A, W* is represented as’

S

1 1 . ,

_ _ 21 1t K1 Hor—t

a = E iy p— Qi g iy EY A oo ANEG A ET A onEp (3.8)
— ! !

while its symbol & € A*V* @ A"~ °T* is represented as

1 1 i i
A 1 1s H1 Hr—s
“ = gm Qiy iy e ppr s CV N e NEY @ Ep A AED (39)

which also shows that

dim AT W* = Z (dh? V) (i”ff) (3.10)

t=0

where it is to be understood that (§) =0 if | > k.

As in the polysymplectic case, our definition of a multisymplectic form will be
based on the existence of a special type of maximal isotropic subspace, the only
restriction being that we consider only isotropic subspaces of the vertical space V;
correspondingly, the concept of maximality should in this context be understood

to mean maximality in the partially ordered set formed by the isotropic subspaces

iAgain, it is a straightforward exercise to verify that the expression on the right-hand side of
Eq. (3.7) does not depend on the choice of the splitting s when « is (r — s)-horizontal.

IThe expansion in Eq. (3.8) explains why forms in A} W* are called (r — s)-horizontal: they are
represented as linear combinations of exterior products of 1-forms such that, in each term of the
sum, at least r — s of them are horizontal.
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of V' (not W). More precisely, suppose we are given a fixed (k + 1 — r)-horizontal
(k + 1)-form w on W,

we N (3.11)

where 1 < 7 < k+ 1,% and denote by w” the contraction of w, as defined in the
previous section, which is a linear map w® : W — /\’C W, as well as its restriction to
the vertical subspace V, which is a linear map w’: V — /\Tk_lW*. Then defining,
for any subspace L of V,

AL = N2 n AW, (3.12)

we conclude as in the previous section that a subspace L of V will be isotropic
(with respect to w) if and only if

WS(L) ¢ (V) n AL (3.13)

and will be maximal isotropic (with respect to w) if and only if V' N ker w C L
and

W(L) = (V) N NS LR (3.14)

As in the previous section, the intersection with the subspace w” (V') on the right-
hand side of these relations is superfluous in Eq. (3.13) but not in Eq. (3.14), and
omitting it here leads to a strengthened form of Eq. (3.14) which turns out to
provide the key to the theory of multisymplectic forms:

Definition 3.2. Let W, V and T be finite-dimensional vector spaces related by
the short exact sequence (3.1), with dim7 = n, and let w be a non-vanishing
(k 4+ 1 —r)-horizontal (k+ 1)-form on W, where 1 < r < k+ 1. We say that w is a
multipresymplectic form of rank N and horizontality degree k +1 —r if V
admits a subspace L of codimension N which is multilagrangian, i.e., such that

(L) = NS LS (3.15)

If w is non-degenerate, we call it a multisymplectic form. The “standard” case
of main interest is when w is an (n — 1)-horizontal (n + 1)-form, i.e., k = n and
r=2.

The first two propositions on multipresymplectic forms are entirely analogous
to the corresponding ones for polypresymplectic forms. To begin with, we note that
a multilagrangian subspace, when it exists, contains the kernel of w (implying, in
particular, that ker w C V') and hence really is a special type of maximal isotropic
subspace.

KThe extreme case of fully horizontal forms (r = 0) will be excluded right from the start since it
can be reduced to the other extreme case where the horizontality condition is void (r = k + 1),
substituting the total space W by the quotient space T'. Additional restrictions that serve to
exclude other trivial or uninteresting cases will be imposed as we go along.
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Proposition 3.1. Let W, V and T be finite-dimensional vector spaces related by
the short exact sequence (8.1), with dimT = n, and let w be a multipresymplectic
(k+1)-form on W of rank N and horizontality degree k+1—r, where 1 < r < k+1,
and with multilagrangian subspace L. Then N+n >k and k+1—1r<n, and L
contains the kernel of w:

ker w C L. (3.16)

Proof. First we observe that if N + n is < k, we have A'L‘ = {0}, while if
k+1—ris > n, we have /\Tlilw* = {0}, so in either case, both sides of Eq. (3.15)
vanish, i.e., L is contained in ker w and hence ker w has codimension < k in W,
implying w = 0, since the (k + 1)-form on the quotient space W/ker w induced
by w vanishes identically. Thus supposing that dim L+ = N+4n > k and using that
dimV+ =n and V*+ C Lt, we conclude that we can, for any vector w € W \ L,
find a linearly independent set of 1-forms wy,...,w} € L+, with w?,. .. ,wy, € v,
such that (wj,w) =1 and (w},w) =0 for i > 1. According to the definition of a
multilagrangian subspace, there is a vector «w € L such that

,w = wiA...rwp = Qiw = wia...rw; # 0,

and so w ¢ ker w. Hence it follows that ker w C L. O

The second gives a simple dimension criterion that allows to decide whether a given
isotropic subspace of V' is multilagrangian:

Proposition 3.2. Let W, V and T be finite-dimensional vector spaces related
by the short exact sequence (3.1), with dimT = n, and let w be a non-vanishing
(k+1—r)-horizontal (k+ 1)-form on W, where 1 <r <k+1 and k+1—7 < n.
Given any subspace L of V, with dim(V/L) = N, such that N +n > k, the
following statements are equivalent:

o L is a multilagrangian subspace and w is a multipresymplectic form of
rank N.
e [ contains ker w, is isotropic and has dimension
r—1

dim I = dim ker w + ; (ZZ) (k " S), (3.17)
where it is to be understood that (]:) =0 i s> N.

Proof. Taking into account that, for any isotropic subspace L of V' containing the
kernel of w, the contraction map w” induces an injective linear map of L/ker w
. k .
into A\, ;L*, we obtain

dim L — dim ker w = dim o’(L) = dim A", L*.
To compute this dimension, introduce a basis {el,... el el ... ek ef ... e
of W such that the first [ vectors form a basis of L, the following N vectors form
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a basis of a subspace L’ complementary to L in V and the last n vectors form a
basis of a subspace H complementary to V' in W, which is isomorphic to T'. Then

in terms of the dual basis {e},..., el eb, ... eN ek, ... en} of W*, we conclude

that {en...nepnefn . onef " |0<s<r—1,1<i; <...<is <N,
. . k

1< <...<pp_s<n} isabasisof A, L+ O

Again, it may be worthwhile to point out that Eq. (3.17) and, in particular, the
ensuing dimension formulas for V and W,

r—1

N n
i = dim k N 1
dim V dim erw—!—;(S)(k_s)—!- , (3.18)

and

= /N n
i = dim k N 1
dim W dim erw+§<s><k_s>+ + n, (3.19)

should perhaps best be read as a restriction on the dimension of a vector space
in which a multisymplectic form w of given degree k£ 4+ 1 and horizontality degree
k41 —r can exist. In particular, in the standard multisymplectic case encountered
in field theory where we have k = n, r = 2 and a trivial kernel, Eq. (3.19) reduces to
the statement that the dimension of W must be a multiple of n+ 1 (more precisely,
equal to (N +1)(n+ 1)).

The relation between multipresymplectic and polypresymplectic forms is estab-
lished through the symbol:

Theorem 3.1. Let W,V and T be finite-dimensional vector spaces related by the
short exact sequence (3.1), with dimT = n, let w be a non-vanishing (k + 1 — r)-
horizontal (k + 1)-form on W, where 1 < r < k+1 and k+1—1r < n, and
let w be its symbol, which is a /\kﬂfr T*-valued r-form on V. Suppose that w is
multipresymplectic, with multilagrangian subspace L. Then @ is polypresymplectic,

with polylagrangian subspace L, and
ker w C ker @. (3.20)

Here, the “standard” cases correspond to each other: if w is an (n — 1)-horizontal
(n+1)-form on W, then @ is a /\n_1 T*-valued 2-form on V and, in this case,

dimker @ — dimker w < 1. (3.21)
Proof. Fixing an arbitrary horizontal subspace H of W and using the direct
decompositions W =V @ H and W* = H-@V+, with H- = V* and V+ = H*,

we note that in order to show that L is polylagrangian with respect to @, we must
establish the equality

(L) = N' L nHY) @ N T
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k+1—7r k+1—7r

To do so, we use the isomorphism /\ T = A 0o W*= /\kH_T V4 with
the inclusion V+ C Lt and note that the space /\r_l(LJ- NHY) ® NFTTyL
is generated by elements which can be written in the form

& = (win...rwi_)e (Win...Awy) where a = wiA...Awj

with wi,...,w_; € LY N H: and w},...,w; € V1t C L. Since L is multi-
lagrangian with respect to w, there is a vector v € L such that o = i,w and so
& = 1,w, showing that L is polylagrangian with respect to @. The inclusion (3.20)
is obvious from the definition (3.6) or (3.7), and the estimate (3.21) follows by
observing that the linear map w”: V — /\T,k_lW* induces an injective linear map
from V/ker w to /\T]ilW*7 which takes ker &/ker w into /\iz W*, and that in
the “standard” case (k = n, r = 2), this space is isomorphic to A" T*, which is
one-dimensional. ]

In particular, we note that even when w is multisymplectic, @ is not necessarily poly-
symplectic, i.e., non-degeneracy of w does not imply non-degeneracy of . All we
can say in general is that a multisymplectic form w on W induces a polysymplectic
form on the quotient space W = W/ ker & (which is usually again denoted by &,
by abuse of notation). This happens even in the “standard” case (k = n, r = 2)
because there, both possible situations (namely, © either is non-degenerate or else
has a one-dimensional kernel) do arise in practice. That is the main reason why, in
the present paper, we have refrained from imposing non-degeneracy right from the
outset, even though this is forcing us to carry the somewhat annoying additional
syllable “pre” all along the way.

Before going on to explore general consequences of the relation between multi-
presymplectic and polypresymplectic forms that we have just established, let us
pause for a moment to comment on the situations encountered when the parameter
r is assumed to take one of its extreme values. On the one hand, when r =k + 1,
the horizontality condition becomes void, the choice of V' and T' becomes irrelevant,
the space /\kH_T T* is one-dimensional and the form w coincides with its symbol @.
This is, once again, the particular case that has been studied before in the litera-
ture [8-10] under the label “multisymplectic forms”. Thus it becomes clear that the
multisymplectic forms in the sense of [8-10] appear at the intersection between poly-
symplectic and multisymplectic forms in the more general sense employed here: they
are polysymplectic without being vector-valued as well as multisymplectic without
satisfying any non-trivial horizontality conditions. On the other hand, note that we
have already excluded the case r = 0, where the (k + 1)-form w is fully horizontal
(i.e., (k + 1)-horizontal), since this situation can be reduced to the previous one
if we substitute W by T, but even the next case r = 1, where the (k + 1)-form
w is k-horizontal, is essentially trivial, since every k-horizontal multipresymplectic
(k+1)-form has rank 0 and multilagrangian subspace V. (In fact, the condition that
w should be k-horizontal is equivalent to the condition that V' should be isotropic,
and in this case, V' does satisfy the remaining criteria of Proposition 3.2.)
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Another fundamental property of multipresymplectic forms that can be derived
from the corresponding property for polypresymplectic forms is that the multi-
lagrangian subspace has a particular type of direct complement.

Theorem 3.2. Let W, V and T be finite-dimensional vector spaces related by
the short exact sequence (8.1), with dimT = n, and let w be a multipresymplectic
(k+1)-form on W of rank N and horizontality degree k+1—r, where 1 < r < k+1
and k+1—r < n, and with multilagrangian subspace L. Then there exists a k-
isotropic subspace F of W such that the intersection E =V NF is an (r — 1)-
isotropic subspace of V and

W =FalL V = EaL. (3.22)

Proof. First we construct an (r — 1)-isotropic subspace E of V' of dimension N
which is complementary to L in V. (If » = 1, there is nothing to prove since in
this case the vertical subspace V' is isotropic and so we have L =V, E = {0} and
N =0.If r > 1, we apply Theorem 2.2 to the symbol @ of w to conclude that there
is a subspace E of V of dimension N which is complementary to L in V and is
(r — 1)-isotropic with respect to . Now taking into account that the whole vertical
subspace V' is r-isotropic with respect to w, it follows that E is (r —1)-isotropic with
respect to w as well.) Now let Fy be a subspace of W of dimension N 4+ n’ which is
k-isotropic with respect to w and such that Fy NV = E. (For instance, if n’ = 0,
Fy = E.) If n’ = n, we are done. Otherwise, choose a basis {e’,... eX e, ... e,}
of a subspace of W complementary to L such that the first N vectors constitute
a basis of E and the first V + n’ vectors constitute a basis of Iy, and denote the
corresponding dual basis of L' by {ek, ..., eg, el, ..., e"}. We will prove that there
exists a vector uw € W\ (Fy @ L) such that the subspace F; spanned by v and Fy is
k-isotropic and satisfies F1 NV = E; then since dim F; = N +n/+1, the statement
of the theorem follows by induction. To this end, choose any subspace L’ of L
complementary to ker w and use the fact that L is multilagrangian to conclude that
there exists a unique basis { et @it ti—s | 0 < s<r—1,1<4; <...<i, <N,
1< <...<p,_,<n} of L’ such that

is

w?/(e““'“;“l“'“’“*s) = epn...negnett A netts,

Thus, for 0 < s,t <r—1,1<i;1 < ... <i, < N,1<j; <...<j <N,
1< <o <pp—s <n, 1 <) <. <y < n, we have that

il...i"pl...,uk,. E E
w(et s € € Curr e €y )

is equal to 6;1 6;_: 6yt 6= if s =t and equal to 0 otherwise. Therefore,
the vector

1 1 o
_ _ — E E Bl bs) Ul eee Phes
U = €y E S =) W(eprg 15 €y e ey €y €€y )€
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does not belong to the subspace Fy@L and,for 0 <t <r—1,1<j1 <...<jt <N
and 1 <1y < ... <y, <n, satisfies

E E
T N Y P O
_ E E
= w(en,+17ejl7 Y Y- ey ,)
r—1
1 1
E E
_ E gi(k—s)' w(en'+1’ei17'"7ei5’eu17""euk_s)
s=0 s B g
11 lss 1o HE—s
X w(er ' s €y s €y Chy ey €y )
= 0,
which implies that since the subspace Fy spanned by ef, R ef,,eh coes€y 18 k-
isotropic, the subspace F; spanned by ef, R ef,,eh ...,e, and u is so as well.

O

Example 3.1 (The Canonical Form). Let F' be a vector space of dimension
N +n and E be a fixed N-dimensional subspace of F'. Denoting the n-dimensional
quotient space F/E by T and the canonical projection of F onto T by p, we obtain
the following exact sequence of vector spaces:

0 — FE — F 25 17 —o. (3.23)
Set
W, = Fa NS F*, Vi = Ea N F*, n, = popry, (3.24)

where pr; : W, — F is the canonical projection, which leads us to the following
exact sequence of vector spaces:

0 — V, — W, =% T — 0. (3.25)
The canonical multipresymplectic form (if » = 1) or canonical multi-

symplectic form (if » > 1) of rank N and horizontality degree k + 1 — r is
the (k + 1 — r)-horizontal (k + 1)-form w, on W, defined by

k

wo((ugywp)s -+ (s wy)) = > (1) wlug, ., Gy -y uy). (3.26)
=0

Again, the “standard” case of main interest is when w, is an (n — 1)-horizontal
(n+ 1)-form, i.e., k =n and r = 2.

It is a straightforward exercise to show that w is (k 4+ 1 — r)-horizontal and is
degenerate when r = 1, with

kerw, = E if r=1, (3.27)

but is non-degenerate when r > 1. In what follows, we shall assume that N > 0,
since when E = {0}, we are back to the polysymplectic case on T & /\kT*, with
T = R, which has already been studied in [8-10]. For the same reason, we shall also
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assume that r > 1, since for r =1 we have /\ISF* = /\kT*, so that after passing
to the quotient by the kernel of w,, we are once again back to the polysymplectic
case on T & /\kT*, with 7' = R. Then considering F' and
L =NA\"F (3.28)
as subspaces of W, we have the direct decompositions W, = F®L and V = E®L
where
L is multilagrangian, F is k-isotropic, FE is (r — 1)-isotropic. (3.29)

In terms of bases, let {e;, e, [1<i< N, 1< p<n} beabasis of F with dual basis
{et,e" |1 <i< N,1<p<n} of F* such that {e;|1<i < N} is a basis of E and
{e, |1 < p <n} is abasis of a subspace H of F' complementary to F, isomorphic
toT. For 0<s<r, 1< <...<i, <N and 1< py <...<py_, <N, define:

Cinoiai it s = Cin N e AELANEL A A€,
i tsi M ks — oll A A gls A @Ml A A ks

This provides a basis

U1 sy 1 ene Ho—
{ei,eu,e s s

0<s<r—1,

of W, with dual basis

1 1<i<N, 1< <...<i, <N
’1<u<n,1</~t1<--~<ﬂk_s<n}

{ei’eu’eiln.is;mmuk_s O<Ss<r—
of W, both of which we shall refer to as a canonical basis or Darboux basis,
such that
r—1 1 1 ) .
wy = Z ST Cineiei s NETA one A A e (3.30)
— sl (k—9)!

and for the symbol

. 1 1 . ,
Wy = e AetA LA ert

(r—1)! (k41— )l bt i (3.31)

® el A LA etk

Now it is easy to derive the algebraic Darboux theorem for general multipre-
symplectic forms: let {e“e# [1<i< N,1< u<n} bea basis of a k-isotropic
subspace F' complementary to L in W, with dual basis {e’,e*|1 < i < N,
1 < p<n}of Lt = F* such that {e;|1 <i < N} is a basis of the (r—1)-isotropic
subspace E =V N F which is complementary to L in V. Choosing any subspace
L’ of L complementary to ker w and taking into account the identity (3.15), we
define a basis

{67/1~~~715§U41~~~Nk—s 0 < s < r— ]_7
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of L' by
w‘b/(e“"'“‘”““'“’“—S) = e A ...ne s nett A L AetEs,

It is easy to see that the union of this basis with that of F' gives a canonical basis
of W (or more precisely, of F @ L', which is a subspace of W complementary to
ker w). Thus we have proved!

Theorem 3.3 (Darboux Theorem for Multipresymplectic Vector Spaces).
FEvery multipresymplectic vector space admits a canonical basis.

4. Cartan Calculus and the Symbol

In order to extend the structures studied in the previous two sections and, in partic-
ular, the concept of symbol that interrelates them, from a purely algebraic setting
to the realm of differential geometry, we shall need a variant of Cartan’s calculus,
which in its standard formulation deals with differential forms on manifolds, to
handle vertical differential forms on total spaces of fiber bundles.

Let P be a fiber bundle over a base manifold M, with projection 7 : P — M.
Then the vector bundle /\:T*P over P whose fiber at any point p in P is the
space /\: Ty P of (r — s)-horizontal r-forms on the tangent space T,P to P at p is
called the bundle of (r — s)-horizontal r-forms on P, and its sections are called
(r — s)-horizontal differential r-forms or simply (r — s)-horizontal r-forms
on P; the space of such forms will be denoted by Q7 (P). Similarly, assuming in
addition that 7" is a vector bundle over the same base manifold M, with projection
T — M, and denoting the pull-back of T to P by 7*T and the vertical bundle
of P by VP (both are vector bundles over P), the vector bundle A" V*P @ n*T
over P is called the bundle of vertical r-forms on P, and its sections are called
vertical differential r-forms or simply vertical r-forms on P, with values or
coefficients in 7*7 or, by abuse of language, in T": the space of such forms will be
denoted by Q,(P;7*T). Finally, the sections of the vertical bundle V P itself are
called vertical vector fields or simply vertical fields on P: the space of such
fields will be denoted by %, (P). Obviously, Q7(P), Qi (P;7*T) and X, (P) are
(locally finite) modules over the algebra §(P) of functions on P.

It should be noted that speaking of vertical forms involves a certain abuse of
language because these “forms” are really equivalence classes of differential r-forms
on P: Q(/(P;Tr*f’) is not a subspace of the space QT(P;W*T) of all differential
r-forms on P but rather its quotient space

Qp(P;m*T) = Q" (P;r*T) / Q7 (P T)
by the subspace ", (P;7*T) of all 1-horizontal differential r-forms on P.
1Once again, the inductive construction of a k-isotropic subspace F' complementary to the multi-
lagrangian subspace L, as presented in the proof of Theorem 3.2, provides an explicit iteration

procedure for building canonical bases in a way similar to the well known Gram-Schmidt ortho-
gonalization process.
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An interesting aspect of this construction is that it is possible to develop a
variant of the usual Cartan calculus for differential forms on the manifold P in
which vector fields on P are replaced by vertical fields X on P and differential forms
on P (taking values in some fixed vector space) are replaced by vertical differential
forms « on P (taking values in some fixed vector bundle over the base manifold),
in such a way that all operations of this calculus such as exterior multiplication,
contraction, Lie derivative and exterior derivative continue to be well defined and
to satisfy the standard rules. (See [18, Vol. 1, Problem 8, p. 313] for the special case
where the vector bundle of coefficients is the trivial line bundle M x R.) Here, we

shall only need the vertical exterior derivative
dy : Q5 (Py7*T) — Qr‘jl(P;ﬂ*T) (4.1)
o — dy o .

which is defined by exactly the same formula as in the standard case, namely

r

dya(Xg,...,X,) = 3 (-1) Xi-<a(X0,...,Xi,...,XT)>
=0

+ Y )M a(X, X)), X, XL X

j7 ..
0<i<j<r

X,

(4.2)

where X, X,,...,X, € X,(P): this makes sense since VP is an involutive dis-
tribution on P, provided we correctly define the vertical directional derivative

Xy (P) x T(x*T) — T(x*T) (4.3)
(X, ) — Xy

as an R-bilinear operator which is §(P)-linear in the first entry and satisfies a
Leibniz rule in the second entry,

X-(fe) = (X-fle + (X 9). (4.4)
Explicitly, for X € X, (P) and ¢ € I'(7*T), X- pe(7*T) is defined as the
standard directional derivative of vector valued functions along the fibers, that is,

for any point m in M, (X € C®(P,,,T},) is given in terms of X’P € X(Py)

90)|Pm
and <,0|Pm € C°(Py,, Tm) by

(X-¢)|Pm = X|Pm- <p|Pm. (4.5)
Since the Lie bracket is natural under restriction to submanifolds, we have
X (Y-p) =Y (X-9) = [X,Y]- ¢ for X,Y €X(P), p € T(n*T),

which implies that d2 = 0. On the other hand, sections ¢ of 7*T obtained from
sections ¢ of T' by composing with 7 are constant along the fibers and hence their
vertical directional derivative vanishes:

X-(for) = 0 for Xe X, (P),te (7). (4.6)
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In the same way, substituting T by T+, we get
X-(#om) = 0 for X € X, (P), t* € I(T*), (4.7)
which means that
X - (f*om, ) = ({*om, X ) for X € X,(P), p € ['(x*T). (4.8)

More generally, given a 7*T-valued vertical r-form & on P and a section * of the
dual vector bundle 7™ of T, we define the projection of & along t* to be the
ordinary vertical r-form &;, on P given by™

&;.(p) = (t"(n(p)),a(p)) for peP, (4.9)
and obtain
dyd;. = (dya),.. (4.10)

Hence, if & is closed, (34{* will be closed as well, and a standard argument shows
that, in this case, the kernel of & and of &, given by

ker,a = ker &, = {u,eV,P|i, &,=0} for peP, (4.11)
and

ker,&;, = ker(d;), = {u,eV,P|i, (4;.),=0} for pe P, (4.12)

e
respectively, define involutive distributions on P, provided they have constant
dimension.

With these tools at our disposal, we can now formulate the construction of
the symbol in the differential geometric setting. To deal directly with the case
of interest, suppose that w is a (k + 1 — r)-horizontal (k + 1)-form on P, where
1<r<k+1and k+1—17<n, that is,

we QM(P) = TN T P). (4.13)

Explicitly, the horizontality condition means that contraction of w with more than
r vertical fields on P gives zero. Then the symbol © of w, whose value at every
point p of P is defined to be the symbol @, of wy, is a vertical r-form on P taking

values in the vector bundle 7* (/\Hl*r T*M), that is,

o e QpP (N T M) = TNV P (N TM)). (4.14)
. . . . « k4+1—7 oy ~ NEFL=T
Using the canonical isomorphism 7* (/\ T*M) = Ny "T*P of vector bun-
dles over P as an identification, we have

(X1, X,) = iy, ... ixw for Xp,..., X, € Xy (P). (4.15)

™Here, it is important that £* be a section of T* and not of 7*71*.
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More explicitly, using the horizontal lift
& — &
of vector fields induced by some fixed connection on P, we have

O(Xqy,..., X)) (§low,...,fk+lfroﬂ') = w(Xl,...,Xr,gff,...,fﬁrlfr)

(4.16)
for Xp,..., X, € Xy (P), &1y pir, € X(M),

where it should be noted that although composition of vector fields on M with
the projection 7 provides only a subspace of the vector space of all sections of the
pull-back 7*T'M of T M by m, this formula is sufficient to fix the value of @ at each
point p of P.

Theorem 4.1. With the same notations as above, suppose that the form w satisfies
do € QF2(P) = T(N'I?17P),
i.e., dw is (k + 2 — r)-horizontal. Then the form & is vertically closed:
dyw = 0.

In particular, for & to be vertically closed, it is sufficient (but not necessary) that
w be closed.

Proof. Let X,..., X, be vertical fields on P and §&;,...,§,,,_, be vector fields
on M, and denote the horizontal lifts of the latter with respect to some fixed
connection on P by &7,... &L, respectively. Then we have the relation

dw(Xg, .. X, €l ) = (dva(xo,...,XT))(§10w7...,§,€+1,rm)7

which can be derived from Cartan’s formula for dw and its analogue for dy w,
Eq. (4.2), using that w is a (k + 1 —r)-horizontal (k + 1)-form and the Lie brackets
[Xi,fjH] are vertical fields, by applying Eq. (4.8) to expressions of the form

p=0(Xp ... Xppoo o, X,)and =& A A, O

5. Polysymplectic and Multisymplectic Fiber Bundles

Now we are ready to transfer the poly- and multisymplectic structures introduced in
the first two sections from the algebraic to the differential geometric context. All we
need to do is add the appropriate integrability condition, which is the expected one:
the differential forms in question should be closed. For the sake of brevity, we begin
directly with the notion of a poly(pre)symplectic fiber bundle, which formalizes the
idea of a “family of poly(pre)symplectic manifolds smoothly parametrized by the
points of a base manifold M” and includes that of a poly(pre)symplectic manifold
as a special case.

1350018-26



Multisymplectic and Polysymplectic Structures on Fiber Bundles

Definition 5.1. A polypresymplectic fiber bundle is a fiber bundle P over an
n-dimensional manifold M equipped with a vertical (k+ 1)-form & of constant rank
on the total space P taking values in a fixed n-dimensional vector bundle T over the
same manifold M, called the polypresymplectic form along the fibers of P,
or simply the polypresymplectic form, and said to be of rank N, such that ©
is vertically closed,

and such that at every point p of P, @, is a polypresymplectic form of rank /N on
the vertical space V,, P. If the polylagrangian subspaces at the different points of P
fit together into a distribution L on P (which is contained in the vertical bundle V P
of P), we call it the polylagrangian distribution of @. If & is non-degenerate,
we say that P is a polysymplectic fiber bundle and @ is a polysymplectic
form along the fibers of P, or simply a polysymplectic form. If M reduces to
a point, we speak of a poly(pre)symplectic manifold. As before, the “standard”
case of main interest is when @ is a 2-form, i.e., k = 1.

The notion of a multi(pre)symplectic fiber bundle is defined similarly.

Definition 5.2. A multipresymplectic fiber bundle is a fiber bundle P over
an n-dimensional manifold M equipped with a (k 4+ 1 — r)-horizontal (k + 1)-form
w of constant rank on the total space P, where 1 <r<k+1 and k+1—7<n,
called the multipresymplectic form and said to be of rank N and horizontality
degree k + 1 — r, such that w is closed,

dw = 0, (5.2)

and such that at every point p of P, w, is a multipresymplectic form of rank N on
the tangent space T}, P. If the multilagrangian subspaces at the different points of P
fit together into a distribution L on P (which is contained in the vertical bundle V P
of P), we call it the multilagrangian distribution of w. If w is non-degenerate,
we say that P is a multisymplectic fiber bundle and w is a multisymplectic
form. If M reduces to a point, we speak of a multi(pre)symplectic manifold.
As before, the “standard” case of main interest is when w is an (n — 1)-horizontal
(n+ 1)-form, i.e., k =n and r = 2.

Combining Theorems 3.1 and 4.1, we obtain

Theorem 5.1. Let P be a fiber bundle over an n-dimensional manifold M, with
projection w: P — M, let w be a (k+ 1 — r)-horizontal (k + 1)-form of constant
rank on P, where 1 <r <k+1 and k+1—1r < n, and let © be its symbol, which
is a vertical r-form on P taking values in the bundle of (k + 1 —r)-forms on M.
Suppose that w is multipresymplectic, with multilagrangian distribution L. Then @
s polypresymplectic, with polylagrangian distribution L, and

ker w C ker w. (5.3)
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As before, the “standard” cases correspond to each other: if w is an (n—1)-horizontal
(n+ 1)-form, then & is a /\ni1 T* M -valued 2-form and, in this case,

dimker @ — dimker w < 1. (5.4)

In particular, we repeat that even when w is multisymplectic, @ is not necessarily
polysymplectic, i.e., non-degeneracy of w does not imply non-degeneracy of @. All
we can say in general is that a multisymplectic form w on P induces a polysymplectic
form on the quotient bundle P = P/ker & (which is usually again denoted by @,
by abuse of notation). This happens even in the “standard” case (k = n, r = 2)
because there, both possible situations (namely, w either is non-degenerate or else
has a one-dimensional kernel) do arise in practice. That is the main reason why, in
the present paper, we have refrained from imposing non-degeneracy right from the
outset, even though this is forcing us to carry the somewhat annoying additional

syllable “pre” all along the way.

Remark 5.1. Note that when 7 > 2, in the case of polypresymplectic structures,
or when 1 < r < k, in the case of multipresymplectic structures, the explicit
construction of L in terms of the kernels of the projections of & (see Theorem 2.1)
implies that the polylagrangian or multilagrangian subspaces at the different points
of P do fit together to form a uniquely determined, smooth distribution L on P.
(The proof uses the fact that sums and intersections of smooth vector subbundles of
a vector bundle are again smooth vector subbundles if they have constant rank and,
more generally, that kernels and images of smooth vector bundle homomorphisms
of constant rank are smooth vector subbundles; see, e.g., [20, Exercise 1.6F(c),
p. 51].) But in the case of scalar polypresymplectic structures (7 = 1) and of multi-
presymplectic structures for which the horizontality condition is void (r = k + 1),
such a distribution may fail to exist, even if we assume the base manifold to be trivial
(i.e., M reduces to a point, n = 0) and the form & or w to be non-degenerate. Indeed,
for symplectic forms (k = 1) or volume forms (N = k), it is easy to find examples
of manifolds whose tangent bundle does not admit any (smooth) lagrangian sub-
bundle: the simplest of them all is just the 2-sphere 52, according to the
theorem”. And even in the remaining cases (N > k > 1), where according to Propo-
sition 2.3, the polylagrangian or multilagrangian subspaces at the different points

‘no hair

of P are unique, an explicit construction for them does not seem to be available,
so we do not know whether it is true that smoothness of @ or w by itself implies
smoothness of L. Thus when we simply refer to “the polylagrangian distribution L”
or “the multilagrangian distribution L” without further specification, as will often
be done in what follows, existence and smoothness of L is in these cases tacitly
assumed.

6. Integrability

A further remarkable property of polypresymplectic/multipresymplectic struc-
tures is that, generically, the polylagrangian/multilagrangian distribution is
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automatically integrable and thus gives rise to a polylagrangian/multi-
lagrangian foliation.

Theorem 6.1 (Integrability Theorem). Let P be a polypresymplectic fiber
bundle over an n-dimensional manifold M with polypresymplectic (k + 1)-form @
of rank N taking values in a fized n-dimensional vector bundle T over the same
manifold M. Then if

A>3, (6.1)

the polylagrangian distribution L is integrable. Similarly, let P be a multipre-
symplectic fiber bundle over an n-dimensional manifold M with multipresymplectic
(k 4+ 1)-form w of rank N and horizontality degree k + 1 —r, where 1 <r < k+1

and k+1—r <n. Then if
n
> 3, 6.2
(k‘-l—l—r) (6.2)

the multilagrangian distribution L is integrable.

Proof. Using Theorem 5.1, the second statement is easily reduced to the first.
To prove this, suppose that X and Y are vector fields on P which are sections of
L C VP. Using the decomposition

L = KyoK, &..0K,,

with K, = ker @, as in Eq. (2.17), we can decompose X and Y according to

X = En:Xa, Yy = En:yb,
a=0 b=0

where X, and Y, are sections of K, and K, respectively. Using that n > 3, we
can for each value of @ and b find a value ¢ # 0 such that ¢ # a and ¢ # b;
then K, C ker w® and K, C ker w®. Since w® is vertically closed and has constant
rank, ker w® C VP is involutive. Therefore the vector field [X,,Y;] is a section of
ker w® C L. ]

It must be emphasized that when the above inequalities are not satisfied, the state-
ment of Theorem 6.1 is false, i.e., L may fail to be involutive. For the multipre-
symplectic case, it is useful to spell out explicitly under what circumstances this
may happen:

(1) r=k+1,n=0,1,2,3,... arbitrary: this is the extreme case discussed before
in which the horizontality condition is void.

(2) r =k+1—n,n=1,2,3,...arbitrary: this includes the symplectic case, obtained
by choosing k = n+1 and r =2 (i.e., w € Q"3 *(P)) and supposing in addition
that ker & = {0} and that M is orientable, so that & € Q% (P, 7* (A" T*M))
represents a “family of symplectic forms smoothly parametrized by the points
of a base manifold M of dimension n”. Here, it is not difficult to construct
examples of lagrangian distributions which are not involutive.
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(8) 7 = k, m = 2 (the only possibility to have (,,7_ ) < 2 with 1 < r <k
and k 4+ 1 —r < n): this includes the “standard” multisymplectic case over
a two-dimensional base manifold M, obtained by choosing r = k = n = 2.
An explicit example of this situation is constructed in Example 6.3 below.

A simple example of a “standard” polysymplectic manifold with a two-dimensional
non-involutive polylagrangian distribution of rank 1 is the following.

Example 6.1. Let P be SU(2) and let a € Q'(P,su(2)) be the left invariant
Maurer-Cartan form on P, where su(2) is the Lie algebra of SU(2). Consider the
left invariant su(2)*-valued 2-form (8 on P obtained by taking the exterior product
of component forms whose values are multiplied using the commutator in su(2) and
finally passing to the dual using the invariant scalar product (.,.) on su(2), i.e.,

(B,X) = %([aga],X) for X esu(2).

Using the isomorphism su(2) = R? induced by employing the standard orthonormal
basis {0,/2i|a<c{1,2,3}} of su(2),” and working in components, we see that « is
represented by a triplet of left invariant 1-forms o', o2, o® and 3 by a triplet of
left invariant 2-forms f;, 35, B3 on P such that

1
b c
ﬁa:_eabca NG,

2

Moreover, taking 7" = (R2)*, let e be a given 2-frame in R3, i.e., a given injective
linear map e from R? to R3. Its transpose will be a surjective linear map (projection)
pr from (R3)* to (R?)*,° and we define

W = prof. (6.3)

In components, e is represented by a triplet of vectors e!, €2, e® in (R?)* (not a
basis, of course), and we have

1
= —¢
2 abe

w a®ral @ e, (6.4)

"Note that under the isomorphism su(2) 2 R3 given by mapping the basis {c,/2i|ac{1,2,3}}
of su(2) to the standard basis of R3, where

_ (o1 (0 /(10
1= \10)” 27 \io) 77 (o1

are the usual Pauli matrices, the commutator in su(2) corresponds to the vector product in R?
whereas the invariant scalar product in su(2) given by (X,Y) = —2tr(XY") corresponds to the
standard scalar product in R3. With respect to this orthonormal basis, the (totally covariant)
structure constants for su(2) are given by the components of the e-tensor, which are those of the
standard volume form on R3.

°It may seem overly pedantic not to identify the spaces R? and R® with their respective duals
(R?)* and (R3)*, but we have refrained from doing so right from the start since this turns out
to facilitate the understanding of the generalizations to be discussed in the next two examples.
Moreover, maintaining this distinction is not completely irrelevant since e is not assumed to be
isometric: the space R? is not even supposed to carry a scalar product.
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It follows immediately from the Maurer-Cartan structure equations that each of the
2-forms f3;, 5, B4 is closed, and hence so is w. Moreover, it is easily verified that
the image of R? under e, regarded as a subspace of su(2) = R?, generates a two-
dimensional left invariant distribution L on P which is isotropic under @ (since the
expression €, e%(u) e’(v) e¢(w) vanishes identically, for any three vectors u, v, w in
R?), so @ is polysymplectic and L is the corresponding polylagrangian distribution.
Of course, L is not involutive.

Similar but somewhat more complicated constructions lead to examples of poly-
symplectic and multisymplectic fiber bundles over an arbitrary two-dimensional
base manifold M whose polylagrangian or multilagrangian distribution, again of
rank 1, is not involutive. All of them are principal bundles over M, with structure
group SU(2) in the polysymplectic case and U(2) in the multisymplectic case, car-
rying an invariant polysymplectic or multisymplectic form built from data that can
be interpreted in terms of concepts from Yang-Mills-Higgs field theory, namely an
SU(2)-connection form A and a Higgs field ¢ in the adjoint representation of SU(2)
in the polysymplectic case and a U(1)-connection form A and a Higgs field ¢ in the
truncated adjoint representation of U(2) in the multisymplectic case.? The details
follow.

Example 6.2. Let P be the total space of a principal bundle over a two-
dimensional manifold M with structure group SU(2) and bundle projection denoted
by 7: P — M, and let AeQ!(P,su(2)) be a given connection form on P, where
su(2) is the Lie algebra of SU(2). Consider the equivariant su(2)*-valued 2-form B
on P obtained by taking the exterior product of component forms whose values are
multiplied using the commutator in su(2) and finally passing to the dual using the
invariant scalar product (.,.) on su(2), i.e.,

(B,X) = 5([ArA],X) for X esu(2).

1
2
Using the isomorphism su(2) = R? as before," and working in components, we
see that A is represented by a triplet of 1-forms A', A2, A3 and B by a triplet of
2-forms By, By, B on P such that

1
B, = 5 Cabe AP A AC.
Moreover, taking T = T*M, let e be a given 1-form on M taking values in the
adjoint bundle P X grr(2) R? which is an “immersion” in the sense that, when inter-
preted as a vector bundle homomorphism from T'M to P X g (2) R3, it is fiberwise
injective. When pulled back to P, e corresponds to an equivariant horizontal R3-

valued 1-form 7*e on P which, once again, is an “immersion” in the sense that,

PBy the truncated adjoint representation of a Lie group G, we mean the restriction of the adjoint
representation of G on its Lie algebra g to its derived algebra [g, g], which is an Ad(G)-invariant
subspace (in particular, an ideal) of g. Note that the derived algebra of u(n) is su(n).
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when interpreted as an equivariant vector bundle homomorphism from 7*(T'M)
to P x R3, it is fiberwise injective. Its transpose will be a fiberwise surjective equi-
variant vector bundle homomorphism (equivariant projection) pr from P x (R3)*
to 7*(T* M), and we define

W =proB |VP7 (6.5)
where . |VP denotes restriction to the vertical bundle VP of P. In components, 7*e
is represented by a triplet of sections 7*el, m*e2, w*e3 of 7*(T* M), and we have
~ 1 Aa Ab * ,C
W = 5 €abe |VP A |VP ® mel. (6.6)

It follows immediately from the structure equation

1

dVAa|VP = (dAa)|VP = _§Eabc Ab|VP/\AC|VP’

together with the formula €, €%, = 0,,;9.,. — 0,. 0.4, that @ is vertically closed:

A a b * _C a b *eC
2dy@ = g dyA?|yp A A p @ T — ey A ndy AP @ e

A Ab ® mref
VP VP

b a d e
+ €abe € deA |VP /\A |VP/\A

a d e
— €upe €M ge A |VP AA

|VP ® e’

= 0.

Moreover, it is easily verified that the image of 7* (T M) under 7*e, when transferred
from P x R3 to VP by means of the canonical isomorphism that exists between the
two since P is a principal bundle, constitutes a two-dimensional invariant distri-
bution L on P which is isotropic under @, so @ is polysymplectic and L is the
corresponding polylagrangian distribution. Of course, L is not involutive.

Example 6.3. Let P be the total space of a principal bundle over a two-
dimensional manifold M with structure group U(2) and bundle projection denoted
by 7: P — M, and let AcQ'(P,u(2)) be a given connection form on P, where
u(2) is the Lie algebra of U(2). Consider the equivariant su(2)*-valued 2-form B
on P obtained by taking the exterior product of component forms whose values
are multiplied using the commutator in u(2) (which maps into the derived alge-
bra su(2)) and finally passing to the dual using the invariant scalar product (.,.)
on su(2), i.e.,

1
(B,X) = 5 ([ArA],X) for X esu(2).
Using the isomorphism u(2) =2 R* induced by employing the standard orthonormal

basis {0,/2i]a€{0,1,2,3}} of u(2),% and working in components, we see that A

dNote that under the isomorphism u(2) = R* given by mapping the basis {o,/2i|a€{0,1,2,3}}
of u(2) to the standard basis of R%, where 0y is the unit matrix and o, 0,, 05 are the Pauli matri-
ces as before, the commutator in u(2) corresponds to that induced by the (associative) quaternion
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is represented by a quartet of 1-forms A°, A, A2, A% and B by a triplet of 2-forms
B,, By, B; on P such that
1 b c

B, = §€abc‘4 A AC.
Moreover, let ¢ be a given section of the truncated adjoint bundle P xr (o) R3
which is an “immersion” in the sense that its covariant derivative D, ¢ with respect
to the given connection, which is a 1-form on M taking values in P Xy (g) R3,
when interpreted as a vector bundle homomorphism from T'M to P X (g) R3, is
fiberwise injective. When pulled back to P, ¢ corresponds to an equivariant R3-
valued function 7*¢ on P and D, ¢ corresponds to an equivariant horizontal R3-
valued 1-form n*D, ¢ = D,7*¢ on P which, once again, is an “immersion” in
the sense that, when interpreted as an equivariant vector bundle homomorphism
from 7* (T M) to PxR3 it is fiberwise injective. In components, 7*¢ is represented
by a triplet of functions 7*¢', m*¢2, 7*¢3 and D, 7m*¢ by a triplet of horizontal
1-forms D, m*¢', Dyn*¢?, Dym*¢3 on P, where

Dym*¢® = dn*¢® + %, A 1 ¢°.
By standard results [18,19], the covariant exterior derivative of D, 7*¢, given by
dyDym* % = dDyn*¢p® + €%, A’ A Dy 7% ¢,
can also be written in the form
dy Dy 9® = €, F' 1°¢°,

where the F'* are the components of the su(2)-part of the curvature form of the
connection form A, defined by

1
FO = dA°, F* = dA® + 5 €"be Ab A AC

and there is a product rule relating the ordinary exterior derivative to the covariant
exterior derivative which in the case of importance here reads

d (€qpe T Do ¢ A Dy 1)
= €pe DA 0N Dy A Dy HC
=+ Cabc W*d)a dA DA TF*(ZSb/\ DA 7T*¢)c

— € TG Dy T GO ndy Dy TP,

product in R* whereas the invariant scalar product in u(2) given by (X,Y) = —2tr(XY) corre-
sponds to the standard scalar product in R%. With respect to this orthonormal basis, the (totally
covariant) structure constants for u(2) are again given by the components of the e-tensor, which
are those of the standard volume form on R?: all structure constants for which one of the indices
takes the value 0 vanish.
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In fact, this expression vanishes identically since it represents an invariant horizontal
3-form on P which corresponds to a 3-form on M, but there exists no non-zero 3-
form on a two-dimensional manifold. Now define

1 1
W = 5 €abe ANAP A Dy T pC — 3 Cabe 7 ¢® A A Dy pP A Dyt 0. (6.7)
Then using the above relations and the identity €,,.€%. = 0,40 — Ope Ougs

we can calculate the exterior derivative of w:
ddw = 2, dA" AN AP A Dy 0 — 2¢€,, A*AdAY A Dy h°
+ 2€ AN AN dy Dy )¢ — 2€,, €, AN AP A AT A D,y T ¢
— 2€. TP dA° A Dy ¥ )P A Dy T ¢
+ 2A0/\d(6 T e° DAW*¢bADAW*¢C)

abc
= 2¢€,. FOAA A D, 70 — 26, AAFPA D, 7°0¢
— Cppe € ge AN AN AP AN DYy F €y €0y ATAATN ACA Dy T HC
+ 2€,p0 €0 TGS AC A AP A FO
— €., €%, AN AP AN AL A Dy T pC
— 26, TG FOAD T ¢ A Dy 0.

The terms in the first and fifth line of the second equation vanish by the same
argument of horizontality as before, while the terms in the second and fourth line
vanish by symmetry. However, the term in the third line survives, i.e., we have

dwo = 8,0, 70 Ab A A° A FO.

This means that w is closed if (and also only if) the su(2)-part of the curvature
form F vanishes, whereas there is no restriction on its u(1)-part. Moreover, it is
easily verified that the image of #*(T'M) under D, 7*¢ together with the (one-
dimensional) orthogonal complement of P x R? in P x R*, when transferred from
P x R* to VP by means of the canonical isomorphism that exists between the two
since P is a principal bundle, constitutes a three-dimensional invariant distribution
L on P which is isotropic under w, so provided w is closed, w is multisymplectic and
L is the corresponding multilagrangian distribution. Of course, L is not involutive.

Remark 6.1. We emphasize again that the input data for the construction of
the polysymplectic and multisymplectic forms in the last two examples allow for
a natural interpretation in terms of Yang-Mills-Higgs field theory. Indeed, in the
polysymplectic case, A is an arbitrary SU(2)-connection and so we only have to
make one assumption that is more restrictive than stated in Example 6.2: namely
that the 1-form e is (covariantly) holonomous, that is, of the form e = D, ¢ where
the Higgs field ¢ is a section of the adjoint bundle P X gy () R3. Moreover, since
only the vertical part of A appears in Eq. (6.6), it is clear that @ is completely inde-
pendent of the choice of connection! In the multisymplectic case, we can argue that
the relevant input data are (a) a principal U(1)-bundle P, over M (or equivalently,
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a complex line bundle L, over M with fixed hermitean fiber metric) and a given
U(1)-connection form A, on P, (or equivalently, a given linear connection in L
preserving this fiber metric) and (b) a given embedding ¢ of M into R3. Indeed,
the principal U (2)-bundle P over M (corresponding to a rank 2 complex vector bun-
dle E, over M with fixed hermitean fiber metric) and the U(2)-connection form A
on P (corresponding to a linear connection in Ej, preserving this fiber metric) that
appear in Example 6.3 are then obtained by the process of extension of structure
group, using the embedding homomorphism of U(1) into U(2) that takes a phase
to that phase times the unit (2 x 2)-matrix; moreover, this construction guarantees
that the su(2)-part of the curvature form F' will vanish. Conversely, if this condition
is satisfied, then according to the Ambrose-Singer theorem, P can be reduced to the
holonomy bundle of A, whose structure group is the holonomy group of A which
has connected one-component U(1): this means that except for a possible discrete
part, we are back to the previous situation. It should also be emphasized that from
a purely topological point of view, reduction from U(2) to U(1) is always possible,
e.g., over compact Riemann surfaces [21, Theorem 10 & Corollary, p. 63], so the
restriction made here really only concerns the connection form A, not the bundle P.
Moreover, in this situation, the truncated adjoint bundle P x;(2) R? will be trivial
and so the Higgs field ¢ with its injective (covariant = ordinary) derivative will
provide an immersion of M into R3: it is only slightly more restrictive to assume
that this immersion is in fact an embedding. Finally, an important observation that
applies to both settings is that, as already mentioned, the polysymplectic form @
of Example 6.2 and the multisymplectic form w of Example 6.3 are both invariant
under the action of the respective structure groups SU(2) and U(2) on the total
space P: expressed in physical language, this means that they are gauge invariant.

We expect it to be possible to apply similar procedures, with SU(2) replaced by
some compact three-dimensional Lie group which is solvable and U(2) replaced by a
compact four-dimensional Lie group which is a suitable one-dimensional extension
thereof, to construct polysymplectic and multisymplectic fiber bundles P where
P is still a compact manifold but L is now involutive. However, in our view the
real challenge would be to come up with examples of polysymplectic and multi-
symplectic fiber bundles that appear naturally as multiphase spaces of physically
realistic covariant hamiltonian field theories but, just as in the above cases, can-
not be obtained by taking the affine dual of the first order jet bundle of some
configuration bundle. This question has recently been answered and unfortunately
(or perhaps fortunately, depending on interpretation), the outcome is essentially
negative; see [25,26] for more details.

7. The Darboux Theorem

Now we are able to prove the Darboux theorem for poly- and multisymplectic
forms. Here, the specific algebraic structure of poly- and multilagrangian subspaces
identified in the first two sections turns out to be crucial, in the sense that this
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central theorem can, in all cases, be proved by appropriately adapting the procedure
used to prove the classical Darboux theorem for symplectic forms. (See, for instance,
[20]).

Theorem 7.1 (Polysymplectic Darboux theorem). Let P be a polypre-
symplectic fiber bundle over an n-dimensional manifold M with polypresymplectic
(k+ 1)-form @& of rank N taking values in a fized n-dimensional vector bundle T
over the same manifold M and with polylagrangian distribution L, which is assumed
to be involutive (recall this is automatic if 1 > 3), and let {é,|1 < a < n} be a basis
of local sections of T. Then around any point of P (within the domain of the given
basis of local sections), there exists a system of local coordinates (x“,qi,pgl___iwr"“)
I<p<n1<a<<n 1<i<N,1<i; <...<i, <N, 1<k <dimker @),
called Darboux coordinates or canonical coordinates, such that

~ 1 a 7 ik ~

w = Hdpilmik/\dql/\.../\qu®€a (7.1)
and such that (locally) L is spanned by the vector fields 0/0pf, ; —and 0/0r" while
ker @ is spanned by the vector fields 0/0r". In the “standard” case of main interest

where @ is a 2-form, i.e., k = 1, this expansion takes the form
& = (dg'ndp}) @ éq. (7.2)
Similarly, we have

Theorem 7.2 (Multisymplectic Darboux theorem). Let P be a multipre-
symplectic fiber bundle over an n-dimensional manifold M with multipresymplectic
(k + 1)-form w of rank N and horizontality degree k + 1 — r, where 1 < r < k
and k+1—1r < n, and with multilagrangian distribution L, which is assumed to be
involutive (recall this is automatic if (k;l‘_r) > 3). Then around any point of P,
there exists a system of local coordinates (x",q",p; .y 7)) (0<s<r—1,
I1<pp<n, 1<i<N, 1<, <...<ig<N, 1< <...<p,_, <N,
1 € k < dim ker w), called Darboux coordinates or canonical coordinates,
such that
[t . .
w = ZO RN dpii v NAG A condgt AdTt A oA dat e (7.3)
.
and such that (locally) L is spanned by the vector fields 0/0p;, . . ..
0/0r" while ker w is spanned by the vector fields 9/0r". In these coordinates, its
symbol is given by
L L dp; . Adgt A ... A dgitt
=D 1= P g N A2 0 (7.4)
® daxht A .o A daPRrier,

and

In the “standard” case of main interest, where w is an (n — 1)-horizontal (n 4 1)-
form, i.e., k =n and r = 2, these expansions take the form

w = dqg' rdpia d"z, —dp ndx (7.5)
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and
& = dg' adpl e d'z,, (7.6)

where
1

n o n —
Az, = i, d"r = (n— 1) Cppa pin 1

u dxtt A oo adatt (7.7)

Proof. For the sake of definiteness, we concentrate on the multisymplectic case: the
proof for the other case is entirely analogous, requiring only small and rather obvious
modifications. Also, due to the local character of this theorem and since the kernel
of w, the multilagrangian subbundle L and the vertical bundle VP are all involutive,
with kerw C L C VP, we can without loss of generality work in a local chart of the
manifold P around the chosen reference point in which the corresponding foliations
are “straightened out”, so we may assume that P = R* @ RN @ L, ® K, with
VP=RN @ Ly® Ky, L = L,® K, and ker w = K, with fixed subspaces L, and
K, and such that the aforementioned reference point corresponds to the origin.
We also take wy to be the constant multipresymplectic form, with multilagrangian
distribution L, obtained by spreading w(0), the value of the multipresymplectic form
w at the origin, all over the space P; then the existence of canonical coordinates for
wo, in the form given by Eq. (7.3), is already guaranteed by the algebraic Darboux
theorem of the previous chapter (Theorem 3.3).

Now consider the family of (k + 1)-forms given by w, = wy + t(w — w,), for
every t € R. Obviously, w,(0) = w, for every t € R, which is non-degenerate on
K)=R"®RN & L, (a complement of K, in P). Since non-degeneracy is an open
condition, and using a compactness argument with respect to the parameter ¢,
we conclude that there is an open neighborhood of 0 such that, for all ¢ satis-
fying 0 <t < 1 and all points p in this neighborhood, w,(p) is non-degenerate on
K, =R"@® RN @ L, that is, its kernel equals K. Moreover, for all ¢ satisfying
0 <t <1 and all points p in this neighborhood, the subspace L, being isotropic
for w, as well as for w(p), is also isotropic for w,(p) and, since it contains the kernel
of w,(p) and has the right dimension as given by Eq. (3.17), is even multilagrangian
for w,(p), according to Proposition 3.2. On the other hand, we have dw, = 0
(trivially) and dw = 0 (by hypothesis), so we can apply an appropriate version of
the Poincaré lemma (see Appendix B) to prove, in some open neighborhood of the
point 0 in P (contained in the previous one), existence of a k-form « satisfying
do = wy —w and o’(L) = 0. Now take X, to be the unique time dependent vector
field on P taking values in L defined by*

iy,w = a.
Let F, = Fo,) be its flux beginning at 0, once again defined, for 0 < ¢ < 1, in

some open neighborhood of the point 0 in P (contained in the previous one). Then

"It is at this point that we make essential use of the hypothesis that L, is multilagrangian and
not just isotropic or even maximal isotropic (with respect to w,(p), in this case).
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it follows that

= F} (w—wy+ Ly,w,)
= Fy (w —wy + d(itht))
= FY'(w — wy + dov)
=0.
Therefore, F; is the desired coordinate transformation, since

Fiw = Flw, = Fjw, = wy. O

8. Conclusions and Outlook

In this paper we have presented a concise definition of a new class of geometric
structures which we propose to call polysymplectic or multisymplectic structures
and which include the ones encountered in the hamiltonian formulation of classi-
cal field theory as special cases. All of them are defined in terms of differential
forms satisfying an algebraic condition that amounts to postulating the existence
of an isotropic subbundle which is “sufficiently large” — a condition which, when
combined with the standard integrability conditions that the pertinent differen-
tial form should be closed and the aforementioned “sufficiently large” isotropic
subbundle should be involutive (in most cases, this additional requirement is auto-
matically satisfied), allows to derive a Darboux theorem assuring the existence of
“canonical” local coordinates around each point. Another characteristic feature of
all these structures is that they are naturally defined on the total spaces of fiber
bundles whose base space is interpreted as the space-time manifold of field theory.
Moreover, there is a standard class of examples defined by bundles of partially
horizontal forms over the total space of another fiber bundle (the so-called config-
uration bundle), which includes the multiphase spaces of interest in physics and
is the analogue of cotangent bundles of manifolds, regarded as a standard class of
examples of symplectic manifolds. To our knowledge, this is the first example of
a natural geometric structure with important physical applications that is defined
by a differential form (or even a tensor field) of degree strictly larger than 2 and
strictly smaller than the dimension of the underlying manifold.®

Starting from this basis, there is a number of rather obvious questions that
arise, most of which are closely interrelated. One of them that has been answered

SRecently, we have learnt about one other example: G2-structures on 7-dimensional manifolds can
be defined naturally in terms of a certain closed 3-form. However, it is not clear where this concept
can be applied in physics.
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recently [25,26] concerns the quest for other classes of examples besides the stan-
dard ones — in particular, examples that would provide an analogue of the coadjoint
orbit construction of symplectic geometry. The result of this investigation is nega-
tive: there are no such examples. And the underlying reason is relatively simple to
understand if one observes that the correct symplectic analogue of a polysymplectic
or multisymplectic structure is not simply a symplectic structure but rather a sym-
plectic structure with a fixed lagrangian foliation, and this additional restriction
essentially eliminates the coadjoint orbit construction.

Other questions that come to mind naturally refer to the nature of the under-
lying Lie group G when these structures are regarded as G-structures, the definition
of Poisson brackets (see the discussion in [5-7,22]), the definition of actions of Lie
groups and, more generally, of Lie groupoids on polysymplectic or multisymplectic
fiber bundles, the construction of a corresponding momentum map (which would
provide a general framework for the construction of Noether currents and the
energy-momentum tensor within a direct and manifestly covariant Hamiltonian
approach) and the formulation of a Marsden-Weinstein reduction procedure. All
these problems are still largely open and certainly will provide a fertile ground for
research in the future.
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Appendix A. Some Counterexamples

In this appendix, we wish to provide additional evidence for the conceptual simplic-
ity and usefulness of our definition of polysymplectic and multisymplectic structures
by investigating, in a purely algebraic setting and for the simplest case of vector-
valued 2-forms, various structural properties of polysymplectic forms that can
be introduced directly for general vector-valued 2-forms. By constructing explicit
counterexamples, we will show, however, that none of them is sufficiently strong
to replace the requirement of existence of a polylagrangian subspace: this condi-
tion must therefore be imposed separately and is then sufficient to imply all the
others, so that — in contrast to what is done, e.g., in [23] — we have refrained from
including any of them into our definition of a polysymplectic structure.

Suppose as in Sec. 1, that V and T are finite-dimensional real vector spaces,
with dim7 = 7, and assume that & € /\ V*® T is an arbitrary T-valued 2-form
on V. Given any linear form £* € 7* on T', we consider the projection Wy, = (t*,&)
of & along t*, which is an ordinary 2-form on V', and we define its rank to be equal
to half the dimension of its support, which in turn can be defined as the annihilator
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of its kernel [24]:*

1 1
rk(wf*) = 3 dim supp w;, = 3 (dimV — dim ker wf*). (A1)
Now note that the linear mapping
- 2
T* V*
= (A.2)
o W
induces, for every integer k > 1, a canonically defined linear mapping
E 2k
T* V*
Vi —A (A.3)

P +— PW)

where we have identified the space R+ of covariant symmetric tensors of degree
k over T with the space of homogeneous polynomials P of degree k on T. Explicitly,
in terms of a basis {é,]|1 < a < n} of T, with dual basis {21 < a < a} of T*,
we write w* = w,. = (€*,@) (1 < a < n) and obtain

P =P, a0 v...vé"* = P@) = Pay..apw™A...nw . (A4)
This allows us to introduce the following terminology:

Definition A.1. Let V and 7" be finite-dimensional vector spaces and let w be a
T-valued 2-form on V. We say that & has constant rank N if rk(w;.) = N for
every t* € T*\ {0} and that & has uniform rank N if the linear mapping (A.3)
is injective for k = N and identically zero for k = N + 1.

Using multi-indices o = (a,...,a;) € N, we set
e = (eH™M v .. v (eM  where (é%)% = é%v ... v e (o, times)
and
= (whH)™ Aw™) where (W) = WA ... Aw? (aq times)

to rewrite Eq. (A.4) in the form

Y P, = Pl) = ) Pow (A.5)

|| =k || =k

Since {é%||a|=k} is a basis of \/ s requiring & to have uniform rank N amounts
to imposing the following conditions:

{w*||a| = N} is linearly independent,

(A.6)
*=0 for |a| =N+ 1.

It is in this form that the requirement of uniform rank appears in the definition of
a polysymplectic form adopted in [23].

®Thus our definition of rank differs from that of [24] by a factor of 2.
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To gain a better understanding for the conditions of constant rank and of
uniform rank introduced above, we note first of all that they both generalize
the standard notion of rank for ordinary forms. Indeed, when 7 = 1, that is,
given an ordinary 2-form w of rank N on V, we can choose a canonical basis
{eg, .o yens f1 ..o, fV} of a subspace of V complementary to the kernel of w, with
dual basis {e',...,eN, f1,..., fx} of the subspace supp w of V*, to conclude that

w= ¢’ A f; and therefore
WwN =xera o neNafin . oafn # 0, WV =0

In other words, the rank of w can be characterized as that positive integer N for
which wv # 0 but w™¥*! = 0. From this observation, it follows that, in the general
case considered before, the requirement of uniform rank implies that of constant

rank because it guarantees that for every #* € 7%\ {0}, we have wg # 0 and

wg +1 =0, that is, rk(w;.) = N. However, the converse does not hold, as shown by

the following
Example A.1 (2 = 2, N = 2, dimV = 4, ker @ = {0}). Let V = R*, T = R2
and consider the R?-valued 2-form & built from the following two ordinary 2-forms:

w'=denady + dundv, w?= deadu — dyndo.

Then for ¢* = t%é € (R?)*, we have

wi. = thw® = don ({5 dy + t5du) + dva (t5dy — ] du).

a

Thus we obtain, for every t* # 0,
(Wi)? = wprwy = () + (83)%) deadyndundv # 0,
whereas, due to the fact that we are in a four-dimensional space,
(WA*)B = wp Awp Awpe = 0,
which guarantees that @ has constant rank 2. However, @ does not have uniform
rank 2, since
waw? = 0.
On the other hand, polysymplectic forms do have uniform rank:

Proposition A.1. Let V and T be finite-dimensional vector spaces and let w be
a T-valued polysymplectic form of rank N on V. Then & has uniform rank N.

Proof. Introducing a (polysymplectic) canonical basis in which
w = e’ e’ ® éq,

or equivalently
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suppose that a = (aq,...,a,) € N* is a multi-index of degree k (i.e., such that
o] = a1+ ...+ ap = k) and consider the form
1

w® = :I:((eiiA o nete) A .../\(eiiL/\ ...Aei%))

/\(6%/\ .../\6,}1 )/\ .../\(6%/\ .../\€ﬁ )

a1 T
Obviously, any such form vanishes when k& = N + 1 since it then contains an
exterior product of (N + 1) 1-forms e’ belonging to an N-dimensional subspace.
On the other hand, all these forms are linearly independent when k = N since w®
then contains the exterior product e' A ... A e" multiplied by the exterior product
of a; 1-forms of type e} with ... with o, 1-forms of type e; thus w® and w” belong
to different subspaces of /\QNV* whenever a # (. O

The converse statement, as we shall see shortly, is remote from being true.
In fact, if it were true, then if n > 2, it should be possible to construct the poly-
lagrangian subspace as the sum of the kernels of the projected forms, according to
Theorem 2.1. Therefore, it should be possible to show that the subspace defined as
the sum of these kernels is isotropic. And indeed, as a partial result in this direction,
we have the following

Proposition A.2. Let V and T be finite-dimensional vector spaces and let & be
a T-valued 2-form of uniform rank N on V. Then for any ti,t5 € T*\ {0}, the
kernel of Wi 18 1sotropic with respect to Wi -

Proof. Given u,v € ker Wee, We have

N _ oars N-1 _ I N-1 _
iwp = Nluwf;/\w{; = 0, Lwp: = Nl“wfil\wff = 0,
and therefore
N .o Ny
Wi (u,v) Wi = 1u1v(w£; /\wf,{) = 0.
Using that wg # 0, it follows that Wi (u,v) =0. O

However, isotropy of the subspace defined as the sum of the kernels of all the
projected forms, which is equivalent to the (stronger) condition that for any
£, 15,15 € T* \ {0}, ker w;. and ker w;. are orthogonal under wy. , i.e., that

1 2 3

Wi (ug,ug) = 0 for uy € ker wy and uy € ker w,,

cannot be derived from the condition of uniform rank. A nice counterexample is
obtained by choosing V and T to be the same space, supposing it to be a Lie algebra
g and defining & to be the commutator in g. Then for #* € g*, the kernel ker w;.
and the support supp w;. of the projected form w;. are the isotropy algebra of t*
and the tangent space to the coadjoint orbit passing through #*, respectively. There
is one and only one semisimple Lie algebra for which & has constant rank, since this
condition states that all coadjoint orbits except the trivial one, {0}, should have
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the same dimension: this is the algebra of type A;, that is, R? equipped with the
vector product X.

Example A.2 (i =3, N =1, dimV = 3, ker & = {0}). Let V =7 = R® and
consider the R3-valued 2-form & built from the following three ordinary 2-forms:

wl=dyndz, w?=dznde, W= dxnady.
Then for #* = t%é* € (R3)*, we have

wy, = fhw® = tr dyndz + t5 dznde + 5 dea dy.

Obviously, w!, w? and w? are linearly independent and hence & has uniform rank 1,
since there exists no non-zero 4-form on a three-dimensional space. On the other
hand, we have

ker w;, = <f* 9 + 9 + 13 2>

t L oz 2 oy 30z
Therefore, the intersection of the three kernels ker w!, ker w? and ker w?® is {0}
(i.e., @ is non-degenerate). However, ker w! and ker w?
and under w? but not under w3. Now if there existed a polylagrangian subspace
it would have to coincide with the sum of the kernels of all the projected forms,
but that is the whole space R3, which is not isotropic. Thus & does not admit a
polylagrangian subspace.

are orthogonal under w!

Finally, we observe that even if the sum of the kernels of all the projected forms
is an isotropic subspace with respect to @, it may still fail to be a polylagrangian
subspace, as shown by the following
Example A.3 (7 =2, N =2, dimV = 5, ker & = {0}). Let V = R% T = R?
and consider the R2-valued 2-form & built from the following two ordinary 2-forms:

wl' = det ada* + da?ada?, w? = de' A da® — da® A daP.
Then for #* =t é% € (R?)*, we have

Wy, = trw® = da'a (f’{ da* + 5 dac3) + dz? A (f’{ da® — 15 da”).

Obviously, w', w? and the forms

(Wh)? = wrw! = 2dzt A da? A da A da?,
wharw? = da' A da? A da* A daP,
(w?)? = w?rw? = 2dzt A dz? A dad A da®,

are linearly independent and hence @ has uniform rank 2, since there exists no
non-zero 6-form on a five-dimensional space. On the other hand, we have

fere O - 0 - 5}
ker vy, = (Bl 5 — (3 5 + 6 5 )
The intersection of the two kernels ker w! and ker w? is {0} (i.e., @ is non-
degenerate). Note that their (direct) sum is the two-dimensional subspace of V,
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say L', spanned by 9/0z* and 9/02°, whereas the subspace spanned by all the
kernels ker w;. (£* € 7%\ {0}) is the three-dimensional subspace of V, say L”,
spanned by 0/0x! with i = 3,4,5, and this is isotropic with respect to all the
forms wp. (£* € 7%\ {0}). More than that: since its codimension is 2, it is maximal
isotropic with respect to all the forms wp. (£* € 7%\ {0}). Now if there existed a
polylagrangian subspace it would have to coincide with L’ and also with L”, but
these two are not equal and do not have the right dimension, which according to
Eq. (2.12) would have to be 4: both of them are too small. Thus @ does not admit
a polylagrangian subspace.

To summarize, the examples given above show that the hypothesis of existence
of a polylagrangian subspace is highly non-trivial and very restrictive: as it seems,
it cannot be replaced by any other hypothesis that is not obviously equivalent. The
examples also show the great variety of possibilities for the “relative positions” of
the kernels of the various projected forms that prevails when such a subspace does
not exist. In this sense, the definition adopted in [23] is quite inconvenient, since it
makes no reference to this subspace, thus hiding the central aspect of the theory.

To conclude, we want to add some remarks about the relation between the
polylagrangian subspace, when it exists, and the more general class of maximal
isotropic subspaces. First, we emphasize that in contrast with a polylagrangian
subspace, maximal isotropic subspaces always exist. To prove this, it suffices to
start out from an arbitrary one-dimensional subspace L;, which is automatically
isotropic, and construct a chain L; C L, C ... of subspaces where L, is defined
as the direct sum of L, and the one-dimensional subspace spanned by some non-zero
vector in its 1-orthogonal complement L;‘;”l. For dimensional reasons, this process
must stop at some point, which means that at this point we have succeeded in con-
structing a maximal isotropic subspace. However, nothing guarantees that maximal
isotropic subspaces resulting from different chains must have the same dimension,
nor that there must exist some chain leading to a maximal isotropic subspace of
sufficiently high dimension to be polylagrangian: this happens only in the special
case of ordinary forms (2 = 1), where all maximal isotropic subspaces have the
same dimension and where the notions of a polylagrangian subspace (or simply
lagrangian subspace, in this case) and of a maximal isotropic subspace coincide.

Another important point concerns the relation between the notions of isotropic
subspace and maximal isotropic subspace with respect to the form & and with
respect to its projections. First, it is obvious that a subspace of V' is isotropic with
respect to @ if and only if it is isotropic with respect to each of the projected forms
wy, (t* € T*\ {0}) or w® (1 < a < 7). However, this no longer holds when we
substitute the term “isotropic” by the term “maximal isotropic”: a subspace of V'
that is maximal isotropic with respect to each of the projections of @ is also maximal
isotropic with respect to w, but conversely, it can very well be maximal isotropic
with respect to @, and will then be isotropic with respect to each of the projections
of @, but even so may fail to be maximal isotropic with respect to some of them.
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And finally, a polylagrangian subspace of V' is maximal isotropic with respect to
each of the projections of @ (this follows from Theorem 2.1), but as we have seen in
the last example above, the converse is false: a subspace can be maximal isotropic
with respect to each of the projections of @ without being polylagrangian. All these
statements illustrate the special nature of the polylagrangian subspace, already in
the case of vector-valued 2-forms.

Appendix B. Poincaré Lemma

In this appendix we want to state the Poincaré lemma in the form in which it is
used in the proof of the Darboux theorem in Sec. 7.

Theorem B.1. Let w € QF(P, T) be a closed form on a manifold P taking values
in a fixed vector space T and let L be an involutive distribution on P. Suppose that
w is (k — r)-horizontal (with respect to L), i.e., such that for any p € P and all
U1y, Upp1 € Ly, we have

N 0.

Then for any point of P there exist an open neighborhood U of that point and a
(k —1)-form 0 € Q¥ Y (U, T) on U which is also (k — r)-horizontal (with respect
to L), i.e., such that for any p € U and all vy,...,v, € L,, we have

:O7

iy e 0,0,

and such that w =d0 on U.

Proof. Due to the local character of this theorem and since the subbundle L
of TP is involutive, we can without loss of generality work in a local chart of the
manifold P around the chosen reference point in which the foliation defined by L is
“straightened out”, so we may assume that P = K, $ L, with L = L, with fixed
subspaces K|, and L and such that the aforementioned reference point corresponds
to the origin. (In what follows, we shall omit the index 0.) We also suppose that
T = R, since we may prove the theorem separately for each component of w and 6,
with respect to some fixed basis of 7'.

Now for t € R, define the “K-contraction” Ff : P — P and “L-contraction”
Fl:P— P by FE(z,y) = (tr,y) and Fl(z,y) = (z,ty); obviously, FX and FF
are diffeomorphisms if ¢ # 0 and are projections if ¢ = 0. Associated with each of
these families of mappings there is a time dependent vector field which generates
it in the sense that, for ¢ # 0,

d d
XF(FS (2,y) = EFSK(JS,y) and X[ (F/(2,y)) = EFSL(JS,?/)

s=t s=t

Explicitly, for t # 0,
X (z,y) = t71(2,0) and X/ (z,y) = t71(0,y).
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Define wy = (FF)*w and, for € > 0,

b= [ (1 Gy + B ).

€

as well as
1
0 = lm 6, = / dt ((FE) () + (FF) (i)
€—s 0 t t

To see that the (k — 1)-forms 6 and 6. are well defined, consider k — 1 vectors
(u;,v;) € K@ L (1 <i<k—1)and observe that, for ¢ # 0,

(FtL)*(iXth)(z,y) ((uh Ul)v R (uk—lv Uk—l))
= w(z,ty) ((07 Z‘/)» (ulv t’l)]_), ey (’U,k,h tvk*l)) )

and
(FtK)*(ng(Wo)(x,y) ((Up v1), - (Up_1, Ukrfl))

= b1 W(te,0) ((x, 0), (uy,0), ..., (up_q, O)) .

Here we see easily that both expressions are differentiable in ¢ and provide
(k — 1)-forms which are (k — r)-horizontal and (k — 1)-horizontal with respect to L,
respectively. Thus, 6. and 6 are (k — 1)-forms which are (k — r)-horizontal with
respect to L. Moreover, since dw =0 and dw, =0,

.= [ (2 ) + ()

€

_ /:dt ((FtL)*(fow) + (FtK)*(LX£<w0)>

:/ at (S((FF @) + (R )
=w = (F)w +wy — (F)w -

Taking the limit € — 0, we get (FL)*w — w, and (FX)*w, — 0 and hence df = w.
0
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