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We present a general definition of the Poisson bracket between differential forms on the
extended multiphase space appearing in the geometric formulation of first order classical
field theories and, more generally, on exact multisymplectic manifolds. It is well defined
for a certain class of differential forms that we propose to call Poisson forms and turns
the space of Poisson forms into a Lie superalgebra.
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1. Introduction

The multiphase space approach to classical field theory, whose origins can be traced

back to the early work of Hermann Weyl on the calculus of variations, has recently

undergone a rapid development, but a number of conceptual questions is still open.

The basic idea behind all attempts to extend the covariant formulation of clas-

sical field theory from the Lagrangian to the Hamiltonian domain is to treat spatial

derivatives on the same footing as time derivatives. This requires associating to

each field component ϕi not just its standard canonically conjugate momentum

πi but rather n conjugate momenta πµ
i , where n is the dimension of space-time.

If one starts out from a Lagrangian L depending on the field and its first partial
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derivatives, these are obtained by the covariant Legendre transformation

πµ
i =

∂L

∂∂µϕi
.

This allows one to rewrite the standard Euler-Lagrange equations of field theory,

∂µ

∂L

∂∂µϕi
−

∂L

∂ϕi
= 0

as a covariant first order system, the covariant Hamiltonian equations or De Donder-

Weyl equations

∂H

∂πµ
i

= ∂µϕi ,
∂H

∂ϕi
= −∂µπµ

i

where

H = πµ
i ∂µϕi −L

is the covariant Hamiltonian density or De Donder-Weyl Hamiltonian.

Multiphase space (ordinary as well as extended) is the geometric environment

built by appropriately patching together local coordinate systems of the form

(qi, pµ
i ) — instead of the canonically conjugate variables (qi, pi) of mechanics —

together with space-time coordinates xµ and, in the extended version, a further

energy type variable that we shall denote by p (without any index). In the re-

cent literature on the subject, special attention has been devoted to the so-called

multisymplectic form ω which is, except for a sign, the exterior derivative of an-

other form θ that we propose to call the multicanonical form: both are naturally

defined on extended multiphase space and are the geometric objects replacing, re-

spectively, the symplectic form ω = dqi
∧ dpi and the canonical form θ = pidqi of

Hamiltonian mechanics (on cotangent bundles), or more precisely, the symplectic

form ω = dqi
∧ dpi + dt ∧ dE and the canonical form θ = pidqi + E dt of Hamil-

tonian mechanics (on cotangent bundles) for non-autonomous systems. Additional

motivation and precise definitions will be given in the next section, and a table

confronting the most relevant concepts of the field theoretical formalism with their

counterparts in Hamiltonian mechanics can be found at the end of the paper.

The advantage of such an approach as compared to the orthodox strategy of

treating field theoretical models as infinite-dimensional dynamical systems is three-

fold. First, general covariance (and in particular, Lorentz covariance) is trivially

achieved. Second, by working on multiphase space which is a finite-dimensional

manifold, one automatically avoids all the functional analytic complications that

plague the orthodox method. Third, space-time locality is also automatically

guaranteed, since one works with the field variables and their first derivatives or

conjugates of these at single points of space-time, rather than with fields defined over

entire hypersurfaces: integration is deferred to the very last step of every procedure.

Of course, there is also a price to be paid for all these benefits, namely that the

obvious duality of classical mechanics between coordinates and momenta is lost.
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As a result, there is no evident multiphase space quantization procedure. What

seems to be needed is a new and more sophisticated concept of “multi-duality” to

replace the standard duality underlying the canonical commutation relations.

Certainly, an important step towards a better understanding of what might

be the nature of this “multi-duality” and that of a multiphase space quantization

procedure is the construction of Poisson brackets within this formalism. After all,

the Poisson bracket should be the classical limit of the commutator of quantum

theory. Surprisingly, this is to a large extent still an open problem. Our approach

to the question has been motivated by the work of Kanatchikov [1, 2], who seems

to have been the first to propose a Poisson bracket between differential forms of

arbitrary degree in multimomentum variables and to analyze the restrictions that

must be imposed on these forms in order to make this bracket well-defined: he uses

the term “Hamiltonian form” in this context, although the concept as such is of

course much older. It must be pointed out, however, that Kanatchikov’s approach is

essentially local and makes extensive use of features that have no invariant geometric

meaning, such as a systematic splitting into horizontal and vertical parts; moreover,

his definition of Hamiltonian forms is too restrictive. We avoid all these problems

by working exclusively within the multisymplectic framework and on the extended

multiphase space, instead of the ordinary one: this leads naturally to a definition of

the concept of a Poisson form which is more general than Kanatchikov’s notion of a

Hamiltonian form, as well as to a coordinate-independent definition of the Poisson

bracket between any two such forms. In fact, most of the concepts involved do not

even depend on the explicit construction of extended multiphase space but only on

its structure as an exact multisymplectic manifold, and we shall make use of this

fact in order to simplify the treatment whenever possible.

The paper is organized as follows. In Sec. 2, we give a brief review of some

salient features of the multiphase space approach to the geometric formulation of

first order classical field theories, following Ref. [3] and, in particular, Ref. [4], to

which the reader is referred for more details and for the discussion of many rele-

vant examples; this material is included here mainly in order to fix notation and

make our presentation reasonably self-contained. The main point is to show that

the extended multiphase space of field theory does carry the structure of an exact

multisymplectic manifold (in fact it seems to be the only known example of a

multisymplectic manifold). In Sec. 3, we introduce the concept of a Poisson form

on a general multisymplectic manifold, specify the notion of an exact multisym-

plectic manifold, define the Poisson bracket between Poisson forms on exact multi

symplectic manifolds and prove our main theorem, which states that this bracket

satisfies the usual axioms of a Lie superalgebra. The construction generalizes the

corresponding one for Hamiltonian (n−1)-forms on the extended multiphase space

of field theory given by two of the present authors in a previous paper [5]: the idea

is to modify the standard formula that had been adopted for decades [6–11], even

though it fails to satisfy the Jacobi identity, by adding a judiciously chosen exact

form that turns out to cure the defect. Here, we show that the same trick works
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for forms of arbitrary degree, provided one introduces appropriate sign factors. In

both cases, it is the structure of the correction term that requires the underly-

ing manifold to be exact multisymplectic and not just multisymplectic. In Sec. 4,

we define the notion of an exact Hamiltonian multivector field on an exact mul-

tisymplectic manifold and show that by contraction with the multicanonical form

θ, any such multivector field gives rise to a Poisson form; moreover, this simple

prescription yields an antiSchouten bracket of multivector fields and the Poisson

bracket of Poisson forms introduced here). It can be viewed as an extension, from

vector fields to multivector fields, of the universal part of the covariant momentum

map [4], which is the geometric version of the construction of Noether currents and

the energy-momentum tensor in field theory, and we shall therefore refer to it as

the universal multimomentum map. In Sec. 5, we return to the case of extended

multiphase space and discuss other examples for the construction of Poisson forms.

More specifically, we show that arbitrary functions are Poisson forms (of degree 0)

and find that Kanatchikov’s Hamiltonian forms, when pulled back from ordinary

to extended multiphase space by means of the appropriate projection, constitute

a special class of Poisson forms. The complete determination of the space of Pois-

son forms of arbitrary degree > 0 on extended multiphase space, together with

that of exact Hamiltonian and locally Hamiltonian multivector fields of arbitrary

degree < n, is a technically demanding problem whose solution will be presented

elsewhere [12]. The paper concludes with two appendices: the first presents a num-

ber of important formulas from the multivector calculus on manifolds, related to

the definition and main properties of the Schouten bracket and the Lie derivative

of differential forms along multivector fields, while the second shows how, given

a connection in a fiber bundle, one can construct induced connections in various

other fiber bundles derived from it, including the multiphase spaces of geometric

field theory; this possibility is important for the comparison of the multisymplectic

formalism with other approaches that have been proposed in the literature and

to a certain extent depend on the a priori choice of a connection. Recently, the

problem of constructing Poisson brackets has also been addressed in the context of

other formalisms such as the one based on n-symplectic manifolds [13] (see [14] for

a recent overview) or that of Lepage-Dedecker which is more general than that of

De Donder-Weyl [15].

Finally, we would like to point out that there exists another construction of

a covariant Poisson bracket in classical field theory, based on the same functional

approach that underlies the construction of “covariant phase space” of Crnkovic-

Witten [16, 17] and Zuckerman [18]. This bracket, originally due to Peierls [19]

and further elaborated by de Witt [20, 21] (see also [22] for a recent exposition),

has been adapted to the multiphase space approach by Romero [23] and shown to

be precisely the Poisson bracket associated with the symplectic form on covariant

phase space introduced in Refs. [16, 17] and [18]; these results will be presented

elsewhere [24]. It would be interesting to identify the relation between that bracket

and the one introduced here; this question is presently under investigation.
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2. Multiphase Spaces in Geometric Field Theory

The starting point for the geometric formulation of classical field theory is the choice

of a configuration bundle, which in general will be a fiber bundle over space-time

whose sections are the fields of the theory under consideration. In what follows, we

shall denote its total space by E, its base space by M , its typical fiber by Q and

the projection from E to M by π; the dimensions are

dim M = n, dim Q = N, dim E = n + N . (2.1)

In field theoretical models, M is interpreted as space-time whereas Q is the configu-

ration space of the theory — a manifold whose (local) coordinates describe internal

degrees of freedom.a The total space E is locally but not necessarily globally iso-

morphic to the Cartesian product M ×Q, but it must be stressed that even when

the configuration bundle is globally trivial, there will in general not exist any pre-

ferred trivialization, and it is precisely the freedom to change trivialization that

allows one to incorporate gauge theories into the picture. Another point that de-

serves to be emphasized is that the configuration bundle does not in general carry

any additional structures: these only appear when one focusses on special classes

of field theories.

• Vector bundles arise naturally in theories with linear matter fields and also in

general relativity: the metric tensor is an example.

• Affine bundles can be employed to incorporate gauge fields, since connections

in a principal G-bundle P over space-time M can be viewed as sections of the

connection bundle of P — an affine bundle CP over M constructed from P .

• General fiber bundles are used to handle nonlinear matter fields, in particular

those corresponding to maps from space-time M to some target manifold Q: a

standard example are the nonlinear sigma models.

In order to cover this variety of situations, the general constructions on which the

geometric formulation of classical field theory is based must not depend on the

choice of any additional structure on the configuration bundle. This requirement is

naturally satisfied in the multiphase space formalism — in contrast to the majority

of similar approaches that have over the last few decades found their way into

the literature: most of these depend on the a priori choice of a connection in the

configuration bundle, thus excluding gauge theories in which connections must be

treated as dynamical variables and not as fixed background fields.

The multiphase space approach to first order classical field theory follows

the same general pattern as the standard formalism of classical mechanics on the

tangent and cotangent bundle of a configuration space Q [25, 26].b However, the

aThis interpretation is turned around in the theory of strings and membranes.
bThe term “first order” refers to the fact that the Lagrangian is supposed to be a pointwise defined
function of the coordinates or fields and of their derivatives or partial derivatives of no more than
first order; higher order derivatives should be eliminated, e.g., by introducing appropriate auxiliary
variables.
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correspondence between the objects and concepts underlying the geometric formu-

lation of mechanics and that of field theory becomes fully apparent only when one

reformulates mechanics so as to incorporate the time dimension. (This is standard

practice, e.g., in the study of non-autonomous systems, that is, mechanical sys-

tems whose Lagrangian/Hamiltonian depends explicitly on time, such as systems

of particles in time-dependent external fields. Additional motivation is provided by

relativistic mechanics where Newton’s concept of absolute time is abandoned and

hence there is no place for an extraneous, absolute time variable that can be kept

entirely separate from the arena where the dynamical phenomena take place.) In its

simplest version, this reformulation amounts to replacing the configuration space

Q by the extended configuration space R×Q and the velocity phase space TQ (the

tangent bundle of Q) by the extended velocity phase space R×TQ, where R stands

for the time axis. The usual momentum phase space T ∗Q (the cotangent bundle of

Q) admits two different extensions: the simply extended phase space R×T ∗Q, where

R represents the time variable, and the doubly extended phase space R×T ∗Q×R,

where the first copy of R represents the time variable whereas the second copy

of R represents an energy variable. This second extension is required if one wants

to maintain a symplectic structure, rather than just a contact structure, for ex-

tended phase space, since energy is the physical quantity canonically conjugate to

time. A further generalization appears when one considers mechanical systems in

external gauge fields, since time-dependent gauge transformations do not respect

the direct product structure of the extended configuration and phase spaces men-

tioned above. What does remain invariant under such transformations are certain

projections, namely the projection from the extended configuration space onto the

time axis, the projections from the various extended phase spaces onto extended

configuration space and, finally, the projection from the doubly extended to the

simply extended phase space which amounts to “forgetting the additional energy

variable”.

In passing to field theory, we must replace the time axis R by the space-time

manifold M , the extended configuration space R× Q by the configuration bundle

E over M introduced above and the extended velocity phase space R× TQ by the

jet bundle JE of E.c It is well known that JE is — unlike the tangent bundle of

a manifold — in general only an affine bundle over E (of fiber dimension Nn) and

not a vector bundle; the corresponding difference vector bundle over E (also of fiber

dimension Nn) will be called the linearized jet bundle of E and be denoted by ~JE.

This leads to the possibility of forming two kinds of dual: the linear dual of ~JE,

denoted here by ~J∗E, and the affine dual of JE, denoted here by J?E; both of

them are vector bundles over E (of fiber dimension Nn and Nn + 1, respectively).

Even more important are their twisted versions, obtained by taking the tensor

product with the line bundle of volume forms on M , pulled back to E via π: this

gives rise to the twisted linear dual of ~JE, called ordinary multiphase space and

cWe consider only first order jet bundles and therefore omit the index “1” used by many authors.
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denoted here by ~J©∗E, and the twisted affine dual of JE, called extended multiphase

space and denoted here by J©?E; both of them, once again, are vector bundles

over E (of fiber dimension Nn and Nn + 1, respectively). The former replaces the

simply extended phase space R × T ∗Q of mechanics whereas the latter replaces

the doubly extended phase space R × T ∗Q × R of mechanics. Moreover, in both

cases (twisted or untwisted), there is a natural projection η that, as in mechanics,

can be interpreted as “forgetting the additional energy variable”: it turns J©?E into

an affine line bundle over ~J©∗E and, similarly, J?E into an affine line bundle over
~J∗E. The most remarkable property of extended multiphase space is that it is an

exact multisymplectic manifold: it carries a naturally defined multicanonical form

θ, of degree n, whose exterior derivative is the multisymplectic form ω, of degree

n + 1, replacing the canonical form θ and the symplectic form ω, respectively, on

the doubly extended phase space R× T ∗Q× R of mechanics.

The global construction of the first order jet bundle JE and the linearized first

order jet bundle ~JE associated with a given fiber bundle E over a manifold M ,

as well as that of the various duals mentioned above, is quite easy to understand.

(Higher order jet bundles are somewhat harder to deal with, but we won’t need

them in this paper.) Given a point e in E with base point x = π(e) in M , the fiber

JeE of JE at e consists of all linear maps from the tangent space TxM of the base

space M at x to the tangent space TeE of the total space E at e whose composition

with the tangent map Teπ : TeE → TxM to the projection π : E → M gives the

identity on TxM :

JeE = {ue ∈L(TxM, TeE)/Teπ ◦ue = idTxM} . (2.2)

Thus the elements of JeE are precisely the candidates for the tangent maps at x

to (local) sections ϕ of the bundle E satisfying ϕ(x) = e. Obviously, JeE is an

affine subspace of the vector space L(TxM, TeE) of all linear maps from TxM to

the tangent space TeE, the corresponding difference vector space being the vector

space of all linear maps from TxM to the vertical subspace VeE:

~JeE = L(TxM, VeE) . (2.3)

The jet bundle JE thus defined admits two different projections, namely the target

projection τJE : JE → E and the source projection σJE : JE →M which is simply

its composition with the original projection π, that is, σJE = π ◦ τJE . It is easily

shown that JE is a fiber bundle over M with respect to σJE , in general without

any additional structure, but it is an affine bundle over E with respect to τJE ,

the corresponding difference vector bundle being the vector bundle over E of linear

maps from the pull-back of the tangent bundle of the base space by the projection

π to the vertical bundle of E:

~JE = L(π∗TM, V E) . (2.4)
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The affine structure of the jet bundle JE over E, as well as the linear structure of the

linearized jet bundle ~JE over E, can also be read off directly from local coordinate

expressions. Namely, choosing local coordinates xµ for M , local coordinates qi for Q

and a local trivialization of E induces naturally a local coordinate system (xµ, qi, qi
µ)

for JE, as well as a local coordinate system (xµ, qi, ~q i
µ) for ~JE: such coordinates

will simply be referred to as adapted local coordinates. Moreover, a transformation

to new local coordinates x′κ for M , new local coordinates q′k for Q and a new local

trivialization of E, according to

x′κ = x′κ(xµ) , q′k = q′k(xµ, qi) (2.5)

induces naturally a transformation to new adapted local coordinates (x′κ, q′k, q′kκ )

for JE and (x′κ, q′k, ~q ′k
κ ) for ~JE given by Eq. (2.5) and

q′kκ = q′kκ (xµ, qi, qi
µ) , ~q ′k

κ = ~q ′k
κ (xµ, qi, ~q i

µ ) , (2.6)

where

q′kκ =
∂xµ

∂x′κ

∂q′k

∂qi
qi
µ +

∂xµ

∂x′κ

∂q′k

∂xµ
, ~q ′k

κ =
∂xµ

∂x′κ

∂q′k

∂qi
~q i
µ . (2.7)

Before going on, we pause to fix some notation concerning differential forms, for

which we shall in terms of local coordinates xµ use the following conventions:

dnx = dx1
∧ · · · ∧ dxn , (2.8)

dnxµ = i∂µ
dnx = (−1)µ−1 dx1

∧ · · ·∧ dxµ−1
∧ dxµ+1

∧ · · · ∧ dxn , (2.9)

dnxµν = i∂ν
i∂µ

dnx . . . dnxµ1...µr
= i∂µr

. . . i∂µ1
dnx . (2.10)

Then

i∂µ
dnxµ1...µr

= dnxµ1...µrµ , (2.11)

whereas

dxκ
∧ dnxµ = δκ

µ dnx , (2.12)

dxκ
∧ dnxµν = δκ

ν dnxµ − δκ
µ dnxν , (2.13)

dxκ
∧ dnxµ1 ... µr

=
r

∑

p=1

(−1)r−pδκ
µp

dnxµ1...µp−1µp+1... µr
. (2.14)

Moreover, these (local) forms on M are lifted to (local) forms on E by pull-back

with the projection πE , and later (local) forms on E will be lifted to (local) forms on

total spaces of bundles over E by pull-back with the respective projection, without

change of notation.

The dual J?E of the jet bundle JE and the dual ~J∗E of the linearized jet

bundle ~JE are obtained according to the standard rules for defining the dual of

an affine space and of a vector space, respectively. In particular, these rules state
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that if A is an affine space of dimension k over R, its dual A? is the space A(A, R)

of affine maps from A to R, which is a vector space of dimension k + 1. Thus the

dual or, more precisely, affine dual J?E of the jet bundle JE and the dual or, more

precisely, linear dual ~J∗E of the linearized jet bundle ~JE are obtained by defining

their fiber over any point e in E to be the vector space

J?
e E = {ze : JeE → R affine} , (2.15)

and the vector space

~J ∗
e E = {~ze : ~JeE → R linear} , (2.16)

respectively. However, as mentioned before, the multiphase spaces of field theory

are defined with an additional twist, replacing the real line by the one-dimensional

space of volume forms on the base manifold M at the appropriate point. Thus

the twisted (affine) dual J©?E of the jet bundle JE and the twisted (linear) dual
~J©∗E of the linearized jet bundle ~JE are obtained from the corresponding ordinary

(untwisted) duals by taking the tensor product with the line bundle of volume

forms on the base manifold M , pulled back to the total space E via the projection

π, i.e. we put

J©?E = J?E ⊗ π∗(
∧n

T ∗M) , (2.17)

and

~J©∗E = ~J∗E ⊗ π∗(
∧

n
T ∗M) , (2.18)

respectively, which means that if x = π(e), we set

J©?
e E = {ze : JeE →

∧n
T ∗

x M affine} , (2.19)

and

~J©∗
e E = {~ze : ~JeE →

∧

nT ∗
xM linear} , (2.20)

respectively. As is the case for the jet bundle itself, the linearized jet bundle and the

various types of dual bundles introduced here all admit two different projections,

namely the target projection τ... onto E and the source projection σ... onto M which

is simply its composition with the original projection π, that is, σ... = π ◦ τ.... It

is easily shown that all of them are fiber bundles over M with respect to σ..., in

general without any additional structure, but — as stated before — they are vector

bundles over E with respect to τ.... The global linear structure of these bundles over

E also becomes clear in local coordinates. Namely, choosing local coordinates xµ

for M , local coordinates qi for Q and a local trivialization of E induces naturally

not only local coordinate systems (xµ, qi, qi
µ) for JE and (xµ, qi, ~q i

µ ) for ~JE but also

local coordinate systems (xµ, qi, pµ
i , p) both for J?E and for J©?E, as well as local

coordinate systems (xµ, qi, pµ
i ) both for ~J∗E and for ~J©∗E, respectively: all these

will again be referred to as adapted local coordinates. They are defined by requiring
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the dual pairing between a point in J?E or in J©?E with coordinates (xµ, qi, pµ
i , p)

and a point in JE with coordinates (xµ, qi, qi
µ) to be given by

pµ
i qi

µ + p (2.21)

in the ordinary (untwisted) case and by

(pµ
i qi

µ + p)dnx (2.22)

in the twisted case, whereas the dual pairing between a point in ~J∗E or in ~J©∗E

with coordinates (xµ, qi, pµ
i ) and a point in ~JE with coordinates (xµ, qi, ~q i

µ ) should

be given by

pµ
i ~q i

µ (2.23)

in the ordinary (untwisted) case and by

pµ
i ~q i

µ dnx (2.24)

in the twisted case. Moreover, a transformation to new local coordinates x′κ for M ,

new local coordinates q′k for Q and a new local trivialization of E, according to

Eq. (2.5), induces naturally not only a transformation to new adapted local coordi-

nates (x′κ, q′k, q′kκ ) for JE and (x′κ, q′k, ~q ′k
κ ) for ~JE, as given by Eqs. (2.6) and (2.7),

but also a transformation to new adapted local coordinates (x′κ, q′k, p′κk , p′) both

for J?E and for J©?E, as well as a transformation to new adapted local coordinates

(x′κ, q′k, p′κk ) both for ~J∗E and for ~J©∗E, respectively: they are given by

p′κk = p′κk (xµ, qi, pµ
i , p) , p′ = p′(xµ, qi, pµ

i , p) , (2.25)

where

p′κk =
∂x′κ

∂xµ

∂qi

∂q′k
pµ

i , p′ = p−
∂q′k

∂xµ

∂qi

∂q′k
pµ

i (2.26)

in the ordinary (untwisted) case and

p′κk = det

(

∂x

∂x′

)

∂x′κ

∂xµ

∂qi

∂q′k
pµ

i , p′ = det

(

∂x

∂x′

) (

p−
∂q′k

∂xµ

∂qi

∂q′k
pµ

i

)

(2.27)

in the twisted case. Finally, it is worth noting that the affine duals J?E and J©?E

of JE contain line subbundles J?
0 E and J©?

0 E whose fiber over any point e in E

consists of the constant (rather than affine) maps from JeE to R and to
∧n

T ∗
x M

respectively, and the corresponding quotient vector bundles over E can be naturally

identified with the respective duals ~J∗E and ~J©∗E of ~JE, i.e. we have

J?E/J?
0 E ∼= ~J∗E ∼= L(V E, π∗TM) , (2.28)

and

J©?E/J©?
0 E ∼= ~J©∗E ∼= L(V E, π∗(

∧n−1
T ∗M)) , (2.29)

respectively. This shows that, in both cases, the corresponding projection onto the

quotient amounts to “forgetting the additional energy variable” since it takes a
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point with coordinates (xµ, qi, pµ
i , p) to the point with coordinates (xµ, qi, pµ

i ); it

will be denoted by η (as a reminder for the fact that it projects the extended

multiphase space to the ordinary one) and is easily seen to turn J?E and J©?E into

affine line bundles over ~J∗E and over ~J©∗E, respectively.

An alternative but equivalent description of the extended multiphase space of

field theory is as a certain bundle of differential forms on the total space E of the

configuration bundle, namely the bundle
∧n

n−1T
∗E of (n − 1)-horizontal n-forms

on E, that is, of n-forms on E that vanish whenever one inserts at least two vertical

vectors. In fact, there is a canonical isomorphism

Φ :
∧n

n−1T
∗E

∼=
−→ J©?E (2.30)

of vector bundles over E that can be defined explicitly as follows: given any point e in

E with base point x = π(e) in M and any (n−1)-horizontal n-form αe ∈

∧n

n−1T
∗
e E,

together with a jet ue ∈ JeE, we can use ue, which is a linear map from TxM to

TeE, to pull back the n-form αe on TeE to an n-form u∗
eαe on TxM . Obviously,

u∗
eαe is an affine function of ue as ue varies over the affine space JeE because it is

actually a linear function of ue when ue is allowed to vary over the entire vector

space L(TxM, TeE) (the restriction of a linear map between two vector spaces to

an affine subspace of its domain is an affine map). Thus putting

Φe(αe) · ue = u∗
eαe (2.31)

defines a map Φe :
∧n

n−1T
∗
e E → J?

e E which is evidently linear and, as e varies

over E, provides the desired isomorphism (2.30). Further details can be found in

Ref. [4]. The importance of this canonical isomorphism is due to the fact that it

provides a natural way to introduce a multicanonical form θ and a multisymplectic

form ω on extended multiphase space which play a similar role in field theory as

the canonical form θ and the symplectic form ω on cotangent bundles in mechanics.

Namely, θ is an n-form that can be defined intrinsically by using the tangent map

TτJ◦?E : T (J©?E) → TE to the bundle projection τJ◦?E : J©?E → E, as follows.

Given a point z ∈ J©?E with base point e = τJ◦?E(z) in E and n tangent vectors

w1, . . . , wn to J©?E at z, put

θz(w1, . . . , wn) = (Φ−1
e (z))(TzτJ◦?E · w1, . . . , TzτJ◦?E · wn) . (2.32)

Moreover, ω is an (n+1)-form which, as in mechanics, is defined to be the negative

of the exterior derivative of θ:

ω = −dθ . (2.33)

Another important object that can be defined globally both on extended and ordi-

nary multiphase space is the scaling or Euler vector field which we shall denote here

by Σ. Its definition is based exclusively on the fact that J©?E and ~J©∗E are total

spaces of vector bundles over E. In fact, given any vector bundle V over E, ΣV

(which we shall simply denote by Σ when there is no danger of confusion) is defined
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to be the fundamental vector field associated with the action of R, considered as a

commutative group under addition, by scaling transformations on the fibers:

R× V → V

(λ, v) 7→ exp(λ)v
.

Thus Σ is simply that vertical vector field on V which, under identification of the

vertical tangent spaces to V with the fibers of V itself typical for vector bundles,

becomes the identity on V :

Σ(v) =
d

dλ
exp(λ)v

∣

∣

∣

∣

λ=0

= v .

In adapted local coordinates, the isomorphism Φ can be defined by the requirement

that the (n − 1)-horizontal n-form on E corresponding to the point in J©?E with

coordinates (xµ, qi, pµ
i , p) is explicitly given by

pµ
i dqi

∧ dnxµ + p dnx . (2.34)

The tautological nature of the definition of θ then becomes apparent by realizing

that exactly the same expression represents the multicanonical form θ:

θ = pµ
i dqi

∧ dnxµ + p dnx . (2.35)

Taking the exterior derivative yields

ω = dqi
∧ dpµ

i ∧ dnxµ − dp ∧ dnx . (2.36)

Moreover, the scaling vector fields on J©?E and on ~J©∗E are given by

Σ = pµ
i

∂

∂pµ
i

+ p
∂

∂p
(2.37)

and by

Σ = pµ
i

∂

∂pµ
i

(2.38)

respectively. Finally, we note the following relations, which will be used later.

Proposition 2.1. The multicanonical form θ, the multisymplectic form ω and the

scaling or Euler vector field Σ on extended multiphase space J©?E satisfy the fol-

lowing relations:

LΣθ = θ . (2.39)

LΣω = ω . (2.40)

iΣθ = 0 . (2.41)

iΣω = −θ . (2.42)

Proof. Let (ϕλ)λ ∈ R denote the one-parameter group of scaling transformations

on J©?E given by ϕλ(z) = eλz. Then by the formula relating the Lie derivative of
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a differential form along a vector field to the derivative of its pull-back under the

flow of that vector field (see, e.g., [25, p. 91]) and the definition of θ, we have

(LΣθ)z(w1, . . . , wn) =
∂

∂λ
(ϕ∗

λθ)z(w1, . . . , wn)

∣

∣

∣

∣

λ=0

=
∂

∂λ
θϕλ(z)(Tzϕλ · w1, . . . , Tzϕλ · wn)

∣

∣

∣

∣

λ=0

=
∂

∂λ
Φ−1

e (ϕλ(z))(Tϕλ(z)τJ◦?E · (Tzϕλ · w1), . . . , Tϕλ(z)τJ◦?E · (Tzϕλ · wn))

∣

∣

∣

∣

λ=0

=
∂

∂λ
Φ−1

e (eλz)(Tz(τJ◦?E
◦ϕλ) · w1, . . . , Tz(τJ◦?E ◦ϕλ) · wn)

∣

∣

∣

∣

λ=0

=
∂

∂λ
eλΦ−1

e (z)(TzτJ◦?E
· w1, . . . , TzτJ◦?E · wn)

∣

∣

∣

∣

λ=0

=
∂

∂λ
eλθz(w1, . . . , wn)

∣

∣

∣

∣

λ=0

= θz(w1, . . . , wn) ,

which proves Eq. (2.39) and also Eq. (2.40) since LΣ commutes with the exterior

derivative. Next, observe that with respect to the target projection of J©?E onto

E, Σ is vertical whereas θ is horizontal, which implies Eq. (2.41). Combining these

two equations, we finally get

θ = LΣθ = d(iΣθ) + iΣdθ = −iΣω ,

proving Eq. (2.42).

We note here that the existence of the canonically-defined forms θ and ω is what

distinguishes the twisted affine dual J©?E from the ordinary affine dual J?E of JE.

Using the jet bundle JE and the multiphase spaces ~J©∗E and J©?E associated

with a given fiber bundle E over space-time M , one can develop a general covariant

Lagrangian and Hamiltonian formalism for field theories whose configurations are

sections of E. For example, the Lagrangian function of mechanics is replaced by a

Lagrangian density L, which is a function on JE with values in the volume forms

on space-time, so that one can integrate it to compute the action functional and

formulate a variational principle. It gives rise to a covariant Legendre transforma-

tion which replaces that of mechanics and comes in two variants, both defined by

an appropriate notion of vertical derivative or fiber derivative: one of them is a fiber

preserving smooth map ~FL : JE → ~J©∗E and the other a fiber preserving smooth

map FL : JE → J©?E; of course, the former is obtained from the latter by composi-

tion with the natural projection η from J©?E onto ~J©∗E mentioned above. When ~FL

is a local/global diffeomorphism, the Lagrangian L is called regular/hyperregular.
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On the other hand, the Hamiltonian function of mechanics is replaced by a Hamil-

tonian density H, which is a section of extended multiphase space J©?E as an affine

line bundle over ordinary multiphase space ~J©∗E. Once again, any such section

gives rise to a covariant Legendre transformation, defined by an appropriate no-

tion of vertical derivative or fiber derivative: it is a fiber preserving smooth map

FH : ~J©∗E → JE. When FH is a local/global diffeomorphism, the Hamiltonian H is

called regular/hyperregular. In any case, pulling back θ and ω from J©?E to JE via

FL generates the Poincaré-Cartan forms θL and ωL on JE, and similarly, pulling

them back from J©?E to ~J©∗E via H generates the forms θH and ωH on ~J©∗E. As in

mechanics, the Lagrangian and Hamiltonian formulations turn out to be completely

equivalent in the hyperregular case, with ~FL and FH being each other’s inverse. For

more details on these and related matters, the reader may consult Ref. [3] and, in

particular, Ref. [4] — except for the direct construction of the Legendre transfor-

mation ~FH associated with a Hamiltonian H, which was first derived in Ref. [23];

see also Ref. [24]. There is also a generalization of the Hamilton-Jacobi equation

to the field theoretical situation; the reader may consult the extensive review by

Kastrup [27] as a starting point for this direction.

3. Poisson Forms and Their Poisson Brackets

The constructions exposed in the previous section have identified the extended

multiphase space of field theory as an example of a multisymplectic manifold.

Definition 3.1. A multisymplectic manifold is a manifold P equipped with a

non-degenerate closed (n + 1)-form ω, called the multisymplectic form.

Remark. This definition is deliberately vague as to the meaning of the term “non-

degenerate”, at least when n > 1. The standard interpretation is that the kernel of

ω on vectors should vanish, that is,

iXω = 0 ⇒ X = 0 for vector fields X . (3.1)

Note that, of course, no such conclusion holds for multivector fields, that is, the ker-

nel of ω on multivectors is non-trivial. (This is true even for symplectic forms which

vanish on certain bivectors, for example on those that represent two-dimensional

isotropic subspaces.) However, the condition (3.1) alone is too weak and it is not

clear what additional algebraic constraints should be imposed on ω. A first at-

tempt in this direction has been made by Martin [28, 29], but his conditions are too

restrictive and do not seem to agree with what is needed in applications to field

theory. More recently, a promising proposal has been made by Cantrijn, Ibort and

de León [30] which seems to come close to a convincing definition of the concept of

a multisymplectic manifold. Fortunately, there is no need to enter this discussion

here since the “minimal” requirement of non-degeneracy formulated in Eq. (3.1) is

sufficient for our purposes and will be used here to provide a working definition.
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In what follows, we shall make extensive use of the basic operations of calculus on

manifolds involving multivector fields and differential forms, namely the Schouten

bracket between multivector fields, the contraction of differential forms with mul-

tivector fields and the Lie derivative of differential forms along multivector fields.

For the convenience of the reader, the relevant formulae are summarized in Ap-

pendix A; in particular, Eqs. (A.9) and (A.11) will be used constantly and often

without further mention.

On multisymplectic manifolds, there are special classes of multivector fields and

of differential forms:

Definition 3.2. An r-multivector field X on a multisymplectic manifold P is called

locally Hamiltonian if iXω is closed, or equivalently, if

LXω = 0 , (3.2)

and it is called globally Hamiltonian or simply Hamiltonian if iXω is exact,

i.e. if there exists an (n− r)-form f on P such that

iXω = df . (3.3)

In this case, we say that f is associated with X or corresponds to X .

Conversely, an (n− r)-form f on a multisymplectic manifold P is called Hamilto-

nian if there exists an r-multivector field X on P such that

iXω = df . (3.4)

In this case, we say that X is associated with f or corresponds to f .

Remark. As mentioned before, the kernel of ω on multivectors is non-trivial, so

the correspondence between Hamiltonian multivector fields and Hamiltonian forms

is not unique (in either direction). Moreover, by far not every form is Hamiltonian.

In particular, as first shown in special examples by Kijowski [8] and then more

systematically by Kanatchikov [1], although in a somewhat different context, there

are restrictions on the allowed multimomentum dependence of the coefficient func-

tions. Of course, every closed form is Hamiltonian (the corresponding Hamiltonian

multivector field vanishes identically). Below we will give more interesting examples

to show that the definition is not empty.

Proposition 3.3. The Schouten bracket of any two locally Hamiltonian multivector

fields X and Y on a multisymplectic manifold P is a globally Hamiltonian multivec-

tor field [X, Y ] on P whose associated Hamiltonian form can, up to sign, be chosen

to be the double contraction iXiY ω. More precisely, assuming X to be of degree r

and Y to be of degree s, we have

i[X,Y ]ω = (−1)(r−1)s d(iX iY ω) . (3.5)

In particular, this implies that under the Schouten bracket, the space X∧
LH(P ) of

locally Hamiltonian multivector fields on P is a subalgebra of the Lie superalgebra
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X∧(P ) of all multivector fields on P, containing the space X∧
H(P ) of globally Hamil-

tonian multivector fields, as well as the (smaller) space X∧
0 (P ) of multivector fields

taking values in the kernel of ω, as ideals: if X is locally Hamiltonian, then

iξω = 0 ⇒ i[ξ,X]ω = 0 . (3.6)

Proof. According to Eqs. (A.11) and (A.9), we have for any two multivector fields

X of degree r and Y of degree s,

i[X,Y ]ω = (−1)(r−1)s LX iY ω − iY LXω

= (−1)(r−1)s d(iX iY ω) + (−1)(r−1)(s−1) iX d(iY ω)− iY LXω

= (−1)(r−1)s d(iX iY ω) + (−1)(r−1)(s−1) iXLY ω − iY LXω ,

since dω = 0, showing that if X and Y are both locally Hamiltonian, then [X, Y ]

is globally Hamiltonian and Eq. (3.5) holds.

Definition 3.4. A Hamiltonian form f on a multisymplectic manifold P is called

a Poisson form if its contraction with any multivector field ξ on P taking values

in the kernel of ω vanishes:

iξω = 0 ⇒ iξf = 0 . (3.7)

Remark. For the Poisson bracket introduced below to be well-defined, it would be

sufficient to impose the apparently weaker condition that the contraction of f with

any multivector field ξ on P taking values in the kernel of ω should be a closed

form:

iξω = 0 ⇒ d(iξf) = 0 . (3.8)

However, it turns out that this condition is already sufficient to imply the previous

one. To see this, observe that if f is a differential form on P satisfying Eq. (3.8)

and ξ is any multivector field on P taking values in the kernel of ω, then for any

function ϕ on P , ϕξ will be a multivector field on P taking values in the kernel of

ω as well and hence

0 = d(iϕξf) = d(ϕiξf) = dϕ ∧ iξf + ϕd(iξf) = dϕ ∧ iξf .

But this means that the exterior product of iξf with any one-form on P must

vanish, which is only possible if iξf itself vanishes.

Definition 3.5. An exact multisymplectic manifold is a multisymplectic

manifold whose multisymplectic form ω is the exterior derivative of a Poisson form:

ω = −dθ . (3.9)

iξω = 0 ⇒ iξθ = 0 . (3.10)

We shall call θ the multicanonical form.
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Remark. It is an immediate consequence of Proposition 2.1, in particular of

Eq. (2.42), that the extended multiphase space of field theory is an exact multisym-

plectic manifold. However, the condition that the kernel of θ should contain that

of ω is non-trivial in the sense that it is not always possible to modify a potential

of an exact form by adding an appropriate closed form so as to achieve the desired

inclusion of the kernels, as the following counterexample will show.d Consider the

three-sphere S3 as the total space of the Hopf bundle, a principal U(1)-bundle over

the two-sphere S2, and let ξ be the fundamental vector field of the U(1) group

action on S3 and α be the canonical connection 1-form on S3. Then iξα = 1 and

iξdα = 0. We want to modify α by some closed form β so that iξ(α + β) = 0. But

S3 is simply connected, so dβ = 0 implies that there is a function f with df = β.

Hence we are looking for a function f on S3 that satisfies iξdf = −1. But S3 is

compact, so f must have at least two critical points (a maximum and a minimum),

and we arrive at a contradiction. In other words, we cannot modify the potential α

of dα in such a way that the kernel of dα is contained in the kernel of the modified

potential.

Definition 3.6. Let P be an exact multisymplectic manifold. Given any two

Poisson forms f of degree n− r and g of degree n− s on P, their Poisson bracket

is defined to be the (n + 1− r − s)-form on P given by

{f, g} = −LXg + (−1)(r−1)(s−1)LY f − (−1)(r−1)sLX ∧ Y θ , (3.11)

or equivalently,

{f, g} = (−1)r(s−1)iY iXω

+ d
(

(−1)(r−1)(s−1)iY f − iXg − (−1)(r−1)siY iXθ
)

, (3.12)

where X and Y are Hamiltonian multivector fields associated with f and with g,

respectively.

Remark. This Poisson bracket is an extension of the one between Hamiltonian

(n − 1)-forms introduced by two of the present authors in an earlier article [5],

except for the fact that when f and g are (n− 1)-forms, X and Y are vector fields

and are uniquely determined by f and g, so there is no need to impose restrictions

on the contraction of f and g with multivector fields taking values in the kernel

of ω: the definition given in Ref. [5] works for all Hamiltonian (n − 1)-forms and

not just for Poisson (n− 1)-forms.

Proposition 3.7. The Poisson bracket introduced above closes and is well-defined,

i.e. when f and g are Poisson forms, {f, g} is again a Poisson form which does

not depend on the choice of the Hamiltonian multivector fields X and Y used in its

definition. Moreover, we have

i[Y,X]ω = d{f, g} , (3.13)

dThis example is due to M. Bordemann.
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i.e. if X is a Hamiltonian multivector field associated with f and Y is a Hamiltonian

multivector field associated with g, then [Y, X ] is a Hamiltonian multivector field

associated with {f, g}.

Proof. We begin by using Eq. (A.9) to show that, for any two Hamiltonian forms

f of degree n − r and g of degree n − s with associated Hamiltonian multivector

fields X and Y , respectively, the expressions on the right-hand side of Eqs. (3.11)

and (3.12) coincide:

−LXg + (−1)(r−1)(s−1)LY f − (−1)(r−1)sLX ∧Y θ

= −d(iXg) + (−1)riXdg

+ (−1)(r−1)(s−1)d(iY f)− (−1)(r−1)(s−1)+siY df

− (−1)(r−1)sd(iX ∧Y θ)− (−1)r(s−1)iX ∧ Y ω

= −d(iXg) + (−1)rs+riY iXω

+ (−1)(r−1)(s−1)d(iY f) + (−1)rs−riY iXω

− (−1)(r−1)sd(iY iXθ)− (−1)rs−riY iXω

= (−1)r(s−1)iY iXω

+ d
(

(−1)(r−1)(s−1)iY f − iXg − (−1)(r−1)siY iXθ
)

.

In order for the bracket to be well-defined, it is necessary and sufficient that this

expression vanishes whenever X or Y takes its values in the kernel of ω: this is

guaranteed by the requirement that f , g and θ should be Poisson forms. Moreover,

in view of Eq. (3.5), Eq. (3.13) follows immediately from Eq. (3.12), proving that the

Poisson bracket {f, g} of two Poisson forms is a Hamiltonian form. To check that

it is in fact a Poisson form, assume ξ to be a multivector field taking values in the

kernel of ω, say of degree k, and consider the expressions obtained by contracting

each of the four terms in Eq. (3.12) with ξ. The first obviously vanishes, whereas

the fourth can be seen to vanish due to Eqs. (3.6) and (3.10):

iξd(iY iXθ) = (−1)siξiY d(iXθ) + iξLY iXθ

= (−1)s(k−1)iY iξLXθ + (−1)r+s(k−1)iY iξiXdθ

−i[Y,ξ]iXθ + (−1)(s−1)kLY iξiXθ

= −(−1)s(k−1)iY i[X,ξ]θ + (−1)(r−1)k+s(k−1)iY LXiξθ

−(−1)r+s(k−1)iY iξiXω

−i[Y,ξ]iXθ + (−1)(s−1)kLY iξiXθ

= 0 .
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Similarly, the second and third can be handled by using Eqs. (3.6) and (3.7) which

imply that

iξd(iY f) = (−1)siξiY df + iξLY f

= (−1)siξiY iXω − i[Y,ξ]f + (−1)(s−1)kLY iξf ,

and

iξd(iXg) = (−1)riξiXdg + iξLXg

= (−1)riξiX iY ω − i[X,ξ]g + (−1)(r−1)kLX iξg .

vanish since f and g are Poisson forms.

Now we can formulate the main theorem of this paper:

Theorem 3.8. Let P be an exact multisymplectic manifold. The Poisson bracket

introduced above is bilinear over R, is graded antisymmetric, which means that for

any two Poisson forms f of degree n− r and g of degree n− s on P, we have

{g, f} = −(−1)(r−1)(s−1){f, g} , (3.14)

and satisfies the graded Jacobi identity, which means that for any three Poisson

forms f of degree n− r, g of degree n− s and h of degree n− t on P, we have

(−1)(r−1)(t−1){f, {g, h}}+ cyclic perm. = 0 , (3.15)

thus turning the space of Poisson forms on P into a Lie superalgebra.

Remark. Bilinearity over R and the graded antisymmetry (3.14) being obvious,

the main statement of the theorem is of course the validity of the graded Jacobi

identity (3.15), which depends crucially on the exact correction terms, that is, the

last three terms in the defining equation (3.12). To prove this, we need the following

two lemmas:

Lemma 3.9. Let P be a multisymplectic manifold. For any three locally Hamilto-

nian multivector fields X of degree r, Y of degree s and Z of degree t on P, we have

the cyclic identity

(−1)r(t−1)iXd(iY iZω) + cyclic perm. = (−1)rtd(iX iY iZω) , (3.16)

Proof. This is obtained by calculating

iXd(iY iZω) = (−1)(s−1)tiX i[Y,Z]ω = (−1)(s−1)t+r(s+t−1)i[Y,Z]iXω

= (−1)r(s+t−1)(LY iZ − (−1)(s−1)tiZLY )iXω

= (−1)r(s+t−1)d(iY iZ iXω) + (−1)r(s+t−1)+s−1iY d(iZiXω)

−(−1)r(s+t−1)+(s−1)tiZd(iY iXω) ,

and multiplying by (−1)rt−r.
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Lemma 3.10. Let P be an exact multisymplectic manifold. For any three locally

Hamiltonian multivector fields X of degree r, Y of degree s and Z of degree t on P,

we have the cyclic identity

(−1)r(t−1)iXd(iY iZθ)− (−1)r(t−1)+siX iY d(iZθ) + cyclic perm.

= (−1)rt+r+s+tiXiY iZω + (−1)rtd(iX iY iZθ) . (3.17)

Proof. This is obtained by calculating

iXd(iY iZθ)+(−1)s−1iX iY d(iZθ)− (−1)(s−1)tiXiZd(iY θ)+(−1)(s−1)(t−1)iX iZiY ω

= iX(LY iZ − (−1)(s−1)tiZLY )θ

= (−1)(s−1)tiX i[Y,Z]θ = (−1)(s−1)t+r(s+t−1)i[Y,Z]iXθ

= (−1)r(s+t−1)(LY iZ − (−1)(s−1)tiZLY )iXθ

= (−1)r(s+t−1)d(iY iZiXθ) + (−1)r(s+t−1)+s−1iY d(iZ iXθ)

− (−1)r(s+t−1)+(s−1)tiZd(iY iXθ)− (−1)r(s+t−1)+(s−1)(t−1)iZiY d(iXθ) ,

and multiplying by (−1)rt−r.

Proof of Theorem 3.8. Given any three Poisson forms f of degree n − r, g of

degree n− s and h of degree n− t and fixing three Hamiltonian multivector fields

X of degree r, Y of degree s and Z of degree t associated with f , with g and with

h, respectively, we compute the double Poisson bracket

(−1)(r−1)(t−1){f, {g, h}}

= (−1)(r−1)(t−1)+r(s+t)i[Z,Y ]iXω

+ (−1)(r−1)(t−1)+(r−1)(s+t)d(i[Z,Y ]f)

− (−1)(r−1)(t−1)d(iX{g, h})

− (−1)(r−1)(t−1)+(r−1)(s+t−1)d(i[Z,Y ]iXθ)

= −(−1)(rs+r+t)+r(s+t−1)+(st+s+t)iX i[Y,Z]ω

+ (−1)(r−1)(s−1)+(t−1)sd(LZ iY f)− (−1)(r−1)(s−1)d(iY LZf)

− (−1)(r−1)(t−1)+s(t−1)d(iX iZiY ω)

− (−1)(r−1)(t−1)+(s−1)(t−1)d(iXd(iZg)) + (−1)(r−1)(t−1)d(iXd(iY h))

+ (−1)(r−1)(t−1)+(s−1)td(iXd(iZ iY θ))

− (−1)(r−1)s+(t−1)sd(LZ iY iXθ) + (−1)(r−1)sd(iY LZiXθ)
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= −(−1)rt+s+tiXd(iY iZω)

+ (−1)rs+st+r+td(iZd(iY f)) + (−1)rs+r+sd(iY d(iZf))

− (−1)rs+r+s+td(iY iZiXω)

+ (−1)rt+st+r+s+td(iX iZiY ω)

− (−1)rt+st+r+sd(iXd(iZg))− (−1)rt+r+td(iXd(iY h))

− (−1)rt+rd(iXd(iY iZθ)) ←

+ (−1)st+td(iZd(iX iY θ)) ←

+ (−1)rs+sd(iY d(iZ iXθ))− (−1)rs+s+td(iY iZd(iXθ)) .

In the last expression, the underlined terms cancel each other. Moreover, under

the cyclic sum, the terms marked by an arrow cancel each other and the terms

containing derivatives of contractions of f , g, h cancel pairwise, i.e. the expression

+(−1)rs+st+r+td(iZd(iY f)) + (−1)rs+r+sd(iY d(iZf))

−(−1)rt+st+r+sd(iXd(iZg))− (−1)rt+r+td(iXd(iY h))

+(−1)st+tr+s+rd(iXd(iZg)) + (−1)st+s+td(iZd(iXg))

−(−1)sr+tr+s+td(iY d(iXh))− (−1)sr+s+rd(iY d(iZf))

+(−1)tr+rs+t+sd(iY d(iXh)) + (−1)tr+t+rd(iXd(iY h))

−(−1)ts+rs+t+rd(iZd(iY f))− (−1)ts+t+sd(iZd(iXg))

vanishes. Finally, using the cyclic identities (3.16) and (3.17), we see that the re-

maining terms sum up as follows:

(−1)(r−1)(t−1){f, {g, h}}+ cyclic perm.

= −(−1)r+s+t
(

(−1)r(t−1)iXd(iY iZω) + cyclic perm.
)

+ d
(

(−1)r(t−1)iXd(iY iZθ)− (−1)r(t−1)+siX iY d(iZθ) + cyclic perm.
)

= −(−1)r+s+t(−1)rtd(iX iY iZω)

+ d
(

(−1)r+s+t(−1)rtiXiY iZω + (−1)rtd(iX iY iZθ)
)

= 0 .

This completes the proof of the main theorem.

Remark. From the definition given in Eq. (3.12), it is obvious that the Poisson

bracket between an arbitrary Poisson form f and a closed Poisson form g is exact,

since in this case the Hamiltonian multivector field Y associated with g may be
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chosen to vanish identically, so that one gets {f, g} = −d(iXg). Therefore, the

space of closed Poisson forms is an ideal in the Lie superalgebra of all Poisson

forms.

Concluding, it must not go unnoticed that the Poisson bracket between Poisson

forms introduced in this paper should be looked upon with a certain amount of

caution, for a variety of reasons. One of these is that the space of Poisson forms

is a Lie superalgebra but apparently not a Poisson superalgebra, since the Poisson

bracket does not act as a superderivation in its second argument with respect to the

exterior product of forms, nor does there seem to exist any other naturally defined

associative supercommutative product between Poisson forms with that property:

this is in contrast to the situation for multivector fields which do form a Poisson

superalgebra with respect to the exterior product and the Schouten bracket. There

is also a degree problem, since for example, the Poisson bracket between functions

would be a form of negative degree, which is always zero: this is, at least at first

sight, rather odd. Finally, the question about the relation to the covariant Poisson

bracket of Peierls and de Witt mentioned at the end of the introduction remains

open.

4. The Universal Multimomentum Map

On exact multisymplectic manifolds, Definition 3.2 can be complemented as follows.

Definition 4.1. A multivector field X on an exact multisymplectic manifold P is

called exact Hamiltonian if

LXθ = 0 . (4.1)

The terminology is consistent with that introduced before because exact Hamil-

tonian multivector fields are Hamiltonian: this is an immediate consequence of

Proposition 4.3 below. Thus Proposition 3.3 can be complemented as follows.

Proposition 4.2. The Schouten bracket of any two exact Hamiltonian multivector

fields X and Y on an exact multisymplectic manifold P is an exact Hamiltonian

multivector field [X, Y ] on P . This means that the space X∧
EH(P ) of exact Hamil-

tonian multivector fields on P is a subalgebra of the Lie superalgebra X∧(P ) of all

multivector fields on P which, according to Eq. (3.6), contains the space X∧
0 (P ) of

multivector fields taking values in the kernel of ω as an ideal.

Proof. The proposition follows directly from Eq. (A.12).

Exact Hamiltonian multivector fields generate Poisson forms, by contraction

with the multicanonical form.

Proposition 4.3. Let P be an exact multisymplectic manifold. For every exact

Hamiltonian r-multivector field X on P, the formula

J(X) = (−1)r−1iXθ (4.2)
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defines a Poisson (n−r)-form J(X) on P whose associated Hamiltonian multivector

field is X itself. In particular, X is Hamiltonian.

Proof. Using Eq. (A.9), we see that the condition (4.1) implies

d(J(X)) = (−1)r−1d(iXθ) = (−1)r−1LXθ − iXdθ = iXω , (4.3)

so J(X) is a Hamiltonian form whose associated Hamiltonian multivector field is

X itself. Moreover, the kernel of J(X) on multivectors contains that of θ which in

turn contains that of ω, so J(X) is a Poisson form.

Proposition 4.4. Let P be an exact multisymplectic manifold. The linear map

J from the space X∧
EH(P ) of exact Hamiltonian multivector fields on P to the

space of Poisson forms on P defined by Eq. (4.2) is an antihomomorphism of Lie

superalgebras, i.e. we have

{J(X), J(Y )} = J([Y, X ]) . (4.4)

Proof. For any two exact Hamiltonian multivector fields X of degree r and Y of

degree s, we have, according to the defining Eqs. (3.12) and (4.2),

{J(X), J(Y )} = (−1)r(s−1)iY iXω + (−1)(r−1)(s−1)+r−1d(iY iXθ)

− (−1)s−1d(iX iY θ)− (−1)(r−1)sd(iY iXθ)

= (−1)r(s−1)iY iXω + (−1)(r−1)sd(iY iXθ) ,

whereas combining Eqs. (A.11), (A.9) and (4.3) gives

J([Y, X ]) = (−1)r+si[Y,X]θ

= (−1)r+s+r(s−1)LY iXθ since LY θ = 0

= (−1)r(s−1)d(iY iXθ)− (−1)r(s−1)+siY d(iXθ)

= (−1)r(s−1)d(iY iXθ) + (−1)r(s−1)iY iXω .

Obviously, these two expressions coincide.

Remark. This proposition, even when restricted to vector fields and (n−1)-forms,

constitutes a remarkable improvement over the corresponding Proposition 4.5 of

Ref. [4] where, due to an inadequate definition of the Poisson bracket (omitting the

exact correction terms, that is, the last three terms in Eq. (3.12)), Eq. (4.4) must

be modified by an exact correction term.

Definition 4.5. Let P be an exact multisymplectic manifold. The linear map J

from the space X∧
EH(P ) of exact Hamiltonian multivector fields on P to the space

of Poisson forms on P defined by Eq. (4.2) will be called the universal multi-

momentum map and its restriction to the space XEH(P ) of exact Hamiltonian

vector fields on P the universal momentum map.
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Remark. The term “universal momentum map” can be justified in the context

of Noether’s theorem, dealing with the derivation of conservation laws from sym-

metries. In classical field theory, conserved quantities are described by Noether

currents which depend on the fields of the theory and are (n − 1)-forms on n-

dimensional space-time, so that they can be integrated over compact regions in

spacelike hyper-surfaces in order to provide Noether charges associated with each

such region: Noether’s theorem then asserts that when the fields satisfy the equa-

tions of motion of the theory, these Noether currents are closed forms. In the

multiphase space approach, the Noether currents on space-time are obtained from

corresponding Noether current forms defined on (extended) multiphase space via

pull-back of differential forms, their entire field dependence being induced by this

pull-back. Moreover, there is an explicit procedure to construct these Noether cur-

rent forms on (extended) multiphase space: it is the field theoretical analogue of the

momentum map of Hamiltonian mechanics on cotangent bundles and, in Ref. [4],

is called the “special covariant momentum map”. Briefly, given a Lie group G, with

Lie algebra g, the statement that G is a symmetry group of a specific theory sup-

poses that we are given an action of G on the configuration bundle E over M by

bundle automorphisms, which of course induces actions of G on JE and on ~JE, as

well as on all of their duals, including ~J©∗E and J©?E, by bundle automorphisms. (In

order to speak of a symmetry, we must also assume the Lagrangian or Hamiltonian

density to be invariant, or rather equivariant, under the action of G, but this aspect

is not relevant for the present discussion.) As usual, each of these actions induces an

antihomomorphism from g to the Lie algebra of vector fields on the corresponding

manifold, taking each generator X in g to the corresponding fundamental vector

field XM , XE, XJE , X~JE
. . . X~J◦∗E

, XJ◦?E , all of which (except XM ) are projectable:

for example, XE projects to XM under the tangent map Tπ : TE → TM to the

projection π : E → M . Moreover, the vector fields XJE , X~JE . . . X~J◦∗E , XJ◦?E can

all be obtained from the vector field XE by a canonical lifting process. In particular,

the projectable vector fields XJ◦?E on J©?E obtained from projectable vector fields

XE on E by lifting are exact Hamiltonian, and conversely, it turns out that all

exact Hamiltonian vector fields on J©?E are obtained in this way. (The last state-

ment, analogous to a corresponding statement for cotangent bundles, is not proved

in Ref. [4]; it will be derived in Ref. [12].) Now the “special covariant momentum

map” of Ref. [4] associated with the symmetry under G is simply given by com-

posing the antihomomorphism that takes generators X in g to exact Hamiltonian

fundamental vector fields XJ◦?E on J©?E with the universal momentum map intro-

duced above. Therefore, the universal momentum map comprises that part of the

construction of the momentum map in field theory which does not depend on the

a priori choice of a symmetry group or its action on the dynamical variables of the

theory, and the universal multimomentum map extends that from vector fields to

multivector fields.
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5. Poisson Forms on Multiphase Space

Our aim in this final section is to give a series of examples for Poisson forms on the

extended multiphase space J©?E of field theory. A full, systematic treatment of the

subject will be given in a forthcoming separate paper [12].

As a preliminary step, we observe that there is a natural, globally defined notion

of vertical vectors and of horizontal covectors on J©?E. In fact, there are two such

notions, one referring to the “source” projection onto space-time M and the other

to the “target” projection onto the total space E of the configuration bundle. In

either case, the vertical vectors are those that vanish under the tangent to the pro-

jection, while the horizontal covectors are those that vanish on all vertical vectors.

In adapted local coordinates,

∂

∂qi
,

∂

∂pµ
i

and
∂

∂p
are vertical with respect to the source projection, (5.1)

∂

∂pµ
i

and
∂

∂p
are vertical with respect to the target projection, (5.2)

while

dxµ are horizontal with respect to the source projection, (5.3)

dxµ and dqi are horizontal with respect to the target projection. (5.4)

This can be extended to multivectors and exterior forms, as follows. Given positive

integers r and s with s 6 r, an exterior r-form is said to be s-horizontal if it

vanishes whenever one inserts at least r − s + 1 vertical vectors (this includes the

standard notion of horizontal forms by taking s = r), and an r-multivector is said

to be s-vertical if it is annihilated by all (r − s + 1)-horizontal exterior forms.

Using the standard expansion of multivectors and of exterior forms in adapted

local coordinates, it is not difficult to see that an r-form is s-horizontal if and

only if it is a linear combination of terms each of which is an exterior product

containing at least s horizontal covectors and that an r-multivector is s-vertical if

and only if it is a linear combination of terms each of which is an exterior product

containing at least s vertical vectors. Thus for example, Eqs. (2.35)–(2.37) show that

θ and ω are both (n− 1)-horizontal with respect to the source projection and even

n-horizontal with respect to the target projection, while Σ is vertical with respect

to both projections.

In what follows, the terms “vertical” and “horizontal” will always refer to the

source projection, except when explicitly stated otherwise.

For later use, we first write down the expansion of a general multivector field

X of degree r in terms of adapted local coordinates, as follows:
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X =
1

r!
X

µ1...µr
∂

∂xµ1
∧ · · ·∧

∂

∂xµr
+

1

(r − 1)!
X

i,µ2...µr
∂

∂qi
∧

∂

∂xµ2
∧ · · ·∧

∂

∂xµr

+
1

r!
X

µ1...µr

i

∂

∂p
µ1

i

∧
∂

∂xµ2
∧ · · · ∧

∂

∂xµr
+

1

(r − 1)!
X

µ2 ...µr

0
∂

∂p
∧

∂

∂xµ2
∧ · · ·∧

∂

∂xµr
+ ξ .

(5.5)

Here, all coefficients are assumed to be totally antisymmetric in their space-

time indices, whereas ξ is assumed to take values in the kernel of ω. (This can

always be achieved without loss of generality, because if we begin by supposing

instead that ξ should contain all other terms of the standard expansion, that is,

all 2-vertical terms, then ξ would contain just one group of terms that are not

obviously annihilated under contraction with ω, namely the terms of the form

∂

∂qi
∧

∂

∂pκ
k

∧
∂

∂xµ3
∧ · · · ∧

∂

∂xµr
.

However, this part of ξ can be decomposed into the sum of a term which is annihi-

lated under contraction with ω and a linear combination of the 1-vertical terms

∂

∂p
∧

∂

∂xµ2
∧

∂

∂xµ3
∧ · · ·∧

∂

∂xµr
,

so that by a redefinition of the coefficents Xµ2...µr

0 and of ξ, we arrive at the

expression for X given in Eq. (5.5), with ξ now taking values in the kernel of ω.

For a more detailed discussion, see Ref. [12].) Explicitly, the contraction of ω with

X then reads

iXω =
1

r!
Xµ1...µrdqi

∧ dpµ
i ∧ dnxµµ1...µr

−
(−1)r

r!
Xµ1...µrdp ∧ dnxµ1...µr

+
(−1)r−1

(r − 1)!
X i,µ2...µrdpµ

i ∧ dnxµµ2 ...µr

+
(−1)r

r!
Xµ1...µr

i dqi
∧ dnxµ1...µr

−
1

(r − 1)!
Xµ2...µr

0 dnxµ2...µr
, (5.6)

while that of θ with X reads

iXθ =
(−1)r

r!
Xµ1...µrpµ

i dqi
∧ dnxµµ1 ...µr

+
1

r!
Xµ1...µrp dnxµ1...µr

+
1

(r − 1)!
X i,µ2...µrpµ

i dnxµµ2...µr
, (5.7)

where, in each of the last two equations, the first term is to be omitted if r = n,

whereas only the last term in the first equation remains and iXθ vanishes identically

if r = n + 1.

With these preliminaries out of the way, we can easily deal with the simplest

case, which is that of functions.
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Proposition 5.1. A function f on J©?E is always a Poisson 0-form. Moreover, in

adapted local coordinates, the corresponding Hamiltonian n-multivector field X is,

modulo terms taking values in the kernel of ω, given by

X = −
1

(n− 1)!
εµ2...µnµ

(

∂f

∂xµ

∂

∂p
−

1

n

∂f

∂p

∂

∂xµ

)

∧
∂

∂xµ2
∧ · · · ∧

∂

∂xµn

+
1

(n− 1)!
εµ2... µnµ

(

∂f

∂pµ
i

∂

∂qi
−

1

n

∂f

∂qi

∂

∂pµ
i

)

∧
∂

∂xµ2
∧ · · · ∧

∂

∂xµn
. (5.8)

Proof. First of all, observe that for functions f , the kernel condition (3.7) is void.

Next, we simplify the expression (5.6), with r = n, by noting that due to our

conventions (2.8), (2.9) and (2.10), we have

dnxµ1...µn
= εµ1...µn

, dnxµ2...µn
= εµ2...µnµ dxµ . (5.9)

Thus

iXω = −
(−1)n

n!
εµ1...µn

Xµ1...µn dp +
1

(n−1)!
εµ2...µnµX i,µ2...µn dpµ

i

−
1

(n− 1)!
εµ2...µnµXµ,µ2...µn

i dqi −
1

(n− 1)!
εµ2...µnµXµ2...µn

0 dxµ . (5.10)

Equating this expression with the exterior derivative of f , we obtain the following

system of equations

Xµ1...µn = (−1)n−1εµ1...µn
∂f

∂p
, (5.11)

X i,µ2...µn = εµ2...µnµ ∂f

∂pµ
i

, (5.12)

Xµ,µ2...µn

i = −εµ2...µnµ 1

n

∂f

∂qi
, (5.13)

Xµ2...µn

0 = −εµ2...µnµ ∂f

∂xµ
. (5.14)

Inserting this back into Eq. (5.5), with r = n, and rearranging the terms, we arrive

at Eq. (5.8).

Remark. It has been shown in Ref. [31] that for functions h on J©?E of the special

form

h(xµ, qi, pµ
i , p) = −H(xµ, qi, pµ

i )− p , (5.15)

the associated Hamiltonian multivector field X can be chosen so that it defines

an n-dimensional distribution in J©?E because it is locally decomposable, that is,

locally there exist vector fields X1, . . . , Xn such that X = X1 ∧ · · ·∧Xn satisfies the

equation iXω = dh. Indeed, setting

Xµ = −
∂

∂xµ
+

∂h

∂pµ
i

∂

∂qi
−

1

n

∂h

∂qi

∂

∂pµ
i

−

(

∂h

∂xµ
−

1

n

∂h

∂qi

∂h

∂pµ
i

)

∂

∂p
, (5.16)
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we can convince ourselves that this choice of X and the choice of X made in Eq. (5.8)

differ by a term taking values in the kernel of ω. Under additional assumptions,

this distribution will be integrable and its integral manifolds will be the images of

sections of J©?E over M satisfying the covariant Hamiltonian equations of motion,

or De Donder-Weyl equations.

Another method for constructing Poisson forms on the extended multiphase

space J©?E is from Hamiltonian forms on the ordinary multiphase space ~J©∗E, as

introduced by Kanatchikov [1, 2], pulling these back to J©?E via the appropriate

projection.

To describe the salient features of Kanatchikov’s construction, one must first of

all introduce a structure on ~J©∗E similar to the multisymplectic form ω that exists

naturally on J©?E. This requires the choice of a connection in E and of a linear

connection in TM which, for the sake of convenience, will be assumed to be torsion

free. Together, they induce connections in all the other bundles that are important

in the multiphase space approach to field theory, including the multiphase spaces
~J©∗E and J©?E; for the convenience of the reader, the relevant formulas in adapted

local coordinates are collected in Appendix B. In the case of ~J©∗E, this induced

connection can be used to define a “vertical multisymplectic form” ωV which is

however not closed; instead, it is annihilated under the action of a “vertical exterior

derivative” dV for differential forms. In adapted local coordinates, these objects can

be written in the form

ωV = ei
∧ eµ

i ∧ dnxµ + · · · (5.17)

and

dV = ei
∧

∂

∂qi
+ eµ

i ∧
∂

∂pµ
i

(5.18)

respectively, where ei = dqi +Γi
νdxν and eµ

i = dpµ
i − (∂iΓ

j
κ pµ

j −Γµ
κλpλ

i +Γρ
κρp

µ
i )dxκ

are vertical 1-forms (with respect to the aforementioned induced connection): the

dots in the definition of ωV indicate n-horizontal terms that are not important

here, while the partial derivatives in the definition of dV are meant to act on the

coefficient functions. As shown by one of the present authors [32], dV is still a coho-

mology operator, i.e. it has square zero. Then the Hamiltonian forms as defined by

Kanatchikov can be shown to be precisely the horizontal forms f̃ on ~J©∗E satisfying

the equation

iX̃ωV = dV f̃ , (5.19)

where X̃ is a multivector field on ~J©∗E; this relation is of course completely analo-

gous to our equation (3.3/3.4). Moreover, Kanatchikov introduces a Poisson bracket

between Hamiltonian forms f̃ of degree n−r and g̃ of degree n−s, with multivector

fields X̃ of degree r and Ỹ of degree s corresponding to f̃ and to g̃ according to

Eq. (5.19), by setting

{f̃ , g̃}V = (−1)r(s−1)iỸ iX̃ωV . (5.20)

This Poisson bracket satisfies the analogue of the graded Jacobi identity (3.15).
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We will now show how this approach can be naturally incorporated into the

multisymplectic framework used in the present paper.

Proposition 5.2. Under the canonical projection from extended multiphase space

J©?E to ordinary multiphase space ~J©∗E, every Hamiltonian form f̃ on ~J©∗E as de-

fined by Kanatchikov pulls back to a horizontal Poisson form f on J©?E. Conversely,

every horizontal Poisson form f of degree > 0 on J©?E is obtained in this way.

Moreover, the Hamiltonian multivector field X on J©?E corresponding to f can be

chosen so as to project to a Hamiltonian multivector field X̃ on ~J©∗E corresponding

to f̃ .

Proof. We begin by analyzing the properties of Poisson forms f of degree n − r

(0 < r < n) on J©?E which are horizontal. Being horizontal, such a form trivially

satisfies the kernel condition (3.7) and its expansion in adapted local coordinates is

f =
1

r!
fµ1...µrdnxµ1...µr

,

implying

df =
1

(r − 1)!

∂fµ2...µrν

∂xν
dnxµ2...µr

+
1

r!

∂fµ1...µr

∂qi
dqi

∧ dnxµ1 ...µr

+
1

r!

∂fµ1...µr

∂pκ
k

dpκ
k ∧ dnxµ1...µr

+
1

r!

∂fµ1...µr

∂p
dp ∧ dnxµ1...µr

.

Comparing this formula with Eq. (5.6), we see that f being a Hamiltonian form

implies first of all that X must be 1-vertical since the coefficients Xµ1...µr give a

contribution to iXω proportional to dqi
∧ dpµ

i ∧ dnxµµ1 ...µr
which is absent from df .

But this implies that iXω contains no terms proportional to dp∧dnxµ1...µr
either

and hence the coefficients fµ1...µr cannot depend on the energy variable p; the same

then goes for all the coefficients of X . Therefore, f is the pull-back of a horizontal

form f̃ on ~J©∗E whereas X projects onto a 1-vertical multivector field X̃ on ~J©∗E

whose expansion in terms of adapted local coordinates is given by the second and

third term in Eq. (5.5). Finally, we see that with these relations between the various

objects involved, Eq. (3.3, 3.4) becomes equivalent to Eq. (5.19) plus the relation

Xµ2...µr

0 = −
∂fµ2...µrν

∂xν
,

which has no counterpart in ~J©∗E but also does not convey any additional informa-

tion.

Finally, the fact that the Poisson bracket (5.20) introduced by Kanatchikov,

when pulled back from ~J©∗E to J©?E, coincides with the Poisson bracket defined by

Eq. (3.12) follows from the following simple observation.

Proposition 5.3. Let f and g be two horizontal Poisson forms on J©?E of respec-

tive degrees n− r and n− s, with corresponding 1-vertical Hamiltonian multivector
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fields X and Y of respective degrees r and s. Then the definition (3.12) of their

Poisson bracket reduces to the pull-back of Eq. (5.20):

{f, g} = (−1)r(s−1)iY iXω . (5.21)

Proof. As we have seen in the proof of the preceding proposition, f and g be-

ing horizontal forces X and Y to be 1-vertical, so iY f and iXg vanish. Similarly,

Eq. (5.7) shows that iXθ and iY θ are horizontal, so iY iXθ and iX iY θ vanish.

Therefore, the exact correction term of Eq. (3.12) does not contribute in this case.

Finally, X ∧Y will be 2-vertical, so contraction of the pull-back of ωV or of ω with

X and Y gives the same result, implying that Eq. (5.21) is really the pull-back of

Eq. (5.20).

Remark. In the case of horizontal Poisson forms, one can also introduce an asso-

ciative product, which has been found by Kanatchikov [2]:

f • g = ∗−1(∗f ∧ ∗ g) , (5.22)

where ∗ is the Hodge star operator on M associated to some metric which can be

transported to horizontal forms on J©∗E in an obvious manner. With respect to this

product, the Poisson bracket (5.21) satisfies a graded Leibniz rule

{f, g • h} = {f, g} • h + (−1)(r−1)sg • {f, h} . (5.23)

However, this product cannot be extended in any natural way to arbitrary Poisson

forms. To see this, suppose we had such an extension at hand. Then we could define

a space of vertical covectors at every point of J©?E by requiring it to consist of all

covectors that vanish when multiplied by a horizontal (n − 1)-form, which would

be equivalent to the choice of a connection.

Appendix

A. Multivector calculus on manifolds

The extension of the usual calculus on manifolds from vector fields to multivector

fields is by now well known, although it does not seem to be treated in any of the

standard textbooks on the subject. Moreover, there is a certain amount of ambiguity

concerning sign conventions. Our sign conventions follow those of Tulczyjew [33],

but for the sake of completeness we shall briefly expose the structural properties

that naturally motivate these choices.

Multivector fields of degree r on a manifold are sections of the rth exterior power

of its tangent bundle: they are the dual objects to differential forms of degree r,

which are sections of the rth exterior power of its cotangent bundle. Every known

natural operation involving vector fields, such as the contraction on differential

forms, the Lie bracket and the Lie derivative, has a natural extension to multivector

fields: this is the subject of an area of differential geometry that we simply refer to

as “multivector calculus”. The most important and the ones that we need in this
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paper are (a) the Schouten bracket between multivector fields, (b) the contraction of

a differential form with a multivector field and (c) the Lie derivative of a differential

form along a multivector field.

Throughout this appendix, let M be an n-dimensional manifold, F(M) the com-

mutative algebra of functions on M (with respect to pointwise multiplication),

X(M) the space of vector fields on M and

X∧(M) =

n
⊕

r=0

∧r
X(M)

the supercommutative superalgebra of multivector fields on M (with respect to

pointwise exterior multiplication).

A.1. The Schouten bracket

The Schouten bracket between multivector fields constitutes the natural, canonical

extension both of the Lie bracket between vector fields and of the Lie derivative of

multivector fields (as special tensor fields) along vector fields. Starting from the Lie

derivative of multivector fields along vector fields, it can be defined by imposing a

Leibniz rule with respect to the exterior product of multivector fields, as in Eq. (A.4)

below.

Proposition A.1. There exists a unique R-bilinear map

[· , ·] : X∧(M)× X∧(M)→ X∧(M) (A.1)

called the Schouten bracket, with the following properties.

1. It is homogeneous of degree −1 with respect to the standard tensor degree, i.e.

deg X = r , deg Y = s ⇒ deg[X, Y ] = r + s− 1 . (A.2)

2. It is graded antisymmetric: if X has tensor degree r and Y has tensor degree s,

then

[Y, X ] = −(−1)(r−1)(s−1)[X, Y ] . (A.3)

3. It coincides with the standard Lie bracket on vector fields.

4. It satisfies the graded Leibniz rule: if X has tensor degree r, Y has tensor degree

s and Z has tensor degree t, then

[X, Y ∧Z] = [X, Y ] ∧Z + (−1)(r−1)sY ∧ [X, Z] . (A.4)

5. It satisfies the graded Jacobi identity: if X has tensor degree r, Y has tensor

degree s and Z has tensor degree t, then

(−1)(r−1)(t−1)[X, [Y, Z]] + cyclic perm. = 0 . (A.5)
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We shall not prove this proposition here but just point out that uniqueness

of an operation with the properties stipulated above follows from the required

R-bilinearity (not F(M)-bilinearity, of course), the homogeneity (A.2), the graded

antisymmetry (A.3) and the graded Leibniz rule (A.4) alone; existence can then be

proved, for example, by showing that the resulting local coordinate formula satisfies

all these requirements. Moreover, the validity of the graded Jacobi identity (A.5)

can be derived from the standard Jacobi identity for the Lie bracket of vector fields

by means of the graded Leibniz rule (A.4), using induction on the degree.

An explicit formula which is slightly more general than the local coordinate

formula just mentioned and often useful in practical applications is that for the

Schouten bracket between decomposable multivector fields; it follows directly from

the same kind of argument and states that for any r + s vector fields X1, . . . , Xr

and Y1, . . . , Ys, we have

[X1 ∧ · · · ∧Xr, Y1 ∧ · · ·∧Ys]

=

r
∑

i=1

s
∑

j=1

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · ·∧Xi−1 ∧Xi+1 ∧ · · ·∧Xr

∧Y1 ∧ · · · ∧Yj−1 ∧Yj+1 ∧ · · ·∧Ys . (A.6)

Note also that there is a graded Leibniz rule in the other factor as well: it follows

from the one written down above by using graded antisymmetry and reads

[X ∧Y, Z] = (−1)(t−1)s[Z, X ] ∧Y + X ∧ [Y, Z] . (A.7)

Finally, a word seems in order on the adequate choice of signs and degrees.

Indeed, one recognizes Eqs. (A.2), (A.3) and (A.5) as the graded homogeneity, the

graded antisymmetry and the graded Jacobi identity familiar from the definition

of a Lie superalgebra, provided one assigns to every multivector field X of tensor

degree r the parity (−1)r−1: this means that X is even with respect to the Schouten

bracket if it has odd tensor degree and is odd with respect to the Schouten bracket

if it has even tensor degree! This switch can be better understood by realizing that

the operator ad(X) = [X, .] lowers the tensor degree of any multivector field that

it operates on by r − 1. The same argument explains the sign that appears in the

graded Leibniz identity (A.4), which can be thought of as stating that the operator

ad(X) = [X, .] should be a superderivation with respect to the exterior product

and, more precisely, an even or odd superderivation according to whether X is even

or odd with respect to the Schouten bracket. We can also think of this operator as

defining the Lie derivative LX of multivector fields along X (possibly up to signs,

which are a matter of convention), but this will not be needed here.

Algebraically, the situation can be summarized by stating that X∧(M) is a

Poisson superalgebra, the supersymmetric analogue of a Poisson algebra — the

structure encountered, for example, on the space of functions on a symplectic man-

ifold or, more generally, a Poisson manifold. The surprising aspect is that this
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intricate structure requires no additional structure whatsoever on the underlying

manifold.

A.2. Lie derivative of differential forms along multivector fields

We now come to the other two operations of multivector calculus mentioned at

the beginning of this appendix, namely the contraction of differential forms with

multivector fields and the Lie derivative of differential forms along multivector

fields.

The case of contraction is easy. First, the contraction of a differential form α

with a decomposable multivector field X1 ∧ · · ·∧Xr is simply defined as repeated

contraction with its constituents (which by convention should be performed in the

opposite order):

iX1 ∧···∧Xr
α = iXr

. . . iX1
α . (A.8)

This is then extended to arbitrary (non-decomposable) multivector fields X by

F(M)-linearity. (Here, of course, one uses that contraction is a purely algebraic

operation; it would not work so naively if we were dealing with a differential ope-

rator.)

The Lie derivative LXα of a differential form α along a multivector field X is

most conveniently defined by a generalization of a well known formula for vector

fields.

Definition A.2. On differential forms, the Lie derivative LX along a multivector

field X is defined as the supercommutator of the exterior derivative d and the

contraction operator iX :

LXα = diXα− (−1)riXdα . (A.9)

According to the rules of supersymmetry, the sign of the second term is fixed

by observing that d is an odd operator (it is of degree 1 since it raises the tensor

degree of forms by 1) while iX is an even/odd operator if r is even/odd (it is of

degree −r since it lowers the tensor degree of forms by r).

Proposition A.3. Given any two multivector fields X of tensor degree r and Y of

tensor degree s, we have for any differential form α

dLXα = (−1)r−1LXdα , (A.10)

i[X,Y ]α = (−1)(r−1)sLX iY α− iY LXα . (A.11)

L[X,Y ]α = (−1)(r−1)(s−1)LXLY α− LY LXα . (A.12)

LX ∧Y α = (−1)siY LXα + LY iXα . (A.13)
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Proof. The first formula is an immediate consequence of the definition (A.9), since

d2 = 0. Next, the last formula can be proved by direct calculation:

LX ∧Y α = d(iX ∧Y α)− (−1)r+siX ∧Y dα

= d(iY iXα)− (−1)r+siY iXdα

= d(iY iXα)− (−1)siY d(iXα)

+ (−1)siY d(iXα)− (−1)r+siY iXdα

= LY iXα + (−1)siY LXα .

Next, observe that the first formula is well known to be true when X and Y are

vector fields. The general case follows by induction on the tensor degree of both

factors. Indeed, if X , Y and Z are multivector fields of tensor degree r, s and t,

respectively, such that the above equation holds for [X, Y ] and for [X, Z], one can

use the graded Leibniz rule (A.4) to derive that it also holds for [X, Y ∧Z]:

i[X,Y ∧Z]α = i[X,Y ]∧Zα + (−1)(r−1)siY ∧ [X,Z]α

= iZi[X,Y ]α + (−1)(r−1)si[X,Z]iY α

= (−1)(r−1)siZLXiY α− iZiY LXα

+ (−1)(r−1)s+(r−1)tLXiZiY α− (−1)(r−1)siZLXiY α

= (−1)(r−1)(s+t)LX iY ∧Zα− iY ∧ZLXα .

Similarly, if X , Y and Z are multivector fields of tensor degree r, s and t, respec-

tively, such that the above equation holds for [X, Z] and for [Y, Z], one can use the

graded Leibniz rule (A.7) together with Eq. (A.13) to derive that it also holds for

[X ∧Y, Z]:

i[X ∧Y,Z]α = (−1)(t−1)si[X,Z]∧Y α + iX ∧ [Y,Z]α

= (−1)(t−1)siY i[X,Z]α + i[Y,Z]iXα

= (−1)(t−1)s+(r−1)tiY LXiZα− (−1)(t−1)siY iZLXα

+ (−1)(s−1)tLY iZiXα− iZLY iXα

= (−1)(r+s−1)t+siY LX iZα− (−1)siZiY LXα

+ (−1)(r+s−1)tLY iX iZα− iZLY iXα

= (−1)(r+s−1)tLX ∧Y iZα− iZLX ∧Y α .

Finally, the second formula can now again be proved by direct calculation:

L[X,Y ]α = di[X,Y ]α + (−1)r+si[X,Y ]dα

= (−1)(r−1)sdLX iY α− diY LXα

+(−1)r(s−1)LX iY dα− (−1)r+siY LXdα
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= (−1)(r−1)(s−1)LXdiY α− diY LXα

+ (−1)r(s−1)LXiY dα + (−1)siY dLXα

= (−1)(r−1)(s−1)LXLY α− LY LXα .

B. Induced connections

In this appendix we want to describe briefly the construction of various induced

connections in jet bundle language.

First of all, if E is a fiber bundle over M , we shall view a connection in E

as a section ΓE of the first order jet bundle JE of E, considered as an affine

bundle over E; see [34, Ch. IV.17]. In adapted local coordinates (xµ, qi) for E and

(xµ, qi, qi
µ) for JE, this section is given by

ΓE : (xµ, qi) 7→ (xµ, qi, Γi
µ(x, q)) .

Next, if V is a vector bundle over M , a linear connection in V is given by a section

ΓV of JV over V that depends linearly on the fiber coordinates. In adapted local

coordinates (xµ, vi) for V and (xµ, vi, vi
µ) for JV , this section is given by

ΓV : (xµ, vi) 7→ (xµ, vi, Γi
µj(x) vj) ,

where the Γi
µ,j are of course the connection coefficients (gauge potentials) associated

with the corresponding covariant derivative. In particular, a linear connection in the

tangent bundle TM of the base manifold M corresponds to a section ΓTM of J(TM)

over TM which, in adapted local coordinates (xµ, ẋκ) for TM and (xµ, ẋκ, ẋκ
µ) for

J(TM) is given by

ΓTM : (xµ, ẋκ) 7→ (xµ, ẋκ, Γκ
µλ(x) ẋλ) ,

where the Γκ
µλ are of course the corresponding Christoffel symbols.

Now given a fiber bundle E over M together with a connection in E and a linear

connection in TM , we can introduce induced connections in all the various induced

bundles that appear in this paper — regarded as fiber bundles over M , not over E.

(This means that jets of sections will contain just one additional lower space-time

index for counting partial derivatives with respect to the space-time variables.) The

simplest way to describe them is by introducing adapted local coordinates (xµ, qi)

for E as before; then the local coefficient functions of the induced connections with

respect to the induced adapted local coordinates can be expressed directly in terms

of the local coefficient functions Γi
µ and Γκ

µλ of the original two connections with

respect to the original adapted local coordinates, as follows.

• The vertical bundle V E of E:

in adapted local coordinates (xµ, qi, q̇k) for V E and (xµ, qi, q̇k, qi
µ, q̇k

µ) for J(V ∗E),

the induced connection maps (xµ, qi, q̇k) to

(xµ, qi, q̇k, Γi
µ(x, q), ∂lΓ

k
µ(x, q)q̇l) .
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• The dual vertical bundle V ∗E of E:

in adapted local coordinates (xµ, qi, pk) for V ∗E and (xµ, qi, pk, qi
µ, pµ,k) for

J(V ∗E), the induced connection maps (xµ, qi, pk) to

(xµ, qi, pk, Γi
µ(x, q),−∂kΓl

µ(x, q)pl) .

• The pull-back π∗(TM) of the tangent bundle TM of M to E:

in adapted local coordinates (xµ, qi, ẋκ) for π∗(TM) and (xµ, qi, ẋκ, qi
µ, ẋκ

µ) for

J(π∗(TM)), the induced connection maps (xµ, qi, ẋκ) to

(xµ, qi, ẋκ, Γi
µ(x, q), Γκ

µλ(x)ẋλ) .

• The pull-back π∗(T ∗M) of the cotangent bundle T ∗M of M to E:

in adapted local coordinates (xµ, qi, ακ) for π∗(T ∗M) and (xµ, qi, ακ, qi
µ, αµ,κ)

for J(π∗(T ∗M)), the induced connection maps (xµ, qi, ακ) to

(xµ, qi, ακ, Γi
µ(x, q),−Γλ

µκ(x)αλ) .

• The pull-back π∗(
∧n

T ∗M) of the bundle
∧n

T ∗M of volume forms on M to E:

in adapted local coordinates (xµ, qi, ε) for π∗(
∧n

T ∗M) and (xµ, qi, ε, qi
µ, εµ) for

J(π∗(
∧n

T ∗M)), the induced connection maps (xµ, qi, ε) to

(xµ, qi, ε, Γi
µ(x, q),−Γρ

µρ(x)ε) .

• The linearized jet bundle ~JE of E:

in adapted local coordinates (xµ, qi, ~q k
κ ) for ~JE and (xµ, qi, ~q k

κ , qi
µ, ~q k

µ,κ) for

J( ~JE), the induced connection maps (xµ, qi, ~q k
κ ) to

(xµ, qi, ~q k
κ , Γi

µ(x, q), ∂lΓ
k
µ(x, q)~q l

κ − Γλ
µκ(x)~q k

λ ) .

• The jet bundle JE of E:

in adapted local coordinates (xµ, qi, qk
κ) for JE and (xµ, qi, qk

κ, qi
µ, qk

µ,κ)

for J(JE), the induced connection maps (xµ, qi, qk
κ) to

(xµ, qi, qk
κ, Γi

µ(x, q), ∂lΓ
k
µ(x, q)(ql

κ − Γl
κ(x, q))− Γλ

µκ(x)(qk
λ − Γk

λ(x, q))) .

• Ordinary multiphase space ~J©∗E:

in adapted local coordinates (xµ, qi, pκ
k) for ~J©∗E and (xµ, qi, pκ

k , qi
µ, pκ

µ,k) for

J( ~J©∗E), the induced connection maps (xµ, qi, pκ
k) to

(xµ, qi, pκ
k , Γi

µ(x, q),−∂kΓl
µ(x, q)pκ

l + Γκ
µλ(x)pλ

k − Γρ
µρ(x) pκ

k) .

• Extended multiphase space J©?E:

in adapted local coordinates (xµ, qi, pκ
k , p) for J©?E and (xµ, qi, pκ

k , p, qi
µ, pκ

µ,k, pµ)

for J(J©?E), the induced connection maps (xµ, qi, pκ
k , p) to

(xµ, qi, pκ
k , p, Γi

µ(x, q),−∂kΓl
µ(x, q)pκ

l + Γκ
µλ(x)pλ

k − Γρ
µρ(x)pκ

k ,

−Γρ
µρ(x)p− (∂µΓj

ν(x, q)− Γk
ν(x, q)∂kΓj

µ(x, q)− Γκ
µν(x)Γj

κ(x, q))pν
j ) .
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Table 1. Correspondence of important concepts in the multiphase space approach:
time-dependent mechanics versus field theory.

Mechanics Field Theory

Extended configuration space Configuration bundle E over M

R × Q, where R is the time axis with typical fibre Q, where M

is the space-time manifold

Extended velocity space R × TQ Velocity bundle: jet bundle JE

Doubly extended phase space Extended multiphase space:
P = T ∗(R × Q) = R × T ∗Q × R twisted affine dual of JE

P = J©?E = J?E ⊗
∧n

T ∗M

Simply extended phase space Ordinary multiphase space:

P0 = R × T ∗Q twisted linear dual of ~JE

P0 = ~J©∗E = ~J∗E ⊗
∧n

T ∗M

Local coordinates for R × Q Local coordinates for E

t, qi xµ, qi

Local coordinates for R × TQ Local coordinates for JE

t, qi, q̇i xµ, qi, qi
µ

Local coordinates for P Local coordinates for P
t, qi, pi, E xµ, qi, p

µ
i , p

Local coordinates for P0 Local coordinates for P0

t, qi, pi xµ, qi, p
µ
i

Projection from P to P0 Projection from P to P0

(t, qi, pi, E) 7→ (t, qi, pi) (xµ, qi, p
µ
i , p) 7→ (xµ, qi, p

µ
i )

Canonical 1-form on P Multicanonical n-form on P
θ = pidqi + Edt θ = p

µ
i dqi

∧ dnxµ + p dnx

Symplectic 2-form ω = −dθ Multisymplectic (n + 1)-form ω = −dθ

on P , non-degenerate on P , non-degenerate (on vector fields)
ω = dqi

∧ dpi − dE ∧ dt ω = dqi
∧ dp

µ
i ∧ dnxµ − dp∧ dnx

Hamiltonian is a function on P0 Hamiltonian is a section of P
(as an affine line bundle over P0)

iXω = df iXω = df

Hamiltonian
vector ↔ functions f

fields X

Hamiltonian Hamiltonian
r-multivector ↔ or Poisson

fields X (n − r)-forms f

Poisson bracket for functions Poisson bracket for Poisson forms

f, g ∈ C∞(P) f ∈ Ωn−r
P

(P), g ∈ Ωn−s
P

(P)

{f, g} = LY f − LXg {f, g} = (−1)(r−1)(s−1)LY f − LXg

−(−1)(r−1)sLX ∧Y θ

Hamiltonian equations De Donder-Weyl equations
∂H

∂pi

= q̇i,
∂H

∂qi
= −ṗi

∂H

∂p
µ
i

=
∂qi

∂xµ
,
∂H

∂qi
= −

∂p
µ
i

∂xµ
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