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An infinite class of new gravitational instantons for the axial anomaly is found. It consists entirely of algebraic spin- 
manifolds. In theories that allow manifolds without ordinary spin structure we find the presence of spinorial matter fields 
to require the existence of a "universal" gauged SU(2) or higher internal symmetry (e.g., SU(2) × SU(2) × G) and of an 
"internal-spin"-statistics connection. The possible relation of this to the gauge theory of weak and electromagnetic inter- 
actions is explored. 

1 . In troduct ion.  The transition from classical to 
quantum gravity is performed by a functional integra- 
tion over matter  and gravitational fields, thus over 
"world manifolds".  In Einstein theory "world mani- 
folds" are assumed (pseudo-)riemannian, and as such 
do not always possess a spin structure. The existence 
of  spinorial matter  fields being beyond doubt,  a con- 
sistent quantum theory then either: 

(A) restricts the functional integral to manifolds 
that have a spin structure: spin manifolds, or 

(B) requires all matter  fields to appear in suitable 
multiplets of  a gauged symmetry  that permits the 
definition of  a generalized spin structure on all 4-di- 
mensional (pseudo-)riemann manifolds. 

We shall explore both these possibilities. *1. We 
find possibility (A) automatically realized in all forms 
of  supergravity theory (ordinary,  extended conformal).  

¢' Work supported in part by NSF Contracts PHY-01224 and 
MSC 77-01623. 

¢1 Alternative (A) can be readily implemented for both Rie- 
mann and pseudo-Riemann manifolds (i.e., for lorentzian 
and "euclidean" metric) as it is a simple topological criteri- 
onl integrate only over manifolds with null second Stiefel- 
Whitney class. Concerning alternative (B) we shall discuss 
it for the Riemann (++++ metric) case. Allmanifolds axe 
assumed orientable. 

Possibility (B), on the other hand, leads to "universal" 
internal symmetries and multiplet  assignments quite 
similar to those appearing in unified weak-e lec t ro-  
magnetic gauge theory models currently in circulation. 
These two alternatives differ considerably as to the 
instantons responsible for the gravitational contr ibut ion 
to the axial anomaly. In particular, Eguchi and Freund 
[1 ] have proposed that the complex projective plane 
P2(C) - a four-dimensional real manifold - is such an 
instanton. But P2(C) is not  a spin manifold, so that it 
does not  qualify under alternative (A). Under alterna- 
tive (B) it does qualify as in this case there even exists 
a U(1) extended Spin c structure [2] as has been noted 
by Hawking and Pope [3] (these authors have also 
contemplated nonabelian extensions for spin structures 
although not of  the universal type to be presented 
below). For alternative (A) one is then robbed of  the 
only known gravitational instanton (for the axial 
anomaly).  We therefore find new instantons corres- 
ponding to certain algebraic hypersurfaces in P3(C). 
These are endowed with spin structure and as such are 
instantons for both  alternatives (A) and (B). 

2. N e w  gravitational instantons. As a motivation for 
alternative (A) we consider supergravity theories that 
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gauge the supergroups OSp(NI4) [4] and SU(NI2,2) 
[5] with N ~< 8. The Lorentz group is contained in 
OSp(NI4) via the Sp(4) de Sitter group and in 
SU(NI 2,2) via the SU(2,2) conformal group. Sp(4) 
and SU(2,2) both contain Spin (3,1) which thus acts 
in the fibers o f  the supergravity bundle. The corre- 
sponding space-t ime manifolds are then automatic- 
ally constrained to be spin manifolds and alternative 
(A) must hold. In any theory that implements altern- 
ative (A) a gravitational instanton (in this paper always 
for the axial anomaly) corresponds to a 4-dimensional 
compact spin manifold with positive metric form and 
first Pontryagin number Pl ~ 0. TO make significant 
contribution to vacuum tunnelling the manifold should 
also be Einstein (i.e., a solution of  Einstein's equations 
with cosmological term). P2(C) is not  an instanton 
(for alternative (A)), as it is not a spin manifold. We 
therefore construct here a new - and in a certain sense 
fundamental - class of  gravitational instantons that 
are spin manifolds. Consider complex projective 3- 
space P3(C). Let z0, Zl, z2, z 3 be its homogeneous 
(complex) coordinates, and Fm(zi)  a homogeneous 
polynomial of  degree m in the z i. The equation Fm(zi)  

= 0 defines a degree m hypersurface V m in P3(C). If  
the four vector aF/az i is nonzero for points z 4= 0, 
then V m will itself be a K~hler surface (i.e., real dimen- 
sion 4). I f X  is the multiple of  the K/ihler form of  
P3(C) that integrates to 1 over PI(C) and i is the inclu- 
sion of  V m into P3(C), then the pullback i * X  gives a 
multiple of  the KLh_ler form of  V m. Using standard 
procedures [6] (the first Chern class of  the normal line 
bundle to V m is Pioncar6 dual to the 4-dimensional 
fundamental class of  V m [6]) the total Chern class of  
V m is represented by 

1 + c  1 + c  2 =i*[1  +X)4(1 + m X )  -1 ] 

= 1 + (4 - m ) i * X  + (m 2 - 4 m  + 6 ) i * X  2 . 

Computing the first Pontryagin class Pl = e2 - 2e2 
and noting that the surface is of  degree m, we find that 
the signature (or index) ~- of  V m is 

1 1 1 "~(Vm) =-~ fPl = 16(1 + 2m) (~m) ( l  - ½m)/6. 
Vm 

For V m to be a spin manifold, its second Stiefel- 
Whitney class w 2 must vanish. But w 2 is the Z 2 (Z 2 
= integers modulo 2) reduction of  Cl, so w 2 = 0 requires 

that c 1 be even. Thus for all even m = 2n, V m is a spin 
manifold. Notice in this case, 

r(Vm) -- - 8A(Vm) = - 16(n + 1)n(n - 1)/6, 

where the A genus A(V2n ) is (as always for an 8k+4- 
dimensional spin manifold [7] ) an ev'en integer. By the 
Atiyah-Singer index theorem for the Dirac operator, 

1 
n R - n L - f RuvaO *R u~4~ d4X 

384rr2 V2n 

= _ l r ( V 2 n  ) = A(V2n) 

(where * R U ~  = ½euvoo Rooa~/X/~, and nR(L) is the 
number of  right- (left-) handed bound states) is an even 
integer. To have an instanton, r must not vanish: n i>2. 
For n = 2 (m = 4), e 1 = 0 and V 4 is known in algebraic 
geometry as a K3 surface. Since the first Chern class 
of  a KS"hler manifold is represented by the Ricci form, 
Yau's recent affirmative solution [8] of  the Calabi 
conjecture show that K3 surfaces can be endowed with 
a metric that is a solution of  Einstein's equations with- 
out cosmological term. Unfortunately, the Einstein 
metric on V 4 is not  the induced P3(C) metric [9],  and 
in fact has yet to be found. For m = 2n > 4, V m is not 
an Einstein manifold in the induced metric from P3(C) 
either, but is "cohomologically" Einstein (i.e., as 
cohomology classes, the first Chern class is a multiple 
of  the K~ihler form induced from P3(C)). V m also 
satisfies Hitchin's necessary conditions [10] for the 
existence of  an Einstein metric. 

V 4 is in some sense a fundamental 4-dimensional 
spin manifold. Namely [11 ],  i fM is any 4-dimensional 
spin manifold, then there will be a 5-dimensional spin 
manifold W whose boundary is the union of  M and of  
r copies of  the K3 surface where r is --T(M)/16, i.e., 
M is spin-cobordant to r V  4. 

3. Universal spin structures. In a theory like unex- 
tended OSp(114)-supergravity there is no internal sym- 
metry and therefore there are no vector gauge fields. 
There are spinors so that one is forced into the alterna- 
tive (A) discussed in the previous section. Yet, super- 
gravity is far from being experimentally established 
and one may want to consider alternative ways of  
accomodating spinors in a quantum theory of  gravity. 
Take again the case of  P2(C). This is no spin manifold, 
yet it can be given a Spin c ~structure. Essentially, this is 
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done [3] by having the matter fields carry a conserved 
charge, the corresponding current serving as the source 
of an abelian gauge field. The extra gauge phase free- 
dom then allows the consistent definition of spinors on 
P2(C), provided one has a "charge-statistics" connection: 
fermions (i.e., spinors) carry odd (integer) values while 
bosons (i.e., tensors) carry even values of the charge. 
We then ask whether there exists a larger (non-abelian) 
gauge group G such that coupling all matter fields to 
gauge fields of G, all 4-dimensional Riemann manifolds 
can be given a generalized spin structure, again provided 
a certain "internal-spin"-statistics connection is en- 
forced. We now proceed to answer this question in the 
affirmative and will show that in 4 dimensions the 
group G must be at least SU(2) or more realistically 
SU(2) × SU(2) or SU(2) × SU(2) × U(1). 

To present our argument, let us briefly recall [2] 
the Spin c structure of P2(C), as it clearly illustrates the 
reasoning involved. As a 4-dimensional real Riemann 
manifold P2(C) has a principal SO(4) bundle of ortho- 
normal frames. Being also a 2-dimensional complex 
manifold it has a U(2) bundle of frames. There exists a 
natural homomorphism v of U(2) into SO(4). Consider 
the group Spin(4) × U(1). For every g E Spin(4), 
hEU(1), the relation (g, h) ~ (-g,  - h )  between elements 
of Spin(4) × U(1) defines a set of equivalence classes 
endowed with group structure. The corresponding 
group is SpinC(4) ~ Spin(4) XZ2 U(1) - (Spin(4) X 
U(1))/Z 2 (Z 2 indicates the effect of the 7_ 2 equivalence 
relation). There exists a homomorphism • : U(2) 
SpinC(4) which allows the U(2)-bundle to be extended 
to a SpinC(4)-bundle. But the Spin(4) part of Spine(4) 
can be projected down to SO(4) by a two-to-one map 
7r. It can be checked that the composition map ~ro K 
from U(2) to SO(4) is the same as the natural map v. 
One has thus upgraded the SO(4)-bundle to a SpinC(4) - 
bundle and the key to all this was the complex structure 
of P2(C). The price for this Spin c structure is a remark- 
able "charge-statistics" connection in the multiplet 
spectrum, noticed by Hawking and Pope [3]. It emerges 
from the following consister,:y requirement: if p is a 
representation of SpinC(4) on a vector space V, then 
pulling it back to a Spin(4) X U(1) = SU(2) X SU(2) 
X U(1) representation, the ( -1 ,  -1 ,  - 1 )  element of 
SU(2) X SU(2) X U(1) must map to the identity within 
the representation p. Label p by the spins Jl and J2 of 
the two SU(2) factors, and the charge q of the U(1) 
factor. The consistency requirement is then]' 1 +J2 + q/2 

= integer so that fermions (/1 +] '2  = half odd integer) 
must carry odd (integer) charge q, and bosons (/1 +]'2 
= integer) even charge. This is the "charge-statistics" 
connection. 

Unlike P2(C), a general 4-dimensional Riemann 
manifold is not endowed with a complex structure. So, 
the U(2)-bundle is not available and one must make 
do with the SO(4)-bundle of orthonormal frames. 
There being no nontrivial homomorphism of SO(4) 
into U(1) it is unlikely that a SpinC(4) structure will in 
general be possible. We therefore attempt a more gen- 
eral structure of the form Spin(4) X z2 G and choose 
the nonabelian group G so that a homomorphism 
Spin(4) ~ G exists. The simplest choice G = SU(2) 
works. Indeed, there are two homomorphisms from 
Spin(4) = SU(2) X SU(2) to Spin(4) X SU(2) involv- 
ing the identity map to Spin (4) and projection on one 
of the two SU(2) factors as the map to SU(2). SO(4) 
and Spin(4) - Spin(4) X z2 SU(2) differ from Spin(4) 
and Spin(4) X SU(2) each by a Z 2 factor. So, this way 
we also have two homomorphisms SO(4) ~ Spin(4) 
with left inverse the projection 7r introduced above from 
the Spin(4) part of Spin(4) to SO(4). Either of these 
homomorphisms upgrades the SO(4)-bundle into a 
Sp~l(4)-bundle. Thus, with a gauged internal SU(2)- 
symmetry one can define spinors on any 4-dimensional 
Riemann manifold. Physically one may attempt to 
identify this with the "weak isospin" SU(2) factor of 
the unified electromagnetic-weak gauge group. The 
corresponding "weak isospin-statistics" connection 
requires bosons (fermions) to have integer (half-odd 
integer) weak isospin, and one could accomodate 
neither the Higgs fields nor the right-handed leptons of 
the Weinberg-Salam model [ 12]. But, one can choose 
a larger group in constructing the universal spin structure 
For instance, instead of the "minimal" SU(2) we choose 
G = SU(2) × SU(2) and obtain Spin(4) = Spin(4) 
X z~ (SU(2) × SU(2)). The diagonal map Spin(4)-+ 
Spin(4 ) x Spin(4) produces a homomorphism SO(4) 
-+ Spin(4). Identify this internal SU(2) X SU(2) with 
the SU(2) L X SU(2) R of electromagnetic-weak gauge 
models. The "weak isospin-statistics" connection then 
requires fermions (bosons) to belong to SU(2) L X 
SU(2)R multiplets (kL,kR) with k L + k R half odd 
integer (integer). This allows fermions in (1/2, 0), (0, 
1/2), bosons in (1,,0), (0, 1), (0, 0), (1/2, 1/2), but for 
instance no fermion singlets. This differs somewhat 
from various phenomenological schemes [ 13 ]. Yet G 
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may be further enlarged by SU(3)color and one or 
more U(1) factors, with new "internal-spin"-statistics 
connections in each case. 

4. Conclusions. We found a new family of gravita- 
tional instantons the V2n spin manifolds.With alterna- 
tive (A) they are, in a sense, fundamental as explained 
in section 3. Theories that naturally implement alter- 
native (A) are the various supergravity theories. They 
are known to determine the gauged internal symmetry 
and the multiplet spectrum. Remarkably, with alterna- 
tive (B) we again obtained information on the gauged 
internal symmetry and on the multiplet spectrum, 
this time in the form of an "internal-spin"-statistics 
connection. 

We thank Dr. Birgit Speh for catalyzing this col. 
laboration. 

References 

[1] T. Eguchi and P.G.O. Freund, Phys. Rev. Lett. 37 (1976) 
1251. 

[2] M.F. Atiyah, R. Bott and A. Shapiro, Topology 3 (Suppl. 
1) (1964) 3. 

[3] S. Hawking and C.N. Pope, Phys. Lett. 73B (1978) 42; 
see also: G.W. Gibbons and C.N. Pope, DAMTP pre- 
print, to be published; 
R. Geroch, J. Math. Phys. 9 (1968) 1739. 

[4] D. Freedman, P. van Nieuwenhuizen and S. Ferrara, 
Phys. Rev. D13 (1976) 3214; 
S. Deser and B. Zumino, Phys. Lett. 62B (1976) 335. 

[5] J. Crispim Romeo, A. Ferber and P.G.O: Freund, Nucl. 
Phys. B126 (1977) 429; 
M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, 
Phys. Lett. 69B (1977) 304. 

[6] F. Hirzebruch, Topological methods in algebraic geom- 
etry, 3rd ed. (Springer, Berlin, 1966). 

[7] M.F. Atiyah and F. Hirzebruch, Bull. Am. Math. Soc. 65 
(1959) 276. 

[8] S.T. Yau, UCLA preprint. 
[9] B. Smyth, Ann. Math. 85 (1967) 246; 

S.S. Chern, J. Diff. Geom. 1 (1967) 21. 
[10] N.J. Hitchin, J. Diff. Geom. 9 (1974) 435. 
[11] J. Milnor, L'Enseignement Math. 2 S6r. 9 (1963) 198. 
[12] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264; 

A. Salam, in Elementary particle physics, ed. N. Svaxtholm 
(Almquist and WikskeUs, Stockholm, 1968) p. 367. 

[13] J. Pati and A. Salam, Phys. Rev. D10 (1974) 275; 
R.N. Mohapatra and D.P. Sidhu, Phys. Rev. Lett. 38 
(1977) 667; 
A. de Rujula, H. Georgi and S.L. Glashow, Ann. Phys. 
(NY) 109 (1977) 242. 

184 


