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Abstract

Within the class of integrable Calogero models associated with (semi-)simple Lie algebras and
with symmetric pairs of Lie algebras identified in a previous paper, we analyze whether and to
what extent it is possible to find a gauge transformation that takes the traditional Lax pair with
its dynamicalR-matrix to a new Lax pair with a numeric&-matrix.
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1. Introduction

In a recent paper [1], we have performed a systematic analysis of the Calogero—Moser—
Sutherland models, or Calogero models, for short, which constitute an important class of
completely integrable Hamiltonian systems. Our work follows the traditional Lie algebraic
approach outlined long ago by Olshanetsky and Perelomov [2—4] which is based on the
use of (semi-)simple Lie algebras and, more generally, of symmetric pairs, extending it
S0 as to encompass the construction not only of a Lax representation for the equations of
motion but also that of a dynamic&Fmatrix. The existence of these structures was found
to depend on the possibility of solving a simple set of algebraic constraints for a certain
function F or K that assigns to each roeta generato#,, or K, in the pertinent Cartan

Y Work supported by CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico), Brazil, and
by FAPESP (Fundacéo de Amparo a Pesquisa do Estado de S&o Paulo), Brazil.
E-mail addressedorger@ime.usp.br (M. Forger), winter@ime.usp.br (A. Winterhalder).

0550-3213/$ — see front mattéi 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0550-3213(03)00536-4


http://www.elsevier.com/locate/npe

436 M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435-483

subalgebrd:! these state that for any two roatsand

gaa(Fﬁ)_gﬁ,B(Fa)ZFa,ﬂ, (1)
in the case of (semi-)simple Lie algebrgaand
Ge(Kp) — 9pB(Ka) =T 4, 2)

in the case of symmetric pairg, 6), where the coefficients,, g and F(f, are defined in
terms of the structure constari¥s g of g and the coupling constantg @t the model by

Top=0utpNagp 3)
and by
6 1
Iyp= Z(gaJrﬁNa,ﬁ + 900 +8Now,p + Ga+08 N0 + Yat68 Now,0p)s 4)

respectivel? In the first case, it was found that a solution of these constraints exists only
for the Lie algebrasi(n, C) of the A-series, whereas in the second case, explicit solutions
were found for the complex Grassmanni&w p +q)/S(U (p) x U(q)) of the A lll-series
when|p —¢g| < 1.

Following a somewhat different direction, several authors [5,6] have recently shown
by explicit matrix computations that the Calogero models based@nC), degenerate
as well as elliptic, admit a gauge transformation taking the dynanieadatrix into a
numerical one: this is achieved by explicitly constructing a group-valued function on
the configuration space which is used to conjugate the standard Lax pair and dynamical
R-matrix of the model into a new Lax pair and a numeriRamatrix.

In the present paper, we systematize the method of Fehér and Pusztai [6], adapting
it to the formalism developed in our previous work [1]: this allows us to extend it from
the degenerate to the elliptic models as well as from the case of Lie algebras to that of
symmetric pairs. In all cases, we find that the existence of a gauge transformation with the
desired property can be reduced to a set of purely algebraic constraints which are similar
to but not identical with the integrability constraints (1) and (2) found in Ref. [1]. In the
case of Lie algebras, it turns out that these various constraints all have one and the same
solution, thus confirming the previous results of other authors [5,6] that the well-known
dynamicalR-matrices of the Calogero models baseditin, C) can be gauge transformed
to numericalR-matrices. In the case of symmetric pairs, however, we find extra constraints
on the root system, over and above those that guarantee integrability. In particular, for the
Alll-series of complex Grassmannia8t)(p + ¢)/S(U (p) x U(g)) where integrability
has in Ref. [1] been shown to hold whém — ¢| < 1, these constraints exclude the case

1 In this paper, we adopt a slightly modified notation: for reasons to become clear towards the end of the paper,
we shall in the case of symmetric pairs denote the generatodf Ref. [1] by K, .

2 In the case of symmetric pairs, it is also assumed that the root genefatdrs g can be and have been
chosen so thal Eq = Egq for all « € A, implying that Ngy gg = N, g for all a, p € A. As explained in the
erratum to Ref. [1], this is not always possible but is a necessary condition for our proof of integrability, and it
can always be arranged to hold for all roats it can be made to hold for all real roois that is, all rootsx in A
satisfyingfa = —a.
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|p — ¢g| =1 but allow for a solution in the cage= ¢. This means that the dynamicat
matrices for the Calogero models associated with the classical root systems can be gauge
transformed to numericat-matrices for theC,, and D,, systems but not for thé, and
BC, systems; remarkably, the latter are just the ones containing an explicit dependence on
the coupling constants.

The paper is organized as follows. In Section 2, we give a brief summary of the method
of gauge transforming Lax pairs and dynami®aiatrices in integrable systems such as
the Calogero models; moreover, we collect a number of identities to be used repeatedly
later on. In Section 3, we present our calculations for the case of Lie algebras and in
Section 4 those for symmetric pairs. Finally, in Section 5 we draw our conclusions and
comment on perspectives for further work.

2. Gaugetransformations

Consider an integrable model with a finite-dimensional phase space which we assume
to be the cotangent bundig“Q of a configuration spac@. Integrability is encoded into
the existence of a Lax representation for the equations of motion,

L=[L,M], (5)

together with that of aR-matrix whose role is to control the Poisson brackets between the
components of the Lax matrik, according to the formula [7]

{L1, L2} =[R12, L1] — [R21, L2]. (6)

Here,L and M are maps fronT*Q into a given Lie algebrg whereask will in general

be a map fronT*Q into the second tensor powEn(g) ® U (g) of the universal enveloping
algebraU(g) of g; as usuall1 =L ® 1, L, =1Q® L etc. The choice of is far from
obvious; it reflects the hidden symmetries that are present in the model. Moreover, even if
one fixesg and a connected Lie group that hagy as its Lie algebral., M andR are not
uniquely determined. In particular, we are free to perforgaage transformatioty an
arbitrary functiong on 7*Q with values inG, as follows:

L'=glg™, (7)
_ 1. 45 - 1 -
Rip=g182 (Rlz +g1 a1 Lo} + sler 'g; g1, g2 L2]>g1 Tyt (8)

The second transformation law is dictated by the requirement that the fundamental Poisson
bracket relation (6) should be preserved under this transformation, which is easy to check.
Note that in generall., M andg may depend on a spectral parameigin which caser
will depend on two spectral parametarandv.

In the case of the Calogero models of interest hgiig,a simple complex Lie algebra,
with Cartan subalgebrgaand corresponding root systemfixed once and for allQ is an
open subset in a real subspacdyah which we fix a basi§Hs, ..., H,}, L is of the form

Lig, p;w)=) pjHj+ )Y La(q,u)Eq, 9
j=1 aeA



438 M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435-483

with functions L, whose explicit form will be needed only later, aidis independent
of the momentum variables. (For details, see Ref. [1].) Our aim in what follows will be to
determineg in such a way thaR’ becomes constant (as a function on phase-space). To this
end, we shall assume thais also independent of the momentum variables and introduce
the “gauge potentials”

Ajw) =g w)d;gw). (10)

Reverting to ordinary tensor notation, we get

(gt e{swelwm)=-) s wip sw}OH == A;jw e Hj,

j=1 j=1
so Eq. (8) simplifies to

R'(u,v) = (g) ® g(v)) (R(u, V)= Ajw)® H,~> (¢t ®eg ).

j=1
This implies

(g7 w) ® g1 W) WR (u, v) (g(u) ® g(v))

= (R(u, V)= Y Ajw)® H,-)

j=1
+ [(g‘lw) ®e (W) (2w ® g)), R, v) =Y Aj(w) ® H},
j=1

so the condition that the partial derivativesk’(u, v) of R’(u, v) all vanish amounts to
requiring

8k<R(u,v) —ZA/'(M)(X)HJ')

j=1
- |:R(M, v) — ZA/'(M) ®@H;, Ar(u) @1+ 1®Ak(v)] =0.
j=1
Using the integrability condition
A1 (u) — 9 Ag(u) + [Ar(u), Ajuw)] =0 (11)
that follows from Eq. (10), this can be rewritten in the form

R, v) = > 8 Ax) ® Hj — [R(u,v), Ar(u) @ 1+ 1® Ac(v)]
j=1

+ Y Ajw) ® [Hj, Ax(v)] =0. (12)
j=1
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In order to compute the content of Egs. (11) and (12), we shall in what follows expand the
gauge potential according to

Ajw)=A) @) + Y AW Eq, (13)

aeA

which allows us, in particular, to decompose Eq. (11) into its Cartan part

8L A] () — 8 AL ) + Y AL () A (u)Hy =0 (14)
aeA

and its root part
0, AT (u) — 8, AF (u) + oe(AZ (u))A}x(u) — oz(Alh (u))Az(u)

+ > Npy AL @Al () =0. (15)

B,yeA
B+y=a

In what follows, we shall analyze under what conditions this system of equations admits
solutions when we insert the explicit expressionsRogiven in Ref. [1] and evaluate the
commutators in Eq. (12) using the usual abbreviatipr= «(H;) and the relations
[Hj®HjaEa®1]=aan®H'a
[Hi®Hj, 10 Ey]l=0a;H; ® E,4 (16)
(no summation ovey),

[F,®E,, Hi®1] =0,

[Fy, ®E),1Q Hj]l=~y;F, ® Ey,

[Fy ®Ey, Es®@1]=68(F))Es ® Ey,

[F,®E,, 19 E,1=0,

[F, ®E),1QE_,]=F,® Hy,

[Fy ® Ey,1® Es]|=NysF, @ Eyys if y+8#0 17)
(valid for any set of generatot§, belonging to the Cartan subalgeljsand

(E, ®E_,,Hj®1=—y;E, @ E_,,
[E,®E_), 1@ Hjl=y,E, ® E_,, (18)

[E,®E_,,E, ®1]=0,
[EyQ@E_),Es®1=NysE, 1 s®E_, ifyxds#0, (29)

[E,®E_,,1®E/,]=—-E,®H,,
[Ey ® E—y, 1® E—y] = 0,
[EyQ@E_),1QEs]=N_,sE, ® E_,45 ifyx§#0. (20)
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The second step would be to determinetself and, from there, find.’ and R’: this
guestion will be addressed elsewhere in order not to overload our presentation here.
Concluding this section, let us for later use collect the functional identities satisfied
by the coefficient functiond., that appear in Eqg. (9) above. For the degenerate models,
Ly (q,u) =ig,w(a(q)) wherew is an odd function of its argument,
w(—t) =—w(), (21)

that satisfies the differential equation

as well as the functional equation
/! /

t

(w (s) LY (0

w(s) w(t)

already employed in Ref. [1]. For the elliptic models,(g, u) = ig, P (x(q), u) where®
and the closely related Weierstrass zeta function satisfy the symmetry properties

)w(s~|—t)+w(s)w(t)=0, (23)

D(—z1,—22) = —P(z1,22),  ¢(=2)=—¢(2) (24)
and the functional equations

D(s,u)®(—=s,u) =¢'(s) — ' (w), (25)

D(s,u)P ' (—s,u) — D (s, )P (—s,u) =—,"(s), (26)

D (s, u)D (t,u) — D' (s, u)D(t,u) = —(g’/(s) — g’/(t))(b(s +t,u), (27)

D(—s,v—u)P(+1t,v) +DP(—t,u—V)P(s+1t,u)=—D(s,u)P(t,v), (28)

D(—s,u —v)P(s,u) + ({(v —u)+ é‘(u))d?(s, v) =D/ (s,v), (29)
already employed in Ref. [1], as well as the additional functional equations

D' (s,u) = (S(s +u) — ()P (s, ), (30)

D (s, )P (1,u) = ($() + () +Cw) — (s + 1 +u)P(s + 1, u), (31)

where®’ denotes the derivative @ with respect to the first argument; all of these can be
derived from the representation @fand¢ in terms of the Weierstrags function:

o(z1+22) o'(2)

—, {(x)= :

0(21)0(22) o (2)

Note that in the degenerate case, the spectral parameter drops out. In fact, all of the
calculations to be presented in what follows can be carried out for the degenerate case

in exactly the same manner as for the elliptic case, provided one performs the following
substitutions:

P(z1,22) =

D(s,u), (s,v) —  w(s),
W)
w(s)’

é’(u)7 é’(v)? é’(u_v)7 {(U_M), C(S_'_M)? C(S+t+u) g 0. (32)

D(s,u—v), ®(s,v—u), ¢(s)
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Therefore, we shall suppress the calculations for the degenerate models, except at the few
points where substantial differences arise.
3. Calogero modelsfor semi-simple Lie algebras

According to Ref. [1], the standard Lax matrixand the dynamicak-matrix for the
Calogero models associated with the root systeof a simple complex Lie algebgaread

L= ZPJH +Z|ga a(‘]) as (33)
acA
R=Y wlo@)h® bt 3 2D g op (34)
acA acA (Ol(q))

for the degenerate model and

Lw)y=) pjHj+ Y igu®(a(q).u)Eq. (35)
j=1 aeA

R, v)=-Y (¢u—v)+¢)H; ® H;

j=1

+ Z @(a(q), U)Fa ® Ey
aeA

— th(a(q),u—v)Ea@Efa, (36)
aeA

for the elliptic model. As has been shown in Ref. [1], integrability requires the generators
Fy € br appearing in Egs. (34) and (36) to satisfy the constraints (1). Moreover, writing
:l: 1
Fa ZE(Fa:l:Ffa% (37)
we also impose the condition
a(F;) =0, (38)

which follows from Eq. (1) by settinggd = —a when g, # 0 but turns out to be true in
general, independent of this hypothesis.

In order to compute the content of Egs. (11) and (12), we further expand the Cartan part
of the gauge potential according to

A?(u) =" Ak Hy. (39)

k=1



442 M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435-483

Then inserting Egs. (36), (13) and (39) into Eq. (12), we obtain

0= Zak¢ a(q), ) ® Eq —Zaktp alq), u—v)E QE_4

aeA aeA

—Za A)(q,u) ® Hj — ZZ& A{(q.u)Eq ® Hj

j=laecA

+ Z D (¢ —v) + () Af(q. 0 H; ® Hj, Eq ® 1]

j=laecA

+) D (C—v) + () Af (g, v)[H} @ Hj, 1® E4]

j=laecA

—ZZ (7(@).v)Al(q. w)[F, ® Ey, H; ®1]

j=lyeA

_2245 (@) v)Al(q. V[ Fy ® Ey, 1® Hj]

j=lyeA

— Y 2(y(q).v)Alq. wWIF, ® Ey. Es @ 1]
y,0€A

— Y o(v(@).v) AL, V)IFy ® E, . 1® E;)
y.6€eA

+ZZ@ y(q).u—v)Al(q.w)Ey ® E_,, Hj ®1]
j=lyeA

+ZZ¢ v (@).u—v)Al(q, V)IE, ® E_y,1® Hj]
j=lyeA

+ ) D(y(@).u—v)Ai g WIEy ®E . Es®1]

y,0€A

+ > @(y(q).u—v)AY(q. v)[E, ® E_y.1® Ej]
y,0€A

\
+Y0 ) @AY G v)A) G 1) ® Eq

j=laecA

+3°3 BiA%G. AL (q.v)Ea ® Ep.

j=la,peA

Using Egs. (16)—(20) to carry out the commutators, together with the relation

Zaj Hj=H,, (40)
j=1
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we can collect the terms to identify the components of Eq. (12) along the various subspaces
of g® g: those alondy @ H; (1< j <r),

8 AN (g 1)+ Y o (ar(q), v) AL (g, v) Fa =0, (41)

aeA

those alond) ® gy (o € A),

;@' (a(q), v) Fo + (¢ (u — v) + £ (v)) AF (¢, v) Hy

+@(a(g).v)a(A)@. V) Fa— Y Nys®@(y(@).v)Alq. v)F,

y,0€A
y+i=a

— @ (—a(q).u—v)AL(q. ) Ha + Y ;A% (q.v)A (q.u) =0, (42)
j=1
those along, ® H; (€ A, 1< j <),
3jAY (g, u)+a;P(alg), u —v)A(q,v)
—ocj(é‘(u—v)~|—§‘(v))A%(q,u)=0, (43)
those alongl, ® gy (o € A),

a(Fo)®(a(q), v) Af (g, u) — Y e A%(q, u)Af (g, v) =0, (44)
j=1

those alongy ® g—o (@ € A),
@' ((q), u — v) + a(F_a)®(—(q), v) A (g, u)
+ @ (a(g), u —v)(a(A] (g, ) — (4] (g, v)))

i
+3 0 A%, u)A ¥ (g, v) =0, (45)
j=1

and finally those along, ® gg With @, B € A, = 8 #0,

a(Fp)®(B(q), v)AL(g, 1)
— Nop (@ (a(q), u —v) AP (g, v) — D(=B(q), u — ) AL (g, 0))

—Y " BiAYq. )AL (q.v) =0. (46)
j=1
This is a complicated set of equations which we shall solve in a series of steps.
We begin by considering the differential equation (43) for the root part of the gauge
potential, which by using the functional equation (29) (withndv interchanged) is seen
to have the simple solution

A¥(q,u) = @ (a(q), u)ag, (47)
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where the coefficients; are constants that must be determined from the remaining
equations. For what follows, we shall find it convenient to assemble these constants into a
vector inhr by writing, for anya € A,

.
aa=Za‘}’Hj, (48)
j=1

so that of course
Cl/? = (Hk’aoz)~ (49)

In analogy with Eq. (37), we also introduce the abbreviation

1
a(f = E(aa +a_g). (50)
Now we are ready to state the first main result of this section.
Proposition 1. The integrable Calogero model associated with the root system of a simple
complex Lie algebrg admits a gauge transformatiog from the standard Lax pair of
Olshanetsky and Perelomov and the dynamitahatrix of Ref[1], as given by Eq$33)—

(36), to a new Lax pair with a numericak-matrix if and only if the set of generators
Fy € br appearing in Eqs(34) and (36) satisfies the algebraic constraints

a(F+) =0, (51)

€
F, =—H,, (52)
V2la|

a(Fp)Fo — B(Fo)Fg = NopFutip

for «, B € A such thatg # +a, (53)
as well as the additional algebraic constraints
> Hy®Fy ® F 4 =0, (54)
aeA
Z NpyFg® Fy, =Hy ® Foy — Fo @ Ha, (55)
B.yeA
B+y=«a

to be imposed in the case of the elliptic model, whefe= 1/2(F, + F_,) as above, with
€« = £1. Inthis case, the root part and the Cartan part of the gauge potengiat g 1o, g
associated with this gauge transformatigare given by

*(q) = w(a(q))(Hk, Fy), (56)
and
A=Y YD) g, (57)
k w(a(q))

aeA
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for the degenerate model and by

AL (q.u) = @ (a(q). u) (Hy. Fu), (58)
and
Alq.u) == ¢ (@) (Hi F-a) Fo — £ () Hy, (59)
aeA

for the elliptic model.

Note. As we shall show after completing the proof of Proposition 1, Eq. (53) forces all
rootse in A to have the same length (which by convention we fix toJ#) and also
allows for a choice of basis in which the signsare independent ef so that Eq. (52) can

be simplified as follows:

1

Proof. With the vector notation introduced above, we can first of all reduce Eq. (44) to a
single algebraic constraint:

a(aq) = a(Fy). (61)
Note that replacing by —« and adding/subtracting the two equations, we get

OZ(F;) = (x(a;), (62)

a(Fy ) =alay). (63)

Using Eq. (38), the first of these can be sharpened as follows:
a(Fj):O:a(a;). (64)

Next, inserting Eq. (47) together with the functional equation (25) into the differential
equation (41) for the Cartan part of the gauge potential, we see that this equation can be
solved by setting

Aqo) ==Y ¢(a(q))agFo —a) (), (65)
aeA

where thea,? (u) are constants that must be determined from the remaining equations,
provided we assume the coefficienfsto satisfy the relation

Zaja,:“Fa:O forl<j, k<r (66)
aeA

Converted into a tensor equation, it reads
Z H,® Fy®a_q =0, (67)
aeA

which leads back to Eq. (66) by taking the scalar product wthin the first and with
H; in the third tensor factor. Note that in the degenerate case, the same argument works,
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but Eq. (66)/(67) is not needed. Similarly, inserting Eq. (47) together with the functional
equation (29) into Eq. (45), we obtain

ar (=P (a(q), u)®(a(q), —v) + (¢ W) — £ (v)) @ (a(g), u — v))
— a(F_o)af @ (e(q), u) @ (a(q), —v) — D (er(q), u — v) (o (af @) — (a) ()))
— a(aa)ak_a@((x(q), u)@(a(q), —v) =0.
Obviously, the terms proportional th(a(g), u — v) cancel provided we set
af (u) = ¢ (u) Hy, (68)
and the remaining terms cancel if we impose the relation
o + a(F_g)ay + a(aq)a,* =0. (69)
Converted to a vector equationfii, it reads
Hy +a(F_g)ag +a(ag)a_q =0, (70)
which leads back to Eq. (69) by taking the scalar product withEven simpler to handle
is Eq. (46), which by insertion of the functional equation (28) reduces to the relation
a(Fp)af — Ny pal P — Blag)al =0
for «, B € A such thaip # +a. (72)

Converted to a vector equationfii, it reads

a(Fg)ay — Ny pag+p — Blag)ag = 0
for «, B € A such thaig # +«, (72)
which leads back to Eq. (71) by taking the scalar product \ith
Before proceeding to the solution of the remaining equations, let us pause to draw a few

consequences of the algebraic constraints (61)—(64) and (69)/(70) derived so far; this will
help us considerably to simplify our further work. First of all, Egs. (61)—(64) state that

a(Fo) = —a(Fy) = —a(aa) = a(d—qa),
implying that Eq. (70) can be reduced to
a(aq) (@ — a—g) = Hq.
Applying « to this relation and using the previous equation again, we conclude that

(ag) =€ o] and a Co
a(ay) =€q——= a, =

V2 V2]al
wheree, = €_, is a sign factor £1). Next, we simplify all these equations by showing
that Egs. (71)/(72) and (73) in fact force the vecigysand F, to be equal. To prove this,
we begin by symmetrizing Eq. (72) with respect to the exchangeaofd 8, obtaining

H,, (73)

a(Fg —ap)aq + B(Fy —ag)ag =0.
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Symmetrizing with respect to the exchangesadind— g8 and inserting Eq. (73) gives
a(Ff —a})ay + ——PB(Fy —aq)Hg =0. (74)
(75 =) f 2181

Symmetrizing again with respect to the exchange ahd—« and inserting Eg. (73) then
leads to

«(Fg —ag)Ha (Ff —al)Hg=0.

f 2|l f 2Bl
But H, andHj are linearly independent since, as stated in Eq. (72), the soatsl g are
supposed to be non-proportional, so the coefficients must vanish separately, that is, for any
two rootsw, 8 € A, we have

B(FS —af)=0

wheneve is not proportional ter and, according to Eq. (64), also whgiis proportional
to a. SinceA generated, this simply means that] = F,'. Inserting this conclusion
back into Eq. (74) and applying once more the same argument, we arrive at the result
thata, = F,. With this result, Egs. (61)—(63) and (70) reduce to trivial identities whereas
Egs. (64), (73), (72), (67), (47) with (49) and (65) with (68) assume the form given in
Egs. (51), (52), (53), (54), (58) and (59), respectively.

Let us summarize the results obtained so far. With the exception of Eq. (42), the system
of Egs. (41)—(46) has been completely solved in terms of the explicit formulae (56)—(59)
for the gauge potential with the explicit formula (52) for the odd ggrtof the coefficient
vectorsF, and the algebraic constraints (51), (53) and (54). Thus we are left with the task
of verifying the implications of Egs. (14), (15) and (42).

Beginning with Eqg. (14), we use the functional equation (25) to compute

0, A (q.1) — A (g u) + Y A(g 1) A (q,u) Hy

aeA
=" ¢'(a(q) (o (Hy, F-o) Fo — i (Hy, Fo)) Fy)
aeA
+ Y D((q), u)®(—a(g), u)(H, Fa)(Hy, F-q) Hq
aeA
1
=52 (a@)(+er(Hp. F-o) Fa — 1 (Hy, Fo) Fa
aeA

—ai(Hp, F_o) Fy +ap(Hp, Fo) F_g
+ (Hk, F(Jl)(Hla F—a)Ha - (Hk, F—a)(Hly Fa)Ha)

—¢'(u) Y (H, Fa)(Hi, F—o) Hy

aeA

= "¢/ (a@)(~au(Hy. Fy ) F + o (He, Fy ) Fy
aeA

+ax(Hy, Fy ) Ff — o (Hi, FY)Fy

o

+(He P (Hi. FF) H— (He. F) (Hi. F ) Ho)

o

—¢'(u) Y (H, Fa)(Hi, F—o) Hy

aeA
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and can use Egs. (52) and (54) to verify that the terms under the first sum cancel mutually in
pairs whereas the second sum vanishes. Note that in the degenerate case, the same argument
works, but Eq. (54) is not needed.

For the proof of Eq. (15), the trick is to split the sum over roptsoming from the
third and fourth term into contributions with = «, which cancel mutually, contributions
with 8 = —«, which combine with the contributions coming from the first and second
term (transformed using the functional equation (30)), and the remaining contributions
with 8 # +«: these can be complemented by terms that also cancel mutually (marked by
underlining) and then be combined with the contributions from the fifth term (transformed
using the functional equation (31)):

0, A (g, u) — 0,A%(q, u) + a(A) (g, 1)) A% (g, u) — a(A] (g, u)) A% (g, u)

+ 3 Npy AL (gAY (q )

B.yea
Bty=a

— &/ (a(q), u)ax(Hy, F) — @' (a(q), u)or (Hy, Fo)
+&(ag), u)(Z ¢ (B(@))e(F—g)(H, Fg)(H, Fo) — £ W)k (Hi, FO,))

BeA

— @ (a(q),u) ( Z ¢ (B(@))a(F-g)(Hy, Fg)(H, Fo) — ¢ (w)ay (Hy, Fa)>

BeA

+ > Nys®(y(q). u)D(5(q). u)(He, Fy)(H, Fs)
y,saeA
y+o=a

= (@' (a(q),u) — ®(a(q), u)sw))((Hy, Ho)(Hy, Fo) — (Hy, Ho)(H, Fa))
+ @ (a(q), u)¢ (a(q))
x (+o(F—o)(Hi, Fo)(H;, Fo) — o(Fo)(Hy, F—o)(Hy, Fy)
— o(F_q)(Hy, Fo)(Hi, Fo) + a(Fo) (Hy, F—o))(H, o))

+@(ag).u) Y t(B@)(Hi, Fg)(e(F-p)(Hy, Fo)) + B(Fa)(Hy, F—p))

peA
B#+ta
— ®(alg).u) Y C(B@)(Hi, Fp)(a(F_p)(Hi, Fo) + B(Fo) (Hi, F-p) )
o
+ @ (@), u) Y (¢(v@)+¢(5@))Ny.s(Hy, Fy)(Hy, Fy)
i
— @ (alg). u)(¢((q) +u) — @) Y Nys(H. Fy)(H, F)
y.8€A
y+é=a

= & (a(q), u) (¢ (a(q) +u) — ¢ (a(q)) — W)
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x ((Hi, Ho) (Hi, FF) — (He, FY)(Hi, Hy)
—20(Fy) (Hi. F ) (Hi. F) + 2(F)) (Hi, ) (Hi. F;)
+ @ (a(q). u) (¢ (eg) +u) — ()

(zoe( O)(He, Fy) (Hi, B) — 20(Fy ) (He EF) (Hi. Ey)

Y Npy(Hy, Fg)(H), Fy)>

B.yeA
Bty=a

®(alg),u) Y ¢(B@)(Hy, Fp)
ot

x (Hi, a(F_g)Fo + B(Fo)F—p + Np.o—pFu_p)
— ®(a(q).u) Y ¢(B(q@))(Hi, Fp)

BeA
BF#Ea

X (Hk, a(F_g)Fy +B(Fy)F_p — Na,fj,ija,ﬂ).

The last two terms vanish due to Eg. (53), while the first term vanishes due to Eqg. (52).
The same reasoning shows that the second term will vanish provided we impose the
condition (55). Note that in the degenerate case, the same argument works, but Eq. (55)
is not needed.

The proof of Eq. (42) proceeds along similar lines, using the functional equations (29)—
(32):

a; @' (a(q), v) Foy + (£ — v) + £ (v)) A (g, v) Hy

+@(a(g). V)a(A) (@ 0))Fu— Y Nys®(r(q).v)Adq. v)Fy

y,0€A
y+é=a

— O (—alq).u—v)AL(q.u) Hoy + Y A% (q.v) A (g, u)
j=1

=@ (a(q), v)oax Fo + ($(u —v) + $(v)) D (a(q), v) (Hk, Fo) He

+ @ (alg),v 24“ B(@))a(F-p)(Hy, Fp) Foy — @(a(q), v)¢ (v)x Fy
BeA

3 Nys®(r(@).v)@(5(q). v) (Hi, Fy) Fy
y,0€eA
y+é=a

?(—a(g), u—v) (ce(q). u)(Hy., Fy) He,

— ®(alg),v ZZg B(@))aj(Hj. F_p)(Hy. Fy)Fp

j=1BeA
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— ®(a(g), v)c() Y o (Hy, Fo) Hj

j=1
= (@' (a(q),v) — P((q), v)¢ (v))(Hi, Hy) Fy
+ ((Cw—v)+ 1) — )P (alg), v)
— &(—a(g).u —v)P(a(q). u))(Hi. Fo)Hy
+ @ (a(q). v)¢ (2(q)) (+e(F-o) (Hi, Fo) Fy — a(Fo)(Hi, F—o) Fy
— a(F_o)(H, Fo) Fo + 0(Fy)(Hy, Fo) F—y)

+ @ (@), v) Y ¢(B@)(Hi. Fp)(a(F_p)Fa+ B(Fo) F_p)

BeA
B#+a
—®(a(g),v) Y ¢(B@)(Hr,a(F_p)Fu+ B(Fa)F_p)Fp
fita
—®(a(q),v) Y (€(r@)+(5(@))Ny.s(Hi, F5)Fy
y,0eA
y+é=a
+ @ (), v) (¢ (@) +v) —¢() Y Nys(Hi, F5)Fy
y,0eA
y+é=a

=& (a(g),v)(¢(a(g) +v) — ¢ (a(@) — ¢ (V)
X ((Hk, Ho) Fo — (H, Fo) Ha)

+ @ (a(9). v)¢ (a(@))2a(Fy ) ((Hy, Fy ) B — (Hi, Fy)Fy )
+@(alg).v) Y. ¢(B@)(Hi. Fp)

BeA
BF#+a

X (@(F-p)Fo + B(Fo) F—g — No—p g Fou—p)
—®(ag).v) > ¢(B@)

BeA
BF#+a

X (Hi, @(F_p)Fy + B(Fa)F—pg + Np.o—pFa—p) Fp
+®(a(q),v) (¢ (@) +v) —¢@) Y N, s(Hy, F5)Fy

y,0eA
y+é=a

=@ (a(g), v) (¢ (a(g) +v) — ¢ (v)

X ((EQa}ﬂolb'_(}ﬂn]%)}ﬂx_' ZE: A&Ly(f&»f%)F}>,

B,yeA
B+y=a
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where in the last step, we have used Egs. (53) and (52). Again, this expression will vanish
provided we impose the condition (55). Note that in the degenerate case, the same argument
works, but Eq. (55) is not neededn

Having concluded the proof of Proposition 1, we pass to analyzing the implications
of the algebraic constraints that we have derived. As it turns out, the conditions stated in
Proposition 1 are sufficiently strong to allow for a complete classification of all possible
solutions. As a by-product, we shall be able to reduce Eq. (52) to the form given in Eq. (60).

Afirst step in this direction is taken by observing that the signthat appear in Eq. (52)
may without loss of generality be assumed to be independent of

€, =¢ forallaeA. (75)

This freedom of choice follows from the possibility of performing a transformation that
changes the signs of the root generators without modifying any of the relations between
generators and structure constants used in the preceding calculations: it is given by

E, —> E| =¢€yEq,
Hy — H. =H,
€€q€p
N, — N = Ny g,
w.p Wb = ey Nt
Fy —> F,=¢eyFy

and, omitting the primes, brings Eq. (52) into the form

€

=
Next, let us write down the system obtained from Eq. (53) upon replacing—« andj
by —B:

a(Fg)Fy — B(Fo)Fg = No pFyip,

a(F_pg)Fy + B(F)F_g =Ny —pFo—p,

—a(Fg)F-o¢ — B(F-o)Fg=N_q gF_o+p,

—a(Fg)F o +B(F_o)F g=N_o pgF 4 8. (77)

Adding these four equations gives

H,. (76)

_ 1 _ 1 _
a(F;)FJ - ﬂ(F(;r)Fﬁ = _Na,ﬂFa+ﬂ + _Na»—ﬁFa—ﬂ-

2 2
Inserting Eq. (52) and separating the coefficientélpfand Hg, we conclude that
1 1 1
—28(Ff)= ———Ny_p— ———Nap, 78
g1 P e) = g Nes — gy N (78)

plus the same equation with and 8 interchanged. It is to be noted that this derivation
is only valid wheng # +«, as stated in Eq. (53): this supplementary condition is also
needed in order to guarantee thidj and Hg are linearly independent but can in fact
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be eliminated from Eq. (78) since this formula is automatically satisfied vhent-«.
(Indeed, forg = +« the r.h.s. is understood to vanish sineedhd 0 do not belong to the
root systemA, whereas the I.h.s. vanishes as a consequence of Eq. (51).)

The algebraic equation (78) is identical with a special case of Eq. (42) of Ref. [1],
obtained by replacing the coupling constantdg 1/|y|. As has been shown in Section 2.2
of Ref. [1], there is only one type of simple complex Lie algefpfar which there exists a
solution, namely those of thé-series. In particulag is simply laced, and all its roots have
the same length, which according to our convention equdsand Eq. (76) simplifies
to the form given in Eq. (60). Explicitly, ify = sl(n, C) with hr consisting of the real
diagonal(n x n)-matrices, we have\ = {a,p | 1 < a # b < n} with aup(H) = Hyq — Hpp
for H € b and takeE,,, = E,» WhereE,; is the matrix whose entry in theth row and
bth columniis 1 while all other entries are 0; then the structure consié&pis; = Nu,;, .y
are given by

Nab.cd = 8be — 8ad; (79)
and writing F;, = F, , we have

F,= —%(Eaa + Epp) + %1,,, (80)
and

Foy = 5(Eaa = Enp). (81)

implying that fore = +1,
1

Fap = —Epp + ;11% (82)
while fore = —1,
1
Fab:_Eaa+_1n~ (83)
n

It is then easy to check thd, as defined by Egs. (80)—(83), satisfies all the conditions
stated in Proposition 1. To see this, assume for simplicitydkati-1 (noting that the case

¢ = —1 can be obtained from this one by replacifigby F_,, which does not affect the
validity of any of Egs. (53)—(55)). Then assuming, for example, ¢hate,;, andg = a4,

the Lh.saup(Feq) Fup — tca(Fap) Fea and rN.SNyp, cq Fu,p+a., Of EQ. (63) are both equal

to
1 1
6ad (Ebb - _111) - abc(Edd — _111),
n n

except whem = d andb = ¢ (8 = —a), where the r.h.s. is understood to vanish while the
I.h.s. does not. Similarly, the formula

u 1
Z(Eaa - ;111) = 0,

a=1
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allows us to verify Egs. (54) and (55): the L.h.s. of Eq. (54) becomes

1 1
Z (Eaa — Epp) ® (Ebb - ;1,,) ® (Eaa _ ;1n>

1<a#b<n

n

1 1
== ZE““ ® (Efm - _1n> ® (Eaa - _111)

n n

a=1

+ ZEbb ® (Ebb - —1n> ® (Ebb — —1n>,

n n

b=1

which vanishes as required, while that of Eq. (55),dot o5, becomes

E (Fac®Fcb_Fcb®Fac)
1<esn
c#a, c#b

1 1 1 1
= Z (Ecc - _111) & (Ebb - _111) - (Ebb - _1n> ® (Ecc - _1n>
n n n n
1<esn
c#a, c#b

2 1

= _<Eaa + Ebb - _111) Q (Ebb - _111)
n n
1 2

+ | Epp — ;1,1 ® | Eaa + Epp — ;1;1

1 1
= _(Eaa - Ebb) ® (Ebb - ;111) + (Ebb - ;1n> ® (Eaa - Ebb)
ab @ Fap — Fap @ Hyp,

as required. In this way, we have rederived the main result of Refs. [5,6], which states
that the dynamicaR-matrix of the integrable Calogero model associated with the root
system of the simple Lie algebga= sl(n, C) of the A-series can be gauge transformed to

a numericalR-matrix.

4. Calogero modelsfor symmetric pairs

According to Ref. [1], the standard Lax matrixand the dynamicak-matrix for the
Calogero models associated with the root systewf a symmetric paicg, 0) read

L= Zp/H + 2 19aw(2(@)) Ea (84)
Jj=1 aeA

R= Z (¢(@)Ke ® Eee+ = Z w((z((qq)))) (Ea ® o+ Epa ® E_q).  (85)
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for the degenerate model and

Lw)y=)» pjHj+ Y igu®(a(q).u)Eq. (86)
j=1 acA

1
R(u,v) ==3 E (é‘(u — U)+§(’4+U))Hj ® Hj
=1

1
- 5(;<u —v) — {(u+v) + 20(v))Cy

+ Y ®(a(q), v)Ke ® Eq
acA
1

52

aeA

((p(a(Q)vu - U)Ea QFE_+ (P(Ol(q), —u— U)Eea ® E—a)y

(87)
for the elliptic model, wherer = AgU A with

Ap={a e A|bau=0ua},
A ={aecA|ba#al.

As has been shown in Ref. [1], integrability requires the genera&grs ibg appearing in
Egs. (85) and (87) to satisfy the constraints (2). Moreover, writing
1
KE= > Ko £ Ko), (88)
we also impose the condition

a(Kf)=0 fora e Asuchthaba —a ¢ A, (89)

which follows from Eq. (2) by settinggd = —a when g, # 0 but turns out to be true in
general, independent of this hypothesis.

Before proceeding with the calculations, we pause to note that4imatrices given by
Egs. (85) and (87) have certain symmetry properties with respect to the automogphism
that we want to be preserved under the gauge transformati®f(iQ v): in the degenerate
case,R takes values ifi ® m whereas in the elliptic cas®(u, v) is even under the action
of # ® 1 and odd under the action ofglé when these are combined with a change of sign
in the corresponding spectral parameter. This can be achieved by imposing a restriction on
the action o® on g or, equivalently, on the gauge potentidlg: in the degenerate casg,
should take values iR and theA ; should take values ity whereas in the elliptic case, we
require that

Q(g(—u)) =g(u), Q(Aj(—u)) =A;u), (90)
or in terms of the components of the gauge potentials in the expansion (13),

0(A](—w) =AW, AT (—u) = A (w). (92)
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In order to compute the content of Egs. (11) and (12), we further expand the Cartan part
of the gauge potential according to

r+s

Ay =" Ak Hy. (92)

k=1

Then inserting Egs. (87), (13) and (92) into Eq. (12), we obtain

0= a®'(a(g). v)Ky ® Eq

acA
1
-5 Z ;@ (e(q), u —v)Eq ® E_4
acA
1
-5 Z ;@' (e(q), —u — v) Eoa ® E_q
ach

—Za A)(q,u)® Hj — ZZ& A{(q.u)Eq ® Hj

j=lacA

1
+ 5;;(5(” — )+ (u+v)AY (g, w)H; @ Hj, E, ®1]

1 r
520 2 (E =)+ Cw+ v) Af g IH; © Hj. 1@ Ea]

j=laeA
r+s
5 D (E =) = Ll +v) + 2 ) Af(g. 0)ICy. Hy @ 1]
j=1
r+s

+5 D (E =)~ £ +v) + 2 0)Al(q. v)IC;. 1® H))
j=1

1
5 2 (C =) = £+ v) + 26 () Af (g, wIC;. Ea ® 1]

aeA

1
+5 2 (6 —v) = £ +0) + 2 ) Af (g, v)[C;, 1® Eo]

aeA
r=+s
3N o(r@).v)Al(q. WKy ® Ey, H; ®1]
j= lyeA
r=+s
33 o(r@).v)Alq. VIKy ® Ey. 1® H;]
j= lyeA
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— Y ®(v(q).v)A}(q. WKy ® Ey. Es ®1]

yeA
e/

— Y ®(y(g).v)A}(q. V)IK, ® Ey, 1® Es]

yeA
jeA

r+v

£33 Y ol @.u— )AL 0, @ H @1
J 1yeA

1 .

5202 @) u— )AL VIE, © E—y. 10 Hj]
i=lyeA
r4+s .

+EZZ‘p(y(Q)»—u—v)Ai(q,u)[Eey®E,,,,Hj®1]
i=lyeA

1 .

+5 2D @(y@). —u—v)Al(q. V) Eay @ B, 1@ H]
J=lyeA

1
+5 > @(v(g).u—v)Aq. WIEy ® E_y, Es ®1]

yeA
seA

1
+5 > ®(v(g).u—v)A(q. v)IEy ® E_,, 1® Es]

yeA
seA

1
+5 2 (@, —u—v)AYq. W[ Egy ® Ey. Es@ 1]

yeA
seA

1
+5 2 2@, —u—v)Aq. V[ Egy ® Ey. 1® Es

yeA
seA

,
+Y > AL (g, v)A) (g, u) ® Eq

j=laeA
,
+3° 3 BiA%G. WAL (q.v)Eq ® Ep.
j=la.peA
Using the definition of’;,

r+s

Caz Z Hj®Hj+ZEa®E7a» (93)

j=r+1 aeAg
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and Egs. (16)—(20) to carry out the commutators, together with the relation

r4s r+s
Z‘XJHJZHO” ZO{/ i = (Hg)a, Z ajH —(H )b (94)
j=1 j=r+1
we arrive at
0= a®'(a(g). v)Ky ® Eq
ach

——Za;ﬂﬁ o(g), u — ) R E_4

acA
1
-5 Zak¢/(a(q), —u—v)0E, ® E_4
ach
—Za A(q,u)® Hj — ZZ& A%(q,u)Eq ® Hj

j=laecA

+3 Z D aj(t—v)+ L +v)AY (g u)Eq ® Hj

J=laecA

+%ZZaj(g(u—v)—i—é‘(u—i—v))Az(q,v)Hj@Ea
Ji=lacA
r+v )
——Z D oi(E —v) =L +v) + 2 () Al (g, 1) Ea ® E—
j=laeAg
1r+s )
+ EZ D ej(c—v) = ¢+ v) + 20 ()AL (q. V) Eg ® E_y
j=laeAg
1 r4+s
+3 D0 (e —v) =+ v) + 20 (1)) Af (g, u) Eq ® H,
j=r+lacA
1 r4+s
+3 D0 (e —v) =t +v) + 2 (1)) A (q. v)H; ® Eq

j=r+lacA

1 —
+ EyZA: (Cw—v)—Cu+v)+20W)A, " (g, w)H, ® E_,
€40

1
+ EyZA: (£(u—v) = ¢(u+v) + 20 ()AL (g, v)E, @ H_,
€40

D Npe(t—v) =+ ) + 2 )AL (g, WEy 1o @ E—y

a€A, yeAy
at+yeA

NI =

+
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1
t5 0 D Noya(t—v) = +0) + 2 0)Af (G VEy ® E-y 1

a€eA, yeAy
a—yeA

r+s
+3 3 yie(r(@).v)Al(q. VK, ® E,

j=lyeA

— Y 8(K)P (v (), v) A (g, W) Es ® E,

yeA
seA

~- > o (v(@).v)A (@ VK, ® H,
yeA

— Y M@ (r(@).v)ALq. VK, ® Eys

yeA, seA
y+deA

r+v
——ZZV] (y(@.u—v)Ai(q.wWE, ®E_,
i=lyeA
r+v
+3 ZZy, (y(@).u—v)Aj(g. V)Ey ® E_,
J lyea
r+s )
——ZZ(ew, (y(@). —u—v)Aj(q.u)0E, ®E_,
i=lyeA
1r+s )
+EZZ]ﬁ@(y(q),—u—v)A,/c(q,v)QEy®E_y

j=1y€j

1 _
+5 pr(y(q), u—v)A (g, u)Hy, ® E_,
yeA

1
t5 D Ns@(r@)u—v)A g WEy s ® Ey

yejﬁeA
y+déeA

1
+3 > @o(y@).u—v)Al(q.v)E, @ H,
yeA

1 3
t5 2 Noys®(r(@)u—v)AYG, Ey @ Eyys

yeA, seA
y—d8eA

1 -6
+3 Z@(y(q), —u—v)A, " (q,u)0H, ®E_,
yeA
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Z N@y,5¢(y(Q)7_u_v)A/i(Q7 M)E0y+8®E_y

yeA,seA
Oy+deA

1
+ > Z@(V(q), —u—v)A}(q,v)Es, ® H_,
yeA

1
+§ Z N—y,sfp()/(q),—M—U)Ai(q,v)an®E—y+5

)/EA~,5€A
y—8eA

)
+3°) A8 (q. A (g, 1) ® Ea

j=laeA
;
+3° 3 BiAYUG AL (q. v) Ea ® Ep.
j=la,peA

Relabelling summation indices and using cyclicity and antisymmetry of the structure
constants, we can bring this expression into the following form:

0= Z (xk@’(a(q), v)Ka ® Ey

acA

——Zak¢ (a(q),u —v)Eq @ E_q

aeA
— % Zak¢’(a(q), —u — v)@Ea ®E_,
acA
—Za Al(q,u)® Hj — ZZ& A% (q,u)Eq ® H,;

j=laeA

+5 LS S (st ) + 2t )AL 00 H

J=laecA

1 r
+ EZZ%(C(“—UHC(H@) %(q,v)H; ® Eq
J=lacA
1r+s .
=30 D (e —v) = £+ ) + 20 () A (g 1) Ee ® E-
j=laeAg
1r+s '
500 20 (£ =) = £+ v) + 2 @) Al(q. V) Ea ® E—
j=laeAg
1 r+s
+5 2 Y= ) — L+ v) + 2 )AL 1) Ea ® H

j=r+lacA
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r—+s

+5 ZZ“/ ¢ —v) = L +v) + 2 (1)) A (q, V) H; ® Eq

] =r+laecA

1
=5 2 (=) = £ +v) + 26 ()AL (g, 1) Ha ® Ee

a€Ap

1
=5 2 (£ =) = £ +v) + 2 )AL (g, V) Ea ® He

a€Ap

D Nap(cu—v) =g +v)+20w) Ay P (q.u) Ea ® Eg

aeA, BeAg
a+peA

NI =

1 o

5 2 N (£ — v) = £ +v) + 22 (0)) AL (g, v) Ee @ Eg
a€p, peA
at+peA

r+s

+ D3 @ (alg). v)AL(q. v)Ka ® Eq
i=lacA

— > a(Kp)@(B(9), v)Af (g, u)Eq ® Ep

agA
BeA

— Z @ (a(q), v) Ay (g, V) Ko ® Hy

aeA

— Y M@ (r@).v)ALq. VK, ® Eys

y€eA,seA
y+8eA

r+v

——ZZO[] a(q) u—v)A](q WEy ® E_qy
Ji=lacA
r+s

+5 ZZa, (@(g),u—v)A{(q, V) Ea ® E—g

J =1,
1r+s .
-5 DO O @(alg). —u—v)Al(q.u) 0Ea ® E_y
j=1aej

1r+s

+5 Y aj(elq). —u—v)Al(g. v) 0Ea ® E_q
J=lacA

1
-3 Zdﬁ(—a(q), u—v)A(q. u)Hy ® Eq

aeA
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Y Nap®(—B@).u—v)AL P (g u)Ea ® Eg

aeA,ﬂej
a+peA

2

1
-5 Zdﬁ(a(q), u—v)Af(q,v)Eq ® Hy
acA
1
+3 Y Nap®(alq) u—v) Ay P (g, v)Ey ® Ep

aej,ﬁeA
a+peA

1
-3 Z @ (—a(q), —u —v)AY(q, —u) 0 Hy ® Eq

acA

3 Nap®(—B@), —u—v) AL (g, ~u) 0B ® Ep

aeA,ﬂeA
a+peA

2

1
-5 Z @ (—a(g), —u —v)A(q. —v)Eq ® 0 Hq

acA

1 +8
+3 D Nap®(alg), —u—v)A{ ™" (q,v)0E, ® Eg

aeA,ﬁeA
a+peA

,
+Y0 ) @AL G v)A) G 1) ® Eq

j=laecA

+3° Y BiA%q.w)AL(q. v)Ea ® Ep.

j=la,peA

Noting that fore € Ag, we havex; =0 for 1< j <r and(Hy)q, = 0, we can now identify
the components of Eq. (12) along the various subspacg®af:

e The components along® H; lead to the following system of equations.
Forl<j<r:

8jAY(q.u)+ Y o (ar(q). v) A (g, v)Kq = 0. (95)

acA

Forr+1<j<r+s:

Z% (@(@), v)A; (g, v)Ka =0. (96)

e The components along® g, lead to the following system of equations.
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Foroa € A:
1
;@' (a(q), v) Ko + 5(;<u — ) +¢(u+v))AY (g, v)(Ho)a

1
+ 5 (5@ =) =L +v) + 20 () A (g, v)(Ha)g
+ @ (@) v)a(Al @ V)Ka — Y. Nys®(r(@).v)Adq. K,
yeA,seA
y+i=a
1 1
+ E@(a(q), v— u)A%(q, u)Hy, + E@((x(q), v+ u)A%(q, —u)0H,

+ Y ajAY(g. 1A (q.u) = 0. 97)
j=1

Fora € Ap:
1
E(C(u —v) = {(u+v) + 20 (v))(AF (g, v) — AR (q. u)) He
- Z NV,‘Sq)(V(Q)a U)A/‘i(q, U)Ky =0. (98)

y,Bej
y+é=a

e The components along, ® H; lead to the following system of equations.
Foraej, 1<j<r:

1
0; A% (@, w) = S0 (£ (u = v) + £ (u +v)) AT (g, )

1
+Eaj(q>(a(q),u—v)Ag(q,v)+q>(a(q),u+v)A%(q,—v))=0. (99)
Fora € Ao, 1< j<r:
djA¢(q,u)=0. (100)
Fora € A, r+1<j<r+s:
(¢ —v) = C(u+v) +20(v))Af (g, u)
- (q§(a(q), u— v)Az(q, v) — q§(oc(q), u-+ v)Az(q, —v)) =0. (101)
Fora € Apg, r+1<j<r+s:
A¥(q,u) — AY(q,v)=0. (102)

e The components along, ® gg lead to the following system of equations.
Fora € Ag andB = —a:

a(Af(g, 1) — A (g, 1) =0. (103)
Fora, B € Ap with « + 8 # 0, no new condition arises, due to Eq. (102).
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Fora € A, B € A:

%Na,ﬂ(g“(u —v) — L +v) + 20 () AV (g, v)
—a(Kp)®(B(q). v) AL (q. u)
F Nap(@(B@. v — )AL g0+ 9 (B@). v + )AL (g, )
+ Zr:ﬁjA‘}’(q, )AL (q,v) =0. (104)
j=1
Fora € A, B € Ag:
Nop (£ —v) = £ +v) + 20 () AF P (g, 0)
— Nap (@ (a(q). u — v) A} 7 (g v)
— @ (ag), u+v)As P (g, —v)) =0. (105)
Fora,B e A:if f=a # —0a:
a(Ka)®((q), v) Af (g, u)

1
— E1\790,,0,@(a(q), u+v) (AT (g, —u) — AL (g, v))

— Y 0 A%q.u)AY(q.v) =0, (106)
j=1
if 8 =—0« (independently of whetherfo # o or —9a = «):

1 .
S (a(q), u+v) —a(K_o)P(a(q), v) AL (g, u)

1
+ @ (a(g), u+v)(«(A (g, ) — Ba)(A] (g, v)))

2
1
_ E1\4%,_60,(@(—oz(q), u— )AL (g, u) — ®(a(g), u — v)AY (g, v))
+ Y ajA%g. WA (q.v) =0, (107)
j=1
if B=0a# —a:

a(Ko)®(—a(q), v) AL (g, u)

1
+ EN""Q“(D(“(Q)’ u —v) (AFT0 (g, u) — AFT (g, v))

+ > jA%g. u) AP (q.v) =0, (108)
j=1
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if 8 =—a (independently of whethéa # —a or b = —a):
1 , @
S (a(q),u —v) + a(K_o)®@(—a(q), v)Af (g, u)
1
+ 5@ (@), 1 —v) (@(Al g ) — (47 (q. v)))

1
- EN(,o,,,o,(qb(—oz(qy), u+v) AP (g, —u) — D (a(q), u +v) AL (g, v))

+) ajA%g. w)A; " (q.v) =0, (109)
j=1

if B #+a andp # oo
a(Kp)®(B(q). v)AL(q. u)

1 o o
— SN p(@(B(q), v —u) AP (g, u) + (a(q), u — v) AT (g, v))

2
1 o o
— 5N (® (@) u+ ) A" g, —u) — @ (). u +v) A (g v)
—Y " BiA%q. 1AL (q.v) =0. (110)
j=1

This is a complicated set of equations which we shall solve in a series of steps.
We begin by considering the algebro-differential equations (99)—(102) for the root part
of the gauge potential, which we claim to have the simple solution

D(a(q), u)My foraeA }’ (111)

My fora € Ag

%(q,u)={

where the coefficientd/; are constants that must be determined from the remaining
equations, subject to the constraint
M{* = —M{ forae A, (112)

imposed in order to guarantee the validity of Eq. (91). (The corresponding constraint for
a € Ag is empty.) Indeed, the statement of Eq. (111) doe Ao follows directly from

Egs. (100) and (102). Similarly, the statement of Eq. (111)dfar A is an immediate
consequence of Eq. (99) in the degenerate case but is somewhat harder to prove in the
elliptic case. To this end, we recast the functional equation (29) into the form

@(a(q), uF v)@(a(q), :i:v)
= (CFv) £L0)P(a(g), 1) — D' (a(q), u)

and use the ansatz

A¥(q.u) = ®(a(q), u)Mf (g, u) foraeA
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to rewrite the differential equation (99) in the form
D (a(q), u)dj Mg (q. u) + ;D' (a(q), u) MY (q. u)

1 o
= 59 (60— v) + L+ v) P (@), 1) M (g, 0)

1
+ 5 (S =) + @)@ (alg), u) — @' (@), u)) M (g, V)

1
+ 5 (@ +v) = ¢ )@ ((g), u) — &' (a(@), u)) M (g, —v) =0,
while the algebraic equation (101) takes the form

(& —v) = L(u+v) +2¢ ()P (al(q), u) M{ (g, u)
—((tw—v)+ )P (alg), u) — D' (a(q), u)) M (g, v)
+((¢(u+v) — C(v))@(oe(q), u) — @’(a(q), u))M,‘(’(q, —v)=0.
Both of these equations can be simplified by using the functional equation (30) and
subtracting1/2)«; times the second from the first, with the result that
M (g, u) =aj(Su—v)+ ) + ¢ (a(g) — ¢ (alg) +u))
x (M (g, u) — M{ (g, v)), (113)

while

(Cu—v) = ¢u+v)+20(0)) M (g, u)
— (¢ —v)+ () = ¢ (alg) +u) + ¢ (a(q)) M (g v)
+ (¢ +v) =) — ¢ (alg) +u) + ¢ (a(q)) M (g, —v) =0. (114)
Antisymmetrizing the last equation with respect to the exchangeaofd —u gives

(¢ —v)—¢u+v)+20(0) (M (g, u) — M{ (g, —u))
=(tu—v)+ ¢ +v)+¢(alg) —u) —¢(alg) +u))
x (M (q.,v) — M (q, —v)). (115)
In order to analyze the consequences of this relation, we shall use the identity
1p'(x) —p'()
+ - - = 5, <
(r+y) -t -t =5 o) —p0)

which can also be written as

C—v) — C+v) +20w) = —2
W) —p Q)
implying that

Su—v)+C+v)+&(s —u) — (s +u)
_ o' () ©' (W) _ P (p(s) —p )
P —p)  P6)—puw (P6)—ew)ip W) —pw)
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After rearranging coefficients, we conclude that Eq. (115) can be reformulated as stating
that the function
e ((q)) — o u)
o' (u)
is independent af. Puttingu = a(g), we see that it must actually vanish identically, which
is only possible if

(M]?(Q7 M) - M]?(Q7 —M))

M (q,u) — M (q,—u) =0.
Inserting this result back into Eq. (114), we get
Mg (q,u) — M7 (q,v)=0.

Now Eq. (113) implies thad/} is in fact a constant.
For what follows, we shall find it convenient to assemble the constants introduced in
Eqg. (111) above into a vector ity by writing, for anya € A,

r
My =Y M%H,, (116)
j=1

so that of course
My = (Hy, My). (117)
In analogy with Eq. (88), we also introduce the abbreviation

1
ME = > (Mo £ M o). (118)

Note that, fora € A, the generators/, € ap are in a sense complementary to the
generatorsk,, € ibg. (This observation will come to play an important role later on.) In
particular, Eq. (112) amounts to the condition

My, =—M, foraeA (119)
which is analogous to the condition

Koo =Ky foraeA (120)
of Ref. [1].

Now we are ready to state the first main result of this section. Our terminology will
follow that of Ref. [8], according to which roots € A are calledmaginaryif 6o = «,
real if 0 = —a andcomplexif 6o anda are linearly independent, whereas two romts
and g8 are calledstrongly orthogonalf both « + 8 anda — 8 are not roots (as is well
known, this implies tha andg are orthogonal in the usual sense).

Proposition 2. The integrable Calogero model associated with the root system of a
symmetric pair(g, ) admits a gauge transformatiop from the standard Lax pair of
Olshanetsky and Perelomov and the dynamiRahatrix of Ref[1] to a new Lax pair
with a numericalR-matrix if and only if (&) the automorphisri acts on the root system

in such a way that
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e A contains no imaginary roots, i.e4o =¥ and A = A,

467

o for any complex roo& in A, 6« anda are strongly orthogonal,i.efu + o ¢ A,

and (b) the set of generator, € ibg appearing in EQgs.(85) and (87) can be
complemented by a set of generatdfs € ag which, taken together, satisfy the algebraic

constraints
a(K)=0, a(M])=0,

K, = )b > M, = Hy)a,
« f|a|( o f|a|( )

1
a(Kg)Ky — B(Ko)Kp = E(Na,ﬂKaJr,B + Noo,pKoa+p),

1
a(Kg)My — B(My)Mp = E(Na,ﬂMaJr,B — Noa,sMoavp)
fora, B € A suchthat # t«, B # +0«,

as well as the additional algebraic constraints

D (Ho)a®Ke @M =0, Y (Hy)pe®My®M_o =0,

aeA aeA

Y NpyMp® Ky = (Ho)a ® Ko — My ® (Ha)o.

B.yeA
B+y=a

Z NgyMp @M, = (Hy)a ® Mo — My ® (Ho)a,

B.yeA
B+y=a

(121)
(122)

(123)

(124)

(125)

to be imposed in the case of the elliptic model, Whﬁ’@ = (1/2)(K, = K_4) and
=(1/2)(M, + M_,) as above, withe, = £1. In this case, the root part and the
Cartan part of the potential;, = g~ 19, ¢ associated with this gauge transformatigmare

given by

¥ (@) =w(a(q))(Hi, My)
and

b, W)
Al(g) = 2; @@ (Hi, M—) Ky

for the degenerate model and by

A (g, u) = ®(a(q), u)(Hx, My)
and

AL(q w)y ==Y t (@) (Hy, M_o) Ko — £ (1) Hi

aeA
for the elliptic model.

(126)

(127)

(128)

(129)
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Note. As we shall show after completing the proof of Proposition 2, Eq. (123) forces all
rootse in A to have the same length (which by convention we fix toJ#) and also
allows for a choice of basis in which the signsare independent af, so that Eq. (122)
can be simplified as follows:

1 1
Ky =5e(Hado, Mg =S€(Hoa. (130)

Proof. With the vector notation introduced above, we can first of all use Eq. (102), with
a replaced by + 6«, to conclude that the middle terms in Egs. (106) and (108) vanish
identically and thus reduce both of them to a single algebraic constraint:

a(Kq) =a(My) fora e A suchthaba # —a. (131)

Note that replacing by —« and adding/subtracting the two equations, we get
a(K;r) = a(MJ) for o € A such thaba # —a, (132)
Ol(K(;) = a(Moj) for o € A such thabo # —a. (133)

Using Eq. (89), the first of these can be sharpened as follows:
a(K})=0=a(M]) foraeAsuchthaba —a ¢ A. (134)

(Indeed, ifa = —« so that Eq. (131) no longer applies, Eq. (134) remains correct because
in this caseM = 0, according to Egs. (118) and (119).) Next, inserting Eq. (111) together
with the functional equation (25) into the differential equation (95) for the Cartan part of
the gauge potential, we see that this equation can be solved by setting

Al(q.u)y == £ (@) M K — M) (1), (135)
acA

where theM,? (u) are constants that must be determined from the remaining equations,
provided we assume the coefficie§’ to satisfy the relation

D oM “Ky=0 forl<jk<r. (136)
wci

Converted into a tensor equation, it reads

D (Hu)a® Koy ® Mg =0, (137)
acA
which leads back to Eq. (136) by taking the scalar product Within the first and with
H; in the third tensor factor. Note that in the degenerate case, the same argument works,

but Eq. (136)/(137) is not needed. Moreover, Eq. (96) is satisfied as a consequence of the
identity

Zajf(a(Q))M]:aKa =0 forr+1<j<r+s,

aeA
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which is valid for any even functiorf (such asz’): this is easily shown by replacing
by 6« in the sum and noting thabo); =«; forr +1< j <r + 5, (Ba)(q) = —alq),
M = —M* andKgy = Kg, SO that

D aj fa@)M Ky == ajf(a(@)M*Ky forr+1<j<r+s.
wcd wci

Similarly, inserting Eq. (111) together with the functional equation (29) into Egs. (107)
and (109), we obtain

1
Eak(—G)(oc(q), u)@(a(q), v) + (£ ) + ¢ ()@ (a(g), u +v))
—a(K_o)MZ®(a(q), u)P(a(q), v)

1
~ 5 (). u+v) (@(M) ) — (Ba) (M) (v)))

1
+ E1\10[,,90[M,§‘*9“(—qb(—a(q), u— )P (2a(q), u)
— @(—a(q), v— u)45(2a(q), v))
—a(M)M @ (a(q), u)P(a(g),v) =0
and
1
Eak(—q)(oc(q), u)®(a(q), —v) + (L) — () P(a(g), u —v))
—a(K_o)M{®(a(q), u)P(a(q), —v)
1
— 5@ (e(g).u—v) (@(M] W) — (M) ()

1
— —N@o,,_o,M,fa_a(—@(—(x(q), u+ v)@(Za(q), u)

2
— @(—a(q), —u — v)tp(Za(q), —v))
— a(Ma)M,:‘)‘(D((x(q), u)@(oz(q), —v) =0

respectively. In both cases, the terms proportionabta(q), u + v) cancel provided we
set

M (u) = £ (u) Hi. (138)

which also guarantees that Eq. (103) is valid, and due to the functional equation (28), the
remaining terms then cancel if we impose the relation

1 1 -

S+ a(K_o) M +a(My)M;* + EN@o,,_0,1\4,‘3"‘—“ =0 forae A. (139)
Converted to a vector equationdsp, it reads

1 1 -

E(Hoz)a +o(K_o)My +a(M)M_o + ENOa,—aMGa—a =0 foraeA, (140)

which leads back to Eq. (139) by taking the scalar product WjthEven simpler to handle
is Eg. (110), which by insertion of Eq. (111) together with the functional equation (28)
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reduces to the relation

1 o o
a(Kp)M{ — 5 (Noop M P Noa,sM{* ) — B(M M) =0
for a, B € A such thaiy # +a, B # +60a. (141)

Converted to a vector equationdp, it reads

1
a(Kﬂ)Ma - E(Na,ﬂMoH—ﬂ - NGa,ﬂM0a+ﬁ) - ,B(Ma)Mﬁ =0
for a, B € A such thai # +a,  # +6a, (142)

which leads back to Eq. (141) by taking the scalar product \#th Finally, inserting

Eqg. (111) together with the functional equation (29) (more precisely, the difference of two
copies of Eq. (29): one with — u, u — v and one withv — u, u — —v) into Eq. (105)

and dividing by® («(q), u), we obtain

NapMIP =0 forae 4, Be Ao, (143)
which in turn reduces Eq. (104) to
a(Kp)M = B(Mo)M} fora e Ag, g€ A. (144)

In the degenerate case, the same conclusion is reached along a slightly different path, since
in this case Eg. (105) is void while Eg. (104) takes the form

a(Kp)w(B(@))ME + Nap M0/ (B(g)) — B(Ma)w(B(q)) =0,

which again leads to Egs. (143) and (144) sincandw’ are functionally independent.

Before proceeding to the solution of the remaining equations, let us pause to draw a few
consequences of the algebraic constraints (131)—(134), (139)/(140) and (143) derived so
far; this will help us considerably to simplify our further work. For this purpose, we must
distinguish between real and complex roetis A:

e For real rootse € A (b = —«), Egs. (119) and (120), together with the fact that
Ky €ibg and henc® K, = K, imply thatM_, = —M,, K_, = Ky anda(Ky) =
a(0Ky) =0a(Ky) = —a(Ky), S0a(K+y) = 0. Thus in this case, the last term and
the second term in Eq. (140) drop out, so we get

1
a(Mo)My = E(Hoz)u-
Applying « to this relation and using that in this casél,), = H,, we conclude that

20(My)? = a(Hy) = (@, @),

a(Ma>=%|a| and Ma=f2—“m(Ha>a, (145)

wheree, = €_, = €p4 = €_gq IS a sign factor £1).
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e For complex rooter € A (o # +a), EQ. (131) implies thatt(K_y) = a(M_g), SO
we may rewrite Eq. (140) in the form

1 1
E(Ha)a +20(MIYMF — 20 (M )M, + EN(;(),,_O,Mea_o, =0.

But under the substitutiom — —«, the first three terms in this equation are odd while

the last is even, which forces them to vanish separately. Now we must distinguish two

cases:

— if b — « is not a root, the last term drops out and, according to Eq. (134), so does
the second. Thus we get

a(My )M, = %(Ha)u.

Applying « to this relation, we conclude that

o

1
4o (M) =a((Hy)a) = 5@ —ba),

which can be further simplified becauge + « is never a root [9, Ex. F.2, p. 530]
so that in this cas@« anda are (strongly) orthogonal, leading to

_ €y _ €y
a(M;)=—"|a| and M, = —=—(Hy)a, (146)
(M) 272 VTR
wheree, = €_o = €94 = €_gq IS a Sign factor £1);
— if 6o — « is a root, we arrive at a contradiction, since in this cése- « is a real
root, so that according to the previous itemy,_, cannot vanish. Therefore, this
possibility must be excluded.

Moreover, we see thatf, can never vanish, so the only way to guarantee the validity of
Eq. (143) is to assume that the sum of a @@t A and a roo in Ag is never a root. Since
we may freely change the sign gf this forces all roots im to be (strongly) orthogonal to

all roots inAg, which is only possible if one of these two sets is empty, sinisesupposed

to be simple and henc# must be irreducible. This proves the two restrictions on the action
of 6 on A stated in the proposition, namely

Ao=0, A=A, (147)
and, for any rootv in A,
bota¢ A and eithebo =—aorfo L a. (148)
Moreover, Eqgs. (145) and (146) can be unified into a single formula
_ €
M, = —(Hy)a, 149
« = g He (149)

wheree, = €_y = €9 = €_gq IS a sign factor £1).

Let us summarize the results obtained so far. With the exception of Eq. (97),
the system of Eqgs. (95)-(110) has been completely solved in terms of the algebraic
conditions (147), (148), the explicit formulae (126)—(129) for the gauge potential with the
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explicit formula (149) for the odd pani; of the coefficient vectoraf,, and the algebraic
constraints (121), (133), (136)/(137) and (141)/(142). Thus we are left with the task of
verifying the implications of Egs. (14), (15) and (97).

Beginning with Eq. (14), we use the functional equation (25) and Egs. (147)—(149) to
compute

0, A (q. 1) — A (g u) + Y AL(g 1) A (q,u) Hy

aeA
= " ¢'(a(q) (o (Hi. M—o) Ko — otk (Hy. M_o) Koy
aeA
+ > ®(alg). u)P(—a(q), u)(Hi. Mo) (Hy. M o) Hy
aeA
1
=52 (0@)(+er(He. Ma) Ko — o (Hi, M) K o
aeA

—o(Hj, M_o) Ky + o (Hp, M) K g
+ (Hk., M) (Hy, M—o) Hy — (Hi, M_o)) (Hy. M) Hy)
—¢'(u) Y (Hy, M) (Hi, M_o) Hy

aeA

= ¢ (@) (—eu(Hi, My ) K + e (Hi, ME) K,

aeA

+ou (i My) Ky — o (Hy. MJ) K,

+ (Hi, Mo ) (Hi, M) Ho = (Hi, M) (i M ) Ho)
— ') Y (Hi, M) (Hi, M—o)(Ho)p

aeA

= K K, )
ZE (61)( ﬁ|a|alak a+ﬁ|a|akal

aeA

+Y ¢ (elg) (—l—al(Hk, MKy —ax(Hi, MY)K

aeA

ar(Hy, M) (Hy)p — ar (Hz, M;)(Ha)b)

n €y €q
V2|a| V2|a|

—¢'(u) Y (Hi, Ma)(Hi, M) (Ha ).

aeA

Obviously, the whole expression will vanish provided we assume that

K, = (150)
f 2| |
which is complementary to the condition (149) derived previously and that
D (Ha)oe ® My ® My =0, (151)

aeA
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which is complementary to the condition (137) derived previously. Note that in the
degenerate case, the same argument works, but Eq. (151) is not needed. Note also that
Eqg. (133) can now be eliminated because it follows from Egs. (148), (149) and (150).

For the proof of Eq. (15), the trick is to split the sum over rgdtsoming from the third
and fourth term into various pieces: the contribution with= @ and, if o # —«, also
the contribution with8 = 6«, which cancel mutually, the contribution with= —« and,
if e # —«, also the contribution witl8 = —f«, which combine with the contributions
coming from the first and second term (transformed using the functional equation (30)), and
finally the remaining contributions with # +« andg # +6«: these can be complemented
by terms that also cancel mutually (marked by underlining) and then be combined with the
contributions from the fifth term (transformed using the functional equation (31)):

0, AY (g, u) — 0,A%(q, u) + a(A) (g, 1)) A% (g, u) — a(A] (g, u)) A% (g, u)

+ > NpyAL(q.wA! (g.u)

B,yeA
Bty=«a

= &' (a(q), u)ax (Hp, Mo) — @' (a(q), u)oy (Hy, My)

+ @ (a(g), u)(Z ¢ (B(q))a(K—p)(Hy, M) (Hy, My) — ¢ (w)ay (Hj, Ma>)
BeA

— @ (a(q),u) ( Z ¢ (B(@))a(K—p)(Hy, M) (Hi, M) — ¢ () (Hi, Ma))

BeA

+ > Nys® (v (@), )P (5(q). ) (Hy, My)(Hi, My)
y,saeA
y+o=a

= (@' (a(q). u) — ®(c(q), u) () ((Hy, Hy) (Hy, Mo) — (Hy, Ho) (Hy, My))
+ @ (aq), u)¢ (a(q))
x (+o(K_o) (Hi, Mo) (Hy, M)
— a(Ko) (Hi, M—g) (Hj, My)
— (1= 89a,—a) (K —60) (Hi, Mgo)) (Hy, M)
+ (1= Sga,—a) (Koo ) (Hi, M_oy) (Hy, My)
— a(K_o)(Hy, My)(Hy, My,)
+ a(Ko) (Hy, M_o) (Hy, My)
+ (1 — Spa,— o) (K _g¢)(Hj, Moy ) (Hy, M)
— (1= 89a,—a)t(Kpa) (Hy, M_go) (Hi, M)

+o(alg).u) Y. ¢(B@)(Hr, Mp)
ﬁ;ézl:g,eﬁA;é:I:Ga
x ((K—p) (H, Ma) + B(Mo)(Hy, M_p))
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—®(alg).u) D> ¢(B(q))(Hy, Mp)
ﬁ;ﬁ:l:g,eﬁA;é:I:Ba
x ((K_p) (Hi, My) + B(My)(Hy, M)

+ @ (@), u) Y (¢(v@)~+¢(5@)))Nys(Hr, My)(Hi, Ms)

y,0€A
y+i=a
— @ (a(q), u) (¢ (@) +u) — @) D Nys(Hy, My)(Hy, My)
y,0€A
y+i=a

=& (a(q), u)(¢(clg) +u) — ¢ (a(q)) — ¢ ()
x ((Hy, Ho) (Hi, M) — (Hi, M) (Hy, Hy)
— 2(2— 8pa,—a)(Ko) (Hi, My ) (Hy, M)
+ 22— 8pa,—a)et(Ko) (Hi, M) (Hy, M)
+ @ (a(g). u) (¢ (a(g) +u) — ¢ (w))

S <+2(2 - 80&,—a)a(Ka)(Hkv Ma_) (Hla M;)

— 2(2 = 8pa,—a)(Ko) (Hic, M) (Hi, M)

— Y Npy(Hi, Mp)(Hi, My>>

B.yeA
B+y=a

+@(alq)u) Y t(B@)(He, Mp)

BeA
B#ta, B£EOa

x (Hp, a(K—g)Mq + B(My)M_p
+ Np.a—pMa—p)
—®(alg).u) > ¢(B(q))(Hy. Mp)
ﬁ;ézl:g,eﬁA;é:I:Ba
x (Hi, a(K_g)My + B(Mo)M_p
— No—p,pMa—p)
— (1= 800, —a) P (ax(q), u) ¢ (a(q))
X (+Noo,a—6a(Hi, Moo) (H, My —a)
— N_go,a+6a (Hk, M—9a) (Hi, Mot0a)
+ No—9a,00 (Hi, Moo ) (Hi, My—pa)
— Not6a, 00 (Hj, M_go) (Hi, My 16a)).
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The last term vanishes due to the condition (148), whereas the previous two terms vanish
due to Eq. (142). The first term also vanishes because, as already observedsgferé,
for real rootsx while, according to Egs. (133), (134) and (146),

4o(Ko)My =4a(Ky )My = da(My )My = (Ho)a

for complex rootsx. Finally, the same reasoning shows that the second term will vanish
provided we assume that

€,
Y NpyMp@ M, = lal(Me ® M-y = Mo ® Mo). (152)
B,yeA 2
Bty=a

which is easily reduced to the second equation in Eq. (125) by noting that

1
E(MQ®M—a_M—a®Ma)
=M, @M —MI @M, =M, @My — My @ M,

and using Eqg. (122). Note that in the degenerate case, the same argument works, but
Eqg. (152) is not needed.

The proof of Eq. (97) proceeds along similar lines, using the functional equations (29)—
(32):

1
4 @' (a(q). v) Ko + 5(¢(u —v) + ¢ (u+ 1)) AL (q. v) (Ha)a

1
+ E(C(u —v) — £ (u+v) + 2 (v))AF (g, vV)(Ha)p

+@(a(g). v)e(Al(q. v)Ka — Y. Nys®(y(@).v)Ad(q. VK,

y,0€eA
y+i=a
1 o 1 o
+ Eqb(oz(q;), v—u)A (g, u)Hy + Edﬁ(a(q), v+ u)Af(q, —u) O Hy
i
+Y A (g, v)A) (g, )
j=1

=&’ (a(q), v)ox Ky

1
+ E<1§(oc(q), V) (¢ — v) + £ (u 4 v)) (Hy, Mo)(Ho)a
1
+ §¢(a(q), V) (S —v) — L+ v) + 20 (V) (Hy, Mo) (Ho)p

+ @ (a(q), v) ( > ¢ (B@)e(K_p)(Hi, Mg) Ko — c<v)ak1<a)

BeA

— > Nys®(v(q).v)@(8(q). v)(Hi. Ms)K,,

y,0€eA
y+d=a
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+ 5@ (a(g), v —u)@(a(q), u)(Hi, M) ((Ha)a + (Ho)b)

I\JlHI\JlH

@ (a(g), v+ u)P(a(q), —u)(Hy, Mo)((Ho)a — (Ha)p)

®(a(g), v ZZg B(@))aj(Hj, M_p)(Hy, Ma)Kp

j=1peA
— @ (a(q), v)¢ (W) Yo (He, Ma) H;
j=1

= (®'(a(q), v) — D (cr(q), v)¢ (V) (Hk, Ho) Ko
1
+ E((g(u =) + (4 v) — 20w) P (alg), v)

+ <15(ot(q), v— u)d?(a(q), u)
— & (a(q), v+u)P(alq), —u))(Hx, M) (He)a

1
+ E((;(u —v) = {(u+v) + 2 (v))P(a(g), v)

+ <15(a(q), v — u)d?(a(q), u)
+ @ (a(q), v +u)@(a(q), —u))(Hi, Mo)(Hy)o

+ @ (a(q). v)¢ (a(q))

X (+a(K o) (Hi, Mo) Ky — (Ko) (Hg, M) Kq

— (1= 800,—a)t(K—ga) (Hi, Mpa) Ko
+ (1 = 860, ~a )t (Koo) (Hi, M—ga) Ko
—a(M_q)(Hi, Mo) Ko + a(My)(Hi, Mo) K o
+ (1 — 890, —a)t(M—6a) (Hy, Mo) Koo
— (1= 8par, o)t (Mpo) (Hi, Mo) K g0,

(a(g)v) D> &(B@)(Hi, Mp)(a(K_p) Ko + B(K)K p)
ﬂ;éig,eﬂgéiea

—o(a@.v) Y, ¢(B@)(Hra(M_p)My + B(Ku)M 4 )Kp
ﬂ;éig,eﬂgéiea

—d(alg).v) Y (€(r@)+¢(5@))Ny.s(He, Ms)K,
y,0eA
y+é=a

®(a(q),v) (¢ (@) +v) —C@) > Nys(H, Ms)Ky
y,0eA
y+é=a



M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435-483 477

=P (a(q), v) (¢ (a(g) +v) — ¢ (al(g) — £ (v))
X ((H, Hy) Ko — (Hy, My)(Hy)p
— (2= 89a,—a) ((K—o)) — (M _y)) (Hy, Mo) Ko
+ (2= 800, —a)(Ko) (Hg, M—o) Ky
— (2= 89a,—a)at (M) (Hy, M) K —y)
+ @ (a(q). v) (¢ (a(g) +v) — ¢ (v))

X (+(2 - 5901,701)(0‘(1(701) - Ol(Mfa))(Hk, Mqy)Kq
-2~ 80a,—a)a(Ky) (Hi, M_o) K
+2- 800, —a )t (My) (Hy, M) K g
- Z Nﬁ,y(HkvMﬂ)KV>

B.yeA
Bty=«a

+o(al@),v) Y. ¢(B@)(Hk, Mp)
ﬂ;éig,eﬂééiea
X (C((K_ﬁ)KO, + ﬂ(Ka)K_ﬁ — Na_ﬂ,ﬂKa_ﬁ)

—o(alg).v) > (B@)

BeA
B#+a, B£EOa

x (Hi, a(M—_g)My + B(Ko)M_p
+ Np.a—pMa—p)Kp
+ (1= 860, —-a) @ ((q), v) ¢ (a(q))
X (+No—6a.60 (Hi, Moo) Ko—60 — Not6a,—60 (Hk, M—60) Ko+6a
+ Now,a—a (His Ma—60) Koo — N—ba,a+0a (Hi, Matoa) K —6c).-

The last term vanishes due to the condition (148), whereas the previous two terms vanish
due to Eq. (142) and provided we impose the relation

1
a(Kﬂ)Ka - E(Na,ﬁKa-ﬁ—ﬂ + NGa,ﬂK0a+ﬂ) - ,B(Ka)Kﬁ =0
fora, B € A such thaip # +«, B # +b«, (153)

which is complementary to it. The first term also vanishes because, according to Egs. (149)
and (150),

(Hi, Ho) Ko — (Hi, My)(Ho)p
= (Hi, H) K — (Hi, M7 ) (Ha)o
= eu2lal(Hi My ) K = (Hi MK

€q

- Hi, M)K _ — (Hp, M_3)Ky),
ﬁ|a|((k ) (Hy )Ke)
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whereas for real rooig € A (fa = —a), we haveKk _, = Ko, M_o = —M,, 2(K+y) =0
and hence by Eq. (145)
—-(2- 600{,—0{)(“(1(—01) - Ol(M—a))(Hky My) Ky
+ (2 — 8o, —a)(Ko) (Hk, M—o) Ky
- (2 - 300{,—0{)05(Ma)(Hk7 My)K
=a(M_y)(Hp, My) Ky — a(My) (Hi, My)K g
€o

———=lo|((Hx, Mo)K —o — (Hk, M_o) Ko,

V2
while for complex rootsx € A (Qa # +«a), we havea(Ki,) = a(M1y) and hence by
Eq. (146)

-2- 500{,*0{)(“(1(701) - Ol(Mfa))(Hk, Mqy) Ky
+ (2= 800, —a)(Ko) (Hi, M—o) Ky
— (2= 800, —a)t(My) (H, Mo) K g
=20(Mo)(Hi, M—o) Ko — 20(Mo) (Hy, M) K —o
— 5 o ((Hieo Mo) K~ — (Hico M=) Kay).

V2
Finally, the same reasoning shows that the second term will vanish provided we assume
that

€q

al(My ® K_g — M_q ® Kg 154
ﬁl I( ) (154)

Z NpyMp ® K, =
B.yeA
Bty=a
which is complementary to the condition (152) derived previously and is easily reduced to
the first equation in Eq. (125) by noting that
1
E(Moz ® K—a - M—a & Koz)
=M, K] —M®K, =M, @ Ky — My ® K,
and using Eqg. (122). Note that in the degenerate case, the same argument works, but
Eq. (154) is not needed.o

Having concluded the proof of Proposition 2, we pass to analyzing the implications
of the algebraic constraints that we have derived. The first thing that suggests itself is to
combine the generatorg, andM,, into generators

Fo =Ky + M, (155)
which, according to Egs. (119) and (120), defire@ovariant map from to bhg:
OFy = Fy. (156)

Then Eqg. (121) becomes equivalent to Eq. (51) and Eq. (122) becomes equivalent to
Eq. (52). The relation between Eq. (123) and Eq. (53), however, is more intricate.
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To approach this question, note that Eq. (53) decomposes naturally into a component
along bo,

a(Fg)Ky — B(Fu)Kp = NopKasp
for «, B € A such thaip # t«, B # tba, (157)

and a component along,

a(Fg)My — B(Fy)Mp = Ny gMy 1
for «, B € A such thaip # t«, B # t6o. (158)

Now observe that Eqg. (119) can be used to show that the second equation in Eq. (123) is
equivalent to Eq. (158). Indeed, antisymmetrizing Eq. (123) with respect to the exchange
of « and 8 eliminates one of the two terms containing structure constants and leads to
Eqg. (158), and conversely, substitutimdy 6« in Eq. (158) and subtracting the result, we

are led back to the second equation in Eq. (123). On the other hand, using Eq. (120) and
applying the same argument, the first equation in Eq. (123) turns out to be a consequence
of Eq. (157) but is apparently weaker. Similarly, Eq. (124) is part of Eq. (54), from which

it can be obtained by projecting frofyr onto ag in the third tensor factor, that is, by
applying the operator ® 1® (1 — 6)/2, and Eq. (125) is part of Eq. (55), from which it

can be obtained by projecting froljg ontoag in the first tensor factor, that is, by applying

the operatofl — 6)/2® 1.

Although the conditions stated in Proposition 2 thus seem to be weaker than those stated
in Proposition 1, it turns out that they are still sufficiently strong to allow for a complete
classification of all possible solutions. As a by-product, we shall be able to reduce Eq. (122)
to the form given in Eq. (130). The arguments employed to achieve this are essentially
the same as the ones in the previous section. First, we argue that, as before, thg signs
that appear in Eq. (122) may without loss of generality be assumed to be independent
of «. Next, writing down the system obtained from Eq. (158) upon replaeityy —«
and g by —pg, adding the resulting four equations, inserting Eq. (122) and separating
the coefficients of Hy), and (Hg)q, we arrive at the same formula as in the previous
section, Eqg. (78). Once again, it is to be noted that this derivation is only valid when
B # *a, B # +0a, as stated in Eq. (158): this supplementary condition is also needed to
guarantee thatH, ), and(Hg), are linearly independent but can in fact be eliminated from
Eqg. (78) since this formula is automatically satisfied wies +a or 8 = +0«. (Indeed,
for 8 = +a or B = 0« the r.h.s. is understood to vanish sineg R anda + 6« do not
belong to the root system, whereas the |.h.s. vanishes as a consequence of Eq. (121).)

The statement that fof # +« and g # +£6«, the generator$H,), and (Hg), are
linearly independent, used in the derivation of Eq. (78) given here, can be proved indirectly,
as follows. Suppose that for some pair of ro@t# € A satisfyingg # +« andg # +0«,
these generators were linearly dependent. Sitges empty so thatH,). and(Hg), are
both non-zero, this amounts to assuming that there exists a non-zero real nususér
that (Hg)q = A(Hy)4q, O equivalently,

B — 0B =\ —0a). (159)
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Obviously, if both roots are real, Eq. (159) reduces go= Ax, with A = £1, a
contradiction. Similarly, if one of the two roots is complex while the other is real, we also
get a contradiction since if, for exampke,is complex and is real, Eq. (159) becomes
B = (1/2)A(ax — 6) which is excluded since andf« being strongly orthogonal implies
that the only linear combinations afandf« which are roots arg-« and+6«. To handle
the case where both roots are complex and henead 6« as well asg and 68 are
strongly orthogonal, we begin by noting thétcannot be orthogonal to both and 6«
since otherwise)B would be so as well and henge- 68 would be orthogonal ta — f«,
which contradicts Eq. (159). Exchangingwith 6« and 8 with 68 if necessary, we may
assume without loss of generality thatis not orthogonal tg8 and that the factok in

Eqg. (159) is positive. With these conventions, taking the scalar product of Eq. (159) with
and with 8 gives

(B.a) — (6B, @) = A(a, @),

(B.B)=A1(B,a) —A(B,0a), (160)
implying

(B, B) = 12(a, ).

In the root system of an arbitrary simple complex Lie algebra, this foréés be 1, 2, 3,

1/2 or 1/3. But Eq. (159) excludes the possibility b% being different from 1 since the

root system of any simple complex Lie algebra is contained in an appropriate lattice formed
by the integer linear combinations of vectoig2)e; where thez; are an orthonormal basis

of R", so an equation of the form (159) with an irrational value.afan only hold if both

sides vanish, which is impossible singg is empty. Thus we conclude that= 1, so«,

B, 6 andbp all have the same length and Eq. (159) becomes

B—0B=0—06a. (161)

This allows us to determine the-string throughg. First, 8 — a cannot be a root since
if it were, it would belong toAg which is empty. Second8 + o« must therefore be
a root, sincex and g are not orthogonal. Thirdg + 2« cannot be a root since if it
were, we would have B, «)/(«, o) < —2, implying |8 + «|? < 0, which is absurd.
Hencea and 8 generate a root system of type for which they act as simple roots;
in particular, 28, «)/(«, ®) = —1. Inserting this conclusion back into Eq. (160), we see
that 208, o) /(«, ) = —3, which is only possible if the-string through9s consists of
four roots, namelygs, 68 + «, 68 + 2« andds + 3« (recall that any root string has length
at most 4). But this requires the angle betwégranda to be—150° and force98 anda
to have different length, contrary to a conclusion reached before.

In this way, we arrive once again at the conclusion that the simple complex Lie algebra
g must belong to thet-series. Moreover, the automorphignthat defines the symmetric
pair (g, 0) is further restricted by various additional constraints. The first such condition
is that the root generatois, in g can be chosen so thaf, = Ey,, for all « € A, which
according to the erratum of Ref. [1] is not only sufficient but also necessary to guarantee
that the proof of integrability given in Ref. [1] really works: this excludes the symmetric
pairs of theA I-seriesSL(n, R)/SQx) for which all roots are real anflE, = — Ey,, for
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all « € A. The second condition is that there should be no imaginary roots: this excludes
the symmetric pairs of tha ll-seriesSL(n, H)/Spn) as well as the symmetric pairs of the
Alll-series of complex Grassmannia88l(p, ¢)/S(U(p) x U(g)) with |p —¢g| > 1. The

third and final condition is that for all complex roats 6« should be strongly orthogonal

to «: this excludes the symmetric pairs of thlll-series of complex Grassmannians
SU(p, q)/S(U(p) x U(g)) with p # g. On the other hand, it is clear that the symmetric
pairs associated with the Grassmanni&wn, n)/S(U(n) x U(n)) do provide a non-
trivial solution: explicitly, we have in the notation employed at the end of the previous
section (withn replaced by 2) and in Section 3.2 of Ref. [1]

1 1
Kh = _Z(Eaa + Epp + Eoa)oa) + Eopyow)) + 512;1,

Mg, = _%(Eaa + Epp — Eo@)o(a) — Eoyo ) (162)
and
b= %(Eaa — Epp + Eo(a).0(a) — Eopyo®))-
M, = Z(Eaa — Epp — Eoayoa) + Eor)o)), (163)
implying that

1 1
Kogp=—=(E E —1o,,
ab 2( bb + 6(b)€(b))+2n 2n

1
Mgy = —E(Ebb — Eotyo)) (164)

whene = +1, while

1 1
Koy = _E(Eaa + EG(u)G(a)) + Zlbu

1
Mgy = _E(Eaa - EG(a)G(a))v (165)

whene = —1.

5. Conclusions and outlook

Our analysis of the question whether the known dynamizahatrices for integrable
Calogero models can be gauge transformed to numeRicahtrices has revealed that this
is possible in some cases but not in all—a conclusion that could definitely not be reached
by looking at the standard model associated with the root system oi-tberies alone.
In fact, it had been known from previous work that (a) the Calogero models associated
with the root systems of simple complex Lie algebgaare integrable, in the sense of
admitting a Lax representation with a dynamidamatrix, if and only if g = sl(n, C)
[1] and (b) that this dynamicak-matrix can be gauge transformed to a numerical one
[5,6]. The results reported in this paper show that for the Calogero models associated
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with the root systems of symmetric paifg, 6), the situation is more intricate. First of

all, there is still no complete answer to the question which of these models are integrable,
in the sense of admitting a Lax representation with a dynanieadatrix: the only case

that has been analyzed completely is that of #Hdl-series of complex Grassmannians
SU(p, q)/S(U(p) x U(q)), where integrability has been shown to occur if and only if

|p — ¢q| is either 0 or 1. We strongly suspect that this is in fact the only class of symmetric
spaces where integrability prevails, but a rigorous proof of this conjecture is still missing.
What is shown in this paper is that dynamiéaimatrices of integrable Calogero models
associated with non-Grassmannian symmetric pairs—should they exist—cannot be gauge
transformed to numerica@-matrices and, more importantly, that the dynamahatrices

of the Grassmannian Calogero models can be gauge transformed to nuRemealices

if p=gq butnotif|p —¢g| = 1. The first case includes tl®, and D,, models, whereas the
second case includes tig and BC,, models.

In summary, our results show that the question which originally motivated our work
on integrability of the Calogero models, namely the search for an understanding of the
mathematical nature and role of dynami®matrices, is still far from a definite answer,
since the attempt to reduce them to numerRahatrices via gauge transformations is only
partially successful.

Accepting the fact that the role of dynamicRtmatrices for our understanding of
integrable systems can apparently not be reduced to that of num&ipadtrices in
disguise, there are many questions that gain new impetus. Continuing to use the Calogero
models as a guideline, we believe that there are several directions in which future work
will be capable of providing new insights into the problem. One of them is the question
of what should be the algebro-differential constraints to be satisfied by a truly dynamical
R-matrix, or in other words, what is the real mathematical status and interpretation of the
dynamical Yang—Baxter equation. A remarkable fact is that, as will be shown in a separate
publication [10], there is a natural candidate which is gauge invariant. Another promising
direction for research is a further clarification of the relation between Calogero models
and the geodesic flow on symmetric spaces subjected to Marsden—Weinstein phase-space
reduction: this relation should also shed new light on the role of the recently introduced
spin Calogero models [11].
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