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Abstract

Within the class of integrable Calogero models associated with (semi-)simple Lie algebr
with symmetric pairs of Lie algebras identified in a previous paper, we analyze whether a
what extent it is possible to find a gauge transformation that takes the traditional Lax pai
its dynamicalR-matrix to a new Lax pair with a numericalR-matrix.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In a recent paper [1], we have performed a systematic analysis of the Calogero–M
Sutherland models, or Calogero models, for short, which constitute an important c
completely integrable Hamiltonian systems. Our work follows the traditional Lie alge
approach outlined long ago by Olshanetsky and Perelomov [2–4] which is based
use of (semi-)simple Lie algebras and, more generally, of symmetric pairs, extend
so as to encompass the construction not only of a Lax representation for the equa
motion but also that of a dynamicalR-matrix. The existence of these structures was fo
to depend on the possibility of solving a simple set of algebraic constraints for a c
functionF or K that assigns to each rootα a generatorFα or Kα in the pertinent Cartan
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subalgebrah:1 these state that for any two rootsα andβ

(1)gαα(Fβ)− gββ(Fα) = Γα,β,

in the case of (semi-)simple Lie algebrasg and

(2)gαα(Kβ) − gββ(Kα) = Γ θ
α,β,

in the case of symmetric pairs(g, θ), where the coefficientsΓα,β andΓ θ
α,β are defined in

terms of the structure constantsNα,β of g and the coupling constants gα of the model by

(3)Γα,β = gα+βNα,β

and by

(4)Γ θ
α,β = 1

4
(gα+βNα,β + gθα+βNθα,β + gα+θβNα,θβ + gθα+θβNθα,θβ),

respectively.2 In the first case, it was found that a solution of these constraints exists
for the Lie algebrassl(n,C) of theA-series, whereas in the second case, explicit solut
were found for the complex GrassmanniansSU(p+q)/S(U(p)×U(q)) of theA III-series
when|p − q| � 1.

Following a somewhat different direction, several authors [5,6] have recently s
by explicit matrix computations that the Calogero models based onsl(n,C), degenerate
as well as elliptic, admit a gauge transformation taking the dynamicalR-matrix into a
numerical one: this is achieved by explicitly constructing a group-valued functio
the configuration space which is used to conjugate the standard Lax pair and dyn
R-matrix of the model into a new Lax pair and a numericalR-matrix.

In the present paper, we systematize the method of Fehér and Pusztai [6], ad
it to the formalism developed in our previous work [1]: this allows us to extend it f
the degenerate to the elliptic models as well as from the case of Lie algebras to
symmetric pairs. In all cases, we find that the existence of a gauge transformation w
desired property can be reduced to a set of purely algebraic constraints which are
to but not identical with the integrability constraints (1) and (2) found in Ref. [1]. In
case of Lie algebras, it turns out that these various constraints all have one and th
solution, thus confirming the previous results of other authors [5,6] that the well-k
dynamicalR-matrices of the Calogero models based onsl(n,C) can be gauge transforme
to numericalR-matrices. In the case of symmetric pairs, however, we find extra const
on the root system, over and above those that guarantee integrability. In particular,
A III-series of complex GrassmanniansSU(p + q)/S(U(p) × U(q)) where integrability
has in Ref. [1] been shown to hold when|p − q| � 1, these constraints exclude the ca

1 In this paper, we adopt a slightly modified notation: for reasons to become clear towards the end of th
we shall in the case of symmetric pairs denote the generatorsFα of Ref. [1] byKα .

2 In the case of symmetric pairs, it is also assumed that the root generatorsEα in g can be and have bee
chosen so thatθEα = Eθα for all α ∈ ∆, implying thatNθα,θβ = Nα,β for all α,β ∈ ∆. As explained in the
erratum to Ref. [1], this is not always possible but is a necessary condition for our proof of integrability,

can always be arranged to hold for all rootsα if it can be made to hold for all real rootsα, that is, all rootsα in ∆

satisfyingθα = −α.
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|p − q| = 1 but allow for a solution in the casep = q . This means that the dynamicalR-
matrices for the Calogero models associated with the classical root systems can b
transformed to numericalR-matrices for theCn andDn systems but not for theBn and
BCn systems; remarkably, the latter are just the ones containing an explicit depende
the coupling constants.

The paper is organized as follows. In Section 2, we give a brief summary of the m
of gauge transforming Lax pairs and dynamicalR-matrices in integrable systems such
the Calogero models; moreover, we collect a number of identities to be used repe
later on. In Section 3, we present our calculations for the case of Lie algebras a
Section 4 those for symmetric pairs. Finally, in Section 5 we draw our conclusion
comment on perspectives for further work.

2. Gauge transformations

Consider an integrable model with a finite-dimensional phase space which we a
to be the cotangent bundleT ∗Q of a configuration spaceQ. Integrability is encoded into
the existence of a Lax representation for the equations of motion,

(5)L̇ = [L,M],
together with that of anR-matrix whose role is to control the Poisson brackets betwee
components of the Lax matrixL, according to the formula [7]

(6){L1,L2} = [R12,L1] − [R21,L2].
Here,L andM are maps fromT ∗Q into a given Lie algebrag whereasR will in general
be a map fromT ∗Q into the second tensor powerU(g)⊗U(g) of the universal envelopin
algebraU(g) of g; as usual,L1 = L ⊗ 1, L2 = 1 ⊗ L etc. The choice ofg is far from
obvious; it reflects the hidden symmetries that are present in the model. Moreover,
one fixesg and a connected Lie groupG that hasg as its Lie algebra,L, M andR are not
uniquely determined. In particular, we are free to perform agauge transformationby an
arbitrary functiong onT ∗Q with values inG, as follows:

(7)L′ = gLg−1,

(8)R ′
12 = g1g2

(
R12 + g−1

1 {g1,L2} + 1

2

[
g−1

1 g−1
2 {g1, g2},L2

])
g−1

1 g−1
2 .

The second transformation law is dictated by the requirement that the fundamental P
bracket relation (6) should be preserved under this transformation, which is easy to
Note that in general,L, M andg may depend on a spectral parameteru, in which caseR
will depend on two spectral parametersu andv.

In the case of the Calogero models of interest here,g is a simple complex Lie algebra
with Cartan subalgebrah and corresponding root system∆ fixed once and for all,Q is an
open subset in a real subspace ofh in which we fix a basis{H1, . . . ,Hr}, L is of the form

r∑ ∑

(9)L(q,p;u) =

j=1

pjHj +
α∈∆

Lα(q,u)Eα,
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with functionsLα whose explicit form will be needed only later, andR is independen
of the momentum variables. (For details, see Ref. [1].) Our aim in what follows will b
determineg in such a way thatR ′ becomes constant (as a function on phase-space). T
end, we shall assume thatg is also independent of the momentum variables and intro
the “gauge potentials”

(10)Aj(u) = g−1(u)∂jg(u).

Reverting to ordinary tensor notation, we get

(
g−1(u)⊗ 1

){
g(u)⊗

,
L(v)

}= −
r∑

j=1

g−1(u)
{
pj , g(u)

}⊗Hj = −
r∑

j=1

Aj(u)⊗Hj,

so Eq. (8) simplifies to

R ′(u, v) = (
g(u) ⊗ g(v)

)(
R(u, v) −

r∑
j=1

Aj(u)⊗Hj

)(
g−1(u)⊗ g−1(v)

)
.

This implies(
g−1(u)⊗ g−1(v)

)
∂kR

′(u, v)
(
g(u)⊗ g(v)

)
= ∂k

(
R(u, v) −

r∑
j=1

Aj(u)⊗Hj

)

+
[(

g−1(u)⊗ g−1(v)
)
∂k
(
g(u)⊗ g(v)

)
,R(u, v) −

r∑
j=1

Aj(u)⊗Hj

]
,

so the condition that the partial derivatives∂kR ′(u, v) of R ′(u, v) all vanish amounts to
requiring

∂k

(
R(u, v) −

r∑
j=1

Aj(u)⊗Hj

)

−
[
R(u, v) −

r∑
j=1

Aj(u)⊗Hj,Ak(u)⊗ 1+ 1⊗Ak(v)

]
= 0.

Using the integrability condition

(11)∂kAl(u)− ∂lAk(u)+ [
Ak(u),Al(u)

]= 0

that follows from Eq. (10), this can be rewritten in the form

∂kR(u, v) −
r∑

j=1

∂jAk(u)⊗Hj − [
R(u, v),Ak(u)⊗ 1+ 1⊗Ak(v)

]
r∑ [ ]
(12)+
j=1

Aj(u)⊗ Hj,Ak(v) = 0.
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In order to compute the content of Eqs. (11) and (12), we shall in what follows expan
gauge potential according to

(13)Aj(u) = A
h

j (u)+
∑
α∈∆

Aα
j (u)Eα,

which allows us, in particular, to decompose Eq. (11) into its Cartan part

(14)∂kA
h

l (u)− ∂lA
h

k (u)+
∑
α∈∆

Aα
k (u)A

−α
l (u)Hα = 0

and its root part

∂kA
α
l (u)− ∂lA

α
k (u)+ α

(
A

h

k (u)
)
A
α
l (u)− α

(
A

h

l (u)
)
A
α
k (u)

(15)+
∑

β,γ∈∆
β+γ=α

Nβ,γ A
β
k (u)A

γ

l (u)= 0.

In what follows, we shall analyze under what conditions this system of equations a
solutions when we insert the explicit expressions forR given in Ref. [1] and evaluate th
commutators in Eq. (12) using the usual abbreviationαj = α(Hj ) and the relations

[Hj ⊗Hj,Eα ⊗ 1] = αjEα ⊗Hj,

(16)[Hj ⊗Hj,1⊗Eα] = αjHj ⊗Eα

(no summation overj ),

[Fγ ⊗Eγ ,Hj ⊗ 1] = 0,

[Fγ ⊗Eγ ,1⊗Hj ] = −γjFγ ⊗Eγ ,

[Fγ ⊗Eγ ,Eδ ⊗ 1] = δ(Fγ )Eδ ⊗Eγ ,

[Fγ ⊗Eγ ,1⊗Eγ ] = 0,

[Fγ ⊗Eγ ,1⊗E−γ ] = Fγ ⊗Hγ ,

(17)[Fγ ⊗Eγ ,1⊗Eδ] = Nγ,δFγ ⊗Eγ+δ if γ ± δ �= 0

(valid for any set of generatorsFγ belonging to the Cartan subalgebrah) and

[Eγ ⊗E−γ ,Hj ⊗ 1] = −γjEγ ⊗E−γ ,

(18)[Eγ ⊗E−γ ,1⊗Hj ] = γjEγ ⊗E−γ ,

[Eγ ⊗E−γ ,Eγ ⊗ 1] = 0,

[Eγ ⊗E−γ ,E−γ ⊗ 1] = Hγ ⊗E−γ ,

(19)[Eγ ⊗E−γ ,Eδ ⊗ 1] = Nγ,δEγ+δ ⊗E−γ if γ ± δ �= 0,

[Eγ ⊗E−γ ,1⊗Eγ ] = −Eγ ⊗Hγ ,
[Eγ ⊗E−γ ,1⊗E−γ ] = 0,

(20)[Eγ ⊗E−γ ,1⊗Eδ] = N−γ,δEγ ⊗E−γ+δ if γ ± δ �= 0.
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The second step would be to determineg itself and, from there, findL′ andR ′: this
question will be addressed elsewhere in order not to overload our presentation here

Concluding this section, let us for later use collect the functional identities sat
by the coefficient functionsLα that appear in Eq. (9) above. For the degenerate mo
Lα(q,u)= igαw(α(q)) wherew is an odd function of its argument,

(21)w(−t) = −w(t),

that satisfies the differential equation

(22)

(
w′

w

)′
= w2,

as well as the functional equation

(23)

(
w′(s)
w(s)

+ w′(t)
w(t)

)
w(s + t) +w(s)w(t) = 0,

already employed in Ref. [1]. For the elliptic models,Lα(q,u) = igαΦ(α(q),u) whereΦ
and the closely related Weierstrass zeta function satisfy the symmetry properties

(24)Φ(−z1,−z2) = −Φ(z1, z2), ζ(−z) = −ζ(z)

and the functional equations

(25)Φ(s,u)Φ(−s, u) = ζ ′(s) − ζ ′(u),
(26)Φ(s,u)Φ ′(−s, u) −Φ ′(s, u)Φ(−s, u) = −ζ ′′(s),
(27)Φ(s,u)Φ ′(t, u)−Φ ′(s, u)Φ(t, u) = −(ζ ′(s)− ζ ′(t)

)
Φ(s + t, u),

(28)Φ(−s, v − u)Φ(s + t, v) +Φ(−t, u− v)Φ(s + t, u) = −Φ(s,u)Φ(t, v),

(29)Φ(−s, u − v)Φ(s,u) + (
ζ(v − u)+ ζ(u)

)
Φ(s, v) = Φ ′(s, v),

already employed in Ref. [1], as well as the additional functional equations

(30)Φ ′(s, u) = (
ζ(s + u)− ζ(s)

)
Φ(s,u),

(31)Φ(s,u)Φ(t, u) = (
ζ(s)+ ζ(t) + ζ(u)− ζ(s + t + u)

)
Φ(s + t, u),

whereΦ ′ denotes the derivative ofΦ with respect to the first argument; all of these can
derived from the representation ofΦ andζ in terms of the Weierstrassσ function:

Φ(z1, z2) = σ(z1 + z2)

σ (z1)σ (z2)
, ζ(z) = σ ′(z)

σ (z)
.

Note that in the degenerate case, the spectral parameter drops out. In fact, all
calculations to be presented in what follows can be carried out for the degenerat
in exactly the same manner as for the elliptic case, provided one performs the foll
substitutions:

Φ(s,u), Φ(s, v) → w(s),

Φ(s,u − v), Φ(s, v − u), ζ(s) → −w′(s)
,

w(s)

(32)ζ(u), ζ(v), ζ(u− v), ζ(v − u), ζ(s + u), ζ(s + t + u) → 0.
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Therefore, we shall suppress the calculations for the degenerate models, except at
points where substantial differences arise.

3. Calogero models for semi-simple Lie algebras

According to Ref. [1], the standard Lax matrixL and the dynamicalR-matrix for the
Calogero models associated with the root system∆ of a simple complex Lie algebrag read

(33)L =
r∑

j=1

pjHj +
∑
α∈∆

igαw
(
α(q)

)
Eα,

(34)R =
∑
α∈∆

w
(
α(q)

)
Fα ⊗Eα +

∑
α∈∆

w′(α(q))
w(α(q))

Eα ⊗E−α,

for the degenerate model and

(35)L(u) =
r∑

j=1

pjHj +
∑
α∈∆

igαΦ
(
α(q),u

)
Eα,

R(u, v) = −
r∑

j=1

(
ζ(u− v) + ζ(v)

)
Hj ⊗Hj

+
∑
α∈∆

Φ
(
α(q), v

)
Fα ⊗Eα

(36)−
∑
α∈∆

Φ
(
α(q),u− v

)
Eα ⊗E−α,

for the elliptic model. As has been shown in Ref. [1], integrability requires the gener
Fα ∈ hR appearing in Eqs. (34) and (36) to satisfy the constraints (1). Moreover, writ

(37)F±
α = 1

2
(Fα ± F−α),

we also impose the condition

(38)α
(
F+
α

)= 0,

which follows from Eq. (1) by settingβ = −α when gα �= 0 but turns out to be true i
general, independent of this hypothesis.

In order to compute the content of Eqs. (11) and (12), we further expand the Carta
of the gauge potential according to

h
r∑

k
 (39)Aj (u) =
k=1

Aj(u)Hk.
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Then inserting Eqs. (36), (13) and (39) into Eq. (12), we obtain

0 =
∑
α∈∆

αkΦ
′(α(q), v)Fα ⊗Eα −

∑
α∈∆

αkΦ
′(α(q),u− v

)
Eα ⊗E−α

−
r∑

j=1

∂jA
h

k (q,u)⊗Hj −
r∑

j=1

∑
α∈∆

∂jA
α
k (q,u)Eα ⊗Hj

+
r∑

j=1

∑
α∈∆

(
ζ(u− v) + ζ(v)

)
Aα
k (q,u)[Hj ⊗Hj,Eα ⊗ 1]

+
r∑

j=1

∑
α∈∆

(
ζ(u− v) + ζ(v)

)
Aα
k (q, v)[Hj ⊗Hj,1⊗Eα]

−
r∑

j=1

∑
γ∈∆

Φ
(
γ (q), v

)
A
j
k(q,u)[Fγ ⊗Eγ ,Hj ⊗ 1]

−
r∑

j=1

∑
γ∈∆

Φ
(
γ (q), v

)
A
j
k(q, v)[Fγ ⊗Eγ ,1⊗Hj ]

−
∑

γ,δ∈∆
Φ
(
γ (q), v

)
Aδ
k(q,u)[Fγ ⊗Eγ ,Eδ ⊗ 1]

−
∑

γ,δ∈∆
Φ
(
γ (q), v

)
Aδ
k(q, v)[Fγ ⊗Eγ ,1⊗Eδ]

+
r∑

j=1

∑
γ∈∆

Φ
(
γ (q),u− v

)
A
j

k(q,u)[Eγ ⊗E−γ ,Hj ⊗ 1]

+
r∑

j=1

∑
γ∈∆

Φ
(
γ (q),u− v

)
A
j

k(q, v)[Eγ ⊗E−γ ,1⊗Hj ]

+
∑

γ,δ∈∆
Φ
(
γ (q),u− v

)
Aδ
k(q,u)[Eγ ⊗E−γ ,Eδ ⊗ 1]

+
∑

γ,δ∈∆
Φ
(
γ (q),u− v

)
Aδ
k(q, v)[Eγ ⊗E−γ ,1⊗Eδ]

+
r∑

j=1

∑
α∈∆

αjA
α
k (q, v)A

h

j (q,u)⊗Eα

+
r∑

j=1

∑
α,β∈∆

βjA
α
j (q,u)A

β
k (q, v)Eα ⊗Eβ.

Using Eqs. (16)–(20) to carry out the commutators, together with the relation

r∑

(40)

j=1

αjHj = Hα,
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we can collect the terms to identify the components of Eq. (12) along the various sub
of g ⊗ g: those alongh ⊗Hj (1 � j � r),

(41)∂jA
h

k (q,u)+
∑
α∈∆

αjΦ
(
α(q), v

)
A−α
k (q, v)Fα = 0,

those alongh ⊗ gα (α ∈∆),

αkΦ
′(α(q), v)Fα + (

ζ(u− v) + ζ(v)
)
Aα
k (q, v)Hα

+Φ
(
α(q), v

)
α
(
A

h

k (q, v)
)
Fα −

∑
γ,δ∈∆
γ+δ=α

Nγ,δΦ
(
γ (q), v

)
Aδ
k(q, v)Fγ

(42)−Φ
(−α(q),u− v

)
Aα
k (q,u)Hα +

r∑
j=1

αjA
α
k (q, v)A

h

j (q,u)= 0,

those alonggα ⊗Hj (α ∈ ∆,1 � j � r),

∂jA
α
k (q,u)+ αjΦ

(
α(q),u− v

)
Aα
k (q, v)

(43)− αj
(
ζ(u − v) + ζ(v)

)
Aα
k (q,u)= 0,

those alonggα ⊗ gα (α ∈ ∆),

(44)α(Fα)Φ
(
α(q), v

)
Aα
k (q,u)−

r∑
j=1

αjA
α
j (q,u)A

α
k (q, v) = 0,

those alonggα ⊗ g−α (α ∈ ∆),

αkΦ
′(α(q),u− v

)+ α(F−α)Φ
(−α(q), v

)
Aα
k (q,u)

+Φ
(
α(q),u− v

)(
α
(
A

h

k (q,u)
)− α

(
A

h

k (q, v)
))

(45)+
r∑

j=1

αjA
α
j (q,u)A

−α
k (q, v) = 0,

and finally those alonggα ⊗ gβ with α,β ∈∆, α ± β �= 0,

α(Fβ)Φ
(
β(q), v

)
Aα
k (q,u)

−Nα,β

(
Φ
(
α(q),u− v

)
A
α+β
k (q, v) −Φ

(−β(q),u− v
)
A
α+β
k (q,u)

)
(46)−

r∑
j=1

βjA
α
j (q,u)A

β
k (q, v) = 0.

This is a complicated set of equations which we shall solve in a series of steps.
We begin by considering the differential equation (43) for the root part of the g

potential, which by using the functional equation (29) (withu andv interchanged) is see
to have the simple solution
(47)Aα
k (q,u) = Φ

(
α(q),u

)
aαk ,



ining
into a

imple
f

rs
444 M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435–483

where the coefficientsaαk are constants that must be determined from the rema
equations. For what follows, we shall find it convenient to assemble these constants
vector inhR by writing, for anyα ∈∆,

(48)aα =
r∑

j=1

aαj Hj ,

so that of course

(49)aαk = (Hk, aα).

In analogy with Eq. (37), we also introduce the abbreviation

(50)a±
α = 1

2
(aα ± a−α).

Now we are ready to state the first main result of this section.

Proposition 1. The integrable Calogero model associated with the root system of a s
complex Lie algebrag admits a gauge transformationg from the standard Lax pair o
Olshanetsky and Perelomov and the dynamicalR-matrix of Ref.[1], as given by Eqs.(33)–
(36), to a new Lax pair with a numericalR-matrix if and only if the set of generato
Fα ∈ hR appearing in Eqs.(34)and (36)satisfies the algebraic constraints

(51)α
(
F+
α

)= 0,

(52)F−
α = εα√

2|α|Hα,

α(Fβ)Fα − β(Fα)Fβ = Nα,βFα+β

(53)for α,β ∈ ∆ such thatβ �= ±α,

as well as the additional algebraic constraints

(54)
∑
α∈∆

Hα ⊗ Fα ⊗ F−α = 0,

(55)
∑

β,γ∈∆
β+γ=α

Nβ,γ Fβ ⊗Fγ = Hα ⊗ Fα − Fα ⊗Hα,

to be imposed in the case of the elliptic model, whereF±
α = 1/2(Fα ±F−α) as above, with

εα = ±1. In this case, the root part and the Cartan part of the gauge potentialAk = g−1∂kg

associated with this gauge transformationg are given by

(56)Aα
k (q) = w

(
α(q)

)
(Hk,Fα),

and

h
∑ w′(α(q))
(57)Ak (q) =
α∈∆ w(α(q))

(Hk,F−α)Fα,
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for the degenerate model and by

(58)Aα
k (q,u) = Φ

(
α(q),u

)
(Hk,Fα),

and

(59)A
h

k (q,u) = −
∑
α∈∆

ζ
(
α(q)

)
(Hk,F−α)Fα − ζ(u)Hk,

for the elliptic model.

Note. As we shall show after completing the proof of Proposition 1, Eq. (53) force
rootsα in ∆ to have the same length (which by convention we fix to be

√
2 ) and also

allows for a choice of basis in which the signsεα are independent ofα so that Eq. (52) can
be simplified as follows:

(60)F−
α = 1

2
εHα.

Proof. With the vector notation introduced above, we can first of all reduce Eq. (44
single algebraic constraint:

(61)α(aα) = α(Fα).

Note that replacingα by −α and adding/subtracting the two equations, we get

(62)α
(
F+
α

)= α
(
a+
α

)
,

(63)α
(
F−
α

)= α
(
a−
α

)
.

Using Eq. (38), the first of these can be sharpened as follows:

(64)α
(
F+
α

)= 0= α
(
a+
α

)
.

Next, inserting Eq. (47) together with the functional equation (25) into the differe
equation (41) for the Cartan part of the gauge potential, we see that this equation
solved by setting

(65)A
h

k (q,u) = −
∑
α∈∆

ζ
(
α(q)

)
a−α
k Fα − a

h

k (u),

where theah

k (u) are constants that must be determined from the remaining equa
provided we assume the coefficientsaαk to satisfy the relation

(66)
∑
α∈∆

αja
−α
k Fα = 0 for 1� j, k � r.

Converted into a tensor equation, it reads

(67)
∑
α∈∆

Hα ⊗ Fα ⊗ a−α = 0,
which leads back to Eq. (66) by taking the scalar product withHj in the first and with
Hk in the third tensor factor. Note that in the degenerate case, the same argument works,
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but Eq. (66)/(67) is not needed. Similarly, inserting Eq. (47) together with the funct
equation (29) into Eq. (45), we obtain

αk
(−Φ

(
α(q),u

)
Φ
(
α(q),−v

)+ (
ζ(u)− ζ(v)

)
Φ
(
α(q),u− v

))
− α(F−α)a

α
k Φ
(
α(q),u

)
Φ
(
α(q),−v

)−Φ
(
α(q),u− v

)(
α
(
a

h

k (u)
)− α

(
a

h

k (v)
))

− α(aα)a
−α
k Φ

(
α(q),u

)
Φ
(
α(q),−v

)= 0.

Obviously, the terms proportional toΦ(α(q),u− v) cancel provided we set

(68)a
h

k (u) = ζ(u)Hk,

and the remaining terms cancel if we impose the relation

(69)αk + α(F−α)a
α
k + α(aα)a

−α
k = 0.

Converted to a vector equation inhR, it reads

(70)Hα + α(F−α)aα + α(aα)a−α = 0,

which leads back to Eq. (69) by taking the scalar product withHk. Even simpler to handl
is Eq. (46), which by insertion of the functional equation (28) reduces to the relation

α(Fβ)a
α
k −Nα,βa

α+β
k − β(aα)a

β
k = 0

(71)for α,β ∈ ∆ such thatβ �= ±α.

Converted to a vector equation inhR, it reads

α(Fβ)aα −Nα,βaα+β − β(aα)aβ = 0

(72)for α,β ∈ ∆ such thatβ �= ±α,

which leads back to Eq. (71) by taking the scalar product withHk.
Before proceeding to the solution of the remaining equations, let us pause to draw

consequences of the algebraic constraints (61)–(64) and (69)/(70) derived so far; th
help us considerably to simplify our further work. First of all, Eqs. (61)–(64) state tha

α(F−α) = −α(Fα) = −α(aα) = α(a−α),

implying that Eq. (70) can be reduced to

α(aα)(aα − a−α) = Hα.

Applying α to this relation and using the previous equation again, we conclude that

(73)α(aα) = εα
|α|√

2
and a−

α = εα√
2|α|Hα,

whereεα = ε−α is a sign factor (±1). Next, we simplify all these equations by showi
that Eqs. (71)/(72) and (73) in fact force the vectorsaα andFα to be equal. To prove this
we begin by symmetrizing Eq. (72) with respect to the exchange ofα andβ , obtaining
α(Fβ − aβ)aα + β(Fα − aα)aβ = 0.



n

for any

result
reas
n in

ystem
–(59)

task
M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435–483 447

Symmetrizing with respect to the exchange ofβ and−β and inserting Eq. (73) gives

(74)α
(
F+
β − a+

β

)
aα + εβ√

2|β|β(Fα − aα)Hβ = 0.

Symmetrizing again with respect to the exchange ofα and−α and inserting Eq. (73) the
leads to

εα√
2|α|α

(
F+
β − a+

β

)
Hα + εβ√

2|β|β
(
F+
α − a+

α

)
Hβ = 0.

But Hα andHβ are linearly independent since, as stated in Eq. (72), the rootsα andβ are
supposed to be non-proportional, so the coefficients must vanish separately, that is,
two rootsα,β ∈ ∆, we have

β
(
F+
α − a+

α

)= 0

wheneverβ is not proportional toα and, according to Eq. (64), also whenβ is proportional
to α. Since∆ generateshR, this simply means thata+

α = F+
α . Inserting this conclusion

back into Eq. (74) and applying once more the same argument, we arrive at the
thataα = Fα . With this result, Eqs. (61)–(63) and (70) reduce to trivial identities whe
Eqs. (64), (73), (72), (67), (47) with (49) and (65) with (68) assume the form give
Eqs. (51), (52), (53), (54), (58) and (59), respectively.

Let us summarize the results obtained so far. With the exception of Eq. (42), the s
of Eqs. (41)–(46) has been completely solved in terms of the explicit formulae (56)
for the gauge potential with the explicit formula (52) for the odd partF−

α of the coefficient
vectorsFα and the algebraic constraints (51), (53) and (54). Thus we are left with the
of verifying the implications of Eqs. (14), (15) and (42).

Beginning with Eq. (14), we use the functional equation (25) to compute

∂kA
h

l (q, u)− ∂lA
h

k (q,u)+
∑
α∈∆

Aα
k (q,u)A

−α
l (q,u)Hα

=
∑
α∈∆

ζ ′(α(q))(αl(Hk,F−α)Fα − αk(Hl,F−α)Fα

)
+
∑
α∈∆

Φ
(
α(q),u

)
Φ
(−α(q),u

)
(Hk,Fα)(Hl,F−α)Hα

= 1

2

∑
α∈∆

ζ ′(α(q))(+αl(Hk,F−α)Fα − αl(Hk,Fα)F−α

− αk(Hl,F−α)Fα + αk(Hl,Fα)F−α

+ (Hk,Fα)(Hl,F−α)Hα − (Hk,F−α)(Hl,Fα)Hα

)
− ζ ′(u)

∑
α∈∆

(Hk,Fα)(Hl,F−α)Hα

=
∑
α∈∆

ζ ′(α(q))(−αl
(
Hk,F

−
α

)
F+
α + αl

(
Hk,F

+
α

)
F−
α

+ αk
(
Hl,F

−
α

)
F+
α − αk

(
Hl,F

+
α

)
F−
α

+ (
Hk,F

−
α

)(
Hl,F

+
α

)
Hα − (

Hk,F
+
α

)(
Hl,F

−
α

)
Hα

)∑

− ζ ′(u)

α∈∆
(Hk,Fα)(Hl,F−α)Hα
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and can use Eqs. (52) and (54) to verify that the terms under the first sum cancel mutu
pairs whereas the second sum vanishes. Note that in the degenerate case, the same
works, but Eq. (54) is not needed.

For the proof of Eq. (15), the trick is to split the sum over rootsβ coming from the
third and fourth term into contributions withβ = α, which cancel mutually, contribution
with β = −α, which combine with the contributions coming from the first and sec
term (transformed using the functional equation (30)), and the remaining contribu
with β �= ±α: these can be complemented by terms that also cancel mutually (mark
underlining) and then be combined with the contributions from the fifth term (transfo
using the functional equation (31)):

∂kA
α
l (q,u)− ∂lA

α
k (q,u)+ α

(
A

h

k (q,u)
)
A
α
l (q,u)− α

(
A

h

l (q, u)
)
A
α
k (q,u)

+
∑

β,γ∈∆
β+γ=α

Nβ,γ A
β
k (q,u)A

γ

l (q,u)

= Φ ′(α(q),u)αk(Hl,Fα)−Φ ′(α(q),u)αl(Hk,Fα)

+Φ
(
α(q),u

)(∑
β∈∆

ζ
(
β(q)

)
α(F−β )(Hk,Fβ)(Hl,Fα)− ζ(u)αk(Hl,Fα)

)

−Φ
(
α(q),u

)(∑
β∈∆

ζ
(
β(q)

)
α(F−β )(Hl,Fβ)(Hk,Fα)− ζ(u)αl(Hk,Fα)

)

+
∑
γ,δ∈∆
γ+δ=α

Nγ,δΦ
(
γ (q),u

)
Φ
(
δ(q), u

)
(Hk,Fγ )(Hl,Fδ)

= (
Φ ′(α(q),u)−Φ

(
α(q),u

)
ζ(u)

)(
(Hk,Hα)(Hl,Fα)− (Hl,Hα)(Hk,Fα)

)
+Φ

(
α(q),u

)
ζ
(
α(q)

)
× (+α(F−α)(Hk,Fα)(Hl,Fα)− α(Fα)(Hk,F−α)(Hl,Fα)

− α(F−α)(Hl,Fα)(Hk,Fα)+ α(Fα)(Hl,F−α)(Hk,Fα)
)

+Φ
(
α(q),u

) ∑
β∈∆
β �=±α

ζ
(
β(q)

)
(Hk,Fβ)

(
α(F−β)(Hl,Fα)+ β(Fα)(Hl,F−β)

)

−Φ
(
α(q),u

) ∑
β∈∆
β �=±α

ζ
(
β(q)

)
(Hl,Fβ)

(
α(F−β)(Hk,Fα)+ β(Fα)(Hk,F−β)

)

+Φ
(
α(q),u

) ∑
γ,δ∈∆
γ+δ=α

(
ζ
(
γ (q)

)+ ζ
(
δ(q)

))
Nγ,δ(Hk,Fγ )(Hl,Fδ)

−Φ
(
α(q),u

)(
ζ(α(q)+ u)− ζ(u)

) ∑
γ,δ∈∆
γ+δ=α

Nγ,δ(Hk,Fγ )(Hl,Fδ)
= Φ
(
α(q),u

)(
ζ
(
α(q)+ u

)− ζ
(
α(q)

)− ζ(u)
)
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× (
(Hk,Hα)

(
Hl,F

+
α

)− (
Hk,F

+
α

)
(Hl,Hα)

− 2α
(
F−
α

)(
Hk,F

−
α

)(
Hl,F

+
α

)+ 2α
(
F−
α

)(
Hk,F

+
α

)(
Hl,F

−
α

))
+Φ

(
α(q),u

)(
ζ
(
α(q) + u

)− ζ(u)
)

×
(

2α
(
F−
α

)(
Hk,F

−
α

)(
Hl,F

+
α

)− 2α
(
F−
α

)(
Hk,F

+
α

)(
Hl,F

−
α

)
−

∑
β,γ∈∆
β+γ=α

Nβ,γ (Hk,Fβ)(Hl,Fγ )

)

+Φ
(
α(q),u

) ∑
β∈∆
β �=±α

ζ
(
β(q)

)
(Hk,Fβ)

× (
Hl,α(F−β )Fα + β(Fα)F−β +Nβ,α−βFα−β

)
−Φ

(
α(q),u

) ∑
β∈∆
β �=±α

ζ
(
β(q)

)
(Hl,Fβ)

× (
Hk,α(F−β )Fα + β(Fα)F−β −Nα−β,βFα−β

)
.

The last two terms vanish due to Eq. (53), while the first term vanishes due to Eq
The same reasoning shows that the second term will vanish provided we impo
condition (55). Note that in the degenerate case, the same argument works, but E
is not needed.

The proof of Eq. (42) proceeds along similar lines, using the functional equations
(31):

αkΦ
′(α(q), v)Fα + (

ζ(u− v) + ζ(v)
)
Aα
k (q, v)Hα

+Φ
(
α(q), v

)
α
(
A

h

k (q, v)
)
Fα −

∑
γ,δ∈∆
γ+δ=α

Nγ,δΦ
(
γ (q), v

)
Aδ
k(q, v)Fγ

−Φ
(−α(q),u− v

)
Aα
k (q,u)Hα +

r∑
j=1

αjA
α
k (q, v)A

h

j (q,u)

= Φ ′(α(q), v)αkFα + (
ζ(u − v) + ζ(v)

)
Φ
(
α(q), v

)
(Hk,Fα)Hα

+Φ
(
α(q), v

)∑
β∈∆

ζ
(
β(q)

)
α(F−β)(Hk,Fβ)Fα −Φ

(
α(q), v

)
ζ(v)αkFα

−
∑
γ,δ∈∆
γ+δ=α

Nγ,δΦ
(
γ (q), v

)
Φ
(
δ(q), v

)
(Hk,Fδ)Fγ

−Φ
(−α(q),u− v

)
Φ
(
α(q),u

)
(Hk,Fα)Hα

−Φ
(
α(q), v

) r∑∑
ζ
(
β(q)

)
α (H ,F )(H ,F )F
j=1β∈∆
j j −β k α β
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−Φ
(
α(q), v

)
ζ(u)

r∑
j=1

αj (Hk,Fα)Hj

= (
Φ ′(α(q), v)−Φ

(
α(q), v

)
ζ(v)

)
(Hk,Hα)Fα

+ ((
ζ(u− v) + ζ(v) − ζ(u)

)
Φ
(
α(q), v

)
−Φ

(−α(q),u− v
)
Φ
(
α(q),u

))
(Hk,Fα)Hα

+Φ
(
α(q), v

)
ζ
(
α(q)

)(+α(F−α)(Hk,Fα)Fα − α(Fα)(Hk,F−α)Fα

− α(F−α)(Hk,Fα)Fα + α(Fα)(Hk,Fα)F−α

)
+Φ

(
α(q), v

) ∑
β∈∆
β �=±α

ζ
(
β(q)

)
(Hk,Fβ)

(
α(F−β)Fα + β(Fα)F−β

)

−Φ(α(q), v)
∑
β∈∆
β �=±α

ζ
(
β(q)

)(
Hk,α(F−β )Fα + β(Fα)F−β

)
Fβ

−Φ
(
α(q), v

) ∑
γ,δ∈∆
γ+δ=α

(
ζ
(
γ (q)

)+ ζ
(
δ(q)

))
Nγ,δ(Hk,Fδ)Fγ

+Φ
(
α(q), v

)(
ζ
(
α(q)+ v

)− ζ(v)
) ∑

γ,δ∈∆
γ+δ=α

Nγ,δ(Hk,Fδ)Fγ

= Φ
(
α(q), v

)(
ζ
(
α(q)+ v

)− ζ
(
α(q)

)− ζ(v)
)

× (
(Hk,Hα)Fα − (Hk,Fα)Hα

)
+Φ

(
α(q), v

)
ζ
(
α(q)

)
2α
(
F−
α

)((
Hk,F

−
α

)
F+
α − (

Hk,F
+
α

)
F−
α

)
+Φ

(
α(q), v

) ∑
β∈∆
β �=±α

ζ
(
β(q)

)
(Hk,Fβ)

× (
α(F−β)Fα + β(Fα)F−β −Nα−β,βFα−β

)
−Φ

(
α(q), v

) ∑
β∈∆
β �=±α

ζ
(
β(q)

)

× (
Hk,α(F−β )Fα + β(Fα)F−β +Nβ,α−βFα−β

)
Fβ

+Φ
(
α(q), v

)(
ζ
(
α(q)+ v

)− ζ(v)
) ∑

γ,δ∈∆
γ+δ=α

Nγ,δ(Hk,Fδ)Fγ

= Φ
(
α(q), v

)(
ζ
(
α(q)+ v

)− ζ(v)
)

×
(
(Hk,Hα)Fα − (Hk,Fα)Hα −

∑
Nβ,γ (Hk,Fβ)Fγ

)
,

β,γ∈∆
β+γ=α
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where in the last step, we have used Eqs. (53) and (52). Again, this expression will
provided we impose the condition (55). Note that in the degenerate case, the same ar
works, but Eq. (55) is not needed.✷

Having concluded the proof of Proposition 1, we pass to analyzing the implica
of the algebraic constraints that we have derived. As it turns out, the conditions sta
Proposition 1 are sufficiently strong to allow for a complete classification of all pos
solutions. As a by-product, we shall be able to reduce Eq. (52) to the form given in Eq

A first step in this direction is taken by observing that the signsεα that appear in Eq. (52
may without loss of generality be assumed to be independent ofα:

(75)εα = ε for all α ∈∆.

This freedom of choice follows from the possibility of performing a transformation
changes the signs of the root generators without modifying any of the relations be
generators and structure constants used in the preceding calculations: it is given by

Eα −→ E′
α = εεαEα,

Hα −→ H ′
α = Hα,

Nα,β −→ N ′
α,β = εεαεβ

εα+β

Nα,β ,

Fα −→ F ′
α = εεαFα

and, omitting the primes, brings Eq. (52) into the form

(76)F−
α = ε√

2|α|Hα.

Next, let us write down the system obtained from Eq. (53) upon replacingα by −α andβ
by −β :

α(Fβ)Fα − β(Fα)Fβ = Nα,βFα+β,

α(F−β )Fα + β(Fα)F−β = Nα,−βFα−β,

−α(Fβ)F−α − β(F−α)Fβ = N−α,βF−α+β,

(77)−α(F−β)F−α + β(F−α)F−β = N−α,−βF−α−β.

Adding these four equations gives

α
(
F+
β

)
F−
α − β

(
F+
α

)
F−
β = 1

2
Nα,βF

−
α+β + 1

2
Nα,−βF

−
α−β.

Inserting Eq. (52) and separating the coefficients ofHα andHβ , we conclude that

(78)
1

|β|2β
(
F+
α

)= 1

|α − β|Nα,−β − 1

|α + β|Nα,β,

plus the same equation withα andβ interchanged. It is to be noted that this derivat

is only valid whenβ �= ±α, as stated in Eq. (53): this supplementary condition is also
needed in order to guarantee thatHα andHβ are linearly independent but can in fact
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be eliminated from Eq. (78) since this formula is automatically satisfied whenβ = ±α.
(Indeed, forβ = ±α the r.h.s. is understood to vanish since 2α and 0 do not belong to th
root system∆, whereas the l.h.s. vanishes as a consequence of Eq. (51).)

The algebraic equation (78) is identical with a special case of Eq. (42) of Ref
obtained by replacing the coupling constants gγ by 1/|γ |. As has been shown in Section 2
of Ref. [1], there is only one type of simple complex Lie algebrag for which there exists a
solution, namely those of theA-series. In particular,g is simply laced, and all its roots hav
the same length, which according to our convention equals

√
2, and Eq. (76) simplifies

to the form given in Eq. (60). Explicitly, ifg = sl(n,C) with hR consisting of the rea
diagonal(n× n)-matrices, we have∆ = {αab | 1 � a �= b � n} with αab(H)= Haa −Hbb

for H ∈ hR and takeEαab = Eab whereEab is the matrix whose entry in theath row and
bth column is 1 while all other entries are 0; then the structure constantsNab,cd = Nαab,αcd

are given by

(79)Nab,cd = δbc − δad,

and writingF±
ab = F±

αab
, we have

(80)F+
ab = −1

2
(Eaa +Ebb)+ 1

n
1n,

and

(81)F−
ab = ε

2
(Eaa −Ebb),

implying that forε = +1,

(82)Fab = −Ebb + 1

n
1n,

while for ε = −1,

(83)Fab = −Eaa + 1

n
1n.

It is then easy to check thatF , as defined by Eqs. (80)–(83), satisfies all the condit
stated in Proposition 1. To see this, assume for simplicity thatε = +1 (noting that the cas
ε = −1 can be obtained from this one by replacingFα by F−α , which does not affect th
validity of any of Eqs. (53)–(55)). Then assuming, for example, thatα = αab andβ = αcd ,
the l.h.s.αab(Fcd)Fab − αcd(Fab)Fcd and r.h.s.Nab,cdFαab+αcd of Eq. (53) are both equa
to

δad

(
Ebb − 1

n
1n

)
− δbc

(
Edd − 1

n
1n

)
,

except whena = d andb = c (β = −α), where the r.h.s. is understood to vanish while
l.h.s. does not. Similarly, the formula

n∑(
1

)

a=1

Eaa −
n

1n = 0,
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allows us to verify Eqs. (54) and (55): the l.h.s. of Eq. (54) becomes

∑
1�a �=b�n

(Eaa −Ebb) ⊗
(
Ebb − 1

n
1n

)
⊗
(
Eaa − 1

n
1n

)

= −
n∑

a=1

Eaa ⊗
(
Eaa − 1

n
1n

)
⊗
(
Eaa − 1

n
1n

)

+
n∑

b=1

Ebb ⊗
(
Ebb − 1

n
1n

)
⊗
(
Ebb − 1

n
1n

)
,

which vanishes as required, while that of Eq. (55), forα = αab, becomes∑
1�c�n
c �=a, c �=b

(Fac ⊗ Fcb − Fcb ⊗ Fac)

=
∑

1�c�n
c �=a, c �=b

(
Ecc − 1

n
1n

)
⊗
(
Ebb − 1

n
1n

)
−
(
Ebb − 1

n
1n

)
⊗
(
Ecc − 1

n
1n

)

= −
(
Eaa +Ebb − 2

n
1n

)
⊗
(
Ebb − 1

n
1n

)

+
(
Ebb − 1

n
1n

)
⊗
(
Eaa +Ebb − 2

n
1n

)

= −(Eaa −Ebb)⊗
(
Ebb − 1

n
1n

)
+
(
Ebb − 1

n
1n

)
⊗ (Eaa −Ebb)

= Hab ⊗ Fab − Fab ⊗Hab,

as required. In this way, we have rederived the main result of Refs. [5,6], which
that the dynamicalR-matrix of the integrable Calogero model associated with the
system of the simple Lie algebrag = sl(n,C) of theA-series can be gauge transformed
a numericalR-matrix.

4. Calogero models for symmetric pairs

According to Ref. [1], the standard Lax matrixL and the dynamicalR-matrix for the
Calogero models associated with the root system∆ of a symmetric pair(g, θ) read

(84)L =
r∑

j=1

pjHj +
∑
α∈∆̃

igαw
(
α(q)

)
Eα,

∑ ( ) 1 ∑ w′(α(q))

(85)R =

α∈∆̃
w α(q) Kα ⊗Eα +

2
α∈∆̃

w(α(q))
(Eα ⊗E−α +Eθα ⊗E−α),
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for the degenerate model and

(86)L(u) =
r∑

j=1

pjHj +
∑
α∈∆̃

igαΦ
(
α(q),u

)
Eα,

R(u, v) = −1

2

r∑
j=1

(
ζ(u− v) + ζ(u+ v)

)
Hj ⊗Hj

− 1

2

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Cz

+
∑
α∈∆̃

Φ
(
α(q), v

)
Kα ⊗Eα

(87)

− 1

2

∑
α∈∆̃

(
Φ
(
α(q),u− v

)
Eα ⊗E−α +Φ

(
α(q),−u− v

)
Eθα ⊗E−α

)
,

for the elliptic model, where∆ = ∆0 ∪ ∆̃ with

∆0 = {α ∈∆ | θα = α},
∆̃ = {α ∈∆ | θα �= α}.

As has been shown in Ref. [1], integrability requires the generatorsKα ∈ ib0 appearing in
Eqs. (85) and (87) to satisfy the constraints (2). Moreover, writing

(88)K±
α = 1

2
(Kα ±K−α),

we also impose the condition

(89)α
(
K+

α

)= 0 for α ∈ ∆̃ such thatθα − α /∈ ∆,

which follows from Eq. (2) by settingβ = −α when gα �= 0 but turns out to be true i
general, independent of this hypothesis.

Before proceeding with the calculations, we pause to note that theR-matrices given by
Eqs. (85) and (87) have certain symmetry properties with respect to the automorpθ
that we want to be preserved under the gauge transformation toR ′(u, v): in the degenerat
case,R takes values ink ⊗ m whereas in the elliptic case,R(u, v) is even under the actio
of θ ⊗ 1 and odd under the action of 1⊗ θ when these are combined with a change of s
in the corresponding spectral parameter. This can be achieved by imposing a restric
the action ofθ ong or, equivalently, on the gauge potentialsAj : in the degenerate case,g

should take values inK and theAj should take values ink, whereas in the elliptic case, w
require that

(90)θ
(
g(−u)

)= g(u), θ
(
Aj(−u)

)= Aj(u),

or in terms of the components of the gauge potentials in the expansion (13),
(91)θ
(
A

h

j (−u)
)= A

h

j (u), Aθα
j (−u) = Aα

j (u).



n part
M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435–483 455

In order to compute the content of Eqs. (11) and (12), we further expand the Carta
of the gauge potential according to

(92)A
h

j (u) =
r+s∑
k=1

Ak
j (u)Hk.

Then inserting Eqs. (87), (13) and (92) into Eq. (12), we obtain

0 =
∑
α∈∆̃

αkΦ
′(α(q), v)Kα ⊗Eα

− 1

2

∑
α∈∆̃

αkΦ
′(α(q),u− v

)
Eα ⊗E−α

− 1

2

∑
α∈∆̃

αkΦ
′(α(q),−u− v

)
Eθα ⊗E−α

−
r∑

j=1

∂jA
h

k (q,u)⊗Hj −
r∑

j=1

∑
α∈∆

∂jA
α
k (q,u)Eα ⊗Hj

+ 1

2

r∑
j=1

∑
α∈∆

(
ζ(u− v) + ζ(u+ v)

)
Aα
k (q,u)[Hj ⊗Hj,Eα ⊗ 1]

+ 1

2

r∑
j=1

∑
α∈∆

(
ζ(u− v) + ζ(u+ v)

)
Aα
k (q, v)[Hj ⊗Hj,1⊗Eα]

+ 1

2

r+s∑
j=1

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
j

k(q,u)[Cz,Hj ⊗ 1]

+ 1

2

r+s∑
j=1

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
j
k(q, v)[Cz,1⊗Hj ]

+ 1

2

∑
α∈∆

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q,u)[Cz,Eα ⊗ 1]

+ 1

2

∑
α∈∆

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q, v)[Cz,1⊗Eα]

−
r+s∑
j=1

∑
γ∈∆̃

Φ
(
γ (q), v

)
A
j
k(q,u)[Kγ ⊗Eγ ,Hj ⊗ 1]

−
r+s∑∑

Φ
(
γ (q), v

)
A
j
(q, v)[Kγ ⊗Eγ ,1⊗Hj ]
j=1 γ∈∆̃
k
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−
∑
γ∈∆̃
δ∈∆

Φ
(
γ (q), v

)
Aδ
k(q,u)[Kγ ⊗Eγ ,Eδ ⊗ 1]

−
∑
γ∈∆̃
δ∈∆

Φ
(
γ (q), v

)
Aδ
k(q, v)[Kγ ⊗Eγ ,1⊗Eδ]

+ 1

2

r+s∑
j=1

∑
γ∈∆̃

Φ
(
γ (q),u− v

)
A
j

k(q,u)[Eγ ⊗E−γ ,Hj ⊗ 1]

+ 1

2

r+s∑
j=1

∑
γ∈∆̃

Φ
(
γ (q),u− v

)
A
j

k(q, v)[Eγ ⊗E−γ ,1⊗Hj ]

+ 1

2

r+s∑
j=1

∑
γ∈∆̃

Φ
(
γ (q),−u− v

)
A
j

k(q,u)[Eθγ ⊗E−γ ,Hj ⊗ 1]

+ 1

2

r+s∑
j=1

∑
γ∈∆̃

Φ
(
γ (q),−u− v

)
A
j

k(q, v)[Eθγ ⊗E−γ ,1⊗Hj ]

+ 1

2

∑
γ∈∆̃
δ∈∆

Φ
(
γ (q),u− v

)
Aδ
k(q,u)[Eγ ⊗E−γ ,Eδ ⊗ 1]

+ 1

2

∑
γ∈∆̃
δ∈∆

Φ
(
γ (q),u− v

)
Aδ
k(q, v)[Eγ ⊗E−γ ,1⊗Eδ]

+ 1

2

∑
γ∈∆̃
δ∈∆

Φ
(
γ (q),−u− v

)
Aδ
k(q,u)[Eθγ ⊗E−γ ,Eδ ⊗ 1]

+ 1

2

∑
γ∈∆̃
δ∈∆

Φ
(
γ (q),−u− v

)
Aδ
k(q, v)[Eθγ ⊗E−γ ,1⊗Eδ]

+
r∑

j=1

∑
α∈∆

αjA
α
k (q, v)A

h

j (q,u)⊗Eα

+
r∑

j=1

∑
α,β∈∆

βjA
α
j (q,u)A

β

k (q, v)Eα ⊗Eβ.

Using the definition ofCz,

r+s∑ ∑

(93)Cz =

j=r+1

Hj ⊗Hj +
α∈∆0

Eα ⊗E−α,
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and Eqs. (16)–(20) to carry out the commutators, together with the relation

(94)
r+s∑
j=1

αjHj = Hα,

r∑
j=1

αjHj = (Hα)a,

r+s∑
j=r+1

αjHj = (Hα)b,

we arrive at

0 =
∑
α∈∆̃

αkΦ
′(α(q), v)Kα ⊗Eα

− 1

2

∑
α∈∆̃

αkΦ
′(α(q),u− v

)
Eα ⊗E−α

− 1

2

∑
α∈∆̃

αkΦ
′(α(q),−u− v

)
θEα ⊗E−α

−
r∑

j=1

∂jA
h

k (q,u)⊗Hj −
r∑

j=1

∑
α∈∆

∂jA
α
k (q,u)Eα ⊗Hj

+ 1

2

r∑
j=1

∑
α∈∆̃

αj
(
ζ(u− v) + ζ(u+ v)

)
Aα
k (q,u)Eα ⊗Hj

+ 1

2

r∑
j=1

∑
α∈∆̃

αj
(
ζ(u− v) + ζ(u+ v)

)
Aα
k (q, v)Hj ⊗Eα

− 1

2

r+s∑
j=1

∑
α∈∆0

αj
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
j
k(q,u)Eα ⊗E−α

+ 1

2

r+s∑
j=1

∑
α∈∆0

αj
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
j

k(q, v)Eα ⊗E−α

+ 1

2

r+s∑
j=r+1

∑
α∈∆

αj
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q,u)Eα ⊗Hj

+ 1

2

r+s∑
j=r+1

∑
α∈∆

αj
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q, v)Hj ⊗Eα

+ 1

2

∑
γ∈∆0

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A

−γ
k (q,u)Hγ ⊗E−γ

+ 1

2

∑
γ∈∆0

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
γ
k (q, v)Eγ ⊗H−γ

+ 1

2

∑
Nγ,α

(
ζ(u − v)− ζ(u+ v) + 2ζ(v)

)
Aα
k (q,u)Eγ+α ⊗E−γ
α∈∆,γ∈∆0
α+γ∈∆
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+ 1

2

∑
α∈∆,γ∈∆0
α−γ∈∆

N−γ,α

(
ζ(u− v) − ζ(u + v)+ 2ζ(v)

)
Aα
k (q, v)Eγ ⊗E−γ+α

+
r+s∑
j=1

∑
γ∈∆̃

γjΦ
(
γ (q), v

)
A
j
k(q, v)Kγ ⊗Eγ

−
∑
γ∈∆̃
δ∈∆

δ(Kγ )Φ
(
γ (q), v

)
Aδ
k(q,u)Eδ ⊗Eγ

−
∑
γ∈∆̃

Φ
(
γ (q), v

)
A

−γ
k (q, v)Kγ ⊗Hγ

−
∑

γ∈∆̃, δ∈∆
γ+δ∈∆

Nγ,δΦ
(
γ (q), v

)
Aδ
k(q, v)Kγ ⊗Eγ+δ

− 1

2

r+s∑
j=1

∑
γ∈∆̃

γjΦ
(
γ (q),u− v

)
A
j

k(q,u)Eγ ⊗E−γ

+ 1

2

r+s∑
j=1

∑
γ∈∆̃

γjΦ
(
γ (q),u− v

)
A
j
k(q, v)Eγ ⊗E−γ

− 1

2

r+s∑
j=1

∑
γ∈∆̃

(θγ )jΦ
(
γ (q),−u− v

)
A
j
k(q,u) θEγ ⊗E−γ

+ 1

2

r+s∑
j=1

∑
γ∈∆̃

γjΦ
(
γ (q),−u− v

)
A
j

k(q, v) θEγ ⊗E−γ

+ 1

2

∑
γ∈∆̃

Φ
(
γ (q),u− v

)
A

−γ

k (q,u)Hγ ⊗E−γ

+ 1

2

∑
γ∈∆̃, δ∈∆
γ+δ∈∆

Nγ,δΦ
(
γ (q),u− v

)
Aδ
k(q,u)Eγ+δ ⊗E−γ

+ 1

2

∑
γ∈∆̃

Φ
(
γ (q),u− v

)
A
γ
k (q, v)Eγ ⊗H−γ

+ 1

2

∑
γ∈∆̃, δ∈∆
γ−δ∈∆

N−γ,δΦ
(
γ (q),u− v

)
Aδ
k(q, v)Eγ ⊗E−γ+δ

+ 1 ∑
Φ
(
γ (q),−u− v

)
A

−θγ
(q,u) θHγ ⊗E−γ
2
γ∈∆̃

k
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+ 1

2

∑
γ∈∆̃, δ∈∆
θγ+δ∈∆

Nθγ,δΦ
(
γ (q),−u− v

)
Aδ
k(q,u)Eθγ+δ ⊗E−γ

+ 1

2

∑
γ∈∆̃

Φ
(
γ (q),−u− v

)
A
γ

k (q, v)Eθγ ⊗H−γ

+ 1

2

∑
γ∈∆̃, δ∈∆
γ−δ∈∆

N−γ,δΦ
(
γ (q),−u− v

)
Aδ
k(q, v)Eθγ ⊗E−γ+δ

+
r∑

j=1

∑
α∈∆

αjA
α
k (q, v)A

h

j (q,u)⊗Eα

+
r∑

j=1

∑
α,β∈∆

βjA
α
j (q,u)A

β
k (q, v)Eα ⊗Eβ.

Relabelling summation indices and using cyclicity and antisymmetry of the stru
constants, we can bring this expression into the following form:

0 =
∑
α∈∆̃

αkΦ
′(α(q), v)Kα ⊗Eα

− 1

2

∑
α∈∆̃

αkΦ
′(α(q),u− v

)
Eα ⊗E−α

− 1

2

∑
α∈∆̃

αkΦ
′(α(q),−u− v

)
θEα ⊗E−α

−
r∑

j=1

∂jA
h

k (q,u)⊗Hj −
r∑

j=1

∑
α∈∆

∂jA
α
k (q,u)Eα ⊗Hj

+ 1

2

r∑
j=1

∑
α∈∆̃

αj
(
ζ(u− v) + ζ(u+ v)

)
Aα
k (q,u)Eα ⊗Hj

+ 1

2

r∑
j=1

∑
α∈∆̃

αj
(
ζ(u− v) + ζ(u+ v)

)
Aα
k (q, v)Hj ⊗Eα

− 1

2

r+s∑
j=1

∑
α∈∆0

αj
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
j

k(q,u)Eα ⊗E−α

+ 1

2

r+s∑
j=1

∑
α∈∆0

αj
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
j

k(q, v)Eα ⊗E−α

+ 1 r+s∑ ∑
α
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα(q,u)E ⊗H
2
j=r+1α∈∆

j k α j
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+ 1

2

r+s∑
j=r+1

∑
α∈∆

αj
(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q, v)Hj ⊗Eα

− 1

2

∑
α∈∆0

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q,u)Hα ⊗Eα

− 1

2

∑
α∈∆0

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q, v)Eα ⊗Hα

− 1

2

∑
α∈∆,β∈∆0
α+β∈∆

Nα,β

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
α+β
k (q,u)Eα ⊗Eβ

+ 1

2

∑
α∈∆0, β∈∆
α+β∈∆

Nα,β

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
α+β
k (q, v)Eα ⊗Eβ

+
r+s∑
j=1

∑
α∈∆̃

αjΦ
(
α(q), v

)
A
j
k(q, v)Kα ⊗Eα

−
∑
α∈∆
β∈∆̃

α(Kβ)Φ
(
β(q), v

)
Aα
k (q,u)Eα ⊗Eβ

−
∑
α∈∆̃

Φ
(
α(q), v

)
A−α
k (q, v)Kα ⊗Hα

−
∑

γ∈∆̃, δ∈∆
γ+δ∈∆

Nγ,δΦ
(
γ (q), v

)
Aδ
k(q, v)Kγ ⊗Eγ+δ

− 1

2

r+s∑
j=1

∑
α∈∆̃

αjΦ
(
α(q),u− v

)
A
j

k(q,u)Eα ⊗E−α

+ 1

2

r+s∑
j=1

∑
α∈∆̃

αjΦ
(
α(q),u− v

)
A
j
k(q, v)Eα ⊗E−α

− 1

2

r+s∑
j=1

∑
α∈∆̃

(θα)jΦ
(
α(q),−u− v

)
A
j

k(q,u) θEα ⊗E−α

+ 1

2

r+s∑
j=1

∑
α∈∆̃

αjΦ
(
α(q),−u− v

)
A
j
k(q, v) θEα ⊗E−α

− 1 ∑
Φ
(−α(q),u− v

)
Aα(q,u)H ⊗E
2
α∈∆̃

k α α
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− 1

2

∑
α∈∆,β∈∆̃
α+β∈∆

Nα,βΦ
(−β(q),u− v

)
A
α+β
k (q,u)Eα ⊗Eβ

− 1

2

∑
α∈∆̃

Φ
(
α(q),u − v

)
Aα
k (q, v)Eα ⊗Hα

+ 1

2

∑
α∈∆̃, β∈∆
α+β∈∆

Nα,βΦ
(
α(q),u− v

)
A
α+β
k (q, v)Eα ⊗Eβ

− 1

2

∑
α∈∆̃

Φ
(−α(q),−u− v

)
Aα
k (q,−u) θHα ⊗Eα

− 1

2

∑
α∈∆,β∈∆̃
α+β∈∆

Nα,βΦ
(−β(q),−u− v

)
A
α+β

k (q,−u) θEα ⊗Eβ

− 1

2

∑
α∈∆̃

Φ
(−α(q),−u− v

)
Aα
k (q,−v)Eα ⊗ θHα

+ 1

2

∑
α∈∆̃, β∈∆
α+β∈∆

Nα,βΦ
(
α(q),−u− v

)
A
α+β
k (q, v) θEα ⊗Eβ

+
r∑

j=1

∑
α∈∆

αjA
α
k (q, v)A

h

j (q,u)⊗Eα

+
r∑

j=1

∑
α,β∈∆

βjA
α
j (q,u)A

β

k (q, v)Eα ⊗Eβ.

Noting that forα ∈ ∆0, we haveαj = 0 for 1� j � r and(Hα)a = 0, we can now identify
the components of Eq. (12) along the various subspaces ofg ⊗ g:

• The components alongh ⊗Hj lead to the following system of equations.
For 1� j � r:

(95)∂jA
h

k (q,u)+
∑
α∈∆̃

αjΦ
(
α(q), v

)
A−α
k (q, v)Kα = 0.

For r + 1 � j � r + s:

(96)
∑
α∈∆̃

αjΦ
(
α(q), v

)
A−α
k (q, v)Kα = 0.
• The components alongh ⊗ gα lead to the following system of equations.
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Forα ∈ ∆̃:

αkΦ
′(α(q), v)Kα + 1

2

(
ζ(u− v) + ζ(u + v)

)
Aα
k (q, v)(Hα)a

+ 1

2

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q, v)(Hα)b

+Φ
(
α(q), v

)
α
(
A

h

k (q, v)
)
Kα −

∑
γ∈∆̃, δ∈∆
γ+δ=α

Nγ,δΦ
(
γ (q), v

)
Aδ
k(q, v)Kγ

+ 1

2
Φ
(
α(q), v − u

)
Aα
k (q,u)Hα + 1

2
Φ
(
α(q), v + u

)
Aα
k (q,−u) θHα

(97)+
r∑

j=1

αjA
α
k (q, v)A

h

j (q,u) = 0.

Forα ∈∆0:

1

2

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)(
Aα
k (q, v) −Aα

k (q,u)
)
Hα

(98)−
∑

γ,δ∈∆̃
γ+δ=α

Nγ,δΦ
(
γ (q), v

)
Aδ
k(q, v)Kγ = 0.

• The components alonggα ⊗Hj lead to the following system of equations.
Forα ∈ ∆̃, 1 � j � r:

∂jA
α
k (q,u)− 1

2
αj
(
ζ(u− v) + ζ(u + v)

)
Aα
k (q,u)

(99)+ 1

2
αj
(
Φ
(
α(q),u− v

)
Aα
k (q, v)+Φ

(
α(q),u+ v

)
Aα
k (q,−v)

)= 0.

Forα ∈∆0, 1� j � r:

(100)∂jA
α
k (q,u)= 0.

Forα ∈ ∆̃, r + 1 � j � r + s:(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q,u)

(101)− (
Φ
(
α(q),u− v

)
Aα
k (q, v)−Φ

(
α(q),u+ v

)
Aα
k (q,−v)

)= 0.

Forα ∈∆0, r + 1 � j � r + s:

(102)Aα
k (q,u)−Aα

k (q, v) = 0.

• The components alonggα ⊗ gβ lead to the following system of equations.
Forα ∈∆0 andβ = −α:

(103)α
(
A

h
(q,u)−A

h
(q, v)

)= 0.
k k

Forα,β ∈ ∆0 with α + β �= 0, no new condition arises, due to Eq. (102).
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Forα ∈∆0, β ∈ ∆̃:

1

2
Nα,β

(
ζ(u− v) − ζ(u + v)+ 2ζ(v)

)
A
α+β
k (q, v)

− α(Kβ)Φ
(
β(q), v

)
Aα
k (q,u)

+ 1

2
Nα,β

(
Φ
(
β(q), v − u

)
A
α+β
k (q,u)+Φ

(
β(q), v + u

)
A
α+β
k (q,−u)

)
(104)+

r∑
j=1

βjA
α
j (q,u)A

β
k (q, v) = 0.

Forα ∈ ∆̃,β ∈∆0:

Nα,β

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
A
α+β
k (q,u)

−Nα,β

(
Φ
(
α(q),u− v

)
A
α+β

k (q, v)

(105)−Φ
(
α(q),u+ v

)
A
α+β
k (q,−v)

)= 0.

Forα,β ∈ ∆̃: if β = α �= −θα:

α(Kα)Φ
(
α(q), v

)
Aα
k (q,u)

− 1

2
Nθα,αΦ

(
α(q),u+ v

)(
Aα+θα
k (q,−u)−Aα+θα

k (q, v)
)

(106)−
r∑

j=1

αjA
α
j (q,u)A

α
k (q, v) = 0,

if β = −θα (independently of whether−θα �= α or −θα = α):

1

2
αkΦ

′(α(q),u+ v
)− α(K−α)Φ

(
α(q), v

)
Aα
k (q,u)

+ 1

2
Φ
(
α(q),u+ v

)(
α
(
A

h

k (q,u)
)− (θα)

(
A

h

k (q, v)
))

− 1

2
Nα,−θα

(
Φ
(−α(q),u− v

)
Aα−θα
k (q,u)−Φ

(
α(q),u− v

)
Aα−θα
k (q, v)

)
(107)+

r∑
j=1

αjA
α
j (q,u)A

−θα
k (q, v) = 0,

if β = θα �= −α:

α(Kα)Φ
(−α(q), v

)
Aα
k (q,u)

+ 1

2
Nα,θαΦ

(
α(q),u− v

)(
Aα+θα
k (q,u)−Aα+θα

k (q, v)
)

r∑
α θα
 (108)+

j=1

αjAj (q,u)Ak (q, v) = 0,
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if β = −α (independently of whetherθα �= −α or θα = −α):

1

2
αkΦ

′(α(q),u− v
)+ α(K−α)Φ

(−α(q), v
)
Aα
k (q,u)

+ 1

2
Φ
(
α(q),u− v

)(
α
(
A

h

k (q,u)
)− α

(
A

h

k (q, v)
))

− 1

2
Nθα,−α

(
Φ
(−α(q),u+ v

)
Aθα−α
k (q,−u)−Φ

(
α(q),u+ v

)
Aθα−α
k (q, v)

)
(109)+

r∑
j=1

αjA
α
j (q,u)A

−α
k (q, v) = 0,

if β �= ±α andβ �= ±θα:

α(Kβ)Φ
(
β(q), v

)
Aα
k (q,u)

− 1

2
Nα,β

(
Φ
(
β(q), v − u

)
A
α+β
k (q,u)+Φ

(
α(q),u− v

)
A
α+β
k (q, v)

)
− 1

2
Nθα,β

(
Φ
(
β(q),u+ v

)
A
θα+β
k (q,−u)−Φ

(
α(q),u+ v

)
A
θα+β
k (q, v)

)
(110)−

r∑
j=1

βjA
α
j (q,u)A

β
k (q, v) = 0.

This is a complicated set of equations which we shall solve in a series of steps.
We begin by considering the algebro-differential equations (99)–(102) for the roo

of the gauge potential, which we claim to have the simple solution

(111)Aα
k (q,u) =

{
Φ(α(q),u)Mα

k for α ∈ ∆̃

Mα
k for α ∈ ∆0

}
,

where the coefficientsMα
k are constants that must be determined from the rema

equations, subject to the constraint

(112)Mθα
k = −Mα

k for α ∈ ∆̃,

imposed in order to guarantee the validity of Eq. (91). (The corresponding constra
α ∈ ∆0 is empty.) Indeed, the statement of Eq. (111) forα ∈ ∆0 follows directly from
Eqs. (100) and (102). Similarly, the statement of Eq. (111) forα ∈ ∆̃ is an immediate
consequence of Eq. (99) in the degenerate case but is somewhat harder to prov
elliptic case. To this end, we recast the functional equation (29) into the form

Φ
(
α(q),u∓ v

)
Φ
(
α(q),±v

)
= (

ζ(u∓ v) ± ζ(v)
)
Φ
(
α(q),u

)−Φ ′(α(q),u)
and use the ansatz
Aα
k (q,u) = Φ

(
α(q),u

)
Mα

k (q,u) for α ∈ ∆̃
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to rewrite the differential equation (99) in the form

Φ
(
α(q),u

)
∂jM

α
k (q,u)+ αjΦ

′(α(q),u)Mα
k (q,u)

− 1

2
αj
(
ζ(u− v) + ζ(u+ v)

)
Φ
(
α(q),u

)
Mα

k (q,u)

+ 1

2
αj
((
ζ(u− v) + ζ(v)

)
Φ
(
α(q),u

)−Φ ′(α(q),u))Mα
k (q, v)

+ 1

2
αj
((
ζ(u+ v) − ζ(v)

)
Φ
(
α(q),u

)−Φ ′(α(q),u))Mα
k (q,−v) = 0,

while the algebraic equation (101) takes the form(
ζ(u− v) − ζ(u + v)+ 2ζ(v)

)
Φ
(
α(q),u

)
Mα

k (q,u)

− ((
ζ(u− v) + ζ(v)

)
Φ
(
α(q),u

)−Φ ′(α(q),u))Mα
k (q, v)

+ ((
ζ(u+ v) − ζ(v)

)
Φ
(
α(q),u

)−Φ ′(α(q),u))Mα
k (q,−v) = 0.

Both of these equations can be simplified by using the functional equation (30
subtracting(1/2)αj times the second from the first, with the result that

∂jM
α
k (q,u)= αj

(
ζ(u− v)+ ζ(v) + ζ

(
α(q)

)− ζ
(
α(q)+ u

))
(113)× (

Mα
k (q,u)−Mα

k (q, v)
)
,

while(
ζ(u− v) − ζ(u + v)+ 2ζ(v)

)
Mα

k (q,u)

− (
ζ(u− v) + ζ(v) − ζ

(
α(q) + u

)+ ζ
(
α(q)

))
Mα

k (q, v)

(114)+ (
ζ(u+ v) − ζ(v) − ζ

(
α(q) + u

)+ ζ
(
α(q)

))
Mα

k (q,−v) = 0.

Antisymmetrizing the last equation with respect to the exchange ofu and−u gives(
ζ(u− v) − ζ(u + v)+ 2ζ(v)

)(
Mα

k (q,u)−Mα
k (q,−u)

)
= (

ζ(u− v) + ζ(u+ v) + ζ
(
α(q)− u

)− ζ
(
α(q)+ u

))
(115)× (

Mα
k (q, v)−Mα

k (q,−v)
)
.

In order to analyze the consequences of this relation, we shall use the identity

ζ(x + y)− ζ(x)− ζ(y) = 1

2

℘ ′(x)−℘ ′(y)
℘ (x)−℘(y)

,

which can also be written as

ζ(u− v) − ζ(u+ v) + 2ζ(v) = ℘ ′(v)
℘ (u)−℘(v)

,

implying that

ζ(u− v) + ζ(u+ v) + ζ(s − u)− ζ(s + u)

℘ ′(u) ℘ ′(u) ℘ ′(u)(℘ (s)−℘(v))
=
℘(u)−℘(v)

+
℘(s)−℘(u)

=
(℘ (s)−℘(u))(℘ (u)−℘(v))

.
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After rearranging coefficients, we conclude that Eq. (115) can be reformulated as s
that the function

℘(α(q))−℘(u)

℘ ′(u)
(
Mα

k (q,u)−Mα
k (q,−u)

)
is independent ofu. Puttingu = α(q), we see that it must actually vanish identically, wh
is only possible if

Mα
k (q,u)−Mα

k (q,−u) = 0.

Inserting this result back into Eq. (114), we get

Mα
k (q,u)−Mα

k (q, v) = 0.

Now Eq. (113) implies thatMα
k is in fact a constant.

For what follows, we shall find it convenient to assemble the constants introduc
Eq. (111) above into a vector ina0 by writing, for anyα ∈ ∆,

(116)Mα =
r∑

j=1

Mα
j Hj ,

so that of course

(117)Mα
k = (Hk,Mα).

In analogy with Eq. (88), we also introduce the abbreviation

(118)M±
α = 1

2
(Mα ±M−α).

Note that, forα ∈ ∆̃, the generatorsMα ∈ a0 are in a sense complementary to t
generatorsKα ∈ ib0. (This observation will come to play an important role later on.)
particular, Eq. (112) amounts to the condition

(119)Mθα = −Mα for α ∈ ∆̃

which is analogous to the condition

(120)Kθα = Kα for α ∈ ∆̃

of Ref. [1].
Now we are ready to state the first main result of this section. Our terminology

follow that of Ref. [8], according to which rootsα ∈ ∆ are calledimaginary if θα = α,
real if θα = −α andcomplexif θα andα are linearly independent, whereas two rootα

andβ are calledstrongly orthogonalif both α + β andα − β are not roots (as is we
known, this implies thatα andβ are orthogonal in the usual sense).

Proposition 2. The integrable Calogero model associated with the root system
symmetric pair(g, θ) admits a gauge transformationg from the standard Lax pair o
Olshanetsky and Perelomov and the dynamicalR-matrix of Ref.[1] to a new Lax pair

with a numericalR-matrix if and only if (a) the automorphismθ acts on the root system∆
in such a way that
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• ∆ contains no imaginary roots, i.e.,∆0 = ∅ and∆̃ = ∆,
• for any complex rootα in ∆, θα andα are strongly orthogonal, i.e.,θα ± α /∈∆,

and (b) the set of generatorsKα ∈ ib0 appearing in Eqs.(85) and (87) can be
complemented by a set of generatorsMα ∈ a0 which, taken together, satisfy the algebra
constraints

(121)α
(
K+

α

)= 0, α
(
M+

α

)= 0,

(122)K−
α = εα√

2|α| (Hα)b, M−
α = εα√

2|α| (Hα)a,

α(Kβ)Kα − β(Kα)Kβ = 1

2
(Nα,βKα+β +Nθα,βKθα+β),

α(Kβ)Mα − β(Mα)Mβ = 1

2
(Nα,βMα+β −Nθα,βMθα+β)

(123)for α,β ∈ ∆ such thatβ �= ±α, β �= ±θα,

as well as the additional algebraic constraints

(124)
∑
α∈∆

(Hα)a ⊗Kα ⊗M−α = 0,
∑
α∈∆

(Hα)b ⊗Mα ⊗M−α = 0,

∑
β,γ∈∆
β+γ=α

Nβ,γMβ ⊗Kγ = (Hα)a ⊗Kα −Mα ⊗ (Hα)b,

(125)
∑

β,γ∈∆
β+γ=α

Nβ,γMβ ⊗Mγ = (Hα)a ⊗Mα −Mα ⊗ (Hα)a,

to be imposed in the case of the elliptic model, whereK±
α = (1/2)(Kα ± K−α) and

M±
α = (1/2)(Mα ± M−α) as above, withεα = ±1. In this case, the root part and th

Cartan part of the potentialAk = g−1∂kg associated with this gauge transformationg are
given by

(126)Aα
k (q) = w

(
α(q)

)
(Hk,Mα)

and

(127)A
h

k (q) =
∑
α∈∆

w′(α(q))
w(α(q))

(Hk,M−α)Kα

for the degenerate model and by

(128)Aα
k (q,u) = Φ

(
α(q),u

)
(Hk,Mα)

and

(129)A
h

k (q,u) = −
∑

ζ
(
α(q)

)
(Hk,M−α)Kα − ζ(u)Hk
α∈∆
for the elliptic model.
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Note. As we shall show after completing the proof of Proposition 2, Eq. (123) force
rootsα in ∆ to have the same length (which by convention we fix to be

√
2 ) and also

allows for a choice of basis in which the signsεα are independent ofα, so that Eq. (122
can be simplified as follows:

(130)K−
α = 1

2
ε(Hα)b, M−

α = 1

2
ε(Hα)a.

Proof. With the vector notation introduced above, we can first of all use Eq. (102),
α replaced byα + θα, to conclude that the middle terms in Eqs. (106) and (108) va
identically and thus reduce both of them to a single algebraic constraint:

(131)α(Kα) = α(Mα) for α ∈ ∆̃ such thatθα �= −α.

Note that replacingα by −α and adding/subtracting the two equations, we get

(132)α
(
K+

α

)= α
(
M+

α

)
for α ∈ ∆̃ such thatθα �= −α,

(133)α
(
K−

α

)= α
(
M−

α

)
for α ∈ ∆̃ such thatθα �= −α.

Using Eq. (89), the first of these can be sharpened as follows:

(134)α
(
K+

α

)= 0 = α
(
M+

α

)
for α ∈ ∆̃ such thatθα − α /∈ ∆.

(Indeed, ifθα = −α so that Eq. (131) no longer applies, Eq. (134) remains correct bec
in this caseM+

α = 0, according to Eqs. (118) and (119).) Next, inserting Eq. (111) toge
with the functional equation (25) into the differential equation (95) for the Cartan pa
the gauge potential, we see that this equation can be solved by setting

(135)A
h

k (q,u) = −
∑
α∈∆̃

ζ
(
α(q)

)
M−α

k Kα −M
h

k (u),

where theMh

k (u) are constants that must be determined from the remaining equa
provided we assume the coefficientsMα

k to satisfy the relation

(136)
∑
α∈∆̃

αjM
−α
k Kα = 0 for 1� j, k � r.

Converted into a tensor equation, it reads

(137)
∑
α∈∆̃

(Hα)a ⊗Kα ⊗M−α = 0,

which leads back to Eq. (136) by taking the scalar product withHj in the first and with
Hk in the third tensor factor. Note that in the degenerate case, the same argument
but Eq. (136)/(137) is not needed. Moreover, Eq. (96) is satisfied as a consequenc
identity∑ ( ) −α
α∈∆̃
αj f α(q) Mk Kα = 0 for r + 1 � j � r + s,
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which is valid for any even functionf (such asζ ′): this is easily shown by replacingα
by θα in the sum and noting that(θα)j = αj for r + 1 � j � r + s, (θα)(q) = −α(q),
M−θα

k = −M−α
k andKθα = Kα , so that∑

α∈∆̃
αj f

(
α(q)

)
M−α

k Kα = −
∑
α∈∆̃

αj f
(
α(q)

)
M−α

k Kα for r + 1 � j � r + s.

Similarly, inserting Eq. (111) together with the functional equation (29) into Eqs. (
and (109), we obtain

1

2
αk
(−Φ

(
α(q),u

)
Φ
(
α(q), v

)+ (
ζ(u)+ ζ(v)

)
Φ
(
α(q),u+ v

))
− α(K−α)M

α
k Φ

(
α(q),u

)
Φ
(
α(q), v

)
− 1

2
Φ
(
α(q),u+ v

)(
α
(
M

h

k (u)
)− (θα)

(
M

h

k (v)
))

+ 1

2
Nα,−θαM

α−θα
k

(−Φ
(−α(q),u− v

)
Φ
(
2α(q),u

)
−Φ

(−α(q), v − u
)
Φ
(
2α(q), v

))
− α(Mα)M

−α
k Φ

(
α(q),u

)
Φ
(
α(q), v

)= 0

and

1

2
αk
(−Φ

(
α(q),u

)
Φ
(
α(q),−v

)+ (
ζ(u) − ζ(v)

)
Φ
(
α(q),u − v

))
− α(K−α)M

α
k Φ

(
α(q),u

)
Φ
(
α(q),−v

)
− 1

2
Φ
(
α(q),u− v

)(
α
(
M

h

k (u)
)− α

(
M

h

k (v)
))

− 1

2
Nθα,−αM

θα−α
k

(−Φ
(−α(q),u+ v

)
Φ
(
2α(q),u

)
−Φ

(−α(q),−u− v
)
Φ
(
2α(q),−v

))
− α(Mα)M

−α
k Φ

(
α(q),u

)
Φ
(
α(q),−v

)= 0

respectively. In both cases, the terms proportional toΦ(α(q),u ± v) cancel provided we
set

(138)M
h

k (u) = ζ(u)Hk,

which also guarantees that Eq. (103) is valid, and due to the functional equation (2
remaining terms then cancel if we impose the relation

(139)
1

2
αk + α(K−α)M

α
k + α(Mα)M

−α
k + 1

2
Nθα,−αM

θα−α
k = 0 for α ∈ ∆̃.

Converted to a vector equation ina0, it reads

(140)
1

2
(Hα)a + α(K−α)Mα + α(Mα)M−α + 1

2
Nθα,−αMθα−α = 0 for α ∈ ∆̃,
which leads back to Eq. (139) by taking the scalar product withHk. Even simpler to handle
is Eq. (110), which by insertion of Eq. (111) together with the functional equation (28)
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reduces to the relation

α(Kβ)M
α
k − 1

2

(
Nα,βM

α+β
k −Nθα,βM

θα+β
k

)− β(Mα)M
β
k = 0

(141)for α,β ∈ ∆̃ such thatβ �= ±α, β �= ±θα.

Converted to a vector equation ina0, it reads

α(Kβ)Mα − 1

2
(Nα,βMα+β −Nθα,βMθα+β)− β(Mα)Mβ = 0

(142)for α,β ∈ ∆̃ such thatβ �= ±α, β �= ±θα,

which leads back to Eq. (141) by taking the scalar product withHk. Finally, inserting
Eq. (111) together with the functional equation (29) (more precisely, the difference o
copies of Eq. (29): one withv → u,u → v and one withv → u,u → −v) into Eq. (105)
and dividing byΦ(α(q),u), we obtain

(143)Nα,βM
α+β
k = 0 for α ∈ ∆̃, β ∈∆0,

which in turn reduces Eq. (104) to

(144)α(Kβ)M
α
k = β(Mα)M

β
k for α ∈∆0, β ∈ ∆̃.

In the degenerate case, the same conclusion is reached along a slightly different pat
in this case Eq. (105) is void while Eq. (104) takes the form

α(Kβ)w
(
β(q)

)
Mα

k +Nα,βM
α+β
k w′(β(q))− β(Mα)w

(
β(q)

)= 0,

which again leads to Eqs. (143) and (144) sincew andw′ are functionally independent.
Before proceeding to the solution of the remaining equations, let us pause to draw

consequences of the algebraic constraints (131)–(134), (139)/(140) and (143) der
far; this will help us considerably to simplify our further work. For this purpose, we m
distinguish between real and complex rootsα in ∆̃:

• For real rootsα ∈ ∆ (θα = −α), Eqs. (119) and (120), together with the fact t
Kα ∈ ib0 and henceθKα = Kα , imply thatM−α = −Mα , K−α = Kα andα(Kα) =
α(θKα) = θα(Kα) = −α(Kα), soα(K±α) = 0. Thus in this case, the last term a
the second term in Eq. (140) drop out, so we get

α(Mα)Mα = 1

2
(Hα)a.

Applying α to this relation and using that in this case,(Hα)a = Hα , we conclude that

2α(Mα)
2 = α(Hα) = (α,α),

i.e.,

(145)α(Mα) = εα√ |α| and Mα = εα√ (Hα)a,

2 2|α|

whereεα = ε−α = εθα = ε−θα is a sign factor (±1).
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• For complex rootsα ∈ ∆ (θα �= ±α), Eq. (131) implies thatα(K−α) = α(M−α), so
we may rewrite Eq. (140) in the form

1

2
(Hα)a + 2α

(
M+

α

)
M+

α − 2α
(
M−

α

)
M−

α + 1

2
Nθα,−αMθα−α = 0.

But under the substitutionα → −α, the first three terms in this equation are odd wh
the last is even, which forces them to vanish separately. Now we must distinguis
cases:
– if θα − α is not a root, the last term drops out and, according to Eq. (134), so

the second. Thus we get

α
(
M−

α

)
M−

α = 1

4
(Hα)a.

Applying α to this relation, we conclude that

4α
(
M−

α

)2 = α
(
(Hα)a

)= 1

2
(α,α − θα),

which can be further simplified becauseθα + α is never a root [9, Ex. F.2, p. 530
so that in this case,θα andα are (strongly) orthogonal, leading to

(146)α
(
M−

α

)= εα

2
√

2
|α| and M−

α = εα√
2 |α| (Hα)a,

whereεα = ε−α = εθα = ε−θα is a sign factor (±1);
– if θα − α is a root, we arrive at a contradiction, since in this caseθα − α is a real

root, so that according to the previous item,Mθα−α cannot vanish. Therefore, th
possibility must be excluded.

Moreover, we see thatMα can never vanish, so the only way to guarantee the validit
Eq. (143) is to assume that the sum of a rootα in ∆̃ and a rootβ in ∆0 is never a root. Sinc
we may freely change the sign ofβ , this forces all roots in∆̃ to be (strongly) orthogonal t
all roots in∆0, which is only possible if one of these two sets is empty, sinceg is supposed
to be simple and hence∆ must be irreducible. This proves the two restrictions on the ac
of θ on∆ stated in the proposition, namely

(147)∆0 = ∅, ∆̃ = ∆,

and, for any rootα in ∆,

(148)θα ± α /∈∆ and eitherθα = −α or θα ⊥ α.

Moreover, Eqs. (145) and (146) can be unified into a single formula

(149)M−
α = εα√

2|α| (Hα)a,

whereεα = ε−α = εθα = ε−θα is a sign factor (±1).
Let us summarize the results obtained so far. With the exception of Eq.
the system of Eqs. (95)–(110) has been completely solved in terms of the algebraic
conditions (147), (148), the explicit formulae (126)–(129) for the gauge potential with the



sk of

9) to
472 M. Forger, A. Winterhalder / Nuclear Physics B 667 [PM] (2003) 435–483

explicit formula (149) for the odd partM−
α of the coefficient vectorsMα and the algebraic

constraints (121), (133), (136)/(137) and (141)/(142). Thus we are left with the ta
verifying the implications of Eqs. (14), (15) and (97).

Beginning with Eq. (14), we use the functional equation (25) and Eqs. (147)–(14
compute

∂kA
h

l (q, u)− ∂lA
h

k (q,u)+
∑
α∈∆

Aα
k (q,u)A

−α
l (q,u)Hα

=
∑
α∈∆

ζ ′(α(q))(αl(Hk,M−α)Kα − αk(Hl,M−α)Kα

)
+
∑
α∈∆

Φ
(
α(q),u

)
Φ
(−α(q),u

)
(Hk,Mα)(Hl,M−α)Hα

= 1

2

∑
α∈∆

ζ ′(α(q))(+αl(Hk,M−α)Kα − αl(Hk,Mα)K−α

− αk(Hl,M−α)Kα + αk(Hl,Mα)K−α

+ (Hk,Mα)(Hl,M−α)Hα − (Hk,M−α)(Hl,Mα)Hα

)
− ζ ′(u)

∑
α∈∆

(Hk,Mα)(Hl,M−α)Hα

=
∑
α∈∆

ζ ′(α(q))(−αl
(
Hk,M

−
α

)
K+

α + αl
(
Hk,M

+
α

)
K−

α

+ αk
(
Hl,M

−
α

)
K+

α − αk
(
Hl,M

+
α

)
K−

α

+ (
Hk,M

−
α

)(
Hl,M

+
α

)
Hα − (

Hk,M
+
α

)(
Hl,M

−
α

)
Hα

)
− ζ ′(u)

∑
α∈∆

(Hk,Mα)(Hl,M−α)(Hα)b

=
∑
α∈∆

ζ ′(α(q))(− εα√
2|α|αlαkK

+
α + εα√

2|α|αkαlK
+
α

)

+
∑
α∈∆

ζ ′(α(q))(+αl
(
Hk,M

+
α

)
K−

α − αk
(
Hl,M

+
α

)
K−

α

+ εα√
2|α|αk

(
Hl,M

+
α

)
(Hα)b − εα√

2|α|αl
(
Hk,M

+
α

)
(Hα)b

)

− ζ ′(u)
∑
α∈∆

(Hk,Mα)(Hl,M−α)(Hα)b.

Obviously, the whole expression will vanish provided we assume that

(150)K−
α = εα√

2|α| (Hα)b,

which is complementary to the condition (149) derived previously and that∑

(151)

α∈∆
(Hα)b ⊗Mα ⊗M−α = 0,
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which is complementary to the condition (137) derived previously. Note that in
degenerate case, the same argument works, but Eq. (151) is not needed. Note a
Eq. (133) can now be eliminated because it follows from Eqs. (148), (149) and (150

For the proof of Eq. (15), the trick is to split the sum over rootsβ coming from the third
and fourth term into various pieces: the contribution withβ = α and, if θα �= −α, also
the contribution withβ = θα, which cancel mutually, the contribution withβ = −α and,
if θα �= −α, also the contribution withβ = −θα, which combine with the contribution
coming from the first and second term (transformed using the functional equation (30
finally the remaining contributions withβ �= ±α andβ �= ±θα: these can be complement
by terms that also cancel mutually (marked by underlining) and then be combined w
contributions from the fifth term (transformed using the functional equation (31)):

∂kA
α
l (q,u)− ∂lA

α
k (q,u)+ α

(
A

h

k (q,u)
)
A
α
l (q,u)− α

(
A

h

l (q, u)
)
A
α
k (q,u)

+
∑

β,γ∈∆
β+γ=α

Nβ,γA
β
k (q,u)A

γ

l (q,u)

= Φ ′(α(q),u)αk(Hl,Mα)−Φ ′(α(q),u)αl(Hk,Mα)

+Φ
(
α(q),u

)(∑
β∈∆

ζ
(
β(q)

)
α(K−β)(Hk,Mβ)(Hl,Mα)− ζ(u)αk(Hl,Mα)

)

−Φ
(
α(q),u

)(∑
β∈∆

ζ
(
β(q)

)
α(K−β)(Hl,Mβ)(Hk,Mα)− ζ(u)αl(Hk,Mα)

)

+
∑
γ,δ∈∆
γ+δ=α

Nγ,δΦ
(
γ (q),u

)
Φ
(
δ(q), u

)
(Hk,Mγ )(Hl,Mδ)

= (
Φ ′(α(q),u)−Φ

(
α(q),u

)
ζ(u)

)(
(Hk,Hα)(Hl,Mα)− (Hl,Hα)(Hk,Mα)

)
+Φ

(
α(q),u

)
ζ
(
α(q)

)
× (+α(K−α)(Hk,Mα)(Hl,Mα)

− α(Kα)(Hk,M−α)(Hl,Mα)

− (1− δθα,−α)α(K−θα)(Hk,Mθα)(Hl,Mα)

+ (1− δθα,−α)α(Kθα)(Hk,M−θα)(Hl,Mα)

− α(K−α)(Hl,Mα)(Hk,Mα)

+ α(Kα)(Hl,M−α)(Hk,Mα)

+ (1− δθα,−α)α(K−θα)(Hl,Mθα)(Hk,Mα)

− (1− δθα,−α)α(Kθα)(Hl,M−θα)(Hk,Mα)
)

+Φ
(
α(q),u

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)
(Hk,Mβ)
× (
α(K−β)(Hl,Mα) + β(Mα)(Hl,M−β)

)
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−Φ
(
α(q),u

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)
(Hl,Mβ)

× (
α(K−β)(Hk,Mα)+ β(Mα)(Hk,M−β)

)
+Φ

(
α(q),u

) ∑
γ,δ∈∆
γ+δ=α

(
ζ
(
γ (q)

)+ ζ
(
δ(q)

))
Nγ,δ(Hk,Mγ )(Hl,Mδ)

−Φ
(
α(q),u

)(
ζ
(
α(q) + u

)− ζ(u)
) ∑

γ,δ∈∆
γ+δ=α

Nγ,δ(Hk,Mγ )(Hl,Mδ)

= Φ
(
α(q),u

)(
ζ
(
α(q)+ u

)− ζ
(
α(q)

)− ζ(u)
)

× (
(Hk,Hα)

(
Hl,M

+
α

)− (
Hk,M

+
α

)
(Hl,Hα)

− 2(2− δθα,−α)α(Kα)
(
Hk,M

−
α

)(
Hl,M

+
α

)
+ 2(2− δθα,−α)α(Kα)

(
Hk,M

+
α

)(
Hl,M

−
α

))
+Φ

(
α(q),u

)(
ζ
(
α(q) + u

)− ζ(u)
)

×
(

+2(2− δθα,−α)α(Kα)
(
Hk,M

−
α

)(
Hl,M

+
α

)
− 2(2− δθα,−α)α(Kα)

(
Hk,M

+
α

)(
Hl,M

−
α

)
−

∑
β,γ∈∆
β+γ=α

Nβ,γ (Hk,Mβ)(Hl,Mγ )

)

+Φ
(
α(q),u

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)
(Hk,Mβ)

×(Hl,α(K−β)Mα + β(Mα)M−β

+Nβ,α−βMα−β

)
−Φ

(
α(q),u

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)
(Hl,Mβ)

×(Hk,α(K−β)Mα + β(Mα)M−β

−Nα−β,βMα−β

)
− (1− δθα,−α)Φ

(
α(q),u

)
ζ
(
α(q)

)
× (+Nθα,α−θα(Hk,Mθα)(Hl,Mα−θα)

−N−θα,α+θα(Hk,M−θα)(Hl,Mα+θα)

+Nα−θα,θα(Hl,Mθα)(Hk,Mα−θα)
−Nα+θα,−θα(Hl,M−θα)(Hk,Mα+θα)
)
.
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The last term vanishes due to the condition (148), whereas the previous two terms
due to Eq. (142). The first term also vanishes because, as already observed before,M+

α = 0
for real rootsα while, according to Eqs. (133), (134) and (146),

4α(Kα)M
−
α = 4α

(
K−

α

)
M−

α = 4α
(
M−

α

)
M−

α = (Hα)a

for complex rootsα. Finally, the same reasoning shows that the second term will va
provided we assume that

(152)
∑

β,γ∈∆
β+γ=α

Nβ,γMβ ⊗Mγ = εα√
2
|α|(Mα ⊗M−α −M−α ⊗Mα),

which is easily reduced to the second equation in Eq. (125) by noting that

1

2
(Mα ⊗M−α −M−α ⊗Mα)

= M−
α ⊗M+

α −M+
α ⊗M−

α = M−
α ⊗Mα −Mα ⊗M−

α

and using Eq. (122). Note that in the degenerate case, the same argument wo
Eq. (152) is not needed.

The proof of Eq. (97) proceeds along similar lines, using the functional equations
(31):

αkΦ
′(α(q), v)Kα + 1

2

(
ζ(u − v)+ ζ(u+ v)

)
Aα
k (q, v)(Hα)a

+ 1

2

(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
Aα
k (q, v)(Hα)b

+Φ
(
α(q), v

)
α
(
A

h

k (q, v)
)
Kα −

∑
γ,δ∈∆
γ+δ=α

Nγ,δΦ
(
γ (q), v

)
Aδ
k(q, v)Kγ

+ 1

2
Φ
(
α(q), v − u

)
Aα
k (q,u)Hα + 1

2
Φ
(
α(q), v + u

)
Aα
k (q,−u) θHα

+
r∑

j=1

αjA
α
k (q, v)A

h

j (q,u)

= Φ ′(α(q), v)αkKα

+ 1

2
Φ
(
α(q), v

)(
ζ(u− v) + ζ(u+ v)

)
(Hk,Mα)(Hα)a

+ 1

2
Φ
(
α(q), v

)(
ζ(u− v) − ζ(u+ v) + 2ζ(v)

)
(Hk,Mα)(Hα)b

+Φ
(
α(q), v

)(∑
β∈∆

ζ
(
β(q)

)
α(K−β)

(
Hk,Mβ

)
Kα − ζ(v)αkKα

)

−
∑

Nγ,δΦ
(
γ (q), v

)
Φ
(
δ(q), v

)
(Hk,Mδ)Kγ
γ,δ∈∆
γ+δ=α
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+ 1

2
Φ
(
α(q), v − u

)
Φ
(
α(q),u

)
(Hk,Mα)

(
(Hα)a + (Hα)b

)
− 1

2
Φ
(
α(q), v + u

)
Φ
(
α(q),−u

)
(Hk,Mα)

(
(Hα)a − (Hα)b

)

−Φ
(
α(q), v

) r∑
j=1

∑
β∈∆

ζ
(
β(q)

)
αj (Hj ,M−β)(Hk,Mα)Kβ

−Φ
(
α(q), v

)
ζ(u)

r∑
j=1

αj (Hk,Mα)Hj

= (
Φ ′(α(q), v)−Φ

(
α(q), v

)
ζ(v)

)
(Hk,Hα)Kα

+ 1

2

((
ζ(u − v) + ζ(u+ v) − 2ζ(u)

)
Φ
(
α(q), v

)
+Φ

(
α(q), v − u

)
Φ
(
α(q),u

)
−Φ

(
α(q), v + u

)
Φ
(
α(q),−u

))
(Hk,Mα)(Hα)a

+ 1

2

((
ζ(u − v) − ζ(u+ v) + 2ζ(v)

)
Φ
(
α(q), v

)
+Φ

(
α(q), v − u

)
Φ
(
α(q),u

)
+Φ

(
α(q), v + u

)
Φ
(
α(q),−u

))
(Hk,Mα)(Hα)b

+Φ
(
α(q), v

)
ζ
(
α(q)

)
× (+α(K−α)(Hk,Mα)Kα − α(Kα)(Hk,M−α)Kα

− (1− δθα,−α)α(K−θα)(Hk,Mθα)Kα

+ (1− δθα,−α)α(Kθα)(Hk,M−θα)Kα

− α(M−α)(Hk,Mα)Kα + α(Mα)(Hk,Mα)K−α

+ (1− δθα,−α)α(M−θα)(Hk,Mα)Kθα

− (1− δθα,−α)α(Mθα)(Hk,Mα)K−θα

)
+Φ

(
α(q), v

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)
(Hk,Mβ)

(
α(K−β)Kα + β(Kα)K−β

)

−Φ
(
α(q), v

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)(
Hk,α(M−β )Mα + β(Kα)M−β

)
Kβ

−Φ
(
α(q), v

) ∑
γ,δ∈∆
γ+δ=α

(
ζ
(
γ (q)

)+ ζ
(
δ(q)

))
Nγ,δ(Hk,Mδ)Kγ

+Φ
(
α(q), v

)(
ζ
(
α(q)+ v

)− ζ(v)
) ∑

Nγ,δ(Hk,Mδ)Kγ
γ,δ∈∆
γ+δ=α
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= Φ
(
α(q), v

)(
ζ
(
α(q)+ v

)− ζ
(
α(q)

)− ζ(v)
)

× (
(Hk,Hα)Kα − (Hk,Mα)(Hα)b

− (2− δθα,−α)
(
α(K−α) − α(M−α)

)
(Hk,Mα)Kα

+ (2− δθα,−α)α(Kα)(Hk,M−α)Kα

− (2− δθα,−α)α(Mα)(Hk,Mα)K−α

)
+Φ

(
α(q), v

)(
ζ
(
α(q)+ v

)− ζ(v)
)

×
(

+(2− δθα,−α)
(
α(K−α) − α(M−α)

)
(Hk,Mα)Kα

− (2− δθα,−α)α(Kα)(Hk,M−α)Kα

+ (2− δθα,−α)α(Mα)(Hk,Mα)K−α

−
∑

β,γ∈∆
β+γ=α

Nβ,γ (Hk,Mβ)Kγ

)

+Φ
(
α(q), v

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)
(Hk,Mβ)

× (
α(K−β)Kα + β(Kα)K−β −Nα−β,βKα−β

)
−Φ

(
α(q), v

) ∑
β∈∆

β �=±α,β �=±θα

ζ
(
β(q)

)

×(Hk,α(M−β)Mα + β(Kα)M−β

+Nβ,α−βMα−β

)
Kβ

+ (1− δθα,−α)Φ
(
α(q), v

)
ζ
(
α(q)

)
× (+Nα−θα,θα(Hk,Mθα)Kα−θα −Nα+θα,−θα(Hk,M−θα)Kα+θα

+Nθα,α−θα(Hk,Mα−θα)Kθα −N−θα,α+θα(Hk,Mα+θα)K−θα

)
.

The last term vanishes due to the condition (148), whereas the previous two terms
due to Eq. (142) and provided we impose the relation

α(Kβ)Kα − 1

2
(Nα,βKα+β +Nθα,βKθα+β)− β(Kα)Kβ = 0

(153)for α,β ∈ ∆ such thatβ �= ±α, β �= ±θα,

which is complementary to it. The first term also vanishes because, according to Eqs
and (150),

(Hk,Hα)Kα − (Hk,Mα)(Hα)b

= (Hk,Hα)K
+
α − (

Hk,M
+
α

)
(Hα)b

= εα
√

2 |α|((Hk,M
−
α

)
K+

α − (
Hk,M

+
α

)
K−

α

)

= εα√

2
|α|((Hk,Mα)K−α − (Hk,M−α)Kα

)
,
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whereas for real rootsα ∈∆ (θα = −α), we haveK−α = Kα , M−α = −Mα , α(K±α) = 0
and hence by Eq. (145)

−(2− δθα,−α)
(
α(K−α)− α(M−α)

)
(Hk,Mα)Kα

+ (2− δθα,−α)α(Kα)(Hk,M−α)Kα

− (2− δθα,−α)α(Mα)(Hk,Mα)K−α

= α(M−α)(Hk,Mα)Kα − α(Mα)(Hk,Mα)K−α

= − εα√
2
|α|((Hk,Mα)K−α − (Hk,M−α)Kα

)
,

while for complex rootsα ∈ ∆ (θα �= ±α), we haveα(K±α) = α(M±α) and hence by
Eq. (146)

−(2− δθα,−α)
(
α(K−α)− α(M−α)

)
(Hk,Mα)Kα

+ (2− δθα,−α)α(Kα)(Hk,M−α)Kα

− (2− δθα,−α)α(Mα)(Hk,Mα)K−α

= 2α(Mα)(Hk,M−α)Kα − 2α(Mα)(Hk,Mα)K−α

= − εα√
2
|α|((Hk,Mα)K−α − (Hk,M−α)Kα

)
.

Finally, the same reasoning shows that the second term will vanish provided we a
that

(154)
∑

β,γ∈∆
β+γ=α

Nβ,γMβ ⊗Kγ = εα√
2
|α|(Mα ⊗K−α −M−α ⊗Kα)

which is complementary to the condition (152) derived previously and is easily reduc
the first equation in Eq. (125) by noting that

1

2
(Mα ⊗K−α −M−α ⊗Kα)

= M−
α ⊗K+

α −M+
α ⊗K−

α = M−
α ⊗Kα −Mα ⊗K−

α

and using Eq. (122). Note that in the degenerate case, the same argument wo
Eq. (154) is not needed.✷

Having concluded the proof of Proposition 2, we pass to analyzing the implica
of the algebraic constraints that we have derived. The first thing that suggests itse
combine the generatorsKα andMα into generators

(155)Fα = Kα +Mα

which, according to Eqs. (119) and (120), define aθ -covariant map from∆ to hR:

(156)θFα = Fθα.
Then Eq. (121) becomes equivalent to Eq. (51) and Eq. (122) becomes equivalent to
Eq. (52). The relation between Eq. (123) and Eq. (53), however, is more intricate.
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To approach this question, note that Eq. (53) decomposes naturally into a com
along ib0,

α(Fβ)Kα − β(Fα)Kβ = Nα,βKα+β

(157)for α,β ∈ ∆ such thatβ �= ±α, β �= ±θα,

and a component alonga0,

α(Fβ)Mα − β(Fα)Mβ = Nα,βMα+β

(158)for α,β ∈ ∆ such thatβ �= ±α, β �= ±θα.

Now observe that Eq. (119) can be used to show that the second equation in Eq. (
equivalent to Eq. (158). Indeed, antisymmetrizing Eq. (123) with respect to the exc
of α andβ eliminates one of the two terms containing structure constants and lea
Eq. (158), and conversely, substitutingα by θα in Eq. (158) and subtracting the result, w
are led back to the second equation in Eq. (123). On the other hand, using Eq. (12
applying the same argument, the first equation in Eq. (123) turns out to be a conse
of Eq. (157) but is apparently weaker. Similarly, Eq. (124) is part of Eq. (54), from w
it can be obtained by projecting fromhR onto a0 in the third tensor factor, that is, b
applying the operator 1⊗ 1 ⊗ (1 − θ)/2, and Eq. (125) is part of Eq. (55), from which
can be obtained by projecting fromhR ontoa0 in the first tensor factor, that is, by applyin
the operator(1− θ)/2⊗ 1.

Although the conditions stated in Proposition 2 thus seem to be weaker than those
in Proposition 1, it turns out that they are still sufficiently strong to allow for a comp
classification of all possible solutions. As a by-product, we shall be able to reduce Eq
to the form given in Eq. (130). The arguments employed to achieve this are esse
the same as the ones in the previous section. First, we argue that, as before, theεα
that appear in Eq. (122) may without loss of generality be assumed to be indep
of α. Next, writing down the system obtained from Eq. (158) upon replacingα by −α

and β by −β , adding the resulting four equations, inserting Eq. (122) and separ
the coefficients of(Hα)a and (Hβ)a, we arrive at the same formula as in the previo
section, Eq. (78). Once again, it is to be noted that this derivation is only valid w
β �= ±α,β �= ±θα, as stated in Eq. (158): this supplementary condition is also need
guarantee that(Hα)a and(Hβ)a are linearly independent but can in fact be eliminated fr
Eq. (78) since this formula is automatically satisfied whenβ = ±α or β = ±θα. (Indeed,
for β = ±α or β = ±θα the r.h.s. is understood to vanish since 2α, 0 andα ± θα do not
belong to the root system∆, whereas the l.h.s. vanishes as a consequence of Eq. (12

The statement that forβ �= ±α andβ �= ±θα, the generators(Hα)a and (Hβ)a are
linearly independent, used in the derivation of Eq. (78) given here, can be proved indi
as follows. Suppose that for some pair of rootsα,β ∈ ∆ satisfyingβ �= ±α andβ �= ±θα,
these generators were linearly dependent. Since∆0 is empty so that(Hα)a and(Hβ)a are
both non-zero, this amounts to assuming that there exists a non-zero real numberλ such
that(Hβ)a = λ(Hα)a, or equivalently,
(159)β − θβ = λ(α − θα).
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Obviously, if both roots are real, Eq. (159) reduces toβ = λα, with λ = ±1, a
contradiction. Similarly, if one of the two roots is complex while the other is real, we
get a contradiction since if, for example,α is complex andβ is real, Eq. (159) become
β = (1/2)λ(α − θα) which is excluded sinceα andθα being strongly orthogonal implie
that the only linear combinations ofα andθα which are roots are±α and±θα. To handle
the case where both roots are complex and henceα and θα as well asβ and θβ are
strongly orthogonal, we begin by noting thatβ cannot be orthogonal to bothα andθα

since otherwise,θβ would be so as well and henceβ − θβ would be orthogonal toα− θα,
which contradicts Eq. (159). Exchangingα with θα andβ with θβ if necessary, we ma
assume without loss of generality thatα is not orthogonal toβ and that the factorλ in
Eq. (159) is positive. With these conventions, taking the scalar product of Eq. (159) wα

and withβ gives

(β,α)− (θβ,α) = λ(α,α),

(160)(β,β)= λ(β,α) − λ(β, θα),

implying

(β,β)= λ2(α,α).

In the root system of an arbitrary simple complex Lie algebra, this forcesλ2 to be 1, 2, 3,
1/2 or 1/3. But Eq. (159) excludes the possibility ofλ2 being different from 1 since th
root system of any simple complex Lie algebra is contained in an appropriate lattice f
by the integer linear combinations of vectors(1/2)ei where theei are an orthonormal bas
of Rn, so an equation of the form (159) with an irrational value ofλ can only hold if both
sides vanish, which is impossible since∆0 is empty. Thus we conclude thatλ = 1, soα,
β , θα andθβ all have the same length and Eq. (159) becomes

(161)β − θβ = α − θα.

This allows us to determine theα-string throughβ . First, β − α cannot be a root sinc
if it were, it would belong to∆0 which is empty. Second,β + α must therefore be
a root, sinceα and β are not orthogonal. Third,β + 2α cannot be a root since if
were, we would have 2(β,α)/(α,α) � −2, implying |β + α|2 � 0, which is absurd
Henceα andβ generate a root system of typeA2 for which they act as simple root
in particular, 2(β,α)/(α,α) = −1. Inserting this conclusion back into Eq. (160), we
that 2(θβ,α)/(α,α) = −3, which is only possible if theα-string throughθβ consists of
four roots, namelyθβ , θβ +α, θβ + 2α andθβ + 3α (recall that any root string has leng
at most 4). But this requires the angle betweenθβ andα to be−150◦ and forcesθβ andα
to have different length, contrary to a conclusion reached before.

In this way, we arrive once again at the conclusion that the simple complex Lie al
g must belong to theA-series. Moreover, the automorphismθ that defines the symmetr
pair (g, θ) is further restricted by various additional constraints. The first such cond
is that the root generatorsEα in g can be chosen so thatθEα = Eθα for all α ∈ ∆, which
according to the erratum of Ref. [1] is not only sufficient but also necessary to gua

that the proof of integrability given in Ref. [1] really works: this excludes the symmetric
pairs of theA I-seriesSL(n,R)/SO(n) for which all roots are real andθEα = −Eθα for
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all α ∈ ∆. The second condition is that there should be no imaginary roots: this exc
the symmetric pairs of theA II-seriesSL(n,H)/Sp(n) as well as the symmetric pairs of th
A III-series of complex GrassmanniansSU(p, q)/S(U(p) ×U(q)) with |p − q| � 1. The
third and final condition is that for all complex rootsα, θα should be strongly orthogon
to α: this excludes the symmetric pairs of theA III-series of complex Grassmannia
SU(p, q)/S(U(p) × U(q)) with p �= q . On the other hand, it is clear that the symme
pairs associated with the GrassmanniansSU(n,n)/S(U(n) × U(n)) do provide a non
trivial solution: explicitly, we have in the notation employed at the end of the prev
section (withn replaced by 2n) and in Section 3.2 of Ref. [1]

K+
ab = −1

4
(Eaa +Ebb +Eθ(a)θ(a) +Eθ(b)θ(b)) + 1

2n
12n,

(162)M+
ab = −1

4
(Eaa +Ebb −Eθ(a)θ(a) −Eθ(b)θ(b)),

and

K−
ab = ε

4
(Eaa −Ebb +Eθ(a),θ(a) −Eθ(b)θ(b)),

(163)M−
ab = ε

4
(Eaa −Ebb −Eθ(a)θ(a) +Eθ(b)θ(b)),

implying that

Kab = −1

2
(Ebb +Eθ(b)θ(b))+ 1

2n
12n,

(164)Mab = −1

2
(Ebb −Eθ(b)θ(b)),

whenε = +1, while

Kab = −1

2
(Eaa +Eθ(a)θ(a))+ 1

2n
12n,

(165)Mab = −1

2
(Eaa −Eθ(a)θ(a)),

whenε = −1.

5. Conclusions and outlook

Our analysis of the question whether the known dynamicalR-matrices for integrable
Calogero models can be gauge transformed to numericalR-matrices has revealed that th
is possible in some cases but not in all—a conclusion that could definitely not be re
by looking at the standard model associated with the root system of theA-series alone
In fact, it had been known from previous work that (a) the Calogero models asso
with the root systems of simple complex Lie algebrasg are integrable, in the sense
admitting a Lax representation with a dynamicalR-matrix, if and only if g = sl(n,C)
[1] and (b) that this dynamicalR-matrix can be gauge transformed to a numerical one
[5,6]. The results reported in this paper show that for the Calogero models associated
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with the root systems of symmetric pairs(g, θ), the situation is more intricate. First o
all, there is still no complete answer to the question which of these models are integ
in the sense of admitting a Lax representation with a dynamicalR-matrix: the only case
that has been analyzed completely is that of theA III-series of complex Grassmannia
SU(p, q)/S(U(p) × U(q)), where integrability has been shown to occur if and onl
|p − q| is either 0 or 1. We strongly suspect that this is in fact the only class of symm
spaces where integrability prevails, but a rigorous proof of this conjecture is still mis
What is shown in this paper is that dynamicalR-matrices of integrable Calogero mode
associated with non-Grassmannian symmetric pairs—should they exist—cannot be
transformed to numericalR-matrices and, more importantly, that the dynamicalR-matrices
of the Grassmannian Calogero models can be gauge transformed to numericalR-matrices
if p = q but not if |p − q| = 1. The first case includes theCn andDn models, whereas th
second case includes theBn andBCn models.

In summary, our results show that the question which originally motivated our
on integrability of the Calogero models, namely the search for an understanding
mathematical nature and role of dynamicalR-matrices, is still far from a definite answe
since the attempt to reduce them to numericalR-matrices via gauge transformations is on
partially successful.

Accepting the fact that the role of dynamicalR-matrices for our understanding
integrable systems can apparently not be reduced to that of numericalR-matrices in
disguise, there are many questions that gain new impetus. Continuing to use the C
models as a guideline, we believe that there are several directions in which future
will be capable of providing new insights into the problem. One of them is the que
of what should be the algebro-differential constraints to be satisfied by a truly dyna
R-matrix, or in other words, what is the real mathematical status and interpretation
dynamical Yang–Baxter equation. A remarkable fact is that, as will be shown in a se
publication [10], there is a natural candidate which is gauge invariant. Another prom
direction for research is a further clarification of the relation between Calogero m
and the geodesic flow on symmetric spaces subjected to Marsden–Weinstein phas
reduction: this relation should also shed new light on the role of the recently introd
spin Calogero models [11].
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