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It 1s shown that ten-dimensional supersymmetric Yang-Mulls theones are integrable systems,
in the (weak) sense of admutting a (superspace) Lax representation for their equations of motion
This 1s achieved by means of an exphcit proof that the equations of motion are not only a
consequence of but i fact fully equivalent to the superspace constramt F,z =0 Moreover, a
procedure for denving infimite series of non-local conservation laws is outhned

1. Introduction

One of the corner-stones in the development of mathematical physics has been
the discovery of the inverse scattering method, which has opened the way to
extending the notion of a completely integrable system from mechanics to field
theory (and also to statistical mechanics) In two-dimensional space-time, many
such systems have meanwhile been 1dentified, and a great variety of exact results —
most of them inaccessible from perturbation theory — has been obtained explicit
solutions (e.g., solitons), infinite series of conservation laws (both local and non-lo-
cal), Backlund transformations, hidden symmetnies related to Kac-Moody algebras,
etc Moreover, 1n spite of large differences between the various models, and even
though, in field theory, the notion of mtegrability 1s not quite unambiguously
defined, there 1s one generally accepted starting pomnt which all integrable systems
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have 1n common this 1s the existence of a Lax representation, 1 ¢ the possibility to
rewrite the equations of motion of the model under consideration as the compatibil-
ity conditions for a certain system of hinear partial differential equations. In most
cases, such compatibility conditions take the form of zero-curvature constraints on a
certain connection, defined mn terms of the dynamical vanables of the model, and
usually depending on additional “spectral” parameters.

An especially interesting class of models that fit mnto this scenario are the
two-dimensional non-lhnear o models on symmetric spaces Although these models
are unhkely to be completely integrable 1n the strict sense, a Lax representation does
exist [1,2], and can be used to derive infinite series of local [1, 3] as well as non-local
[2,4] conservation laws Moreover, for a certain class of symmetric spaces, the first
non-local conservation law 1s known to survive the transition from the classical to
the quantum theory [5,6], and finally the existence of the resulting conserved
quantum non-local charge 1s sufficient to determine the S-matrix [5,7]

An important, but largely open question is whether, or rather to what extent,
these techniques can be extended to higher dimensions In particular, in view of the
many analogies between two-dimensional non-linear ¢ models and four-dimen-
sional Yang-Mills theories [8, 9], one might suspect that the latter are also integra-
ble. However, there are arguments (see, e g, ref [10], pp 469,/470) which indicate
that this 1s not the case, and indeed, a Lax representation for the Yang-Mills
equations has not been found On the other hand, a Lax representation for the
(more restrictive) self-dual Yang-Mills equations does exist [11-14], and m fact,
self-dual Yang-Mills theories constitute the most popular examples for integrable
systems 1 four dimensions, their integrability being intimately connected with the
exphcit construction [15] of therr general (euchidean) solution Unfortunately, how-
ever, self-dual Yang-Mills theones fail to define genuine field theories, mainly
because they do not seem to admut a reasonable lagrangian formulation, and one
therefore does not know how to quantize them

This somewhat unsatisfactory situation 1s greatly improved by supersymmetry.
Namely, 1t 1s known that supersymmetric Yang-Mills theories, when written down
I superspace, contamn constraint equations of precisely the desired type (certain
components of the supercurvature tensor multiplet are supposed to vamsh): they
must be imposed 1n order to eliminate unphysical degrees of freedom [16,17] In
four dimensions, these constraints are of purely algebraic nature if N=1or N =2,
but they imply equations of motion if N =3 or N =4 More specifically, 1t can be
shown that for N =3 or N =4 supersymmetric Yang-Mills theories mn four dimen-
sions, the superspace constraints are exactly equivalent to the standard equations of
motion 1 terms of component fields [Such an equivalence has first been claimed,
but not fully proved, in ref [17], and has then usually been taken for granted in the
literature—probably because the importance of the statement, as the crucial prere-
quusite for an interpretation 1n terms of mtegrable systems, has not generally been
appreciated An explicit proof, for N = 3, has only been given recently [18]] As a
result, these theones are itegrable, m the (weak) sense of admitting a Lax
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representation (1 superspace) [19]. Moreover, 1t 1s known that the latter can be used
as a starting point for the derivation of higher (non-local) conservation laws [20,21]

The purpose of the present paper 1s to show that supersymmetric Yang-Mulls
theories 1n ten dimensions [22] exhibit the same structure, n the sense of integrable
systems, as N =3 or N = 4 supersymmetric Yang-Mills theories i four dimensions
Thus 1s certainly not surprising, since the latter can be obtamed from the former by
dimensional reduction [22], but 1t does show that integrability 1s not an artifact
mntroduced by the process of dimensional reduction but rather a structural property
of the ten-dimensional theory compatible with 1t. A further advantage 1s that the
constructions nvolved are much more transparent and, from a technical pomnt of
view, more manageable 1n ten dimensions than they are mn four dimensions In
particular, this goes for the Lax representation (1 e, the linear system) itself, which
finds a natural geometric mnterpretation in terms of concepts borrowed from twistor
theory [23] and, due to the twistorial nature of the spectral parameter, suggests a
notion of harmonic superspace that could prove to be the clue for an off-shell
formulation of the theory [24,25] Finally, there 1s an independent motivation for
looking at supersymmetric Yang-Mills theory directly in ten dimensions namely,
the fact that the effective field theory obtaned 1n the low-energy hmt of the type I
superstring [26] or the heterotic superstring [27] 1s a supersymmetric coupled
Emstein Yang-Mills theory [28-30]. In fact, we suspect that the results obtained
here for the Yang-Mills sector can be extended to the full effective field theory, and
maybe even to the superstring theory 1itself, we hope to come back to this problem
in the future

2. Lagrangian formulation versus superspace formulation

We begin by fixing our notations and conventions, which to a large extent
comncide with those of ref. [23] Latin indices denote vector components running
from 0 to 9, while Greek indices denote chiral Majorana spinor components running
from 1 to 16 more specifically, upper /lower Greek indices stand for components of
chiral Majorana spinors of positive/negative chirality, so we shall have to dis-
tinguish systematically between upper and lower indices The Chfford algebra over
ten-dimensional Minkowsk: space 1s represented by (32 X 32) matrices, namely the
ten y-matrices v,, satisfying the standard anticommutation relations, together with
their (normalized) totally antisymmetrized products Ym, m, 10 such a way that

(O

Y, = for r odd,

K ((o'"l m’)aﬁ) 0

Yom, = for r even (2.1)
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Thus v,; = Yo¥; -- Yo 1s diagonal. Useful relauons are

omon + anam = 2gmn B (2'2)
omo" = omn + gmn ’ (2 3)
00070 =mpgt 8mpOy ™ EmPp> (24)

together with the following symmetry property of the ¢,

ol - = (__ 1)(r-1)/2U

my ny

for r odd,

2
ol w=(-1)",

m

for r even. (2.5)

m"

(We follow the convention that all equations mvolving o-matrices 1n which the
spinor ndices are suppressed should be understood to hold whenever these indices
are substituted back mn any meaningful way.) We also have the important cychc
1dentity

(6,)*(6™) " + (0,)" (6™)** + (0,,) (™) =0,

(om)aﬁ(om)78+ (om)ﬂy(om)aﬁ + (om)ya(om)58= 0 (2 6)

With these prelimimaries out of the way, let us bnefly recall the lagrangian
formulation of ten-dimensional supersymmetric Yang-Mills theories [22] and then
confront 1t with their superspace formulation Throughout, we shall work with an
unspecified gauge group it 1s simply any compact Lie group G, with Lie algebra g
carrying a given Ad(G)-invariant inner product (, ) For simplicity, we suppose g to
be given m some faithful representation by anti-hermitian matrices and (.,.) to be
some negative multiple of the trace form in that representation, and n terms of an
arbitrary basis of generators T, 1n g, we wnite X = X°T,

[Ta’ Tb] = fap 1o (Ta’ Tb) =8ubs  Jabe= gadfbdc’ (gab) = (gab)_l

Now 1n the lagrangian context, we are dealing with an ordinary field theory m
ten-dimensional Minkowski space, involving a g-valued commuting vector field 4,
and a g-valued anticommuting chiral Majorana spinor field x® which transform
according to

A,—g '4,8+8 0,8 x —g'x% (27)
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under gauge transformations, and governed by the lagrangian
L=- %gabFrfmF'nnb + %gahxaa(am)aﬂ‘@mxﬁb ’ (2 8)

where 2,,=4,,+A,, 1s the usual covariant dervative, and F,,,=[9,,2,]
A standard vanational calculation gives the equations of motion

Gx =0, 1e (6™)ap2,,x?=0, (2.9)
P"F,,=3(0,)ap {x" X"} (2 10)

The varnation of the fields 4,, and x* under an infinitesimal supersymmetry
transformation, parametrized by an anticommuting chiral Majorana spinor &“ 1s

8,4,,=(0,)apex" . (211)
8. x*= %(o'"")aﬁeﬂan . (2.12)

As usual, one can show that on solutions of the field equations (2 9) and (2 10), the
variation of the lagrangian (2 8) becomes a pure divergence, and the algebra closes

Next, let us recall that ten-dimensional flat Minkowsk: superspace 1s parame-
trized by even co-ordinates x™ and odd co-ordinates 6%, and hence any superfield ¢
has a f-expansion as follows

o 16 1
o(x,0)=9(x)+ L ¢7(x,6), ¢(x,0)=—06% 0%, . (x) (213)

r=1

[We shall often call ¢‘"(x, 8) the term of order r 1n the #-expansion of ¢(x, ), and
we also recall that superfields ¢(x, ) are called even/odd if the component fields
of even order are commuting/anticommuting objects and the component fields of
odd order are anticommuting,/commuting objects | Moreover, the superderivatives
D, are defined by

D=~ ~(6™).p0%9,,, (2.14)
and satisfy
{Da,DB}= —2(6™)apd,, (215)

Finally, we introduce the following change of notation® the symbols 4,,, F,,, x°*
and g employed so far, and in (27)-(2.12) mn particular, are to be replaced,
throughout the rest of this paper, by the symbols A°m, ﬁmn, x* and g, respectively,
where the superscript ~ indicates, as mn (2 13), that we are dealing with ordmary
fields (depending on x) mstead of superfields (depending on x and #)
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Now we are ready to exhibit the superspace formulation of ten-dimensional
supersymmetric Yang-Mills theores, based on a g-valued superconnection one-form
A in superspace, representing the gauge potentials, which gives rise to a g-valued
supercurvature two-form F 1n superspace, representing the gauge fields, and to a
supercovariant superderivative 2, acting on g-valued superfields As usual, we
expand the differential forms 4, F on superspace mn terms of component superfields

A, Ap Fppy Fops Fog then A, F, and F,, are even while 4, and F,,, are odd,
and
D,=0,+[A4,,.}, (2 16)
D,=D,+[A,.}, (217)
and
an= [gm?gu] = amAn— anAm+ [Am’An]’ (2'18)
Fam= [ga’ @m]=DaAm_8mAa+ [Anz’ Am]’ (2 19)

Fp= {9,,, QB} +2(6™) ag?,,= D, Ag+ DA, + {A,,, AB} +2(0™)apd,, (220)

For later reference, we also list the Bianchi identities*

9,,F,p+ D,F,,+ D,F,, =0, (2.21)
9,F, —9,F, +9F, =0, (2 22)
Do Fy+ Dy Fom + D Fog— 2(6") aF,n = 0, (2.23)

D Fy, + DpF,,+ D,Fp— 2((6™) gy Fam + (6™) yaFpm + (6™)apF,m) =0 (224)

Supergauge transformations are represented by G-valued even superfields g and act
according to

A,—»g ' 4,8+g8 3,8 A,—~g 'A,g+g 'Dag, (225)

an_)g_lang’ Fam_)g_lFamg’ Faﬂ_)g_lthBg (226)
Finally, as mentioned 1n the ntroduction, the necessity for elminating unphysical
degrees of freedom requires imposing some constramnts on F The correct choice,

apparently first proposed 1 ref. [31], and used more extensively in ref [23], 18
extremely simple

F=0. (2 27)

[This form of the constraint 1s 1n fact suggested by the observation that F,,
contamns, as its zero order component, a gauge covanant field of dimension
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(length) ™%, and that no such field 1s present 1n the lagrangian formulation ] More-
over, 1t can be shown that under dimensional reduction, (2 27) provides exactly the
usual constraint equations of four-dimensional N =4 supersymmetric Yang-Mills
theories [16,17]

3. Equivalence of the constraint with the field equations

31 DERIVATION OF THE FIELD EQUATIONS FROM THE CONSTRAINT

Our objective 1n this subsection 1s to show that the constraimnt (2 27) 1s, at least
partially, of a dynamucal nature, and more specifically, that 1t implies precisely the
field equations (2 9) and (2.10). [This part of the equivalence proof has also been
carried out i ref [23] and 1s included mainly for the sake of completeness.]

First of all, combiming (227) with the Bianchi identity (224), we mnfer the
existence of a spimonal superfield x* such that

Fom=(0,) apx” (31)

The other two Bianchi 1dentities involving spinorial covariant dervatives, namely
(2.22) and (223), can now be used to express the spmorial covariant derivatives
9,F,, and 2,x? of the superfields F,, and x? in terms of these superfields

a-mn
themselves and their vector covariant derivatives For F_ . the result 1s immediate

from (2.22) and (3.1) "
DoFrp=(0,) ey @X” = (0,1) cr2uX” (32)
For x#, some algebra gives:
Dux? = —3(a") 'F,, (3.3)

With these tools at our disposal, we can easily derive the field equations for the
superfields x* and F,,, To this end, we simply combine the relation

(2.9} =-20") D, o 2,=-3(0,)"{2..2}, (34)

which follows from (2 20) and (2 27), with (3.2) and (3 3), and obtain
Fx=0, 1e. (6™)ap2,x* =0, (35)
D"Fn=13(0,) as {x* X" ) (36)

Hence the zero-order components Aom, I*gm,, and x* of the superfields 4,,, F, , and
x“ must of course be restricted to satisfy

=0, 1e (6™)upD, %% =0, (37)

‘gjmﬁmnz%(on)aﬁ{f(a’ 70('8} (38)
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32 GAUGE CONDITION

Having shown that the constraint implies the field equations, we are left with the
(more difficult) task of providing a proof for the converse statement This proof will
proceed along the lines laid out in ref [18], but will be techmcally simpler and
therefore more transparent* To see what is involved, notice first that the super-
gauge freedom in the superspace formulation 1s of course much bigger than the
ordinary gauge freedom 1n the lagrangian formulation Moreover, the #-expansions
for the superfields 4,,, F,, and x“ contamn a plethora of higher-order components
which should somehow be related to their zero-order components /fm, F, and R
We must therefore
(a) restrict the supergauge freedom to the ordinary gauge freedom,
(b) give a device allowing us to promote the ordmary fields 4,,, F,,

genuine superfields 4,,, F, and x“
Both of these aims can be achieved by going to a special gauge which, for reasons to
become clear later, will be called the recursion gauge (transverse gauge in ref [18])
and, due to the fact that i1t explicitly breaks supersymmetry and (as shown below)
satisfies property (a) above, can be viewed as an analogue of the Wess-Zumino
gauge 1n four-dimensional supersymmetric Yang-Mills theories [33] It reads

and x* to

64, =0 (39)

Moreover, we introduce the following recursion operator (transverse or Euler
operator 1n ref [18])

RX=06°

= §°D, 31
8041 a’ ( O)

which acts on superfields by simply multiplying the term of order r i ther
O-expansion by r, 1€,

16 16

$(x,0) =d(x) + ¥ ¢ (x,0) = (26)(x,0) = L r6"(x,8), (311)

r=1 r=1
cf. (2.13). An equivalent way of defiming the recursion gauge 1s then
R=09, (3.12)

Next, we argue that the recursion gauge does satisfy property (a) above
(1) It may always be imposed. In fact, starting with an arbitrary set of potentials
A,, A, and gauge transforming them, via g, to a new set of potentials A7, A/, we

* A similar proof has been given independently m ref [32], and 1t has there been extended, by
dimensional reduction, to cover the N = 2 theories 1n six dimensions as well as the N = 4 theores 1n
four dimensions
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see that the latter will satisfy the recursion gauge condition §°4’ = 0 1f and only 1f
Rg=—04,g. (313)

But this equation can always be solved Namely, looking at the §-expansions for the
superfields g and A4, we see that, due to the presence of an explicit 8 on the
right-hand side of (3 13), the zero-order component g of g 1s left unspecified, and
the higher-order components of g are uniquely determined from the zero-order
component ¢ of g and the components of 4, [More precisely, the argument 1s
recursive. the term of order r in the 8-expansion for g 1s determined from the terms
of order <r—1 1n the f-expansions for g and A, if r>1]

(u) It leaves precisely the freedom of performing ordmary gauge transformations
In fact, proceeding as above, we conclude that the residual super-gauge transforma-
tions are described by superfields g satisfying #£g = 0, which means g= g

In order to analyze whether the recursion gauge also solves problem (b) above, we
note that 1n this gauge

RA,, = 0°F,

am?®

(314)
(1+R)A,=6°F3—2(0™),50%4,, , (315)

This follows easily by evaluating the commutators [#,2,,] and [#, &,] in two
different ways, namely by using #=0°%, on the one hand and #= 6D, on the
other hand. In particular, taking the constraint (2 27) and 1ts consequences (3 1),
(3.2) and (3.3) into account, we arrive at

RA,, = (0,)50°x", (3 16)
(1+R)A, = —2(c™)us0%4,,, (3.17)
‘%an = (on)aﬁaagmxﬁ - (om)aﬁaa‘@nxﬁ’ (3 18)
Rx*=3(0"")"48"°F,, (319)

This shows that the recursion gauge does solve problem (b) above if the constraint
(2.27) 1s imposed, since looking at the #-expansions for the superfields A4,,, F,,, and
x*, we see that, due to the presence of an explicit 8 on the right-hand side of (3 16),
(3.18) and (319), the higher-order components of 4,,, F,, and x* are umquely
determined from their zero-order components Aum, an and x® (plus covarant

o

dervatwves of the form 9, . 9, F,,and 9, 9, x*), moreover, A4, 1s unquely
1 P 1 7 o

determuned from A, and has vamshing zero-order component A, =0 However,

our purpose 1n the following 1s to derive the constraint (2.27) and not to impose 1t

a priori, so the argument will be revisited [If we were to drop the constraint (2 27),
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we would have to introduce a large number of additional fields in order to arrive at
a system of recursion relations that closes.]

33 DERIVATION OF THE CONSTRAINT FROM THE FIELD EQUATIONS

Let us now start out from a g-valued commuting vector field 4,, and a g-valued
anticommuting spinor field x* which transform according to

A,~ g YU, 8+8710,8 x> 'x%%

under gauge transformations. First of all, these fields will be promoted to super-
fields, namely a g-valued even vector superfield 4,, and a g-valued odd spinor
superfield x* which, once again, transform according to

A,— 8 4,6+8710,8  x"—=8'x%

under gauge transformations, by imposing the recursion relations (3 16) and (3 19),
together with the standard defimition (2.18) of F,, in terms of A4, (which 1s
supposed a priorn to hold to all orders 1n the #-expansion). Namely, looking at the
0-expansions for the superfields 4,, and x° we see that, due to the presence of an
explicit # on the right-hand side of (3 16) and (3 19), the higher-order components
of 4, and x* are thus indeed uniquely determined from their zero-order compo-
nents A’m and x° and denivatives thereof [More precisely, the argument 1s, once
again, recursive the term of order r 1n the #-expansion for 4, 1s determined from
the term of order r — 1 1n the #-expansion for x*, and the term of order r in the
#-expansion for x* 1s determined from first derivatives of the term of order r — 1
and — 1in the non-abehian case — products of the terms of order p and ¢, with
p+qg=r—1, m the f-expansion for A,, if r>1] This being established, the
validity of the recursion relation (3.18) follows from that of the recursion relation
(3.16), together with the standard defimtions (2.16) of 2,, and (218) of F,, mn
terms of A, In addition, the recursion relations (3 16), (318) and (3 19) imply
that — apart from the zero-order component A, of A4, — all other components of
, F,, and x* are made up from (products of) the gauge covariant fields F,,,, x*

and thelr covanant denvatves 9, 9, an, @ml 9, X" Fnally, since 1+ 2
1s an nvertible operator, eq (3 17) can be used to define the g-valued odd spinor
superfield A4, and the reconstruction of the relevant superfields 1s completed by the
standard defimitions (2.17) of 2, and (2 19) resp. (2.20) of F,,, resp F,g

Now let us assume, for the remainder of this section, that the fields A and x*
satisfy the covanant Dirac equation (37) and the Yang-Mills equation (3 8 To
derive the constraint (2.27), we proceed 1n several steps, leaving 1t to the reader to
fill 1n the details of the calculations

First of all, we claim that the superfields 4,, and x* satsfy the covariant Dirac
equation (3.5) and the Yang-Mills equation (3 6) To prove this, we simply define a
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g-valued odd spinor superfield A, and a g-valued even vector superfield C,, as
follows

A=(0")upD,x", (3 20)

sz‘@nﬁtm_%(om)aﬁ{xar XB} (3 21)

By assumption, f\a =0 and ém =0 Now we use the recursion relations (3 16), (3.18)
and (3.19), together with (2 3), (2 4), (2.5), the cyclic 1dentity (2 6) and the cyclhicity
of 6?9 1n p, ¢, r, plus the Bianchi 1dentity (2 21), to calculate the action of the
recursion operator # on A, and C,, The result 1s

R, = (0™)p05C,,, (3 22)
‘@Cm = (omn)aﬁgagnAb ’ (3 23)

which shows recurswvely that A, =0 and C, =0 forces A\,=0 and C, =0 to all
orders 1n the #-expansion.

Second, we apply a simular strategy to prove (3 1), (3 2) and (3 3) Namely, we use
the recursion relations (3.16)—(3 19), together with (2 4), (25), (215), the Bianchi
identity (2.21) and, most important of all, the covanant Dirac equation (3 5), to
calculate the action of the invertible operator 1 + % on the difference of the two
sides of (3.1), (3.2) and (3.3). The result 1s

(1+2)(Fu = (0,) apx?) = = (0,),0%(2ux” + 1(67)7F,, ). (3.24)
1+ RN DFp— (6,) 0 DX ” + (0,.) up2,x" )
= —(0,)5,0%(2,,( Dux? + 1(67%) 7E, ) + { Far— (0,) X’ X7})
+(0,) 0% 2,(Dx7 + (67 'F,) + { Fan— (0,) sx’ X7}), (329)

(1+2)(2

xP+ o™ fE,,)
= = 16" 81(D,F,, — (0,) 62X’ + (0,) s2,X°) » (326)

which shows recursively that the covariant Dirac equation (3 5) implies (3.1), (3 2)
and (3.3)

The final step 1s to prove (2.27) This time, we use the recursion relations (3.17)
and (3.18), together with (2 5), the cychc 1dentity (2.6) and (2.15), to calculate the
action of the invertible operator 2 + % on F,; The result 1s

(2+R) Eyy=2(6") 5y 80" Frm— (6,,) a6X°) + 2(0™) 8" Fg = (0,) ")
(3 27)

which shows that (3.1) imphes (2 27), and we are finally done
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4. Higher conservation laws in superspace

In the previous section, we have proved the equivalence of the superspace
constramnt (2 27) with the standard equations of motion (3 7) and (3.8) mn terms of
component fields. The importance of that proof lies i the fact that we are able to
interpret the superspace constraint F,z =0 as the integrability condition for some
linear system 1 superspace, which therefore provides a Lax representation for the
equations of motion With that starting point, 1t 1s then possible to derive higher
conservation laws

41 LAX REPRESENTATION AND REFORMULATION OF THE CONSTRAINT

The constramt F,;=0 expresses the fact that the superconnection 1s flat n
certamn directions 1n superspace and that some of 1ts components can therefore be
gauged away. The corresponding supergauge transformation 1s represented by a
G-valued even superfield R which, by 1ts very definition, 1s required to satisfy a
certain system of first-order linear partial differential equations —or hnear system,
for short—1n superspace In addition, 1t depends on spectral parameters which
appear explicitly 1n the defining Linear system However, 1n contrast to the usual
integrable systems in two dimensions, where the spectral parameter 1s simply a
number, the spectral parameters here have an ntrinsic geometric structure of their
own, which can be expressed in terms of concepts borrowed from twistor theory
[23]. (The same feature has only recently been realized to occur, 1n an even more
direct sense, for self-dual Yang-Mills theories 1n four dimensions as well [14] )

To describe this mtrinsic geometric structure, suppose that we are given an
arbitrary null vector A m R%%. (More precisely, it suffices to fix an arbitrary null ray
[A] in RY%) Assuming that the superconnection 1s a pure gauge along the line n
superspace generated by A (cf. ref [23]) means that there exists some G-valued even
superfield R[A] such that

N"(0,,) % 45=N"(s,) " R[A] ' DgRIA], (41)
N4, =X"R[A] 719, R[A], (42)
or equivalently,
N"(a,) DR[N] =0, (43)
N9, R[A]=0, (4 4)
where by defimition,
2,R[A] = D,R[A] - R[\]A4,, (45)

2 R[\]=3,R[A]-R[A]4,, (46)
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The last two equations are dictated by our convention that under supergauge
transformations (2.25), the superfield R[A] transforms according to

R[A] - R[A]g (47)

Egs (41) and (4.2) or, equivalently, (4 3) and (4 4) constitute the desired linear
system, with arbitrary null vectors A (or rather null rays [A]) as spectral parameters,
since the corresponding integrability conditions are precisely the constramnt F,, =0
Indeed, 1f that linear system admits a solution R[A], we can use A’=0, (2.3) and
(2 20) to infer that

>\”'>\rl(om)l’l'l?(':)‘n)yaFl'it? = 0’
and since this 1s supposed to hold for an arbitrary null vector A m R'® (227)
follows by polarization Conversely, assumng that (2 27) and (hence) (3 1) are valid,
we can first integrate (4 2) — this 1s just a single equation, with lots of solutions — and

then use A2=0, (219) and (2 20) to infer that on all such solutions R[A], the
mtegrability conditions for satisfying (4 1) as well, which read

{X"(0,) @y, N'(0,) 25} RIN] = 0,

[X"(a,) @y, X2, | RIN] =0,

are fulfilled. Finally, 1t should be observed that the solutton of the linear system
(4 1)-(4.4) 1s not unique, and that the transformation

R[X] = Ro[A]R[A] (48)

will take solutions to solutions provided that
N"(0,,) “DgRo[A] =0, (49)
N3, Ry[A]=0 (4 10)

Of course, the transformations (4 8) leave the superfields 4, and 4, invarnant.
Next, we shall use the linear system (4 1)-(4.4), together with the constraint
(2 27), to solve for the superfields 4, and A4,, 1n terms of the superfields R To this
end, we shall have to consider two arbitrary null vectors A and g in RY? which are
not proportional, so that A-p# 0 Then defining
0,=\"0,, 0, = "o, (4.11)

m>

we have, due to (2 2),

ox=0, 0,0, +00,=2\ p, 0’=0 (412)
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This tmplies that

1 . Amp‘n
P(X,H)=2>\—_;0xﬂy=i 1+ O | »

A 1 mn
P(p,A\)= ! 00,=1 1_}\’";;"0 (4.13)
K, IA n (N 2 >\}L mn | -

are projection operators (e, P2= P) adding up to the identity
P(A,p)+P(p,A)=1 (414)

For later use, we also note that

PO =P PN =POLR)S  (415)
and
P(A "P(p, A N
(WP (1 N) = o,
Am“n
P(A,p)o™+0™P(u,A)—P(A,p)a"P(p,A)=0"— X Ma,, (4 16)
Moreover,

im P(\, p) Cimo, Ckero, CkerP(u,A) =1m P(A,pn),

im P(p,A) Cimo, C kero, Cker P(A, p) =1m P(p, ),

where 1m stands for 1mage and ker stands for kernel, and the last equahty follows
from (4.14), this gives the following more precise information

P(A, p)1s the projector onto 1m0, = ker 0, along imo, = kerg,,

(417)
P(p, N)1s the projector onto 1m g, = ker g, along im g, = ker o,

A particular consequence 1s that the entire 16-dimensional space of chiral Majorana
spmors splits 1nto the direct sum

imo, ® 1ma, = ker o, @ ker o, (4.18)

of eight-dimensional subspaces. Thus we can decompose the superfield 4, accord-
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g to (4 14) and (4.18) and then use (4 1)—(4 4) and (4 13) to obtain
A, =P, N) FRIN] DR[N] + P(N, 1) SR[p] ' DgR[p]  (419)

On the other hand, we exploit the fact that according to (25), and since F,j; 1s
symmetric 1n a and B, the constraint F,z =0 (136 equations) 1s equivalent to
(Um)aBF.,/g = 0 (10 equations) and (o,,,, q,)“ﬂFaﬂ = 0 (126 equations)*. The first set of

equations can be used to express the superfield A, 1n terms of the superfield 4,
A= —%(0,) P (D,Ag+ Dy, + { A, 45)). (4.20)
while the second set of equations takes the form-

) (DyAg+ DyAy+ (g, Ag}) =0 (4 21)

(amnpqr

To proceed further, we mtroduce the gauge mvariant G-valued even superfield
U[X,p]=R[AIR[p] . (4.22)

Then combining (4 19) with (4.22) and performung a straightforward but somewhat
tedious calculation, which uses (4 15) and (4 16), we arrive at the following equa-
tion.

A
D Ag+ Dy, + (A, 4} = —2:%(an)aB(R[}\]_13mR[}\] ~R[p] '9,R[r])

n

—2(0™) osR[1] '9,,R[1]
+(P(A, 1) P(, A) g+ PN, 1) P (1, A) ) R[]

xD,(U[A, p] ' D[N, p]) R[] (4.23)

This shows, 1 particular, that the set of constramts (4 21) 1s equivalent to the
following set of constraints on U[A, p]

(P(1 N0y P (1, M) D (UIN, ] DU N 0] =0 (424)

Conversely, given a gauge invariant G-valued even superfield U[A, p] satisfying the
constraint (4 24), we can spht 1t, according to (422), into two gauge covariant

*This counting 1s due to the fact that the (a,,,,,pq,)"‘B are self-dual while the (0,,,,).,s are
anti-self-dual
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G-valued even superfields R[A], R{u] and then use (419) and (4 20) to define
superfields 4, and 4,, satisfying the constraint (2 27). Of course, such a sphtting 1s
not umque, but a change of sphtting corresponds precisely to a supergauge transfor-
mation.

To summarnize, we have therefore arrived at yet another formulation of the
equations of motion for ten-dimensional supersymmetric Yang-Mills theories — this
time 1n terms of a gauge invanant G-valued even superfield U[A, ] depending, in a
highly non-trivial fashion, on two null rays [A]# [¢] in RY® [this of course breaks
mvariance under the Lorentz group SO(1, 9) down to the transverse subgroup SO(8)]
and satisfying a set of 126 constraint equations, which are formally reminiscent of
the equations of motion for the non-linear ¢ model on the group G. This formula-
tion 1s therefore a direct generalization of structures found previously 1n the case of
four-dimensional self-dual Yang-Mills theonies 11,13]-except for the fact that
(4.24) 15 of course not an equation of motion dervable from a lagrangian But on
the other hand, (4.24) has already the structure of a conservation law 1n superspace,
as we shall demonstrate 1n the next subsection.

The previous constructions are also closely related to the basic concepts of the
harmonic superspace approach [34], which starts out by introducing extra bosomc
variables (1in addition to the x’s and 6’s) In the present case, the space of these
extra variables 1s just the set of ordered pairs ([A], [¢1]) — simply denoted by [A, u] n
what follows — consisting of null rays [A] # [g] n R, or equivalently, the set of
ortented minkowskian planes in R, (The pairs have to be ordered, or equivalently,
the planes have to be oriented, because A — p, p — A forces U — U~!) But that 1s
precisely the pseudo-nemanman symmetric coset space

S =S0(1,9)/S0(1,1) X SO(8).. (4 25)

proposed independently i ref [24] This observation is of course just the starting
pomt for an entire dictionary between our approach and that of ref [24], and 1t
would be worthwhile to see that worked out 1n more detail.

42 CONSERVED CURRENTS AND EXPANSIONS

For the derivation of conservation laws, we first define a (supersymmetric) spinor
current, which 1s a gauge mvarnant g-valued odd spmnor superfield J¢, and then a
(non-supersymmetric) vector current, which 1s a gauge mvariant g-valued commut-
ing vector field j,. Both of them come with an additional, highly non-trivial
dependence on two null rays [A] # [p] in R’ - 1e., they are functions on the space
S introduced 1 (4.25) — and, once these spectral parameters are fixed, they become
totally antisymmetric rank-3 tensors on the orthogonal complement to the
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minkowskian plane in R>® spanned by A and p The explicit definitions are

TN, x, y, 2] = Ny (P, N) 0, P, A)) PU N, 0] ' DUIN, 1],

(4.26)

jm[}\’ B, X, y,Z] =/d160(0m)a50a‘[ﬂ[)‘7 B, x, ¥, Z]’ (4 27)

where x, y,z LA,u Then the set of constramnts (4 24) implies, and 1s 1n fact
equivalent to, the following set of (supersymmetric) spinor conservation laws

DJ=0, (4 28)

which 1n turn imply the following set of (non-supersymmetric) vector conservation
laws:

3", =0, (4 29)

because

3
3mjm=fd160(o'")¢,30“3m13=fd“’ﬂ(m—DB)JB_—_ ~ [ 4D, 1*

To arnve at infimte series of conservation laws, we must expand the spinor
current J* 1n the spectral parameters Generally speaking, functions on the space S
mtroduced 1n (4.25) should be expanded in terms of an orthonormal basis of
eigenfunctions for an appropriate Lorentz invanant differential operator on S, and
the coefficients in the expansion should be labelled by the spectrum of that
operator, plus additional parameters to account for degeneracies. We shall, however,
be less ambitious and content ourselves with expansions along curves in S generated
by the action of appropnate one-parameter subgroups of the Lorentz group SO(1, 9)
on given points in S As far as the tensor character of the currents (1.e, their nature
as totally antisymmetric rank-3 tensors) 1s concerned, covariance under an SO(8)
(the stability group* of a smgle pomt in S) will be broken by the expansion, and
what remains 1s covariance under an SO(7) (the joint stabihity group* of all ponts
on the curve m S along which the expansion 1s performed) As before, this 1s a
strategy which follows closely the one that was successfully applied mn the case of
four-dimensional self-dual Yang-Mills theones [13]

To be more specific, let us denote by {ey, e;, ., ey} the standard orthonormal
basis of R“® and set e, =e,+ e, Then we can write any vector x i R"® n the
form x=x%e,+x"e_+x'e, with x*=1(x°+x") and, simlarly, 6,=0,+ o),

* More precisely, the corresponding stability group contains an additional SO(1, 1) factor
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d,=03,+ 0, and 9 ,=9,+9,. Moreover, we decompose generators X 1n s0(9),
the stability algebra of the umit time-hke vector e;, according to

X=¢X,+X, with¢eR,neS, Yeso(s), (4 30)
where
0 0 0 0 0 O
X,={0 0 -aT|, Xy=|0 0 O (4 31)
0 n 0 0 0 Y
Then
exp( Xy )exp(o X, Jexp(— Xy ) = CXP(‘PXexp(Y),,) (4.32)

Obviously, X, generates rotations in the plane spanned by e, and n, and we shall
<et

A (n,¢)=exp(20X,) e, . (4 33)
A direct calculation gives
A, (n,¢)=eytcos2pe +sm2pn=cos’pe, +spestsmpn. (434)

For the following, we shall choose n=e,, put {=tan¢ and abbreviate
(1 + tan’d)A (€5, 9) to A (£), so that

A()=(1+8) et (1-¢2)e £ 28e, =€, + 2e, + {Pex
ol =(1+¢)oy+ (1-¢%)o,+ 280, =0+ 2{0, + {05,
=148+ (1-82)0,£280,=9 ,+2{0,+ {9+,
D=1+ Dy+ (1 -2, +289D,=D ,+ 20D, +*D5 (4 35)

With these preliminaries out of the way, let us consider

R.=Rle,], U=R,R7', (4.36)
and
R.(O=R[M.(O), UG =R.R() (4.37)
together with
B,($) =R, (R, (4.38)

which implies

Ut)=B.($)UB_(}) . (4.39)
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Now the linear system for R, ({) gives the following hinear system for B ,({)

(oi)aBBi(f)qDﬁBi(f) =- ("{i)aﬁ“@ﬂR R (4.40)
B () 7'9LB.(¢)= -2 R, R (4.41)

Putting
B, ($)=exp(b.($)), (4 42)

we get

1~ exp(—ad(b,({)))

(05)"Deb . (8) = — (o) " DyR ,RT', (443)

ad(b (%))
1 —exp(—ad(b,(1))) ) .
2d (5,(%)) 3%b,({)= —D R R, (4.44)

where for X and Y 1n the Lie algebra g, but with matrix entries that may be erther
commuting or anticommuting ¢-numbers, we have by definition

1—exp(—ad(X)) % )
k times
(see ref [35], p 105) Now we expand mn powers of {
b.(5)= X b (4 46)
r=1

Note that the expansion starts with the linear term since by (4 38), B,(0)=1 and
hence by (4.42), b, (0) = 0. Moreover, the advantage of expanding b ,({) and not
B (%) 1s the usual one 1t guarantees automatically that all coefficients 5¢, and not
only the first one, hie in the Lie algebra g Inserting (4 46) into (4 43), (4 44) and
collecting terms with the same power of { then gives a system of differential
equations for the coefficients 57 (in superspace) from which these can be de-
termined recursively by successive integrations (1n superspace), 1n particular, 54
contains p-fold mtegrals of (combinations of dertvatives of) R ,, with p=0,. , r,
and 1s therefore non-local of degree r. Explicitly, the terms up to order {2 are

(0.)¥DebD = F2(0,) PR R, (4.471)
9.6 =F29,R R}, (448 1)
(0.)%(Deb® — 4[bY, DgbPV]) +2(0,) P DbV = — (05) PR ,R', (4472)

(0,69 3[62.0,69]) £20,60= ~0:R, R (4482)
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Finally, we want to exhibit expressions for the conserved currents To this end, we
note first that, according to (4.34), a vector x i R*® will be orthogonal to A . (n, ¢)
and to A_(n, ¢) 1f and only 1f 1t 1s a linear combination of the vector —smn2¢e, +
cos2¢ n and the vectors orthogonal to e, e;, n Therefore, using

%(Aﬁ—(eZ’ ¢)+ A_(e;, ¢)) =€,
LA, (ep9) —A_(e5,0)) =cos2¢pe; +sm2pe,,

we see that the independent types of o-matrix factors that appear in (4.26) are

(1) o4(cos2¢a; +sm2¢oy)o, ,, with3<1 <)<k <9,

(1) oy(cos2$ o, +sm2¢0,) (—sin2¢o; +cos2¢o,)o,, with3<7<k<9
Hence, after some algebra, we obtamn conserved spmnor currents J7.({), with
2 <1<y <k<x?9, defined by

Je(8) = (0%07,) PU) 'DU), (4 49)

where
0/ k=05, U1>3,

0/ =0y, 11=2 (4.50)
Moreover, from (4.39),

U) ' D) =B_()(U'B.() DB (H)U+ UT'DY
-B_($)"'D,B_(£))B_(§) (4 51)
Again we expand in powers of {:
J5(§) = Z §I (4.52)

Then the J2{” can be wntten as functions of the b’ and b". Exphaitly, the
expressions up to order {? are

Je0 = (0_o/,)PU DU, (453 0)
J2D = (0_0,)*([6®, UT'DU | + U™ 'DgbPU — Dgb V)
—2(0y0/,) U DU, (4531)
120 = (0_a}, ) ([6@. U DU + L[ 69, [0, U DU |
+[6®, U Db PU | — 1[bD, Db V] — Dyb®
+ U Dgp? — 3 [b, Db 0] )U)
~2(0,0/,) [0V, U DU | + U™'DgbPU — Dy »)

+(0,0/,) U DU (4.532)
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5. Conclusions and outlook

In this paper, we have given an explicit proof that for supersymmetric Yang-Mulls
theories 1n ten dimensions, the superspace constraint 1s precisely equivalent to the
standard equations of motion 1n terms of component fields As a result, these
theories are 1ntegrable, in the (weak) sense of admutting a Lax representation (in
superspace). Moreover, we have shown how the latter can be used as a starting point
for the dervation of higher (non-local) conservation laws These integrability
properties are precisely analogous to — though technically much simpler to obtamn
and hence more transparent than — the corresponding integrability properties of
N =3 or N=4 supersymmetric Yang-Mills theories in four dimensions. One
drawback 1s that we have so far been unable to produce a completely explicit
expression — 1n terms of component fields, say — for even the simplest among these
higher (non-local) conservation laws, and although this 1s not so much a matter of
principle but rather a techmcal problem, 1t has hampered our understanding for
their physical significance. [The technical problem 1s twofold: (a) integrating hinear
differential equations 1n superspace, (b) picking out the penultimate component of a
superfield m 1ts §-expansion, cf (4 27). Of course, both problems are more likely to
have manageable solutions in d =10 than in d=4.]

Despute this deficiency, 1t 1s possible, and mstructive, to compare the integrability
properties of higher-dimensional supersymmetric Yang-Mills theories* with those
of two-dimensional non-linear ¢ models on symmetric spaces (cf the introduction)
As we have seen, there are considerable formal analogies, maimly at the classical
level. On the other hand, we expect that at the quantum level, the higher-dimen-
stonal supersymmetric Yang-Mills theories are truly interacting field theories with a
non-trivial S-matrix. But then, the Coleman—Mandula theorem [36] does not allow
them to admut higher local conservation laws, and there are partial — though not yet
conclusive — results towards a generalized Coleman—Mandula theorem [37] which
would not allow them to admit hugher non-local conservation laws, either Hence 1t
seems that upon quantization, these conservation laws are necessarily plagued by
anomalies — i complete analogy with what happens for the “anomalous” two-
dimensional non-linear ¢ models on symmetric spaces [6], such as, e g., the CPV~!
models [38] or grassmannian models [39]

Having discussed the 1ssue of higher conservation laws, let us conclude with a few
comments on another aspect of integrability that follows from the existence of a Lax
representation, namely the various techniques for generating exact classical solu-
tions. Generally speaking, this subject is much less developed 1n 4> 2 than it 1s 1n
d=2, and 1t seems that the additional complcations arising i higher dimensions
are largely due to the intrinsically multi-dimensional nature of the spectral parame-

*By higher-dimensional supersymmetric Yang-Mills theonies, we mean here the N=3 and N =4
theones 1n four dimensions, the N =2 theortes 1n six dimensions, and the (N = 1) theories m ten
dimensions
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ter. A notable exception to the first part of this statement 1s provided by the
self-dual Yang-Mills equations in d = 4, where the appropriate spectral parameter 1s
a twistor [14], and the corresponding multi-dimensional spectral transform — the
analogue of the Riemann-Hilbert and/or mverse scattering transform —1s the
twistor transform [15]

For the higher-dimensional supersymmetric Yang-Mills theories, however, the
prospects for rendering the analogous twistorial techniques equally powerful are not
very bright [23], and we have not investigated these questions any further
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