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It is shown that ten-dimensional supersymmetnc Yang-Mxlls theories are lntegrable systems, 
m the (weak) sense of admitting a (superspace) Lax representation for their equations of motion 
Ttus is actueved by means of an exphc~t proof that the equations of motion are not only a 
consequence of but m fact fully eqmvalent to the superspace constraint F~/¢ = 0 Moreover, a 
procedure for deriving lnfimte senes of non-local conservation laws is outlined 

1. Introduction 

One  of the corner-stones In the development  of mathemat ical  physics has been 

the discovery of the inverse scattering method, which has opened the way to 

ex tending  the no t ion  of a completely lntegrable system from mechamcs to field 

theory (and  also to statistical mechanics) In  two-dimensional  space-time, many  

such systems have meanwhile been identified, and a great variety of exact results - 

most  of them inaccessible from per turbat ion theory - has been obta ined explicit 

solut ions (e.g., sohtons), infinite series of conservation laws (both local and non-lo-  

cal), B~icklund transformations,  h idden symmetnes  related to Kac-Moody algebras, 

etc Moreover,  in spite of large differences between the various models, and  even 

though, in  field theory, the not ion  of integrablhty is not  quite unambiguous ly  

defined,  there is one generally accepted starting point  wtuch all lntegrable systems 
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have in common this is the existence of a Lax representation, 1 e the possibility to 

rewrite the equations of motion of the model under consideration as the compatibil- 
ity conditions for a certain system of hnear partial differential equations. In most 
cases, such compatibility conditions take the form of zero-curvature constraints on a 
certain connection, defined in terms of the dynamical variables of the model, and 
usually depending on additional "spectral" parameters. 

An especially interesting class of models that fit into this scenario are the 
two-dimensional non-hnear o models on symmetric spaces Although these models 
are unhkely to be completely lntegrable in the strict sense, a Lax representation does 
exist [1, 2], and can be used to denve infimte series of local [1, 3] as well as non-local 
[2, 4] conservation laws Moreover, for a certain class of symmetric spaces, the first 

non-local conservation law is known to survive the transition from the classical to 
the quantum theory [5,6], and finally the existence of the resulting conserved 

quantum non-local charge IS sufficient to determine the S-matrix [5, 7] 
An important,  but largely open question IS whether, or rather to what extent, 

these techmques can be extended to higher d~mensxons In particular, in view of the 
many  analogies between two-dimensional non-hnear o models and four-dimen- 
sional Yang-Mllls theories [8, 9], one might suspect that the latter are also lntegra- 
ble. However, there are arguments (see, e g ,  ref [10], pp 469/470) which indicate 
that this is not the case, and indeed, a Lax representation for the Yang-Mills 

equations has not been found On the other hand, a Lax representation for the 
(more restrictive) self-dual Yang-Mllls equations does exist [11-14], and in fact, 
self-dual Yang-Mflls theories constitute the most popular examples for integrable 
systems in four dimensions, their integrabfllty being intimately connected with the 

explicit construction [15] of their general (euclidean) solution Unfortunately, how- 
ever, self-dual Yang-Mllls theories fail to define genuine field theories, mainly 

because they do not seem to adrmt a reasonable lagrangian formulation, and one 

therefore does not know how to quantlze them 
This somewhat unsatisfactory situation is greatly ~mproved by supersymmetry. 

Namely,  ~t is known that supersymmetrlc Yang-Mills theories, when written down 
m superspace, contain constraint equations of precisely the desired type (certain 
components  of the supercurvature tensor mult~plet are supposed to vanish): they 
must  be imposed m order to ehnunate unphysical degrees of freedom [16,17] In 
four dimensions, these constraints are of purely algebraic nature if N = 1 or N = 2, 
but  they imply equations of motion if N = 3 or N = 4 More specifically, it can be 
shown that for N = 3 or N = 4 supersymmetrlc Yang-Mllls theories in four dimen- 
sions, the superspace constraints are exactly eqmvalent to the standard equations of 
mot ion in terms of component fields [Such an eqmvalence has first been claimed, 
but  not fully proved, in ref [17], and has then usually been taken for granted in the 
l i te ra ture-probably  because the importance of the statement, as the crucml prere- 
quisite for an interpretation in terms of Integrable systems, has not generally been 
appreciated An exphclt proof, for N = 3, has only been g~ven recently [18] ] As a 
result, these theories are lntegrable, m the (weak) sense of admitting a Lax 
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representation (in superspace) [19]. Moreover, it is known that the latter can be used 
as a starting point for the derivation of higher (non-local) conservation laws [20, 21] 

The purpose of the present paper is to show that supersymmetnc Yang-Mills 
theories in ten dimensions [22] extubat the same structure, in the sense of integrable 
systems, as N = 3 or N = 4 supersymmetrac Yang-Mllls theones in four dimensions 
This is certainly not surpnsing, since the latter can be obtained from the former by 
dimensional reduction [22], but it does show that mtegrabihty is not an artifact 
introduced by the process of &menslonal reduction but rather a structural property 
of the ten-dimensional theory compatible with it. A further advantage is that the 
constructions involved are much more transparent and, from a technical point of 
view, more manageable in ten dimensions than they are in four dimensions In 
particular, tlus goes for the Lax representation 0 e ,  the linear system) itself, which 
finds a natural geometric interpretation In terms of concepts borrowed from twistor 
theory [23] and, due to the tWlStorlal nature of the spectral parameter, suggests a 
notion of harmomc superspace that could prove to be the clue for an off-shell 
formulation of the theory [24, 25] Finally, there is an independent motivation for 
looking at supersymmetrac Yang-Mills theory directly in ten dimensions namely, 
the fact that the effective field theory obtained in the low-energy llrmt of the type I 
superstrlng [26] or the heterotlc superstnng [27] is a supersymmetnc coupled 
Einstein Yang-Mdls theory [28-30]. In fact, we suspect that the results obtained 
here for the Yang-Mills sector can be extended to the full effective field theory, and 
maybe even to the superstnng theory itself, we hope to come back to ttus problem 
in the future 

2. Lagrangian formulation versus superspace formulation 

We begin by fixing our notations and conventions, which to a large extent 
coincide with those of ref. [23] Latin indices denote vector components running 
from 0 to 9, while Greek radices denote chlral Majorana spxnor components running 
from 1 to 16 more specifically, upper/ lower Greek indices stand for components of 
clural Majorana spinors of positive/negative clurahty, so we shall have to dis- 
tinguish systematically between upper and lower indices The Clifford algebra over 
ten-dimensional Mlnkowslo space is represented by (32 × 32) matrices, namely the 
ten y-matrices ~,,. satisfying the standard anticommutation relations, together with 
their (normahzed) totally antxsymmetnzed products 7,~ ,.r' in such a way that 

0 (t"ml Or)° )l for todd 
mr (t l mr)o ) 0 

(t ° mr) ) 
m r 

0 
7,-1 

0 

(IOta, mr)o ") 
for r even (2.1) 



E Abdalla et al / Htgher conservatton laws 

Thus YII = %YI -- ~9 is diagonal. Useful relations are 

201 

OmO . + %0,, = 2g , , , ,  

O,.% = O. , .  + g i n . ,  

OmOpq = Omp q AW gmpOq -- gmqOp , 

(2.2) 

(2 3) 

(2 4) 

together with the following symmetry property of the o . . . .  

a;, r, mr = ( -- 1) ( ' -  1)/2Ore, m, for r odd,  

.~,/2 for r even (2.5) 

(We follow the convention that all equations revolving o-matrices in winch the 
splnor indices are suppressed should be understood to hold whenever these radices 

are substituted back in any meaningful way.) We also have the important cychc 

identity 

(O~) °~(O m) ~' + ( O, . )~ ( om) ~ + ( Om)' "°'~ O m,B') = O, 

(om).~ (om)~, + (O, . )~(om)o~ + (Om)~o(O")B, = 0 (2 6) 

With these prehmlnanes out of the way, let us briefly recall the lagrang~an 
formulation of ten-dimensional supersymmetrac Yang-Mllls theories [22] and then 

confront  it with their superspace formulation Throughout, we shall work with an 
unspecified gauge group it is simply any compact Lie group G, with Lie algebra 
carrying a given Ad(G)-lnvarlant inner product ( , )  For simplicity, we suppose g to 
be given m some faithful representation by anta-hermltlan matrices and (.,.) to be 
some negative multiple of the trace form m that representation, and m terms of an 

arbi trary basis of generators T a in g, we write X = XaTa, 

[Ta, Tb] =f,~bT~, (T~, Tb) = gab, Lb~ = g~dfbd¢, (gab) = (g~b)-1 

Now m the lagrangmn context, we are deahng with an ordinary field theory In 
ten-dimensional Mlnkowska space, involving a g-valued commuting vector field A m 
and a g-valued antlcommuting cinral Majorana splnor field X% winch transform 

according to 

A m ~ g  I A m g + g - l O m g  , X ~ - o g - l x " g  (27 )  
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under gauge transformations, and governed by the lagrangmn 

1 1;;,a ]ff'mnb 1 aa m fib 
L =  -- "~gab~mn-- + ~gabX ( 0 ) a f ~ m X  , (2 8) 

where @~= O m + A  m 1S the usual covanant denvatwe, and Fmn=[N,, ,Nn] 
A standard vanatmnal calculation gwes the equatmns of motmn 

~X = 0, , e ( o ' )  ~f~mX ~ = 0, (2.9) 

~mFrnn = l ( on ) af  { Xa, X ~8 } (2 10) 

The variation of the fields A m and X ~ under an mfinltes~mal supersymmetry 
transformatmn, parametrlzed by an antlcommutmg cinral Majorana splnor e ~, is 

a.Am = (o, . )  op~"X f , (2 11) 

~ e x a =  lZ ran\ a fl17 7to ) Be r ~ .  (2.12) 

As usual, one can show that on solutions of the field equatmns (2 9) and (2 10), the 
vanatlon of the lagranglan (2 8) becomes a pure divergence, and the algebra closes 

Next, let us recall that ten-&menslonal flat Mlnkowskl superspace as parame- 
tnzed by even co-ordinates x "  and odd co-ordmates 0 ~, and hence any superfield e~ 
has a 0-expansion as follows 

16 1 
~r dp(X, O) = ~(X) + E ~(r)(  x ,  0 ) ,  ~ ( r ) ( x ,  O) = - - 0  al 0 q~ _~(x) (2 13) 

r=l rl 

[We shall often call q~(r)(x, 0) the term of order r in the 0-expansmn of q,(x, 0), and 
we also recall that superflelds q~(x, 0) are called even/odd if the component fields 
of even order are commutmg/antlcommutlng objects and the component fields of 
odd order are antlcommutmg/commutlng objects] Moreover, the superdenvatlves 
D~ are defined by 

0 
Do-  00" (°")~fOaOm' (2.14) 

and satisfy 

(D~, DB} = - 2 ( o m ) ~ O ~  (2 15) 

Finally, we introduce the followmg change of notation" the symbols Am,  Finn , X a 

and g employed so far, and in (2 7)-(2.12) in particular, are to be replaced, 
throughout the rest of tins paper, by the symbols A,,, k~mn, ~ and ~, respectwely, 
where the superscript indicates, as m (2 13), that we are deahng with ordinary 
fields (depending on x) instead of superflelds (depending on x and 0) 
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Now we are ready to extubxt the superspace formulation of ten-dimensional 
supersymmetrlc Yang-Mllls theories, based on a ~-valued superconnectlon one-form 
A in superspace, representing the gauge potentials, which gives rise to a ~-valued 
supercurvature two-form F in superspace, representing the gauge fields, and to a 
supercovanant superdenvatwe 9 ,  acting on ~-valued superfields As usual, we 
expand the differential forms A, F on superspace in terms of component superfields 
Am, A~, Fro., F~,., F~a; then A m, F,.. and F~a are even whale A~ and F~m are odd, 
and 

~ m =  0m + [A,. , .  }, (216) 

and 

~ = D ~ +  [A~,. ), (2 17) 

Fro. = [~,., Nul = O,.A. - O.A., + [ A m, A.],  (2.18) 

F~,. = [ ~ . ,  ~ml  = D.Am - areA. + [A~, A , . I ,  (2 19) 

F ~ =  ( ~ , ~ }  + 2( o " ) , , ~ , , =  D,~A~ + Dt~A~, + ( A,~, A~ } + 2( om),~t~A,,, (220) 

For later reference, we also hst the Blancht ldenUties" 

.~mFnp q- ~nFpm -4- ~@pFmn = 0, (2.21) 

~afmn - .~mFan d- ~ n F a m  = O, (2 22) 

~.F#,~ + ~F~,~ + ~mF~ - 2(o")  ~Fm. = 0, (2.23) 

~ o r ~  + ~ V , .  + ~ r o ~ -  2((o~)~r.m + (om),.rem + (o~)oer~m) = 0 (2 24) 

Supergauge transformations are represented by G-valued even super fields g and act 
according to 

A , ~ g - X A m g + g - l O m g ,  A ~ g  1A~g+g-lD~g, (225) 

Fro. ~ g-XFm.g, F~.~ ~ g-aF~mg, F~ --* g-lF~Bg (2.26) 

Finally, as mentioned in the introduction, the necessity for ehnunatlng unphysical 
degrees of freedom requires imposing some constraints on F The correct choice, 
apparently first proposed in ref. [31], and used more extensively m ref [23], is 
extremely simple 

F~a = 0. (2 27) 

[Thts form of the eonstramt lS in fact suggested by the observation that F ~  
contains, as its zero order component, a gauge covaraant field of dimension 
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(length)- i, and that no such field is present in the lagranglan formulation] More- 
over, it can be shown that under dimensional reduction, (2 27) provides exactly the 
usual constraint equations of four-dimensional N = 4 supersymmetrlc Yang-Malls 
theories [16,17] 

3. Equivalence of the constraint with the field equations 

3 1 DERIVATION OF THE FIELD EQUATIONS FROM THE CONSTRAINT 

Our objective in this subsection is to show that the constraint (2 27) is, at least 
partially, of a dynanucal nature, and more specifically, that it implies precisely the 
field equations (2 9) and (2.10). [This part of the equivalence proof has also been 
carried out in ref [23] and is included mainly for the sake of completeness.] 

First of all, comblmng (2 27) with the Blanchi identity (2 24), we infer the 
exastence of a splnorlal superfield X ~ such that 

F~,. = (a,,,) ~,¢X/~ (3 1) 

The other two Blanchi identities involving splnonal covanant derivatives, namely 
(2.22) and (2 23), can now be used to express the spinonal covarlant derivatives 
*@~Fmn and ~ X  B of the superfields Fro. and X B in terms of these superfields 
themselves and their vector covarlant derivatives For F,.n, the result is immediate 
from (2.22) and (3.1) 

~@~F,,,. = ( O n ) O t T ~ m X  Y --  ( O m ) a T & X  Y (3 2) 

For X fl, some algebra gives: 

~aX fl = - ½( omn ) a % n  (3.3) 

With these tools at our disposal, we can easily derive the field equations for the 
superfields X" and Fm. To this end, we simply combine the relation 

(-~a,*@fl}=--2(om)att-@ m o r  ~m=--~2(om)etfl(~a,~fl}, (34)  

which follows from (2 20) and (2 27), with (3.2) and (3 3), and obtain 

~ X  = O, i.e. (om)afl~mX fl = 0, (3 5) 

~mFmn = 1(On)etfl ( X a, X fl } (3 6) 

Hence the zero-order components .4m, /~,~, and 9~ of the superfields Am, Fm, and 
X ~ must of course be restricted to satisfy 

~)~ = 0, 1.e (o  m),#~,,,~fl = O, (3 7) 

o m o _ _  1 o ~  

Finn- ~( On)a,8 ( X , Xfl} (3.8) 
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3 2 G A U G E  CONDITION 

Having shown that the constraint lmphes the field equations, we are left with the 
(more &fficult) task of providing a proof for the converse statement Tins proof will 
proceed along the hnes laid out m ref [18], but will be techmcally simpler and 
therefore more transparent* To see what ~s mvolved, notice first that the super- 
gauge freedom m the superspace formulation is of course much bigger than the 
ordinary gauge freedom m the lagrangaan formulation Moreover, the 0-expansxons 
for the superfields Am, F,,, and X ~ contain a plethora of Ingher-order components 
winch should somehow be related to their zero-order components -4m, 14,,, and ~ .  
We must therefore 
(a) restrict the supergauge freedom to the ordinary gauge freedom, 
(b) gwe a dewce allowing us to promote the ordinary felds .din, 14m, and ~" to 

genuine superfields A.,, Finn and X ~ 
Both of these rams can be achieved by going to a specml gauge winch, for reasons to 
become clear later, will be called the recurslon gauge (transverse gauge in ref [18]) 
and, due to the fact that it exphcltly breaks supersymmetry and (as shown below) 
satisfies property (a) above, can be wewed as an analogue of the Wess-Zumlno 
gauge in four-&menslonal supersymmetnc Yang-Mllls theories [33] It reads 

O~A.=O (3 9) 

Moreover, we introduce the following recurslon operator (transverse or Euler 
operator in ref [18])" 

0 
~= O" 00" = O~D~' (3 10) 

which acts on superflelds by simply multiplying the term of order r m their 
0-expansion by r, i e., 

16 16 

ep(x,O)=~(x) + ~.. dp(r)(x, Ol=(~dPl(x ,O)= E rep{r)(x,O), 
r = l  r = l  

(3 11) 

cf. (2.13). An eqmvalent way of defining the recurslon gauge is then 

~ =  0 ~ ,  (3.12) 

Next, we argue that the recurslon gauge does sausfy property (a) above 
(1) It may always be imposed. In fact, starting with an arbitrary set of potentials 

A m, A,~, and gauge transforming them, wa g, to a new set of potentials A ' ,  A' ,  we 

* A  sxmllar proof has been given independently in ref [32], and it has there been extended, by 
dimensional  reduetaon, to cover the N = 2 theories in sax &menslons as well as the N = 4 theories an 
four &menslons 
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see that the latter will satisfy the recurslon gauge condition O~A'~ = 0 if and only if 

~ g =  -O"A,~g .  (3 13) 

But this equation can always be solved Namely, looking at the 0-expansions for the 
superflelds g and A~, we see that, due to the presence of an exphclt 0 on the 
nght-hand side of (3 13), the zero-order component ~ of g is left unspecified, and 
the higher-order components of g are umquely determined from the zero-order 
component ~ of g and the components of A~ [More precisely, the argument is 
recurslve, the term of order r in the 0-expansion for g is determined from the terms 
of order ~< r - 1 in the 0-expansions for g and A., if r > 1 ] 

(n) It leaves precisely the freedom of performing ordinary gauge transformations 
In fact, proceeding as above, we conclude that the residual super-gauge transforma- 
tions are descnbed by superfields g satisfying ~ g  = 0, which means g = 

In order to analyze whether the recurslon gauge also solves problem (b) above, we 
note that in this gauge 

~Arn = OaFam, (3 14) 

(1 + .~)A~ = Ot~F,,B - 2(o'~), ,BO¢Am , (3 15) 

This follows easily by evaluating the commutators [~,Nm] and [~,  N,] In two 
different ways, namely by using ~ =  0~N, on the one hand and ~ =  O'~D,, on the 
other hand. In particular, talong the constraint (2 27) and its consequences (3 1), 
(3.2) and (3.3) into account, we arrive at 

~ A , .  = (%)~I~O~x ~ , (3 16) 

(1 + . ~ ) A ,  = - 2( o ' ) ,~BOaA m , (3.17) 

 Fm. = - B, (3 18) 

 xO=  (om") fFm. (3 19) 

This shows that the recurslon gauge does solve problem (b) above if the constraint 
(2.27) is imposed, since looking at the 0-expansions for the superfields Am, Finn and 
X ~, we see that, due to the presence of an exphclt 0 on the right-hand side of (3 16), 
(3.18) and (3 19), the higher-order components of Am: Finn and X" are uniquely 
deternuned from their zero-order components .din, Finn and 9~" (plus covariant 
derivatives of the form ~ , . , .  ~,.p/~,.n and ~,~, ~m )~), moreover, A.  Is uniquely 
determined from A,. and has vamshlng zero-order component .4. = 0 However, 
our purpose in the following is to derive the constraint (2.27) and not to impose it 
a priori, so the argument will be revisited [If we were to drop the constraint (2 27), 
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we would have to introduce a large number of additional fields in order to arrive at 
a system of recurslon relations that closes.] 

3 3 DERIVATION OF THE CONSTRAINT FROM THE FIELD EQUATIONS 

Let us now start out from a ~-valued commuting vector field .dm and a ~-valued 
antacommuting splnor field ~ which transform according to 

Z~m ~ ~-IZ~na~ _~_ ~-1 0rag, ~a ~ ~-I~a~ 

under gauge transformations. First of all, these fields will be promoted to super- 
fields, namely a g-valued even vector superfield A m and a ~-valued odd splnor 
superfleld X ~ winch, once again, transform according to 

mm.....~-lmm~.-~-~-lOrn~ ' X~. . . .~- lx° t  ~ 

under gauge transformations, by imposing the recurslon relations (3 16) and (3 19), 
together with the standard definition (2.18) of Finn In terms of A m (winch is 
supposed a priori to hold to all orders in the 0-expansion). Namely, looking at the 
0-expansions for the superfields A m and X ", we see that, due to the presence of an 
exphclt 0 on the right-hand side of (3 16) and (3 19), the ingher-order components 
of A m and X ~ are thus indeed uniquely determined from their zero-order compo- 
nents .d m and ;~, and derivatives thereof [More precisely, the argument is, once 
again, recurslve the term of order r in the 0-expansion for A,, is determined from 
the term of order r -  1 in the 0-expansion for X ~, and the term of order r in the 
0-expansion for X ~ is deterrmned from f rs t  derivatives of the term of order r -  1 
a n d -  in the non-abehan c a s e -  products of the terms of order p and q, with 
p + q = r -  1, In the 0-expansion for Am, if r >/1 ] Tins being established, the 
validity of the recurslon relation (3.18) follows from that of the recurslon relation 
(3.16), together with the standard deflmtlons (2.16) of 9 , ,  and (2 18) of Fmn In 
terms of A m In addition, the recurslon relations (3 16), (3 18) and (3 19) imply 
that - apart from the zero-order component A,~ of A m - all other components of 
A , , ,  Fm, and X" are made up from (products of) the gauge covarlant fields i~m,, ;~" 
and their covaraant derivatives ~ml ~mpPmn ' ~m 1 o o o r  ~m,,X - Finally, since 1 + 
IS an lnvertlble operator, eq (3 17) can be used to define the ~-valued odd splnor 
superfield A~, and the reconstruction of the relevant superfelds is completed by the 
standard definitions (2.17) of ~ and (2 19) resp. (2.20) of F~,, resp F~o 

Now let us assume, for the remainder of tins section, that the fields A m and ~ 
satisfy the covariant Dlrac equation (3 7) and the Yang-Mills equation (3 8) To 
derive the constraint (2.27), we proceed in several steps, leaving it to the reader to 
fill in the details of the calculations 

First of all, we claim that the superflelds A m and X ~ satisfy the covarlant Dlrac 
equation (3.5) and the Yang-Mllls equation (3 6) To prove tins, we simply define a 
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g-valued odd spInor super field X~ and a g-valued even vector superfield C m as 
follows 

x o  = , (3 20)  

C" = ~ n F n "  . - 1 (On)a~ { X a, X fl }" (3 21) 

By assumption, ~t~ = 0 and C,, = 0 Now we use the recursIon relations (3 16), (3.18) 
and (3.19), together with (2 3), (2 4), (2.5), the cyclic Identity (2 6) and the cycliclty 
of o pqr in p,  q, r, plus the Blancha identity (2 21), to calculate the action of the 
recurslon operator N on )t~ and C" The result is 

5~)t = ( o ' ) .BOaCm, (3 22) 

~ C "  = (o 'n )  f O ~ " ) t ~ ,  (3 23) 

which shows recurslvely that ~ ,  = 0 and 6~m = 0 forces )t o = 0 and C m = 0 to all 
orders in the 0-expansion. 

Second, we apply a similar strategy to prove (3 1), (3 2) and (3 3) Namely, we use 
the recursaon relations (3.16)-(3 19), together with (2 4), (2 5), (2 15), the Bronchi 
identity (2.21) and, most important of all, the covarlant Dlrac equation (3 5), to 
calculate the action of the lnvertlble operator 1 + 5~ on the difference of the two 
sides of (3.1), (3.2) and (3.3). The result is 

(1 + v ~ ) ( F , ~ ' - ( o ' ) , ~ B X B )  = - (o ' )BvOB(~,~XV + ½(o'q),~VF.q), (3.24) 

(1 + ~ ) ( ~ , F ' ,  - (o , ) , ¢~mX ~ + (Om)~¢N,X B) 

= - (%)¢vOt~(N, , , (~X v + ½(oPq),~VFpq) + ( F , ~ m - ( o ' ) , ~ X  a, Xv}) 

+ (o')~:,OB(N.(N~X r + ½(oPq),~VFpq)+ { F ~ . - ( o . ) , , s X  8, Xv) ) ,  (3 25) 

(1 + ~ ) ( N . X  t~ + ½ ( o ' " / . % .  ) 

= - ½ ( o ~ " ) # v O V ( ~ , F "  . - ( o , ) ~ , N ' X " +  (Om)a6=@nX*3), (3 26) 

wtuch shows recurslvely that the covarlant Dlrac equation (3 5) implies (3.1), (3 2) 
and (3.3) 

The final step is to prove (2.27) This time, we use the recursion relanons (3.17) 
and (3.18), together with (2 5), the cychc identity (2.6) and (2.15), to calculate the 
action of the lnvertlble operator 2 + ~ on F~¢ The result is 

(2 + ~ ) F , B  = 2 ( o m ) O , O V ( F ~ ' - ( o ' l ~ s x  ~) + 2 ( o ' ) , v O V ( F B ' - ( o m ) B , X ~ ) ,  

(3 27) 

winch shows that (3.1) imphes (2 27), and we are finally done 
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4. Higher conservation laws in superspaee 

In the previous section, we have proved the equivalence of the superspace 
constrmnt (2 27) with the standard equations of motion (3 7) and (3.8) in terms of 
component  fields. The importance of that proof lies in the fact that we are able to 
interpret the superspace constraint F ~  = 0 as the integrabihty condition for some 
hnear system in superspace, whach therefore provides a Lax representation for the 
equations of motion With that starting point, it is then possible to derive higher 

conservatmn laws 

4 1 LAX REPRESE NT AT ION A N D  R E F O R M U L A T I O N  OF THE CONSTRAINT 

The constraint F~O = 0 expresses the fact that the superconnectlon is flat in 
certain directions in superspace and that some of its components can therefore be 
gauged away. The corresponding supergauge transformation is represented by a 
G-valued even superfield R which, by its very definition, is required to satisfy a 
certain system of first-order hnear partial differential equa t ions -o r  linear system, 
for s h o r t - i n  superspace In addition, it depends on spectral parameters which 
appear exphcltly in the defining hnear system However, in contrast to the usual 
lntegrable systems in two dimensions, where the spectral parameter is simply a 
number, the spectral parameters here have an intrinsic geometric structure of their 
own, wtuch can be expressed m terms of concepts borrowed from tWlStOr theory 
[23]. (The same feature has only recently been reahzed to occur, in an even more 
direct sense, for self-dual Yang-Mills theories in four dimensions as well [14] ) 

To describe ttus mtnnsic geometric structure, suppose that we are given an 
arbitrary null vector X in R 1'9. (More precisely, it suffices to fix an arbitrary null ray 
IX] m R1,9.) Assuming that the superconnectlon is a pure gauge along the lane in 
superspace generated by X (cf. ref [23]) means that there exists some G-valued even 

superfield R[~] such that 

x , . ( o , . ) ° ~ %  m °~ =X (am) R[Xl-ID¢R[Xl, (41) 

or eqmvalently, 

where by defimtaon, 

X"A,, = X"R [ X l - IOmR[X l , (4 2) 

= 0, (43) 

[ X ] = 0 ,  (44) 

e o R [ x ]  = D . R [ X l  - R [ X ] A ° ,  

.@mR[X] = OmR[)k ] - R[)k ]A m 

(4 5) 

(4 6) 
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The last two equations are dictated by our convention that under supergauge 
transformations (2.25), the superfield R[X] transforms according to 

R[)t]  ~ R [ ) t ] g  (47)  

Eqs (4 1) and (4.2) or, equivalently, (4 3) and (4 4) constitute the desired hnear 
system, with arbitrary null vectors X (or rather null rays [M) as spectral parameters, 
since the corresponding lntegrabihty condmons are precisely the constraint F~p = 0 
Indeed, if that linear system admits a solution R[X], we can use )t 2 = 0, (2.3) and 
(2 20) to infer that 

XmX"(Om) ° ~ ( % ) ~ r ~  = O, 

and since tins 1s supposed to hold for an arbitrary null vector )t In  R I'9, (2 27) 
follows by polarization Conversely, assurmng that (2 27) and (hence) (3 1) are valid, 
we can first integrate (4 2) - tins is just a single equation, with lots of solutions - and 
then use ?t 2 = 0, (2 19) and (2 20) to refer that on all such solutions R[?,], the 
lntegrablllty condmons for satlsfymg (4 1) as well, winch read 

are fulfilled. Finally, it should be observed that the solution of the linear system 
(4 1)-(4.4) is not unique, and that the transformation 

R[X] --* Ro[XlR[X ] (4 8) 

will take solutions to solutions provided that 

m '~3 x (ore) D R0[X] =0, (4 9) 

?t m OmRo[?tl = 0 (4 10) 

Of course, the transformations (4 8) leave the superfields A~ and A m l n v a r i a n t .  

Next, we shall use the hnear system (4 1)-(4.4), together with the constraint 
(2 27), to solve for the superfields A,  and A m in terms of the superfields R To tins 
end, we shall have to consider two arbitrary null vectors )t and/~ in R t'9 winch are 
not proportional, so that X-/~ ¢ 0 Then defining 

ox = )tin%, % =/~'%m, (4.11) 

we have, due to (2 2), 

o 2 = O, o~% + o~o~ = 2)~ #, o 2 = 0 (4 12) 
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Tins imphes that 

X"/~" l 1 °x°. =½ 1+~o, . . )  
P(X,/~)  = 2 X .-----~ 

Xm/~. ) 
1 o.ox= ½ 1 - ~ .  o,,,. P(I  z, X) = 2X----~ (4.13) 

are projection operators (1 . e ,  p 2  = p )  adding up to the identity 

P ( X , # )  + P ( ~ , X ) =  1 (4 14) 

For  later use, we also note that 

e ( X ,  #)~B = P( / l ,  X)a", P( / l ,  X)"13 = P(X,/~)13 ~ (4.15) 

and 

~m 
*'(X,.)om*'O,, X)= 2-;o., 

P ( X , ~ ) a m + o m P ( g , X ) - P ( X , # ) o m p ( # , X )  = o  m - -  
~km~t n 

G (4 16) 

Moreover, 

im P(X,  I z) c lmo t C kero x c ker P(I  z, X) = lm P(X, ~), 

Im P(/z,  •) c imo. c kero.  c ker P(X,/~)  = l m  P(/z, X), 

where lm stands for image and ker stands for kernel, and the last equahty follows 
from (4.14), thas gives the following more precise anformanon 

P ( X,/z) IS the projector onto lm o x = ker o x along am o~ = ker o~, 

P (la, X) is the projector onto lm % = ker % along lm o x = ker o x 
(4 17) 

A particular consequence as that the enure 16-dimensional space of chlral Majorana 
spmors splats into the direct sum 

am o x • am % = ker o x @ ker % (4.18) 

of eight-dimensional subspaces. Thus we can decompose the superfleld A~ accord- 
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lng to (4 14) and (4.18) and then use (4 1)-(4 4) and (4 13) to obtain 

A =P(#,~)fR[)t]-IDI~R[)t] + P()t,#)fR[Iz]-lDl~R[l~] (4 19) 

On the other hand, we exploit the fact that according to (2 5), and since F.~ is 
symmetnc in a and fl, the constraint F.~ = 0 (136 equations) is equivalent to 
(Om)"~F./j = 0 (10 equations) and (o,..pqr)"~F.B = 0 (126 equations)*. The first set of 
equations can be used to express the superfield A,. in terms of the superfleld A.  

A,, = - ± ( o  ]:B ( A:,  A B } ) (4.20) 32 m, (Z)oA + Z) Ao+ 

while the second set of equations takes the form" 

(Omnpqr)afl(OaAB+ DBA a + (Aa, AB)) = 0 (4 21) 

To proceed further, we introduce the gauge invarlant G-valued even superfield 

U[h,I~]=R[h]R[I~] 1 (4.22) 

Then combimng (4 19) with (4.22) and performing a stratghtforward but somewhat 
tedious calculation, which uses (4 15) and (4 16), we arrive at the following equa- 

~m~n - 1 
OaAfl-~- OflA a -~- ( Aa, Afl) = - 2 ~ .  (on)afl( R[)k]- lOmR[)kl  - R[~ £] 0 m R [ ~ ]  ) 

-- 2( om)at~R[I.£ ] - l  OmR[l£ ] 

+ ( e ( x ,  + x ) . ' )  

×Dv(U[X,I~I-IDgU[X,t.tl)R[#] -I (4.23) 

This shows, in particular, that the set of constraints (4 21) is equivalent to the 
following set of constraints on U[h,  ~]" 

(p(#,)t)o,..pqrP(#,X))"¢D.(U[Tt,#]-lDBu[h,~t])=O (4 24) 

Conversely, given a gauge lnvarlant G-valued even superfield U[)t, #] satisfying the 
constraint (4 24), we can spht it, according to (4 22), into two gauge covarlant 

*Thts counting as due to the fact that the (Omnpqr) aft are self-dual wlule the (Om.pqr).l~ are 
antt-self-dual 

tlon. 
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G-valued even superfields R[X], R[/~] and then use (4 19) and (420) to define 

superfields A ,  and A m satisfying the constraint (2 27). Of course, such a sphtting is 

not unique, but a change of sphttlng corresponds precisely to a supergauge transfor- 
mation.  

To summarize, we have therefore arrived at yet another formulation of the 
equations of motion for ten-dimensional supersymmetnc Yang-Mills theories - tins 
t ime in terms of a gauge invarlant G-valued even superfield U[k,/~] depending, in a 
highly non-trivial fashion, on two null rays [~] 4: [/~] In  ~1,9  [tins of course breaks 

lnvarlance under the Lorentz group SO(l, 9) down to the transverse subgroup SO(8)] 
and satisfying a set of 126 constraint equations, winch are formally remlmscent of 
the equations of motion for the non-hnear o model on the group G. Tins formula- 
tion is therefore a direct generalization of structures found previously in the case of 
four-dimensional self-dual Yang-Mllls theories [11,13]-except  for the fact that 
(4.24) is of course not an equation of motion derivable from a lagranglan But on 
the other hand, (4.24) has already the structure of a conservation law in superspace, 
as we shall demonstrate in the next subsection. 

The previous constructions are also closely related to the basic concepts of the 
ha rmomc  superspace approach [34], which starts out by introducing extra bosonlc 
variables (in addition to the x ' s  and 0 's)  In the present case, the space of these 
extra variables is just the set of ordered pairs ([X], [~t]) - s imp ly  denoted by [X, ~] in 
what follows - consisting of null rays [X] 4: [~t] i n  ~1,9, or equivalently, the set of 
oriented rmnkowslaan planes in R 1'9. (The pairs have to be ordered, or equivalently, 
the planes have to be oriented, because X ~/~ ,  /~ ~ ~ forces U ~ U -  i ) But that is 
precisely the pseudo-nemanman symmetric coset space 

S = SO(l ,  9 ) / S O ( 1 , 1 )  × SO(8).  (425)  

proposed independently in ref [24] This observation is of course just the starting 
point  for an entire dictionary between our approach and that of ref [24], and it 
would be worthwhile to see that worked out in more detail. 

4 2 CONSERVED CURRENTS AND EXPANSIONS 

For  the derivation of conservation laws, we first define a (supersymmetnc) spmor 
current, which is a gauge mvarxant g-valued odd spmor superfield J",  and then a 
( n o n - s u p e r s y m m e m c )  vector current, winch is a gauge m v a r m n t  g-valued c o m m u t -  

ing vector field Jm- Both of them come with an additional, highly non-trivial 
dependence on two null rays [X] 4: [bt] m R 1,9- i.e., they are functions on the space 
S introduced in (4.25) - and, once these spectral parameters are fixed, they become 
totally ant lsymmetnc rank-3 tensors on the orthogonal complement to the 
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mankowsk~an plane m R 1'9 spanned by X and tt The explicit defimtlons are 

Jet[h, x ,  y ,  z]  = Xm#nxPyqzr(P(] , X)OmnpqrP(  , x))a'Su[x, [X,/2], 

(4.26) 

j , . [X ,  #,  x ,  y ,  z] = f d~60(o..).~OVa[X, ~, x, y,  z] ,  (4 27) 

where x, y, z _1_ X, tt Then the set of constraints (4 24) lmphes, and is in fact 

equivalent to, the following set of (supersymmetrlc) spxnor conservation laws 

D~J ~ = 0, (4 28) 

winch m turn imply the following set of (non-supersymmetnc) vector conservation 

laws" 

a "Jm = 0, (4 29) 

because 

t ) ~mJm ~ f dl60(Om)aflOetOmJfl= f d160 - ~  -,Off Jfl~ -- f dl6ODB Jfl 

To arrive at lnfimte series of conservation laws, we must expand the spmor 

current Jet in the spectral parameters Generally speaking, functions on the space S 

introduced m (4.25) should be expanded m terms of an orthonormal basxs of 

elgenfuncuons for an appropriate Lorentz xnvanant differential operator on S, and 

the coefficients in the expansion should be labelled by the spectrum of that 
operator, plus additional parameters to account for degeneracies. We shall, however, 

be less ambitious and content ourselves with expansions along curves m S generated 

by the acUon of appropriate one-parameter subgroups of the Lorentz group SO(I, 9) 

on gwen points in S As far as the tensor character of the currents 0.e,  their nature 

as totally anUsymmetnc rank-3 tensors) is concerned, covanance under an SO(8) 

(the stabahty group* of a single point in S) will be broken by the expansion, and 
what remams is covanance under an SO(7) (the joint stainhty group* of all points 
on the curve in S along which the expansion is performed) As before, tins is a 

strategy winch follows closely the one that was successfully apphed m the case of 

four-dimensional self-dual Yang-Mllls theories [13] 

To be more specific, let us denote by (e0, el ,  . ,  e 9} the standard orthonormal 
bas~s of R ~'9 and set e + = e 0 + e I Then we can write any vector x m R 1'9 in the 
form x = x + e + + x - e  +x 'e ,  with x -+= 1 0 _ 7(x + x 1) and, similarly, 0 + = % + 01, 

* More precisely, the corresponding stablhty group contains an addmonal SO(1,1) factor 



O ± =  Oo_+ 01 
the stabili ty algebra of the unit t lme-hke vector e o, according to 

where  

Then  
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and N ±= 9 o +_ 91. Moreover,  we decompose generators X m so(9), 

X = eoX~ + X v with d~ ~ R,  n ~ S 7, Y ~ so(8) ,  

On) 2(.= 0 r ,  X v =  0 
n 0 

(4 30) 

(4 31) 

exp( X r ) e x p (  ¢bX n)exp( - Xy)  = exp(q, Xexp(r) . )  (4.32) 

Obwously ,  X n generates rotations in the plane spanned by  e 1 and n, and we shall 

X ± ( n , q O  = exp(2q, X. )  e_+. (4 33) 

A direct  calculation gives 

X + ( n,  q)) = e o + cos 2 q) e 1 _+ sin 2 q) n = cos 2q) e ± + slnZq) e :~ _+ sin 2 q5 n .  (4 34) 

F o r  the following, we shall choose n = e 2, put  ~ = tang) and abbreviate 
(1 + tan2q,)X ±(e 2, q~) to X ±(f) ,  so that 

x ±( f )  = (1 + f2)e  0 ___ (1 - ¢2)el ___ 2~e2 = e _++ 2re 2 + ~2e~:, 

o ~ =  (1 + f 2 ) o  0_+ (1 - f 2 ) o  1 +_ 2fo  2=  0 ± +  2fo  2+  f2o~:, 

0 ~ =  (1 + fz) Oo + (1 - fz) 01 + 2f02 = 0 ±+ 2~02 + ~20~:, 

~ =  (1 + :2)~o + (1-  :2)~1 + 2:~== 9_++ 2:~2 + :2~; (435) 

With  these prehmlnarles out of the way, let us consider 

R ± = R [ e ± ] ,  U=R+RT_ 1, (4.36) 

R±(:)=R[X~(:)] ,  U(:)=R+(:)R_(:)  -1, 

B±(:) = R_+(:)R;_ i, 

(4.37) 

(4.38) 

and 

together  with 

which Implies 

U(~ ) = B + (~ )UB_(~  ) -1 . (4.39) 
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Now the hnear system for R _+(~') gives the following linear system for B +,(~') 

Putting 

we get 

( o ~ ) a f l B + _ ( ~ ) - l D f l B + _ ( ~ )  = - ( o ~ ) ° t f l ~ f l R  + R +  1 

o +B = + R ? .  

B +,(~)= exp(b.+ (~')), 

, (4.40) 

(4.41) 

(4 42) 

1- exp(-ad(6 ±(~')))(o~)aflVflb+(~)=__(o~+)afl~flR+g_+l ( 4 4 3 )  
ad(b .+ (~')) - - ' 

1 - exp ( -  ad(b ±(~)))  
ad (b.+(~)) O~b+-(f) = -~LR+R-+ 1 , (4.44) 

where for X and Y m the Lie algebra g, but with matrix entries that may be either 
commuting or antlcommutmg c-numbers, we have by definition 

1 - e x p ( - a d ( X ) ) y =  ~. ( - 1 ) k  [X,. [ X , Y } .  } (445)  
a d ( X )  - -  (k  + 1)' k=0 " 

k times 

(see ref [35], p 105) Now we expand m powers of 

b +-(~') = ~ ~'~b~ ). (446)  
r = l  

Note that the expansion starts with the linear term since by (4 38), B_+(0) = 1 and 
hence by (4.42), 6 _+(0)= 0. Moreover, the advantage of expanding 6 +(f)  and not 
B _+(~) is the usual one it guarantees automatically that all coefficients b(_2 ), and not 
only the first one, lie in the Lie algebra g Inserting (4 46) into (4 43), (4 44) and 
collecting terms with the same power of ~" then gives a system of differential 
equations for the coefficients 6~ ) (in superspace) from wl~ch these can be de- 
termined recursively by successive integrations (in superspace), in particular, b~ ) 
contains p-fold integrals of (combinations of derivatives of) R +,, with p = 0, .  , r, 
and is therefore non-local of degree r. Exphotly, the terms up to order f2 are 

(o+_)"~D~b(~) = -T- 2(o2) ~ p R  +,R~+ 1 , (4.47 1) 

0 +6(I ) = -T-2~2R + R +  1 , (4 48 1) 

( 0 ± ) aft(Of16(2+) _ _1 [ ]~(1) 2t ~ +,, DBb~)])_+ 2(o2)'~¢Dt~b~ ) :  -(o:~)"t~N¢R +R+ 1 , (4.47 2) 

(O+b~)-1-[h  _ 2 t ~ + , ~ + ~ + ~  h ( 1 ) ] ) ± 2 0 2 b ( l + ) = - O w R + R - +  1 ( 4 4 8 2 )  
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Finally,  we want  to exhibit expressions for the conserved currents To this end, we 
note  first that,  according to (4.34), a vector x in R 1'9 will be orthogonal  to ~+(n ,  ~)  
and to A ( n ,  qs) if and only if it is a linear combinat ion of the vector - s i n  2~ e a + 

cos 2q, n and the vectors or thogonal  to e 0, e 1, n Therefore,  using 

+ X _ ( e 2 , , ) )  = e0 ,  

½(X+(e2, ~b) -- )t_ (ez,  d?)) = cos 2dp e I + sin 2~b e2, 

we see that  the independent  types of o-matrix factors that appear  m (4.26) are 

(1) %(cos2q~ o 1 + sln2q~ %)o,a k, with 3 ~< l < j  < k ~< 9, 
(11) %(cos2,# o 1 + s m 2 ~  %) ( -  sm2¢~ o 1 + cos2~b o2) Oak, with 3 ~<J < k ~< 9 

Hence ,  after  some algebra, we obtain conserved spmor  currents J ,~(~) ,  with 

2 ~ ,  < j  < k ~< 9, defined by 

~. , a,8 1 
J ,~k(~ ' )=(O_a ,  ak) U(~') DI~U(~ ), ( 4 4 9 )  

where  
o,'j~ = Oo,sk if t >/3,  

o,'jk = oi,jk i f / =  2 (4.50) 

Moreover ,  f rom (4.39), 

U(~)-IDau(~) = B_(~)(U-IB+(~)-1D,~B+(~)U + U-1D,~U 

- B  (~)-ID,~B_(~))B (~) i ( 4 5 1 )  

Again we expand m powers of ~: 

J,~k(~) = ~ a~'r'~r)O,jk (4.52) 
r = 0  

Then  the t~(r) . . ,# can be written as functions of the b{+ r) and b~ ). Exphcitly,  the 

expressions up to order  ~2 are 

j ,(o)_ (o o,Sk)'~I~U-1DI3U, (4 53 0) jk -- - 

Jta(1) t ak = ( a-° , sk  )~/3 ( [ b(l_), U -  'DI~U ] + U-1Dsb(I+)u - Dsb(l_ )) 

- 2(aza,;k)"I~u-1DI~U, (4 53 1) 

jk 

+ [ b e ' ,  U-1Dsb(l+'u ] --  1 [  b , l , ,  Dflb(l_)] _ Dflb(2, 

+ _ D;,,+I,]) u )  

- 2( %o,Sk )"# ( [ bO), V-  lDi3V ] + V-  lDt~b{l+)v - D~b '1) ) 

+ ( o +o,',k ) "I~U-'DI~U (4.53 2) 



218 E Abdalla et al / H t g h e r  conservation laws 

5. Conclusions and outlook 

In thts paper, we have given an explicit proof that for supersymmetnc Yang-Mllls 
theories in ten dimensions, the superspace constraint is precisely equivalent to the 

standard equations of motion in terms of component fields As a result, these 

theones are lntegrable, m the (weak) sense of admitting a Lax representation (in 

superspace). Moreover, we have shown how the latter can be used as a starting point 

for the denvatlon of tugher (non-local) conservation laws These mtegrablhty 

properties are precisely analogous to - though technically much simpler to obtain 
and hence more transparent t h a n -  the corresponding lntegrablhty properties of 

N = 3 or N = 4 supersymmetrlc Yang-Mllls theones in four dimensions. One 

drawback is that we have so far been unable to produce a completely explicit 

expression - in terms of component fields, say - for even the simplest among these 

higher (non-local) conservation laws, and although this is not so much a matter of 

principle but rather a techmcal problem, it has hampered our understanding for 
their physical significance. [The technical problem is twofold: (a) integrating hnear 

differential equations in superspace, (b) picking out the penultimate component of a 

superfield in its 0-expansion, cf (4 27). Of course, both problems are more hkely to 
have manageable solutions in d = 10 than in d = 4.] 

Despite tbas deficiency, at is possible, and instructive, to comoare the integrabflity 

properties of tugher-dlmensIonal supersymmetrlc Yang-Mllls theones* with those 

of two-dimensional non-hnear o models on symmetric spaces (cf the introduction) 

As we have seen, there are considerable formal analogtes, mainly at the classical 

level. On the other hand, we expect that at the quantum level, the higher-dimen- 

sional supersymmetnc Yang-Mllls theories are truly interacting field theones with a 

non-trivial S-matrix. But then, the Coleman-Mandula theorem [36] does not allow 

them to admit higher local conservation laws, and there are partial - though not yet 

conclusive - results towards a generahzed Coleman-Mandula theorem [37] which 

would not allow them to admat higher non-local conservation laws, either Hence it 

seems that upon quantlzatlon, these conservation laws are necessarily plagued by 

a n o m a h e s -  m complete analogy with what happens for the "anomalous" two- 
dimensional non-hnear o models on symmetric spaces [6], such as, e g., the CP N-I 
models [38] or grassmannlan models [39] 

Having &scussed the issue of higher conservation laws, let us conclude with a few 
comments on another aspect of mtegrabfllty that follows from the existence of a Lax 

representation, namely the various techniques for generating exact classical solu- 
tions. Generally spealong, this subject is much less developed in d > 2 than it Is In 

d = 2, and it seems that the additional comphcations arising in lugher dlmensmns 
are largely due to the intrinsically multi-dimensional nature of the spectral parame- 

* By htgher-dlmensional supersymmetnc Yang-Malls theones, we mean here the N = 3 and N = 4 
theones tn four dtmenslons, the N = 2 theories m six &menslons, and the (N = l) theories m ten 
dlmensmns 
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ter.  A n o t a b l e  excep t ion  to the  first par t  of  this s t a t e m e n t  is p rov ided  b y  the 

se l f -dua l  Y a n g - M l l l s  e q u a t i o n s  m d = 4, where  the  a p p r o p r i a t e  spectra l  p a r a m e t e r  is 

a tw l s to r  [14], a n d  the  c o r r e s p o n d i n g  m u l t l - d l m e n s m n a l  spectra l  t r a n s f o r m -  the  

a n a l o g u e  of  the R l e m a n n -  H d b e r t  a n d / o r  inverse  sca t te r ing  t r a n s f o r m -  is the  

twl s to r  t r a n s f o r m  [15] 

F o r  the  h l g h e r - d l m e n s m n a l  s u p e r s y m m e t r l c  Y a n g - M l l l s  theories,  however ,  the 

p r o s p e c t s  for  r e n d e r i n g  the ana logous  tWlStOrlal t echn iques  equa l ly  power fu l  are n o t  

ve ry  b r i g h t  [23], a n d  we have  n o t  inves t iga ted  these ques t i ons  any  fu r the r  
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