
Nuclear Physics B297 (1988) 374-400 
North-Holland, Amsterdam 

EXACT S - M A T R I C E S  F O R  A N O M A L Y - F R E E  N O N - L I N E A R  S I G M A  

M O D E L S  ON S Y M M E T R I C  S P A C E S  

E. ABDALLA 

lnstituto de Fisica, Universidade de SSo Paulo, Cx. Postal 20516, BR-05508 Sdo Paulo, Brazil 

M.C.B. ABDALLA* 

Instituto de Fisica Tebrica, Rua Pamplona 145. BR-01405 SSo Paulo, Brazil 

M. FORGER 

CERN, Geneva, Switzerland 
and Fakultiit ffir Physik der Unwersitiit Freiburg, Hermann-Herder-Str. 3, D-7800 Freiburg. 

Fed. Rep. of Germany** 

Received 27 October 1986 
(Revised 16 July 1987) 

The existence of a conserved quantum non-local charge is used to prove the factorization 
equations for the two-body S-matrix pertaining to the following five classical series of non-linear o 
models on symmetric spaces: SU(N) (A). SO(N) (BD), Sp(N) (C). SU(N) /SO(N)  (AI) and 
SU(2N) /Sp (N)  (All). For the last two cases, this proof is new. The relevant S-matrices are 
computed explicitly, and the bound state problem is discussed. 

1. Introduction 

Two-d imens iona l  non-l inear  o models, or chiral models, are known to be classi- 

cally integrable whenever the fields take values in a r iemannian  symmetric space 

M = G / H  [1-3]. Moreover, it is known that integrabili ty survives in the quant ized 

theory, through existence of a conserved quan t um non-local  charge, if either H is 

s imple (when appropriate  "min ima l "  choices for the symmetry group G and the 

stabil i ty group H are made) [4] or - at least in certain families of models such as the 

C P  ~ ~ models [5] or the grassmannian  models [6] - the bosonic fields are coupled 

to fermionic fields in a minimal  or supersymmetric way. (For a general analysis of 

this second possibility, see ref. [7].) If one of these condi t ions  for the absence of an 

anomaly  is met, the existence of a conserved qua n t um non-local  charge leads to 
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fac tor iza t ion  of  the S-matr ix  into two-body  ampl i tudes ,  and in add i t ion  it imposes  

s t rong  cons t ra in t s  on the latter. Depend ing  on the concrete  model,  however,  thesc 

cons t ra in t s  may  or  may not  suffice to de te rmine  the S-mat r ix  completely .  

In the present  article, we concent ra te  on pure  (i.e. pure ly  bosonic)  chiral  models  

de f ined  on i r reducible  r iemannian  symmetr ic  spaces M = G / H  of the compac t  type. 

(Technica l ly  speaking,  we assume, as in ref. [4], that  G is compac t  and connected  

and acts a lmos t  effectively on M = G / H . )  These spaces fall into two types, 

accord ing  to whether  G is s imple ( type I) or  is the direct  p roduc t  (3 × (3 of  two 

copies  of  the same simple group (3 ( type II), both  types being comple te ly  classified 

(see ref. [8], pp. 516 and 518). In par t icular ,  the chiral  model  on M is anomaly- f ree  

whenever  M is ei ther of type II, i.e., any compac t  connected  s imple Lie group (3, or  

one  of the fol lowing spaces of type l: 

A I :  

A l l :  

A I I I :  M = 

BDI :  M = 

El :  M = 

EIV: M = 

EV: M = 

EVI I I :  M = 

F I I :  M = 

M = S U ( N ) / S O ( N ) ,  

M = S U ( 2 N ) / S p ( N ) ,  

su (2 ) /u (1 )  = c p ' ,  

S O ( N ) / S O ( N  - 1) = S ¥ - t  

EjSp(4) ,  

E ~ / F 4  , 

ET/su(8). 

E s / S O ( I  6) ,  

F , / S O ( 9 ) .  

Wc  shall  d i s regard  the type I spaces C P  t = S 2 and S"' l, whose S-mat r ices  are well 

known  [9,10]*,  and are thcrcfore left with the following five scries of classical 
( - non-excep t iona l )  spaces: 

A ( type  11) : 

BD ( type  I I ) :  

C ( type  I I ) :  

AI ( type  l ) :  

AI1 ( type  I ) :  

M = S U ( N ) ,  

M = S O ( N ) ,  

M = S p ( N ) ,  

M = S U ( N ) / S O ( N ) ,  

M = S U ( 2 N ) / S p ( N ) .  

* Ref. 110] contains a proof of the fact that the bound-state S-matrix of the CP l model is identical with 
the S-matrix of the 0(3) invariant non-linear o model on S 2 proposed in [9]: in other words, the 
equality CP I = S 2 holds even at the level of S-matrix quantum field theory. 
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The S-matrices for the classical groups have been determined before [11,12], and 
our principal objective here is to extend that analysis to the classical coset spaces 
appearing in the list above. For pedagogical reasons, however, we also include a 
discussion of the group manifold cases, with the intention of facilitating comparison 

with the coset space cases, as well as slightly improving the notation and clarifying 
several arguments, as compared to the earlier versions [11, 12]. 

Before embarking on our program, we would like to comment on the relation of 
our work to the existing literature on factorizing S-matrices. First of all, we must 
mention the bootstrap approach, which aims at a complete classification of all 
two-body S-matrices that satisfy the factorization equations, or Yang-Baxter equa- 
tions (plus the additional constraints resulting from unitarity, analyticity and 
crossing symmetry, of course). This program seems to be almost complete by now, 
and we refer the reader to [9, 13-15, 17, 18] for various results in that direction. In 
particular, it should be pointed out that all the S-matrices we derive here have been 
found before in the context of the bootstrap approach; we shall have more to say on 
this at the end of the paper. On the other hand, it is well known that the bootstrap 
approach starts out from the factorization equations as an unproven assumption, 
and that it gives no idea as to which field-theoretical model - if any - might yield a 
given factorizing S-matrix. Turning the question around, it is also a priori unclear 
which field-theoretical models will give rise to a factorizing S-matrix and which will 
not. In the context of non-linear o models, however, these deficiencies can be 
overcome, and there are basically two different methods for doing so. 

One of these methods is the Bethe ansatz technique, which relates the bosonic 
chiral model to certain fermionic models (in an appropriate limit), and uses the 
Bethe ansatz to solve the latter [19]. For the type II spaces (groups), i.e. for the 
principal chiral models, this strategy works very well, and it provides a wealth of 
information not only on the S-matrix but also on other aspects, such as the 
spectrum of particles that should build the various sectors of the theory [16-18]. For 
the type I spaces (coset spaces), however, the approach apparently fails, and one has 

to resort to other ideas. 
The other method is based on the exploitation of hidden symmetries, or more 

precisely of higher conservation laws. These come in two species, local [20, 21] and 
non-local [22, 23, 4], but we use only the latter since we believe that they are easier to 
handle and, in a sense, more powerful than the former. (For example, there is no 
result on the absence of anomalies for quantum local charges which is as simple and 
general as the criterion for the absence of anomalies for quantum non-local charges 
proved in ref. [4].) Unfortunately, the method yields the S-matrix in a very special 
sector only, namely the one between particle/antiparticle states corresponding to 
the original chiral fields of the model. Of course, the results obtained from the 
bootstrap approach and from the Bethe ansatz technique (where applicable) indicate 
that other particles, such as fermions and various bound states, should be included 
as well, but to our knowledge, the complete field-theoretical models which would 
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give rise to all these other sectors have not been worked out in full generality. We 
believe this to be a highly interesting open problem that deserves further study, but 
it cer ta inly lies far beyond the scope of the present  paper.  

2. The classical models 

In order  to unify and streamline the presentat ion as much as possible, we shall 
employ  a manifes t ly  gauge invariant formulat ion,  which is based on the fact that in 
each of the five cases under considerat ion here, the target manifold in question can 
be represented as a (totally geodesic) submanifold  of  a special uni tary group, 
def ined by an appropr ia te  constraint.  More  precisely*,  consider the involutive 

a u t o m o r p h i s m  o t of  S U ( N )  given by 

Oi(g) =g* for g ~ SU(N), 

and the involutive au tomorphism {Ill of  S U ( 2 N )  given by 

on(g  ) = - J g * J  

where J is the matrix 

j = 

Both of  these can be written m 

o(g )  = ]g*l- '  

where I is the matrix 

1 = 1N ~ S U ( N )  

1 = J ~ S U ( 2 N )  

Then,  obviously,  

(1 .I) 

for g ~ S U ( 2 N ) ,  ( l . l l )  

0 + l N ) 
- 1 , ,  0 ~ S U ( 2 N ) .  (2.1I) 

the c o m m o n  form 

f o r g ~  S U ( N ) r e s p .  S U ( 2 N ) ,  

for the cases BD and AI ,  

for the cases C and A I I ,  

(1) 

I - - t = I T =  + i =  + 1 " .  

I - I = I T = - - I = - - I  *. (2) 

" We follow the convention that *, T and - stand for complex conjugation, transposition and 
hcrmitian conjugation of matrices, respectively - even when the matrix entries arc operators in a 
Hilbcrt space, for which "conjugate" means "'adjoint". 

o ( g ) = g  ~ g ~ S O ( N ) r e s p .  S p ( N ) ,  (3) 
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or more specifically, 

E. Abdalla et al. / Exact S.matrices 

Similarly, 

oi(g)=g g SO(N)forg SU(N). (3.1) 

Oll(g)=g g Sp(N) forg SU(2N). (3.m 

o ( g ) = g - I  ¢, g ~ S U ( N ) / S O ( N ) r e s p .  S U ( 2 N ) / S p ( N ) ,  

or more specifically, 

(4) 

°x(g)  = g -1 ~ g ~ S U ( N ) / S O ( N ) f o r g ~ S U ( N ) .  (4.1) 

° n ( g ) = g l  ~ g ~ S U ( 2 N ) / S p ( N ) f o r g G S U ( 2 N ) .  (4.II) 

Here, we have identified the coset spaces S U ( N ) / S O ( N )  and S U ( 2 N ) / S p ( N )  with 

their images under the Cartan immersion; see ref. [8], p. 347 and ref. [2] for details. 
Finally, we extend our convention (2) to the remaining case by demanding 

l =  1,,,.~ S U ( N )  for thecase A, 1-1 = I T =  + I =  +1 " .  (5) 

The merit of introducing the matrix I is that this will allow us to give common 
formulae for all five cases, and when this is not possible, at least to deal simulta- 
neously with the "subgroup cases" BD and C on the one hand and with the 
"quotient space cases" or "coset space cases" AI and AII on the other hand: we 
shall in such situations indicate the type of model to which a given formula refers by 
adding a letter A (for the case A) or S (for the subgroup cases) or Q (for the 
quotient space cases). Moreover, certain formulae will contain + or ~- signs: then 
the general convention is that the upper sign will refer to the cases A a n d / o r  BD 
and At (where I is symmetric) while the lower sign will refer to the cases C and All 
(where I is antisymmetric). 

With these conventions, the basic field of the model is a matrix field g which, 
classically, satisfies the unitarity and determinant constraints 

,~-I _~ ~+ , 

det g -~ I ,  

plus additional constraints depending on the model at hand: 

(6) 

(7) 

g = o ( g ) - = I g * I  + or g ' r=Ig+l '  , 

g+ = o(g)  =- Ig*I + or gT = lgl* . 

(8.s) 

(8.Q) 
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In particular, (8.S) means that for the subgroup cases, the field g is invariant under 
charge conjugation g ---, gL which is defined by 

g~= lg*l" . (9) 

The action is the standard one: 

f + U - S =_', d2x t r (g  a gg aug ) . (10) 

It admits various global internal symmetries, namely continuous ones, described by 
the connected Lie group 

which acts according to 

G = SU(N)L × SU(N)R,  

G = SO(N)L × SO(N)R,  

G = Sp(N)L × Sp(N)R,  

(11 . A )  

( l l . B D )  

(11.c) 

G = S U ( N ) ,  ( l l .AI )  

G = S U ( 2 N ) ,  ( I I .AII)  

g ~ gx.g,gn, (12.A) 

g ~ gLgg~, (12.S) 

g - - , o ( g o ) g g ;  = * * + Ig o 1 ggo , (12.Q) 

as well as discrete ones, namely charge conjugation g--*g~= Ig*l ~ and the 
transformation g ~ g*, or equivalently, the transformation g ~ lgXl ". As usual, the 
continuous global symmetries lead to a Noether current Ju taking values in the Lie 
algebra ~ of G: 

J , = ( J ? , J u R ) ,  

Ju= ( Jff, J~  ), 

J~ = _ Ougg 

J ~ =  - 0  gg" , 

J ~ =  +g '  Oug. 

Ju R = +g ~ Oug. 

(lYA) 

(13.S) 

(13.Q) L = g '  O u g - o (  O , g g ' ) .  

In the group manifold cases, the currents J~  and j R  are exchanged under the 
discrete symmetry g ---, g ", while in the coset space cases, the expression for J,  can 
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be simplified due to the fact that the constraints (6) and (8.Q) imply o(3ugg +) = 
-g+ O.g. Therefore, it is sufficient to work with the current 

j~, = g "O~,g, (14) 

whose conservation 

a.j.=o (15) 

is completely equivalent to the equations of motion derived from (10), and which, 
classically, also satisfies the flatness condition 

O,,j,- O,.~ + [A, J,] = 0 ,  (16) 

thus giving rise not only to the standard conserved classical charge 

Q¢O  = f dyjo(t, y), (17) 

but also to a conserved classical non-local charge, namely 

Q°'= f d y i d y z E ( y i - y 2 ) j o ( t ,  yl)jo(t, y 2 ) + 2 f d y j l ( t , y  ). (18) 

3. Quantization 

For the quantum theory, we note that all non-linear relations appearing in the 
classical context must be handled with care, while linear relations do not cause any 
problems: they can simply be required to hold as operator identities. Thus the 
non-linear conditions (6) and (7) must be reformulated as constraints 

.A/'[g ~g] = const I =.A/~[gg+], (19) 

,A/'[det g] = const (20) 

on normal products, with renormalization scheme dependent constants, while the 
additional linear constraints (8) remain as they stand. Similarly, interpreting (14) in 
the sense of normal products, 

j~,=.Ar[ g+ 8~g] , (21) 

the conservation law (15) remains as it stands, while the flatness condition (16) is 
replaced by a short-distance expansion for the (matrix) commutator of two currents 
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at nearby (spacelike separated) points 

./~(x + e) j , , (x  - e) - j , ( x -  ~) j~(x  + e) - C~v(e)L(x)  + D;°~'(~)(Oojp)(x), (22) 

where - means equality up to terms that go to zero as e--, 0 [4], and the 
coefficients can be determined completely [7, 22, 23] in terms of a single function of 
-e-'. In the usual way, this gives rise not only to the standard conserved quantum 

charge 

Q{O} = fdyh,(t, v), (23) 

but also to a conserved quantum non-local charge, namely 

with 

Q~'}(t) = fl,,~ 

Q{1}= lim Q~t'(t), (24) 
8 4 0  

dyldy2e(Yx -Y2)Jo( t, Yl)Jo( t, Y2) - Z(a) f dyj~(t, y).  
Y2 I >>- 8 

(25) 

N p 

[T, Q{D] = _ ~_Q{,,}, (26) 

N ' =  N. (27.A) 

N ' =  N -  2, (27.BD) 

N ' =  2N + 2, ( 2 7 £ )  

N ' =  N, (27.AI) 

N ' =  2N.  (27.AII) 

(The proof of an analogous relation, with an appropriate constant, for the spherical 
models can be found in [23]; we shall not give any details here.) 

In order to make contact with S-matrix theory, we have to specify the particle 
content of our models. One natural requirement in this context is consistency with 
the various symmetries, which include G-invariance (cf. eq. (11)) as well as charge 
conjugation invariance. This forces particles and antiparticles to be arranged in 

where 

where Z(~)  is a function that diverges logarithmically as 6--, 0 [4,7,22,23]. More- 
over, if T is the generator of Lorentz transformations, we have the commutation 

relation 
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mutually conjugate representations of G, and the simplest consistent choice is of 
course to suppose that these representations are irreducible - which is precisely the 
conclusion that we shall arrive at. In fact, the most straightforward way to figure out 
the correct representations is to view the interacting field g as an interpolating field 
in the sense of LSZ, and to introduce asymptotic free fields g~, where "ex" stands 
for " in ' '  or "out" ,  such that g converges weakly to gm for t ---, - oo and to gout for 
t---, + o¢. This seems plausible since the interacting field g is gauge invariant, so 
there are no long-range forces (no confinement), and the corresponding particles 
should therefore all be visible as asymptotic states generated by the asymptotic free 
fields ge~. (Of course, that does not exclude the formation of bound states.) In 
addition, we expect all our models to exhibit dynamical mass generation, so the 
matrix fields g~ should be massive, and all their matrix elements should have the 
same mass m > 0, since they are transformed into each other under the action of G. 

To be more explicit, let us introduce the Fourier representations 

g. ( t ,  y) = f b x(q)exp(-iE(q)t + iqy) + d*(q)exp( +iE(q) t -  iqy)}, 

(28) 

where the integration measure is 

d q  _ dO E ( q )  = }/q2 + m 2 = m cosh0,  (29) 
d / . t ( q ) -  2~r2E(q) 4 r r '  q = m s i n h 0 ,  

and the creation and annihilation operators appearing in (28) are supposed to 
satisfy the following canonical commutation relations: 

* k l  ~ i j  * k l  [b~Ux(ql), b~x (q2)] [d~x(ql), dex (q2)] = 2 ~ r 2 E r ' J ' k ' 8 ( q x  q2), 

ij [b~xJ(ql), d * k t ( q z ) ]  = [dex(ql),  b * k t ( q 2 ) ]  = 2 ~ r 2 E s ' J ' k ' 6 ( q l  -- q2), (30) 

with 

r '1"k1= 8 '~ 8 jt s u ' k l =  O, (31.A) 

r,/. k/= 8,k 8 j /  s,j. ~.t= l 'klJ/ ,  (31 .S) 

r , j .  hi = 8,~ 8~1 + l ' l l J k ,  S, j .  k/= 0. (31 .Q) 

(All other commutators are supposed to vanish.) Moreover, asymptotic states are 
defined by 

IOkl)e  x = ( I b * ( q ( O ) ) ) k l l o ) ,  1~-7)ex = ( d * ( q ( O ) ) l ) k t l O )  . (32) 

(These are the asymptotic one-body states; asymptotic two-body states are defined 
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correspondingly*.) This fixes the structure of the asymptotic free theory, since the 
commutation relations (30) and (31) contain, among other things, the rules for 
defining composite operators by means of Wick ordering : :. Examples of such 
operators are provided by the asymptotic free currents .&,~,x: these are traceless 
anti-hermitian matrix fields given by 

- 4- • " ~( .g~O,g~.-"O,g;xg, ,~:)  (33) 
• ] p . ,  e X  2 * 

and 

1 
r (34) j~, " - - - t r j ~ ,  . . . .  ex =J~,. ~x N '  

where N' is given by (27). (For the subgroup cases, the value of N' in (34) is 
irrelevant since the constraint (35.S) below implies that ju.~ is already traceless.) 
Notice also that the g~ do not satisfy the free field analogue of the non-linear 
constraints (19) and (20): this was the reason why we had to make the j~,,~ traceless 
and anti-hermitian by hand. (Other consequences will emerge later on.) The gCx can 
and will, however, be made to satisfy the free field analogue of the additional linear 
constraints (8): this is achieved by imposing the following simple identities between 
the various creation and annihilation operators: 

d~x ' (q ) I  = ibm; )(q),  (35.S) 

b ~ ; ' r ( q ) l = I b ~ x ' ( q ) ,  d ~ ' V ( q ) I = l d ~ ; ' ( q ) .  (35.Q) 

For asymptotic states, this means that 

I~k3)ox = IOkl)~, (36.S) 

IOkl)~x = + 10tkLx,  I 0 ~ ) .  = + 1 IO-/~L~. (36.Q) 

Another condition is that the gCx should have the same transformation laws under 
global symmetries as the interacting field g: this is achieved by imposing ap- 
propriate transformation laws on the various creation and annihilation operators. 
More precisely, (11) and (12). with g replaced by gcx, lead to 

h~" ' ( q )  --, , , ' "  " , ' "  ' ~ , , )g~"  ' ' 
& L t ' ex  k ~/ d ~ x ) ( q ) ~ g [ . , .  ( . ,  )g~ . ) r  d~  (q , (37.A) 

h Z  ' ( q )  --, " "  " "  '~ " ) g ~ "  ~" 
, ~ I .  ~ e x  ~. ~ 

d (x , (q )  _~g[ . I .A , . ) t~ ,~ . ( . )T  (37.S) ~ex ~. "/16R , 

b ~ ' ( q )  --* Ig~o'"l+b~x'(q)g~o "'~ d~;) (q) -~  Ig~o"l ' ' 4 ~ ' q ' ~ ' ~ ' ) v  ~ex ,,tJ~s0 . (37.Q) 

* The term "'body" is synonymous for "particle or antiparticle". 
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For asymptotic states, this means that 

I O k l ) ¢ x ~ g ~ k " g I R " l O m . ) ~ . ,  I ~'7)e x ~" .,,, --* gl. gR ]Ornn)~x, 

[Okl)¢ x k,,, t,, --" gI~ gR IOmn)cx,  

(38.A) 

(38.S) 

go go I m0-m-n)~x- (38.Q) IOkl)~x --" gok'gol" I Omn ) ~ ,  I Okl)e~-- ,.k., ,.In 

Similarly, under charge conjugation g~x ~ gc~ = I g Z I  +, 

b ~ x ) ( q ) ~  I d ~ x ) ( q ) l  + , d~x ' (q) - -* lb~e ; ' (q ) l  * , (39) 

SO 

IOkl)ex---, 10~Lx, 10k?)~x---, IOkl)~x. 
T + Finally, under the discrete symmetry gCx -" Ig~x I , 

(40) 

SO 

b~; )( q ) ~ Ibex )T(q) i + " d~x ' (q )  ~ Ida;  ' V ( q ) l + ,  (41) 

IOk/Lx ~ ± IOlk>ex, 1~-2Lx ~ ± I l~7~5.. (42) 

For consistency, we have to require, of course, that the additional linear constraints 
(35) and the various symmetries (37), (39) and (41) are compatible with the 
commutation relations (30): this imposes severe restrictions on the group-theoretical 
structure of the coefficients r and s. It is straightforward to verify, however, that the 
choice made in (31) does satisfy all these restrictive conditions. 

To summarize, we see that the asymptotic one-particle states IOkl)cx transform 
according to the following irreducible representations of G: 

NI* ® N R of SU(N)L )< SU(N)R (A-series) 
N L ® N R of SO(N)L X SO(N)R (BD-series) 
N L ® N R of Sp( N ) L X Sp(N) R (C-series) 

N ® ~ N  of SU(N)  (AI-series) 
2 N ® a 2 N  of SU(2N) (AIl-series) 

(Here, s stands for "symmetric" and a stands for "antisymmetric".) Moreover, these 
states are neutral (particles = antiparticles) in the subgroup cases and charged 
(particles ~ antiparticles) in the remaining cases. 

4. Ansatz for the S-matrix 

Symmetry considerations similar to the ones discussed so far can also be used to 
write down the general ansatz for the two-body S-matrix. First of all, energy- 
momentum conservation implies the absence of inelastic scattering in the two-body 
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sector (since all particles/antiparticles have equal mass m). Next, charge conJuga- 
tion invariance means that 

.... t( O[k {l;. O(-k~l~_lOlk~l,, 02k 212)~o = ,,o,( O;-k ~i[, ~'-k ~i;_l~,-k,i~, L_~2i2) m, 

o u t ( ~ ,  O~k~l~l t~-t~, 02k212)m =oot(O[k[l[,O(-kzl~]O~kJl,02k212),,,. (43) 

In addition, the particle-particle = antiparticle-antiparticle scattering amplitudes are 
symmetric under the exchanges 1 ~ 2 and 1' o 2'. The main restriction, however. 
comes from G-invariance. which implies that among all possible contractions of 
indices, only certain combinations are allowed. More concretely, this works as 
follows. 

For the case A. indices k I, k 2, k 1, k 2, k~, k; ,  k~. k" transform under S U ( N ) t  
while indices 11, 12, Jl, -12, 1{, I~, 1{, -l~ transform under SU(N)  R, so they cannot be 
contracted with each other. Moreover, the representations N and N* of SU(N)  are 
incquivalent. This leads to 

/O'k  ' l '  O ' k ' l ' lO lk l l  1, O~k,12)i, out\ 1 1 1 ' - . . . .  

= + 16w28(0~ ' -  el) 8 ( 0 - -  02) 

x { + u1(O ) a k~, ak~ k-' a~; ~' a~;~- " + u=(O)  8 ~;~: a k-~' 6 ~;~: 6~ ~' 

"4-I/3(O) 8 kik' 6 L ~" : a I;I:' 6 I"/1 -[- Ig 4( O ) 6 I~;I~':" 8 k ~kl 8 I(I:" 6/;/I "~ 
• j 

+ 1 6 r r 2 a ( O / -  0_~) a(O(- - 01) 

X { - t - / 2 4 ( 0  ) 8/~;k '  8/''-'~" 2 ~l;It 61"212 jr_ / / 3 ( 0  ) 8/~/.,.! ak'~kl al;I, al'12 

+ u:(  O ) 6 ~;~, a k~k~ a~;~'- 8 r'-~, + u~( O ) 8 ~ . '  8 k'~, a ~;~., a~:~,}, (44.A) 

- + 16~ '28 (0 / -  0,) 8(0(_ - 02) 

X { - { - / 1 ( 0 )  8 k[k' 8 k'k2 8 l[1' 81'~12 "St- 12(0  ) 8 k[k2 8 "li'-k' 8 I;1, 8 l;-I'- 

+ t.~(O) 8 ~;k, 8 ~'~: 8 ~;~: 8~ ~, + ta(O) 8 ~;~: 8 ~'~, 8 ~;~: 8 r-'-~, } 

+ 16~r28(0{ -  0~) 8(0( - -  01) 

X { + r~(O) 8 k;~, 8 k;t2 8 ~;6 8 r'J'- + r3(0 ) 8 ~;k," 8 ~5~, 8~;6 8~'~: 

+r2(0 ) 8 k[kl 8 ~'2k" 81[12 8 I~1' -{- r~(O) 8 ~;~-' 8 k;t' 8 ~;~'- 8 r-'6 } (45.A) 
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with 0 = 101-  021; invariance under the discrete symmetry (41) and (42) is then 
guaranteed by the additional conditions 

u 2 = u 3, t 2 = t 3, r 2 = r 3. (46.A) 

For  the subgroup cases BD resp. C, indices k 1 ,k  2 , k f , k ~  t ransform under 

S O ( N ) I  resp. Sp (N)  L while indices l 1,12 ,l~,/~ transform under S O ( N )  R resp. 
S p ( N )  R, so they cannot  be contracted with each other. However, the representa- 
tions N and N* of S O ( N )  resp. 2N  and 2N* of Sp (N)  are equivalent, with the 

matrix I as the intertwining operator. This leads to 

out( Ofk (l{, 02k 212]Olk,ll, 02k 212)in 

= + 16¢r28(0i ' -- 01) 8(0~ -- 02) 

X { + u~(O) 8 k~k' 8 k'k'- 8 I;~' 8 m" + u2(O)  8 k;k: 8 k~k' 8 ~;~' 8 rl: 

+ u 3 ( O ) l k W ~ I ~ ' k .  '. 8~;~, 81'....I: + u4(0)  8 k~k, 8k'~: 8~;~,. 8r:, 

+ us(O ) 8k~28  k'~k' 8 :~6 8 lu~ + u~,(0) l k~ '~ l  ~'k'. 8 :~6 81"-l, 

-~- b/V(0 ) 8 k~k' 8k'2k21tU'zllg,. 

+ I,t 8 ( 0 ) 8 k;k2 8k'2ktll;l~l IJ2 

+ uo(O) Ik f k ; l k ' k211;r l  td2 ) 

+ 167r28(0;- -  02) 8 ( 0 ~ - -  0 , )  

X { Jr- U 5 ( 0 ) 8 k;k' 8 k'2k2 8 I[l' 81'212 -[- //4( 0 ) 8 k;k2 8 k~l'' 8 I;l' 8 I'~12 

± u6(O)Ik~k~l  k~k: 81; I , 81g._ + U 2 ( 0 ) 8  k;k' 8k'.,k2 81~1: 81"..1~ 

~- ~,/1(0) 8 k~k2 8k'2k, 81~12 81"211 -~ u3( O ) Ik;k"21k,k: 8/(/- " 8/"2/, 

+_u~( O ) 8 k¢k, 8k~k~l~;r"l U2 + U7(0 ) 8k~k~8~'1:~l~ l ~d'- 

+ Ug( 0 ) l k [k ; l  k'k'-I tit~'lt't" } ,  (44.S) 

with 0 =  01 - 0 2 1 ;  invariance under the discrete symmetry (41) and (42) is then 

guaranteed by the additional conditions 

u 2 = u 4, u~ = uT, u 6 = u~. (46.S) 

For  the quotient  space cases AI resp. AII ,  we must take into account  the 

symmet ry  resp. ant isymmetry under exchanges k~ ~ l~, k 2 ,--, 12, -k~ ~ l~, -k 2 ~ 12, 
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k~ ~ I(, k~ ~ l~, h~ ~ -I(, -k~ ~ -l'. Moreover. the representations N' and N'* of 
SU(N') ,  with N' = N resp. 2N, are inequivalent. This leads to 

.... t( O(k fl(. O'k ~H, lOlk 111, Ozk 2/2)in 

= + 16=28(01 ' -  0~) 8 ( 0 ; -  02) 

"~ { "l ' l l l(O)(t~k'i t t:~k'k)~l~lt(~ I~l-' -t" ]~'{0~, I { . k ~ o +  l~ or k, ~ l , . k , ~ / 2 )  

)(8 ~ <  8 k~, ~';', ~'~': +_ k; ~ t~', k" ~ t~ and k~ , ~ / , ,  k~ ~ L~ ) + U2( 0 

+ , , ( 0 1 ( 8 " ~ :  8 ~-'~ 8';'~8'~', +_ k f ~  l ; , k ' ~  I~ ,,r k, ~ l l . k 2 ~  ,~)], 
g ~ 

+ ~ 6 , ~ 8 ( o ;  - 02)  8 ( o ;  - o~) 

× { - - u 3 ( O ) ( 8 ' ; ~ ' 8 ' i a : 8 ' ; ' ~ 8  '% + k;*-, I ; . k ; ~  l~ or k, ~ l l . k . , ~  /2) 

+ . . t  0)(8';*-, 8'~*, ~'~', 8".-'. + k ;  .-. ¢1', k~ ,-. l~ and k, ~ t,. k_~ .-. t: ) 

Jr" IAI(O)(~ '~;kz(~k'''~' ~'~'"~ I'll "1" k ;  ~-~ I1 ' ,k~ ~-~ ] ;  or k 1 - - l , . k 2 ~ / 2 ) } .  

(44.Q) 

o m ( ~ ,  O~_k ~l:,[Oaklll, 02k 212)i~ 

= + 16~r28(0( - 01) (~(0; -- 02) 

+t2(O l ~ ; ~ I k , ~ : 8 t r ~ , 8 ~ ! ~ + k ~ l { , k ~ l ; a n d k x ~ l l , k , ~ 1 2  

1( . . . .  )' +t3(O I k ; k S l ~ : ~ l ~ ; r l ~ d e + k l ~ l ~ . k t ~ l ~ o r k ~ l ~ , k 2 ~ l ~  f 

+ 16~r28(0(- 0~) 8(0~- 0~) 

×( +r3(O)(8*'lk'8 ' i ' :  8/;"8 ';-L' +_ k;"+ 11',k''--" 1~ or k~ ~ ' l , k 2  ~'> /2) 

+r2(O)( 
+q(O)( 

l~!k'I k'~: 8/;/: 8/"/: _+ kf ~,/ l ' .  k~ ~ / ;  and k I ~, / l, k 2 *-, 12 ) 

Ikrk;l~":l';r"l"Z: + k; ~ l { ,k  I ~ I 1 or k~ ~ I~,k, 2 *-, 12) } . .  

(45.Q) 
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with 0 = IOl -  021' invariance under the discrete symmetry (41) and (42) is then 
automatic. 

5. The quantum non-local charge and the factorization equations 

Up to this point, we have simply elaborated the consequences of the global 
symmetries of the two-body S-matrix. Clearly, the next step is to take into account 
the various other properties of these scattering amplitudes, and to derive the 
restrictions they impose on the (as yet undetermined) functions u,, t, and r, 
appearing in (44), (45). As it turns out, the most stringent constraints result from the 
fact that the S-matrix must commute with the conserved quantum non-local charge, 
and it is these constraints that wc arc going to analyzc next. 

To proceed with that derivation, we must first compute the action of this charge 
on asymptotic one-body and two-body states, or equivalently, its expression in 
terms of asymptotic creation and annihilation operators. This was first carried out 
for the spherical models in ref. [22], but the strategy used there can equally well be 
applied in all the cases under consideration here: it essentially amounts to repeating 
the relevant definitions with interacting fields replaced by asymptotic free fields. 
(This implies, of course, that the normal ordering prescription and, hence, all 
rcnormalization constants for the interacting theory must also be replaced by their 
free field counterparts.) More specifically, apart from the standard conserved 
asymptotic quantum charges 

Q(O) = f dyjo,~x(t, y) e x  (47) 

we define asymptotic quantum non-local charges 

with 

(I) r , (1)  ( l  Q~x ( t )  = lim ¢d~,,~, ). (48) 

Q ~ ( t )  = f dy ldy2  e(Yl -)'2)Jo.~( t, Yl)Jo.c~( t, Y2) 
~l v21 >~8 

- Zcx( 8) f d yj~,cx(t, y ) ,  (49) 
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where 

,~t " t  

z . ( a )  = - ~ ( 1 . ( ~ m S ) + V -  1), (50) 

7 is ILuler's constant, and N' is given by (27). Notice that since the g~ do not satisfy 
the free field analogue of the non-linear constraints (19) and (20), and the j~,,,,,, 
therefore do not satisfy the free field analogue of the short-distance expansion (22), 
the limits in (48) arc still explicitly time-dependent. We may, however, take the 
limits 

Q ! • =  lim ~ o ~u= ~ m Qi. ( t ) .  ~o.t lim Q,,u~(t), (51) 

and after a rather tedious calculation along the lines of ref. [22], we arrive at the 
following expressions in terms of asymptotic creation and annihilation operators: 

Q~'2' ~i f dt~(q) :(bc~,(q)b~(q) v . = _ - d e ~ ( q ) d ~ x ( q ) )  

1 
U' tr(b~.x ( q )bc~( q) - d¢~( q )d,.*( q ) ): ,  

Qlln)= l U'( + Ain + Bi , ) ,  Q~olJt= taU'(-A,,ut + Bo~t), 

A e,, 

B , ~ x = ~ f d t a ( q ) l n  E ( q ) + q  
m 

(52) 

(53) 

1 P 

= ~7 ida(q,)d,tt(q2) ~(ql - -  
qz) 

× :(b~-~(q~)b~x(q~ ) -d~(q~)d~*(q~))(bc'x(q2)b~x(q2) - d ~ ( q 2 ) d * ( q 2 ) ) : "  

(54) 

:(b£x ( q ) b ~ ( q )  - d ~ ( q ) d * ( q ) )  

1 
N, t r ( b ; ( q ) b c ~ ( q ) - d ~ ( q ) d . * ( q ) ) ' ,  (55) 

where N' is given by (27). (For the subgroup cases, the value of N' in (52) and (55) 
is irrelevant since the constraint (35.S) forces the trace terms to vanish. It does 
appear, however, in the relative normalizations of the terms Ac~ and BL,×.) This in 
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tu rn  leads to the fol lowing explicit formulae  in terms of  a sympto t i c  states* 

A ~ l O k O .  = 0 .  

ij 
A~10--k-2>¢ x = O' (56) 

ij 

iO ' 1 ~k-75 ~x ) 
B~x'l~-7>ox = - ~ - ( a " l ~ L ~ -  ~ a'-'l : 

B~xlOkl>~ x + ( 6 J Z l O k i ) ~ x -  l a l J " l O k n ) ~ ) ,  

,o( 2 ) 
BeJxlOkl)¢x = + - -  8"10k i5¢  ~ +__ 6J*[Oli>~x - N--- 7 8"[Okl>c x , 

77 

i O '  

(57.A)  

A ' , ( l O l k t l l ,  02k212)ex 

(57.s) 

2 8u[~>~)  ' (57.Q) 
N '  

1 
= ~ e ( O ,  - 02) ( +8 ' " ,  8J'= 6',"~ - 6'"'- 6 " ,  6 '~" ' ) lOtkan  ,,  Ozk2n2>¢~. 

1 
= - ~ e ( O  t - 02) ( + 8  '"2 8J", 8"-', - 8 ,6 8 j'~- 8 . . . .  ) l O t k , n  ~, 0 2 k 2 n 2 ) ~ ,  ; 

ij 
Ac~ lOlk t la ,  02k212)cx 

1 
= - - t ( 0 1  - 02) ( +~ ' " '  ~ " - 8 " " :  - 6 `"2 8J" 8"-", 

N '  " 

- ~ ' , I J " : 1 6 1 2  + 6i"2Ii"~11~6 

- I i6  8#21 .. . . .  + 1'+2 6~61~,',2 

(58.A)  

+ l ' h l  -'"2 6 '2"' - I"21 ~'~ 8 6 " 2 ) l O l k t n  a, Oekznz>cx" (58.S) 

* Tile formulae for Q~.~' can be obtained from those for B,.~ bv the simple substitution iO/'rr ~ ~ 2 / ,  
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A'~lO~k~l~, 02k 212)e× 

1 

N'  
- -- t ' (O~ - 02){ + ( 8  .... 8" :  8"":  - 8 .... 8 j'' 8 ' : ' ' ' ) lO,k,n~. O : k 2 n 2 ) ~  

+ (8 .... 8 ~ 8 ~": - 8 .... 8 ~'  8/'-''' )10~l~n ~, 02k ~n 2)~.~ 

+ (8 .... 8'k: St,,,, _ 8'"-' 8 '~' 8 ~-'": )l O~ k ~n~. 0212112)cx 

+ (8'" '  8 ~: 8 ~ . . . .  8 .... 8 ~'  8a-'"')[O~l~n~. 0212n2)ex } .  

A'~Sx]Olk ll l, 02k 212)ex 

1 
= N--7~(Ot - 02){ + (8'"21J"'1 ''-6 - I ~'~ 8i1"-I . . . .  )lOxkxnx. 0 2 k 2 n 2 ) ~  

+ (8'"'-IJ",11~ k, _ l ,k ,  811..I . . . .  )[Oxlxnl. 0 2 k 2 n z ) ~  

+_ ( 8'"'-IS",IX~l, _ l,I, 8Jk~l ..... )[Oaklnl. 0212n2)~ 

+ ( 8 ' " ' l j " ' Ik :k~  -- I ,k' 8ik'-I ' ' - ' ' ) lO,6n~.  021zn2L~ } ; (58.Q) 

B~xlO,k,l~ O:kzl2)~x = + 8st, lO~k , i ,O:k , l . )~x  - ~ 8 ' ) [ O x k l l x .  O2kf12)~ ~ 

+ - -  8Jl"-lOlkJl, O?k2i)~ ~ -  ~ 8 'J lOlkl l l ,  O,k~l~ 

( ' ) 
71" 

+ 8 " 2 1 0 - ~ 1 ,  Ozk2i)~ ~ - -~ 8'JlOlkxl l, 02k21z)~x ): 

(59.A) 

iO~ 
B:~ O ,k , l , .  02k212)~ = + - - ( 8 , ' , l O x k  d .  02k212)~ - l , ' , l . , , lOxk~, ,~ .  02k:12)~  ) 

, i t  

'O2( 
+ ~r 8 J l : [ O l k l l l ' O 2 k f i ) ~ x -  I ' l : l~"~101k l l l 'O2k2n2)~)"  

(59.s) 
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iy iOa ( 
B¢~lO~kxl~, Oek21z)ex  = + - -  3:6lO~k~i, O z k 2 l z ) e x  q- 3:k~ IOtlai, 02k212)ex  

'It 

2 8':lOlklll, 02k212)~x) 
N' 

i&: 
+ ~13:6101klll, 02k  2i)ex 4" 3:k~lOlklll, 0212i)e x 

N' 8':101klla' 02k212)~ ' 

B~xl . . . .  Ozkzl2)¢x iOX~r ( l"'I:"'l ~k~n~'O:k:l:)¢x+-l'k'l:"'lOllana'O:k:lz)~x 

_ m , s ' J l  . h g . T ~ - . / . ,  

N' 

2 3 'J l l~l l ,  O,k,12)ex) " 
N' 

(59.Q) 

On the other hand, the standard quantum charge Q~O~ and the quantum non-local 
charge Q ~  of the interacting theory are conserved, and since the interacting field g 
converges at large times to the asymptotic free fields g~x, we conclude, as in ref. [22], 

that 

Q!01 = QIO~ = o~0~ ( 6 0 )  
in ;c- Otlt • 

Q!I)= QO)= o~1) (61) 
i n  r - - O U t  " 

For the standard charge, which generates isospin symmetry, this is a legitimate 
procedure, but for the non-local charge, eq. (61) is a non-trivial relation which does 
not follow from any of the arguments presented so far. This was first pointed out in 
ref. [24], where it was also argued that the condition for (61) to hold is that the 
action of Q~tl on asymptotic incoming and outgoing one-body states coincides with 
that of O Il) and O ¢~) respectively, as given by (56) and (57). But on such states, the 

r . . .  i n  ~7- O H [  ' 

action of Qll) can be computed from the action of Q~0), which is known due to (60), 
by making use of the commutation relation (26), and the result is (61) - just as for 
the spherical models where this was shown in [23]. 
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The desired additional constraints on the scattering amplitudes now follow by 
combining (44), (45), (46) and (53), (58), (59) with the relations 

out(O(k~l;, O~k~l~lQi,,lO~k~l~, 02k212)~, =out(O{k~l;, O~k~l~lQo~tlO~k~l~, 02k212)in, 

(62) 

plus the fact that Q¢~ = -Q~x. After tedious calculation, this gives 

2rri 4qr 2 
u2(O) = u3(0) NO u l (0 ) '  u4(0) - N20 2 /'/1(0)' 

2 ~ri 
t2(O) = t3(0) N(irr - -  O) / l (O) '  /4(0) 

4 ~  2 

N2(i~r-  0) 2 tl(O)" 

rl( O ) = r2(O ) = r3( O ) = r4( O ) = O. (63.A) 

2~ri 
u2(0) = u4(O) N'O ua(0) '  

~ ( o )  = ~7(o) 
2~ri 

N ' ( i¢ ' -O)  
u,(o). 

u s ( o )  = - - -  
4gr 2 

N,202 u l ( 0 ) ,  

u6(o) = us(o)  
4 ~  2 

N'20(i~ - O) 
, , , (o) .  

4,7/- 2 

u9(0 ) = N,2(i¢ r -  0) 2 ul(O)" (63.S) 

, , 2 ( o )  = T 1 + 2 ~ , j  u l ( o ) ,  u 3 ( o ) -  
4~ri 
N'O u2(0) '  

N'(irr - O) ) -x 
t2 (o)  = ~- 1 + z~7 t , ( o ) ,  t3(o) 

4~ri 
U'(i~r- O) t2(O)' 

rl(O) = 1"2(0 ) = r3(0 ) = 0. (63.Q) 
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We repeat that the constraints (63) arc precisely the conditions which guarantee that 
the two-body S-matrix commutes with the conserved quantum non-local charge. On 
the other hand, one can verify that they force the two-body S-matrix to satisfy the 
factorization equations, or Yang-Baxter equations. This means that for the models 
under consideration here, the latter acquire a field-theoretic underpinning. 

6. The minimal S-matrix 

From this point onward, the further procedure is more or less standard: we just 
have to make use of unitarity, analyticity and crossing symmetry. 

First of all, unitarity leads to 

02 ') 2 

lu'(0)12 = 02+C2-¢r/N)2 It,(0)[ 2= 1, (64.A) 

02 )2 
lu~(0)l 2= 0=+ (27r/N') 2 ' (64.S) 

2 

lu~(0)I 2= 02+ (4~' /N')  2 , It,(0)l 2= 1, (64.Q) 

all other unitarity conditions then being satisfied automatically as a consequence of 
(63). Next, we note that eqs. (63) and (64) are a priori valid only in the physical 
region, i.e. for O real and positive. Analyticity tells us, however, that the amplitudes 
u, and t, can all be continued to meromorphic functions in the complex 0-plane, or 
rather in the so-called physical strip of that plane defined by the condition that the 
imaginary part of 0 should be restricted to lie between 0 and or, in such a way that 

, , ( o ) *  = u , ( - o * ) .  ,1(o)* = , , ( - o * ) .  (65) 

To justify this assumption, we note that the usual Mandelstam variable s (total 
energy in the center-of-mass frame) is related to the variable 0 (rapidity difference) 
by 

s = 2m2(1 + cosh0) = 4m2cosh2~O. (66) 

In fact, this formula establishes a homeomorphic mapping from the closed strip 
0~< ImO~Tr in the complex 0-plane onto the cut complex s-plane, which is 
biholomorphic on the open strip 0 < Im 0 < ~r and maps 

(a) the boundary l m 0 = 0  to the branch cut Res>~4m 2, l m s = 0  imposed by 
s-channel unitarity, 
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(b) the boundary Im0 =or to the branch cut Rest< 0, I r e s = 0  imposed by 
t-channel unitarity (at u = 0) or u-channel unitarity (at t = 0), 

(c) the piece Re 0 = 0, 0 < Ira0 < ¢r of the imaginary 0-axis lying in the strip to 
the piece 0 < R e s < 4 m  2, l m s = 0  of the real s-axis lying between the branch 
points. 
Thus (65) is just the condition of hermitian analyticity, which requires the imaginary 
part of the scattering amplitude to equal its discontinuity over the branch cuts and 
to vanish on the interval between the two branch points (cf. ref. [25], p. 17). 
Moreover, crossing symmetry gives rise to one additional condition, namely 

t , (  8 ) = ut(  i ~ r -  0 ) ,  (67.A) 

u,(  O ) = ul (  i~r - 0 ) ,  (67.S) 

t~( O ) = u , (  i~r - 0 ) ,  (67.Q) 

all other crossing relations then being satisfied automatically as a consequence of 

(63). 
To summarize, we see that the entire two-body S-matrix can be computed from a 

single function ul(O),  which is meromorphic on the open strip 0 < Im0 < 7r, with its 
zeros and poles located on the imaginary axis*, and which extends continuously to 
the closed strip 0 ~< lm 0 ~< 7r. In addition, this function must satisfy the hermitian 
analyticity condition 

u i ( 8 ) *  = u l ( - 8 * ) ,  (68) 

as well as the unitarity and crossing conditions 

02 

lu~ (0 ) [2=  0 2 + ( 2 ~ r / N )  2 

2 

, [ u , ( i c r -  8)[ 2 = 1 (0 real), (69.A) 

82 ) 2 =  [ u l ( i c r - - 8 ) ]  2 
[ul(8)[ 2= 02+(2v r /N , )  2 (0 real), (69.S) 

02 
]u,(O)l  2 = [u,(iTr [ 0 ) [ 2 = 1 ( 0 real), (69.Q) 

0 2 + ( 4 ' n ' / N ' )  2 ' 

" This is an additional restriction made for convenience. 
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together with the aforementioned additional constraint for the subgroup cases: 

ul( O ) = u1( iTr - O ). (70) 

As usual, it is convenient to split the general solution ul(O) into a minimal solution 
u~"i"(0) and a CDD factor P(O) [26]: 

ul(0)  = u ; " o ( 0 ) p ( 0 ) .  (71) 

In general, the term "minimal" refers to the number of zeros and poles on the 
physical sheet, but for the models under consideration here, it turns out that the 
minimal solution u~'in(0) has no zeros and no poles whatsoever in the open strip 
0 < lm0 < ~r. Hence all zeros and all poles are collected in the CDD factor P(O), 
which must satisfy the analogues of (68), (69) and (70), viz. 

P(O)* = P ( - 0 * ) ,  (72) 

I P ( O ) l  2 = 1 ,  IP(i~ - 0)12 = 1 (0 real), (73) 

and for the subgroup cases, 

P( O ) : P( i~r - O ). (74) 

We note finally that under very mild restrictions on the growth at Re 0--, +_ ~c. 
u~'in(0) is unique (up tO a constant phase), while ut(0) and P(O) are determined 
uniquely (up to a constant phase) by the positions and orders of their zeros and 
poles: this follows from combining a theorem of Phragmen and Lindel~Sf (cf. ref. 
[27], pp. 128/129) with the fact that a holomorphic function of modulus 1 is 

constant. 
Explicit formulae are easily derived by imitating procedures found in the litera- 

ture [9, 1 3  15, 17, 18]. Thus the unique minimal solutions u~i"(0) are given by 

I'(1 - O / 2 ~ i ) F ( I / N  + O/2~ri) .)2 
"~"in(0) = F ~ ~ i  ) ~-1 + I ~ N - -  0 ~ )  " (75.A) 

1 i"1  + o/2 ,)rtl- + i 2 
u l n i n ( 0 )  = 

r (o /z~i )F(~  + 1/N' + 0/2~i)I"(~ 0--/2~)-i7(1 + ~ - O/2~ri) ) 
(75.S) 

I'(1 - O/2~ri)I"(2/N'+ 0/27ri) (75.Q) 
//{ran(0) = r ( o / 2 ~ i ) r ( l  + 2 / N ' -  O/2~ri) " 
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Note  that the solution (75.A) is the square of  the class II solution of ref. [131, and 
the solution (75.S) is the square of  the solution of ref. [9]; they have of course been 
derived bcfore  [11,12, 15,17]. In addition, the solution (75.Q) coincides with the 
solut ion R ~2 ,.2 : ~(u.~) of ref. [14], with u = O and r t = -27ri/N' .  On the other 

hand.  let 0 < h < ~r, and define 

sinh½(0 + iX) tanh-~0 + i tan½X 
Px(O) = = (76) 

sinh½(0 - iX) tanh½0 - i tan l,h " 

tanh ~ ( 0 + iX ) sinh 0 + i sin X 

P x ' " - x ( 0 )  = t a n h ~ ( 0 -  iX) = s i n h 0 - / s i n  X ' (77) 

It is easily seen that  in the open strip 0 < l m 0  < v,  Px(0)  and Px. ,  x(0) both  solve 
(72), (73) and have no zeros, the difference being that Px(0)  has a simple pole at iX, 
while Px..-,- x(0) also solves (74) and has two simple poles at iX and i(~" - X): in 

fact, 

= e A 0 ) e . _ A 0 ) .  (78) 

The  signs in (76) and (77) are chosen so as to be consistent with the condit ion [28] 
that  the residue of the C D D  factor P(O) (multiplied by i) must be negative at the 
physical  poles. Thus  for P(O)= Px(O), the pole at 0 = iX is physical, while for 
P(O) = Px.,, x(0), the pole at 0 = iX is physical whereas that at 0 = i(~r - X) is not: 
it co r responds  to a physical pole in the other channel. Finally, for the subgroup 
cases resp. for the remaining cases, the most general C D D  factor P(O) is a product  
of  certain Px.,, x(0) 's resp. Px(0) ' s  and their inverses. 

7. Bound states 

F r o m  the analysis above, we conclude that the full S-matr ix  will be determined 
uniquely (up to a constant  phase) once we fix the posit ions and orders of the zeros 
and  poles occurr ing in the C D D  factor P(O). In more  physical terms, this means  
that  we must  know whether  the original particles and antiparticles of the model 
under  considerat ion produce bound states, and if so, what  are their propert ies  - in 
part icular ,  their masses. Dynamical ly ,  this is a difficult p rob lem because it requires 
in fo rmat ion  on the theory off-shell, and we would like to emphasize  that such 
in format ion  cannot  be obtained by the methods  discussed so far in this paper.  Of  
course,  one can use per turbat ion theory to analyze the question whenever a reliable 
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perturbative scheme is available: a well-known example is provided by the I / N  
expansion, which has the advantages of respecting the internal symmetries and of 
being free from infrared problems. Such an analysis has been carried out for the 
O(N)- invar iant  non-linear o model on S 'v 1 [9], the N-component Gross-Neveu 
model [9] and the N-component chiral Gross-Neveu model [29], with the result that 
the factorizing S-matrix for the first model is the minimal one, while those for the 
second resp. third model contain CDD factors Px.,_x(O) resp. Px(0) with ~.= 
2 ~ r / ( N -  2) resp. ~, = 2~r/N. In physical terms, this means that the fundamental 
bosons of the o model interact by repulsive forces and hence do not form bound 
statcs, while the fundamental fermions of the GN or CGN model interact by 
attractive forces and hence are capable of forming bound states, at least in certain 

channels. 
For the matrix models under consideration in the present paper, however, the 

1 /N  expansion does not work, since an infinite number of graphs contributes to 
each given order of perturbation theory. Moreover, the Bethe ansatz technique 
[16-19] - although capable of dealing with the problem from a different angle - is 
tailored to the group manifold cases and will provide no insight for the coset space 

c a s e s .  

In view of this situation, the best we can do is to provide some more or less 
heuristic arguments. One possibility is to require, for the sake of simplicity, that the 
two-body S-matrix should admit simple zeros and poles only, along the entire 
imaginary 0-axis (with the possible exception of the points 0 = i~rn, n ~ Z, where 
(69) and (70) may enforce the appearance of double zeros a n d / o r  poles). For the 
group manifold cases, it turns out that this condition is sufficient to fix the C D D  
factor [11, 12]: the results are given in eqs. (81.A), (81.BD), (81.C) below, and they 
agree with those obtained from the Bethe ansatz technique [16,1"/]. The other 
heuristic argument starts out from the observation that all the models under 

consideration here are subject to an additional constraint which has so far been 
disregarded. Namely, we can view the determinant constraint (20) imposed on the 
interacting field g as a hint that antiparticles are to be identified with bound states 

of particles if, assuming that these bound states are formed with the help of totally 
antisymmetric tensor products, such an identification is allowed by representation 
theory. This should be compared with the bootstrap condition proposed in ref. [17], 
which requires all particles/antiparticles, and their bound states, to belong to one of 
the fundamental  representations of the relevant group. For the subgroup cases, the 
two criteria would give rise to different bound state spectra, but we are convinced 
that the determinant constraint alluded to above is not sufficiently restrictive to 
handle the groups SO(N)  or Sp(N),  and so the results of ref. [17] should be the 
correct ones. For the remaining cases, on the other hand, the two criteria can be 
expected to lead to the same bound state spectra, simply because the fundamental 
representations of the group SU(N)  are precisely the exterior powers of its defining 
representation. We can thus take a look at the last paragraph of sect. 3 and conclude 
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that 

antiparticles are bound states of N - l particles 
(A series: S U ( N ) ) ,  

antiparticles cannot be bound states of particles 
(AI series: SU( N ) /SO(  N )),  

antiparticles are bound states of N - 1 particles 
(All series: SU(2N ) / S p ( N  )). 

But the fusion method [30] predicts that due to the factorization equations, the 
I existence of a bound state formed of two particles, with mass m z = 2 m c o s ~ ,  

implies the existence of a whole spectrum of bound states formed of k particles, 
with mass 

sin(~kX) 
m~ = m  sin~-X (79) 

Hence the condition m.v i = m will yield the position of the pole, 

X = 2 v / N ,  (80) 

which should be valid for the A series and for the All series. 
To summarizc the previous discussion, we arrive at the following pole factors: 

sinh}(0 + 2~ri /N)  

P( O ) = sinhT"0;t - 2 ~ r i / N )  " ( S U ( N ) ) ,  (81.A) 

tanh½(0 + 2~ri/N') 

P(O) = t anh~(O-  2~ri/N') " 
/ ( S O ( N ) :  N ' =  N -  2) 

~ (Sp (N) :  N ' = 2 N + 2 ) ,  

(81 .BD) 

(81.c) 

sinh (0 + 2 ri/N) 
P(O) = sinh (0- 2 ri/N) ' (SU(2N)/Sp( N)), (81.All)  

(SU( N ) /SO(  N )) ,  (81 .AI) 

In physical terms, this means that the particles for the AI series, being symmetric 
rank-2 tensors under SU(N), interact repulsively and do not form bound states, 
while the particles for the AII series, being antisymmetric rank-2 tensors under 
SU(2N),  interact attractively and do form bound states: these transform as anti- 
symmetric tensors of arbitrary even rank under SU(2N). This suggests an unex- 
pected connection between the SU(2N)-invariant non-linear o model on the coset 
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space SU(2N)/Sp(N) and the 2N-component chiral Gross-Neveu model: the 
fundamental bosons in the former should be 2-particle bound states of the funda- 
mental fermions in the latter. It would be interesting to see whether this connection 
between the two models can be extended off-shell. 

One of the authors (M.F.) is indebted to H. de Vega, M. Karowski and A. Neveu 

for discussions. 
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