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We discuss the problem of consistent symmetric space-type constraints for principal chiral 
models with Wess-Zumino terms, and arrive at twisted string theories on group manifolds. 

One of the most remarkable recent achievements in field theory has been the 
progress in understanding the rSle of conformal invariance in two-dimensional QFT 
[1, 2], together with the discovery of large new classes of models that exhibit such an 
invariance. In fact, we suspect that many of the known integrable relativistic 
two-dimensional models can be modified in such a way that the usual phenomenon 
of dynamical  mass generation is suppressed, and conformal invariance sets in even 
at the quantum level. Consider, in particular, the class of integrable chiral models 
( =  non-linear o models), which are known to be precisely the ones defined on 
r iemannian symmetric spaces [3-5]. What we would like to find is a corresponding 
class of modified chiral models, which should also be associated with riemannian 
symmetric spaces, and such that the field equations force the light-cone components 
of the currents to depend on only one of the two light-cone coordinates: J +  = 
J + ( x + ) ,  J _  = J ( x - ) .  Then, as a result, these current components would generate 
two mutually commuting Kac-Moody algebras, which in turn would give rise to two 
mutually commuting Virasoro algebras, via the Sugawara construction [6], and thus 
establish conformal invariance. 

In the course of his work on non-abelian bosonization in two dimensions [7], 
Witten has shown how this program can be carried out for compact Lie groups 
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(type II spaces), and that two key steps have to be taken in order to arrive at the 
desired modification, namely: 

(i) change the lagrangian by adding a WZ term; 
(ii) change the definition of the currents. 

On the other hand, attempts to generalize Witten's approach to the remaining 
riemannian symmetric spaces (type I spaces) have so far failed, and statements such 
as that the third de Rham cohomology group H3(M) vanishes for spaces M of type 
I, or that spaces of type I are certainly not parallelizable (together with the 
observation that WZ terms originate from torsion tensors on parallelizable mani- 
folds [8]), have led to a widespread belief that such a generalization is impossible. 

The main point of the present note is to show that this is not true. In fact, we 
shall provide an easy and elegant way out of the apparent impasse. To describe it in 
words, we need only recall that a symmetric space can be realized, via the so-called 
Cartan immersion, as a totally geodesic submanifold of the corresponding group, 
and that this submanifold can be described by a simple constraint. The basic idea is 
then that apart from (i) and (ii) above, a third key step has to be taken to arrive at 
the desired modification, namely: 

(iii) change the constraint. 
In the following, we shall work this out in more detail, and in particular, we shall 
see that sticking to the old constraint would be inconsistent, for a variety of reasons. 

As a preparatory step, let us first discuss the most naive guess for a possible 
modification of the chiral model, which would be to require that the target manifold 
M for the chiral field q = q(x) carries, in addition to its given metric tensor g, a 
given two-form ¢, and to consider the following lagrangian: 

( 1__ ~ + , !  e~% ]3~q~O~q~ ' (1) 
L =  2)~s~/ g ~  2ha ~] 

where 77 is the standard metric tensor and e is the standard volume two-form on 
two-dimensional flat space-time*, while )~s and )~a are coupling constants (with 
)G > 0 to ensure stability). The corresponding equations of motion are: 

~l,~(O,O~q~+F~O,q~O~qV)--~--~e~g~8(d~o)¢v~O,q~O~qv=O. (2) 

* Our conventions are: 

g,v=0,1; ~/oo = +1, ~H = -1 ,  e01 = 1, X+=Xo+X1, 0+=12(00--+ 01) 

in the Minkowski case, 

p,,e= 1,2; T/ll = ~/22 = 1, E'12 = / , X±=Xl+ix2, 0+=12(01+i02) 

in the euclidean case. 
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Now if we require that the second term in the lagrangian (1) does not explicitly 
break any of the continuous global symmetries of the first term, and if M is 
riemannian symmetric, we can write M = G / H  and conclude that g and ~0 are both 
G-invariant. But this implies that ~o is closed. (It is a general theorem that on 
symmetric spaces G / H ,  all G-invariant differential forms are automatically closed: 
this generalizes the well-known fact that all bi-invariant differential forms on Lie 
groups are automatically closed, and is equally easy to prove.) Therefore, the second 
term in the lagrangian (1) has no effect on the equations of motion. Moreover, if ~o 
is exact, then it is even a pure divergence: 

~=dO~e o~,O~q O,q'= 2e~"O~(O~O~q ). (3) 

Otherwise, it can be viewed as a topological density, and so although it does not 
change the classical theory, it will have an effect on the quantum theory: this is 
precisely what happens if M is hermitian symmetric, ~0 being the KNaler two-form. 
But a short look at CP N-a models or grassmannian models within the 1/N 
expansion [9,10] reveals that, whatever the influence of the topological term may be, 
it is certainly not going to suppress dynamical mass generation, at least for large N. 
(In fact, the topological term is non-perturbative in 1/N and can only be computed 
in semi-classical instanton gas type approximations, while the dynamically gener- 
ated mass gap appears in lowest order in 1/N.) For all these reasons, eq. (1) is the 
wrong ansatz. 

Of course, it is well-known - at least for the principal chiral models ( = non-linear 
o models on group manifolds) - that the correct term to be added to the standard 
chiral lagrangian is the so-called Wess-Zumino (WZ) term which, in its two-dimen- 
sional form, was first employed by Novikov [11] and by Witten [7]. As a functional 
of the fields, the WZ term is both non-local and multivalued, but its variation is 
both local and single-valued. For the sake of completeness, let us briefly review the 
construction: this will be important for understanding the whys and hows in the 
modification of the constraint, to be introduced later. 

We begin by collecting our conventions and notation. Let G be a connected 
compact simple Lie group and 2 be its Lie algebra. By ( . , . )  we shall denote the 
standard scalar product on 2: this is by definition the unique ad-invariant negative 
definite inner product on 2 in which the long roots are normalized to have length v~-. 
Explicitly, we have for the classical groups 

(X,Y)=tr(XY) 

(X, Y) = ½tr(XY) 

for X, Y~  su(N) or sp (N) ,  

for X, Y~  so ( N ) ,  (4) 

where the trace is understood to be taken in the defining representation (which for 
the symplectic case is given by the inclusions H N = C 2u, sp(N) C su(2N)). Next, let 
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o denote an automorphism of G of order 2 and also (by abuse of notation) the 
corresponding automorphism of y of order 2: then letting H be the closed subgroup 
of G consisting of the fixed points under o defines an irreducible riemannian 
symmetric space M = G / H  of type I. (See ref. [12], p. 518, for a complete list.) In 
the following, we shall consider M as a submanifold of G, namely the connected 
1-component of the submanifold* 

M o =  { g ~ G [ o ( g ) = g  -1} (5) 

of G; this can be achieved via the Cartan immersion 

G / H  ~ M o, 

gH ~ g = o(g)g  -1 (6) 

(see, for example, ref. [12], p. 347.). 
With these preliminaries out of the way, we turn to the chiral model on G, which 

is a theory of G-valued fields on two-dimensional flat space-time; our presentation 
essentially follows that of Witten [7]. The definition of the WZ term requires, 
however, that we extend any such field configuration g = g(x) to a field configura- 
tion g = g(s,  x) which depends on an additional parameter s, 0 ~ s ~ 1, in such a 
way that it is identically 1 (or some constant) at s = 0 and equal to the original field 
configuration at s = 1: 

gls=0= 1, gls=, =g.  (7) 

This supposes, of course, that such an extension always exists, but under standard 
boundary conditions this is indeed the case. (In the euclidean case, for example, 
where the standard boundary condition on smooth maps g: R 2 ___, G is that they can 
be extended to smooth maps g: $ 2 ~  G, where S 2 is the two-dimensional unit 
sphere, the existence of extensions to smooth maps g: B3--* G, where B 3 is the 
three-dimensional unit ball, S 2 is its boundary and the variable s above is the radial 
coordinate, is guaranteed by the fact that ~r2(G ) = (0}.) Now if we denote the 
partial derivative with respect to s by a dot, the lagrangian reads 

with 

L = LCH -4- Lwz , (8) 

L c  H = _ 2 _ ~ ¢ / g r ( g - 1 0 t ,  g ' g - 1 0 r g ) ,  (9) 

(10) 

* This is a submanifold in the sense that each of its connected components is, but different connected 
components  may have different dimensions, 
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where A and n are coupling constants (with A > 0 to ensure stability). Note that the 
WZ term has here been normalized in such a way that in the euclidean case, with 
standard boundary conditions, computing Swz = fdZxLwz  for two different exten- 
sions gl and g2 of the same field configuration g will give results that differ at most 
by some integer multiple of 27tin, so n itself should be an integer in order to 
guarantee that exp( -  Swz) is single-valued. The equations of motion following from 
L read 

-~-~e ~ )l O~O.g- O.gg-X O~g) =O. (11) 

Moreover, L has a global symmetry under left translations g ~ gLg, g, ~ gLg, mad 
under right translations g--* ggR, g-"  ggR, with gL, gR independent of s and x, 
which leads to two Noether currents 

.. nA 1"1 1] , 
j5  = -Ozgg - 1 -  -~e~.jo ds [~g-a, O"gg 

nX r l  1 0 j R=+g-la g+G .40 (12) 

These can be rewritten as the sums of standard currents and pure curls: namely, 

L, 

with 

+ R , 

n~ 
j~ = - O.gg - t  - ~-~e~.O"gg -1 , 

(13) 

and 

n~ 
~ =  +g-13 , ,g_  4__~e~,,,g-l g~,g ' 

n~k 
~L = f l  d s~g-1  

G J0 

( 1 4 )  

nX ~ldsg_~" (15) 

In particular, the conservation law 

O~j)=O, 

o z j R = o ,  (16) 
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for any of these two currents is not only a consequence of the equations of motion, 
but is in fact completely equivalent to them. In addition, in view of the obvious 
identities 

- O. ( O.gg -1) + O. ( O.gg -1) + [ O.gg-1, O.gg-1] = O, 

+O~,(g-lO.g) 3.(g-'O~,g)+[g ~,g,g '3~g] O, (17) 

the conservation laws (16) lead to the curl conditions 

o,j¢ + [? ,  j¢] =o, 

o.j:-o,j  + [jL jy] =o. (18) 

This implies that the model is classically integrable [3,13,14]. 
At the quantum level, the model is still integrable, in the sense of admitting 

conserved quantum non-local charges [14,15], and one can show that it exhibits 
asymptotic freedom in the UV regime [16,17]. While these properties hold for any 
value of n, physics in the IR regime depends crucially on whether n = 0 or n ¢ 0. 
Namely, if n = 0, i.e. for the standard chiral model, the fl-function has no zeroes, 
which implies that the theory flows to strong coupling, while if n 4: 0, the fl-function 
has a non-trivial zero at X = 4~/[nl, and the theory becomes conformally invariant 
at this critical point [7]. 

The particular r61e of the critical coupling X = 47r/[n[, for n 4: 0, can be clearly 
seen even in the classical theory. Indeed, in this case, the lagrangian can be rewritten 
in the form 

n fo, d S ( g _ l ~ , 3  (g  lO+g))_O~,G~ ' L =  + 4--- ~ i f n > O ,  

" £1d, + 0% L= -4----~ if n < 0, (19) 

with 

while the equations of motion become 

0 0+g-O gg-10+g=O i f n > O ,  

0+0 g-O+gg-lO g=O i f n < O ,  (21) 
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and the currents read 

j L = 0  ' j L =  _20_gg-1; 

j L = - - 2 0 + g g  1, j L = 0 ;  

jR= +2g-lO+g, j_R=o 

j+R=o ' jR_= +2g-10 g 

Now we define a new current J~ according to 

J + =  +g-lO+g, J _ =  - -0_gg -1 if n > 0 ,  

J + =  -O+gg -1, J _ =  +g-lO_g if n <0 .  

137 

if n > 0 ,  

if n < 0 .  (22) 

(23) 

This will bring the equations of motion into the form 

0_J+ = 0, O + J  = 0, (24) 

with the desired general solution: J+=J+(x+), J =J_(x ). Note finally that 
these equations can be solved in closed form for the field g as well, the general 
solution being 

g(x)=g (x-)g+(x +)-1 if n > 0 ,  

g(x)=g+(x+)g_(x-) -1 if n < 0 ,  (25) 

and that the lagrangian possesses a huge additional symmetry, of a partly local 
nature, namely 

g(x) --* gL(X-)g(x)gR(X +) -1, 

~(S,X)~gL(X-)g,(S,X)gR(X+) -1 if n > 0 ,  

g(x) ~ gL(X+)g(x)gR(X -) -t,  

g(S,X)--'gL(X+)g(S,X)gR(X-) -1 if n < 0 .  (26) 

This symmetry, which acts transitively on the space of solutions (25), is the origin of 
the two mutually commuting Kac-Moody current algebras that appear in the model. 

Now we consider what kind of constraint, in terms of the automorphism o, can be 
imposed on the G-valued fields of the model. The standard choice is to assume that 
the field configurations g take values in the submanifold M, of G, as defined by (5), 
i.e. that 

o(g(x) )  = g(x) -1 . (27) 
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An even stronger requirement would be that the extended field configurations ~, 

take values in the submanifold M~ of G as well, i.e. that 

o(g(s,x)) = g(s,x) (28) 

As we shall see now, both constraints are unacceptable as soon as n =g 0. 
To  begin with, we note that there will in general be a topological obstruction to 

the existence of an M,-valued extension g of an Mo-valued field configuration g, 
even under standard boundary conditions. (In the euclidean case, for example, 
where the standard boundary condition on smooth maps g: R 2 ~ Mo is that they 
can be extended to smooth maps g: S 2 ---, Mo, the existence of extensions to smooth 
maps  ~,: B 3 --~ Mo may fail due to the fact that, in general, 7rz(M,) 4: {0}.) But even 
when we restrict to null homotopic field configurations, we are immediately faced 

with a much more serious problem, namely the fact that (28) forces the WZ term to 
vanish identically: 

o ( g - * o A ) = - a A g - *  

= g-l~,  [g-10,ug, g-10eg])  = --(~-1~, [~x-10p, g,~x-10eg]).  

This forces us to gwe up the constraint (28), but we could still try to maintain at 
least the constraint (27). In the case where M = G / H  is hermitian symmetric, this 

leads to an explicit identification of the WZ term with the topological term, at 
0 = rr; see ref. [18] for special cases. (Briefly, one can represent any field configura- 
tion g = g(x) satisfying (27) by a gauge-dependent G-valued field ~ = ~(x),  at least 
locally, according to 

g ( x )  = 

and use the generator J ~ y  of the invariant complex structure, which satisfies 
a d ( J )  = 0 on z and a d ( J )  2 = - 1 on ~n, to define an explicit extension g = g(s, x), 
at least locally, according to [4] 

g( s, x) = exp( rrJ ) g( x )exp(-  sqrJ ) g( x ) -1 

As it turns out, the s-integration in (10) can then be performed explicitly, and the 
result is 

where 

Lwz= 1.(J, 

~- 10 ~ F~, = O,A , -  O,A, + [ A,,  A,] = - [ g  ,g, g-lD.g] 

A~= ( g - l O t L g ) . ,  g-iD, ug=  (g  lO/~g)~ n, 
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as in refs. [3-5].) However, and this is our strongest argument, (27) is compatible 
with the equations of motion only when n = 0. Indeed, for n = 0, the equations of 
motion read 

~l~uO~(g-lOvg)=O or ~'llZVO~(Ovgg-1)=O 

or 

and imply that o(g)  and g-X satisfy the same equations of motion, while for n ~ O, 
the equations of motion (21), or (24) with (23), imply that o(g) and g 1 satisfy 
different equations of motion, namely: 

3_(o(g)-Xo+o(g))=o(O_(g i 0 + g ) ) = 0  

O+(gO_g-1)=O+(--O gg-1)  = 0 if n > 0 ,  

0 + ( o ( g ) - x 0 _ o ( g ) ) = o ( a + ( g  -~Og))  = 0  

O_(gO+g-1)=O_(-O+gg-1)=O if n < 0 .  

Of course, one may argue that this observation is irrelevant, since the correct 
method for incorporating (27) as an additional constraint into the theory is not to 
check its consistency with the given equations of motion but rather to modify the 
action, and hence also the equations of motion, by introducing an additional 
Lagrange multiplier term. (This can be done in such a way that in the path integral, 
the additional term - at least in a certain limit - leads to an additional 8-function 
factor for the submanifold Mo of G; see ref. [18] for special cases.) It is easy to see, 
however, that such a Lagrange multiplier term violates the symmetry (26) which, as 
we recall, is the origin of the very special algebraic structure of the model, and in 
particular of its conformal invariance even at the quantum level. 

In view of this situation, we propose to modify the constraints. Two possibilities 
which come to mind result from 

(i) inserting an additional parity transformation P: 
(ii) replacing the group inversion by the space-time inversion PT: 

o(g( t, y)) = g( t, _ y ) - l ,  (29i) 

O(g(S,  t, y ) )  = g(S, t, - - y ) - 1 ,  (30i) 

a(g(t, y)) = g ( - t ,  - y ) ,  (29ii) 

o(g(s, t, y)) = g(s, - t, - y ) .  (30ii) 
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The problems encountered previously then disappear. Namely, (30) does not force 
the WZ term to vanish, and (29) is compatible with the equations of motion, as can 
be seen most easily by noting that their general solution (25) satisfies (29) if and 
only if 

o(g+(x+)) =g_(x+)go,  o ( g _ ( x - ) )  =g+(x - )go ,  (31i) 

o ( g + ( x + ) )  = g+(-x+)go ,  o (g_ (x  )) = g _ ( - x - ) g o ,  (31ii) 

where go ~ G is a constant which, for consistency, must satisfy 

o(g0) = g o  I " (32) 

However, both of these constraints give rise to new difficulties. Constraint (i) 
couples left and right movers and is therefore not capable of generating two 
mutually commuting Virasoro algebras: it destroys conformal invariance. Constraint 
(ii) couples fields at (large) positive times and fields at (large) negative times: it 
destroys causality. 

To find a way out of this impasse, let us briefly discuss the impact of boundary 
conditions in the principal chiral model. For the sake of definiteness, we work in 
Minkowski space. The standard boundary condition is 

g(t,  - ~ )  =g( t ,  + ~ ) ,  (33) 

~(s, t, - ~ )  = ~(s, t, + oz). (34) 

This can be viewed as the infinite volume limit of the same model defined in a finite 
box of length L, with standard boundary or periodicity condition 

g(t, y) = g(t,  y + nL) ,  n ~ Z,  (35) 

~,(s, t, y) = ~,(s, t, y + nL) ,  n c 7/. (36) 

We now use the automorphism o to change the boundary conditions. The twisted 
boundary condition is 

o(g( t ,  - ~ ) )  = g(t,  + oo), (37) 

t ,  - = t ,  + ( 3 8 )  

This can again be viewed as the infinite volume limit of the same model defined in a 
finite box of length L, with twisted boundary or periodicity condition 

o " ( g ( t , y ) ) = g ( t , y + n L ) ,  n ~ Z ,  (39) 

o"(g(s ,  t, y)) = g(s, t, y + nL),  n ~ 71. ( 4 0 )  

Again, these conditions do not force the WZ term to vanish, and they are 



M. Forger, P. Zizzi / Twisted chiral models 141 

compatible with the equations of motion, as can be seen most easily by noting that 
their general solution (25) satisfies eqs. (37) resp. (39) if and only if 

o(g+(-oo))=g+(+oO)go, o(g_(+~))=g (-o¢)g o, (41) 
resp. 

o'(g+(x+))--g+(x++nL)g~, o'(g_(x-))=g_(x--nL)g~, n~Z, (42) 

where go ~ G is a constant which, for consistency, must satisfy (32). Moreover, 
these conditions do not couple left and right movers, or fields at different times. For 
the current Jr, as defined in (23), they lead to 

o(J+(-m))=J+(+oo), o(J (+m))=J_(-m),  (43) 

resp. 

o"(J+(x+))=J+(x++nL), o'(J (x ))=J_(x--nL),  n~7l. (44) 

The twisted boundary conditions (37), (38) and (39), (40) that we have introduced 
can be viewed as substitutes for the standard constraint (27) in the standard 
principal chiral model (without the WZ term). We avoid calling them "constraints" 
since they do not impose restrictions on the values of the fields at each space-time 
point. In particular, we must abandon the concept of symmetric-space-valued fields: 
the only remnant of the symmetric space structure is the explicit appearance of the 
automorphism o. 

For the model in a finite box of length L, with twisted boundary conditions (39), 
(40), a further generalization is possible because we can now assume the automor- 
phism o to have arbitrary finite order N. (Of course, it is only for N = 2 that such 
automorphisms are related to symmetric spaces.) Noting that for the current Jr' the 
twisted periodicity conditions (44), with period L, imply standard periodicity 
conditions 

J+(x+)=J+(x++nNL), J (x-)=J_(x -nNL), nEZ, (45) 

with period NL, and performing Fourier series expansions 

J+(x+)  = ~ J+.rexp(+Zcrirx+/L), 
r ~ Z / N  

J_(x ) =  ~ J ,rexp(-27rirx-/L), (46) 
r ~ Z / N  

1 (NLd 
J+ ' r=  NLJo x+ J+(x+)exp(-Z~rirx+/L)' 

1 fNLd _ J-'~= NL Jo x J_(x-)exp(+2~rirx-/L) (47) 
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we arrive at generators J+, r in c ,  for r ~ Z / N ,  which, when expanded in terms of 
an orthonormal basis of generators T, in yc with (totally antisymmetric) structure 
constants if ~bc, satisfy Poisson bracket commutation relations 

[ J ] ,  Jb+,s] if~bJ C [ J~_ Jb_,s ] = iU'bj c r ,  P B  = c + , r + s  ~ , r ~  P B  Jc , r+s ,  

[J~' Jb_s ] 0 (48) +,r, PB = ' 

plus the constraint 

o(J+,~) = exp(2~rir)J+,r, a ( J _  ~) = e x p ( 2 ~ r i r ) J r .  (49) 

This means that the Fourier coefficients of the currents form two mutually commut- 
ing twisted loop algebras which, upon quantization, will turn into two mutually 
commuting twisted Kac-Moody algebras. 

To conclude, we propose viewing the principal chiral model with the WZ term, 
defined in a box of finite length, as a string theory on the corresponding group 
manifold: the boundary conditions then decide whether we are dealing with an 
untwisted or with a twisted string theory. In particular, the untwisted version, which 
has recently been studied by Gepner and Witten [19], is the group manifold version 
of a string theory on a torus. In the same way, the twisted version that we propose 
here is the group manifold version of a string theory on an orbifold [20]. In both 
bases, one divides by a finite abelian group, which in our situation is the group Z N 
of automorphisms of G formed by the powers of o or, more generally, when G is 
semi-simple but not simple, a direct product of such groups. 

What remains to be checked, then, is whether all these chiral models share the 
two basic invariance principles of string theory. 

The first such principle is conformal invariance, which is here guaranteed to hold 
by what has become known in the physical literature as the Sugawara construction. 
More specifically, this construction is known to work in the untwisted case [6] and, 
for certain automorphisms o, also in the twisted case [21]: these special automor- 
phisms are the so-called standard ones, i.e. the ones induced by automorphisms of 
Dynkin diagrams, cf. ref. [12], p. 505. It is however important to include inner 
automorphisms, since their presence has a strong influence on the mass spectrum 
for string states [22,23]. This can be done, and the general result can in fact be 
found in the mathematical literature: it was proved several years ago by Kac and 
Peterson, cf. ref. [24], pp. 173-179. 

The second important principle is modular invariance, which presumably requires 
the appearance of whole multiplets of twisted sectors, with certain restrictions on 
the nature of the automorphisms and their multiplicities. We have however not 
analyzed this problem in more detail. 

We would like to thank L. Alvarez-Gaumr, A. Bais, M. Duff and T. Jayraman for 
discussions, D. Altschi~ler for pointing out the possible relevence of ref. [24], and M. 
Duff  for drawing our attention to ref. [25]. 
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Note added 

After completion of our work, we became aware of ref. [25], where a similar 
picture is advocated. 
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