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We discuss the non-local charge for the grassmannian non-linear sigma models with and 
without fermion interactions, both in the classical and in the quantized theory. As suspected, 
conservation of the quantum non-local charge for the "'pure" model is spoiled by anomalies, while 
it is restored when minimally or supersymmetrically coupled fermions are added. In the last two 
cases, we draw conclusions on the factorizing S-matrix. 

1. Introduction 

Genera l ized  non- l inea r  sigma models,  or chiral models,  defined on r i emann ian  

symmetr ic  spaces M -- G / H  [ 1 ], represent an impor tant  class of ( 1 + l ) -d imens iona l  

field theories. One of the basic reasons for their ou ts tanding  r61e is that due to their 

many  analogies  with (3 + l ) -d imens iona i  non-abe l i an  gauge theories [2], they have 

been very useful in developing and  testing general  ideas about  the latter [3, 4]. (As 

examples of c o m m o n  properties of the two types of models,  we ment ion ,  at the 

classical level, their geometrical  nature,  the non-tr ivial  topological  structure of  the 

space of field configurat ions ( ins tantons)  and their conformal  invar iance [2], and 

at the q u a n t u m  level, the phenomena  of dynamica l  mass genera t ion  and of 

asymptot ic  freedom [5].) In addi t ion,  the "pu re"  general ized non- l inea r  sigma 

models have classically an infinite n u m b e r  of non- local  conservat ion laws [6]. As 

will be shown elsewhere [7] in full generality,  this s tatement  remains  true when 
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fermions belonging to a given representation of H are coupled to the bosons; this 
includes the cases of minimal coupling and supersymmetric coupling in the CP "-~ 
model [8]. 

The importance of the non-local conservation laws in the quantum theory lies in 
the fact that if they survive quantization, then particle production is suppressed and 

the S-matrix is factorizable [9]; it can then be calculated exactly [10]. In general, 
however, quantum fluctuations will produce anomalies in the non-local conservation 

laws [11, 12], and the above conclusions about particle production and the S-matrix 

cannot be drawn. 

For the "pure"  generalized non-linear sigma models, there is a simple criterion 

for the absence or (possible) presence of anomalies in the first quantum non-local 

charge (whose conservation is already sufficient for the aforementioned conclusions 
on particle production and the S-matrix) [13]: namely, there is no anomaly if the 
stability group H is simple. Otherwise, anomalies may be generated by the com- 

ponents of the gauge field strengths belonging to the various simple components of 
the stability algebra ~. 

The picture changes when fermions are coupled to the bosons. As will be shown 

elsewhere [7], the axial anomalies coming from the fermionic sector have the same 
group-theoretical structure as the ones coming from the bosonic sector, and no case 
is known where the "pure" model has no anomalies, but the model with fermions 

does. The really interesting phenomenon, however, is the fact that there are cases 

where the two types of anomalies exactly cancel each other, leaving us with a 

conserved quantum non-local charge, and hence with a factorizable S-matrix. This 
was first shown for the CP n ~ model with minimally or supersymmetrically coupled 
fermions [8, 12]. 

The main aim of this paper is to extend this result on the mutual cancellation of 
anomalies to non-linear sigma models defined on complex Grassmann manifolds: 

G,~(p,q)=U(n)/U(p)×U(q)=SU(n)/S(U(p)xU(q)) (n=p+q) (1.1) 

or on real Grassmann manifolds 

GR(p,q)=SO(n)/SO(p)xSO(q) (n=p+q), (1.2) 

with minimally or supersymmetrically coupled fermions, thus showing that the 
cancellation phenomenon is independent of the question whether the gauge group 
is abelian or non-abelian. Therefore, both the minimal model and the supersymmetric 
model have a conserved quantum non-local charge, and as in the case p = 1 [8, 9], 

it can be shown that this forces their S-matrices to factorize into two-body amplitudes. 
It also imposes severe constraints on these amplitudes, but in contrast to the CP" t 
case, we have not been able to find a completely explicit solution. 

Throughout the paper, we shall use the following conventions: Latin indices 
a, b, c, d . . . .  (color indices) run from 1 to p (we assume p ~  q) and refer to the local 
internal symmetry under U(p),  while Latin indices i,j, k, l . . . .  (flavor indices) run 
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from 1 to n and refer to the global internal symmetry under U(n) (upper  and lower 

indices are not distinguished). Greek indices K, h, #, ~,, . . . ,  on the other hand, refer 
to two-dimensional space-time, and the corresponding conventions (including those 
on y-matrices) are summarized in an appendix. Finally, all classical spinor fields 
are understood to be anticommuting c-numbers. 

2. The  c l a s s i c a l  mode l  

In this section, we briefly discuss the formulation and the basic integrability 
properties of  the classical non-linear sigma models on complex Grassmann manifolds 
(1.1). (The real case (1.2) is entirely analogous, the only difference being that all 
fields are real instead of complex - which for spinor fields means Majorana instead 
of Dirac spinors.) 

We begin with the "pure"  Grassmann model, which is written in terms of a 
complex (n ×p)-mat r ix  field z = z ( x )  subject to the constraint 

z ' z  = lp i.e. ~ z ,  b = 6 ~b . (2.1) 

In this representation, this model has a local U(p)  invariance, where gauge transfor- 
mations act according to 

z ~ zh  i.e. z~, ~ hb~zh, , (2.2) 

with unitary ( p x p ) - m a t r i x  fields h = h (x ) .  This enforces the use of  covariant 
derivatives: 

D~,z = O~,z - zA~, 

D~,D, ,z  = O~,D,,z - D,,zA~, 

etc., with the gauge potential 

A~, = z÷ ~ , z  

and the gauge field 

a a b a  b i.e. D, , z~  = O,,z, - ,%, z ,  , 

i.e. D~,D,,z'~ = ~ D , , z i  --b~ ~ b - ,%, u~z~ , (2 .3 )  

ab - a  b i.e. A~, = z i  O,z i  , (2.4) 

F,,. = 3~,A~ - O~A~. + [A~,, A~] = D ~ , z * D . z  - D ~ z + D ~ , z ,  

i.e. (2 .5 )  

F ~  =O~,A~ h - . .~ .r~Aat '+Aa"A - . . ~ ,  . . ~  - --~A~ca cb--~ - D~,z,~ D~z~b _ D~zia D~zib , 

both of which are antiherrnitian (p xp) -mat r ix  fields. The lagrangian reads 

L = g~'" tr ( D , z + D , z )  = g ~ " D ~ , z ~ D , z ~ .  (2.6) 

This lagrangian has a global U(n) invariance, where global symmetry transforma- 
tions act according to 

z ~ g, ,z i.e. z~ --, ( g o ) o Z , ,  (2.7) 

with unitary (n x n)-matrices go. Consequently, the model possesses a conserved 



148 E. Abdal la  et al. / Non-l inear ~r models 

Noether current, which is the antihermitian (n × n)-matrix field given by 

j~, = zD~,z + - Duzz + 

The equation of motion is 

g~'"( D~,D~z + zD,  z* D,,z) = 0 

i.e. (j~,),j = zTD~,z~ - D~,z'~2~. (2.8) 

i.e. g tu,~u,.z~ z, ~ , z j  L~,Zj ) = 0. (2.9) 

It implies (and is in fact equivalent to) conservation of the current: 

g~'~i~uj~ = 0. (2.10) 

Moreover, we have the crucial identity 

?~,j,, - O,j~, + 2[j~,, j~] = 0. (2.11) 

From (2.10) and (2.11), we can check [6] that the equation of motion implies (and 
is in fact equivalent to) the integrability, for any value of the real parameter  A, of  
the following system of first-order differential equations: 

/~,U (A)= U~A){(I - c o s h  Z) j ,  - s i n h  (A)e~,,g"~jK}, (2.12) 

where U (A~ is a U(n)-valued field which serves as a generating functional for the 

non-local charges. In particular, the first non-local charge Q~), whose conservation 
(i.e. time independence) can also be verified directly from (2.10) and (2.11), is 

O")( t )= f dy, dy20(y,-y2)[jo(t ,  yt),jo(t, y 2 ) ] - I  dy j , ( t , y ) .  (2.13) 

Turning to the Grassmann model with fermions, we shall distinguish two cases: 
the minimal model and the supersymmetric model. It can be shown that both of  

these have a common group-theoretical origin, the former being derived from the 
(dual of  the) fundamental  representation of U(n) on C" and the latter from the 
adjoint representation of U(n)  on u(n);  see [7] for more details. Here, we shall deal 
with them simultaneously and shall simply indicate the model to which a given 
formula refers by an index M (for "minimal")  or S (for "supersymmetric") .  For 
more information on the supersymmetric case, we refer the reader to the literature, 

e.g. [14, 15]. 
The minimal and supersymmetric models involve, apart from the (n ×p)-mat r ix  

scalar field z = (zT), a p-vector Dirac spinor field tO = (tO~) and an (n xp) -mat r ix  
Dirac spinor field tO = (toT) respectively. In the supersymmetric case, one has, in 
addition, the constraint 

z+to = 0  i.e. ~7~0,b = 0. (2.14s) 

All fields are subject to local U(p)  transformations, which act according to (2.2) and 

4J~ toh i.e. 4J ~ ~ hb~tO b . (2.15~) 

t O ~ h  i.e. tO," --, h~"tk~. (2.15s) 
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The corresponding  covariant  derivatives are 

Du@ = ~,,@ - @A,, i.e. 

D.@ = ~,@ - @A~, i.e.. 

etc. The lagrangians read* 

with 

a a _ A b a # b b  D.@ =a~,@ _ . . .  , 

a a A b a d t b  

+ i . - ~  L =  g~'~ tr (D~,z D,,Z)+~I@i[~@+~LvM 
i~1,  a a I • I.t v ~ a  ~ a = g  D~,ziD~zi + ~ g  @ y~,D~@ +ILFM , 

LFM = (~a@a)(t~t'@b) -- (~a'ys@a)(~b3,,5@ b ) = --g~'~(q~oy~,@b)(~hyAb~), 

and 

p .v  + 
L = g  t r ( D . z  D , z ) + ½ i ~ @ + ~ L F s  

t z l ,  a a I • i x v  - a  ~ a = g  D~,z, D,z~ +~lg @i y,,D,@i +~LFs,  

with 
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(2.16M) 

(2.16S) 

(2.17aM) 

(2.17bM) 

(2.17as) 

= (&."@,b)( @ 7 ) -  (,L" @,")( @,") - 

= _g~,~{ (~,%,@~,)(q~y~@b)+ ( ~  y~,@~)(q~by~@~) }. (2.17bs) 

Both lagrangians are invariant under  global U(n)  t ransformations,  which act accord- 

ing to (2.7) and 

@-,@ i.e. @~-* @~. (2.18M) 

@ -" go@ i.e. @~' - '  (go)0@~ • (2.18s) 

Consequent ly ,  the model  possesses a conserved Noether  current,  which is the 
antihermitian (n x n)-matr ix  field 

j~, = j ,  + j M ,  (2.19) 

given by (2.8) and the matter field contr ibution 

. M  . a T " a  - - h ~ , b .  
(J~,)o = - z z ,  tg %,~ ~ j ,  (2.20M) 

( jy) , j  . -  . . . .  -o = l@j 3',,@, - lz, @k ~-b y~,@k Z i . (2.20S) 

The equat ions o f  mot ion split into a bosonic  equation:  

~ v  a b b a g (D~,D~z, + = (2.21M) z, D~,z i D,,zj + iD~,zbt~l'y~@ ") O, 

ta . v  a b b a + • - - b  b a • b - - b  a g (DuD~z, + z, D,,zj D~zj z@j 2,~,@, D~zj + = O, zDuzi @j y,,@j ) (2.21s) 

" Here, we use one of the Fierz identities for Dirac spinors (based on anticommuting c-numbers); see 
the appendix. 
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and a fermionic  equat ion:  

t~b"  = - ½ig~'" ( ~b ~'y~,~ " )y,.~h : 

~ . ~ l ~  to - -  h - b  r X - - o  I • - - b  t/ h - - b  a b .t.t., - - h  t] b z, zi r~'~,, _,t{(6j ~,  )6 ,  - ( ~ ' , ~ ' ~ , ) 3 ' ~ , - g  ( 
I • p I, - h  h a - - h  a h = - ~ z g  { (~ ,  v .O,  )v,,O, +(qJ, v.~' ,  )v,,~, }.  

As a consequence ,  the two pieces Ju and j ~  of  the current  J,, satisfy 

g~'"(iL, j , . -  [ j , , j y ] )  = O, 

g'"( i~uj~ '+ [Ju, J~] )  = O, 

as well as 

(2.22M) 

(2.22s) 

(2.23) 

(2.24) 

- . M  * M • . M  • . M  jr_ . M  . M  ~,d,  - ,  ,4~ +[ l , , ,J; ,  ] - D , , , J ; , ]  D . , J ,  ] = 0  . (2.25) 

(In fact, a rather lengthy calculation shows that for both models, (2.23) follows 
from the bosonic equation (2.21), while (2.24) and (2.25) follow from the fermionic 
equation (2.22); we refer the reader to [7] for the proof in a more general situation.) 
Of course, (2.23) and (2.24) imply conservation of the current: 

g~'"3,J,. = 0 . (2.26) 

Moreover ,  combin ing  (2.11) and (2.25), we get 

+j , ,  ) -a , . (J~ , -r j~ , )  2[J~, ,J , . ]=0 (2.27) 3,,(J,. .M . .M~+ . 

From (2.23)-(2.27),  we can check [16] that  the equat ions  of  mot ion  imply the 
integrabili ty,  for any value of  the real pa rame te r  A, of  the fol lowing system of  
first-order dit ierential  equat ions:  

IGU '~ '= U'* '{ ( l  - c o s h  A )j~, - s i n h  (A)G, ,g '"J ,  

I vK - M  + ~( 1 - cosh (2A))j~l _ .~ sinh (2A)G,,g .I, } (2.28) 

where U ~A~ is a U( n )-valued tield which serves as a generat ing functional  for the 

non-local  charges.  In part icular ,  the first non-local  charge Q ' " ,  whose conservat ion 
(i.e. t ime independence)  can also be verified directly f rom (2.26) and (2.27), is 

O"~(t) -= f dy ,  d . v 2 0 ( y , - y 2 ) [ J , , ( t , y , ) , J o ( t ,  y 2 ) ] - I  d y ( J , ( t , y ) + j ~ ( t , y ) ) .  (2.29) 

To conclude  this section,  we want to clarify why the model  with the lagrangian 

(2.17M) is called " 'minimal" .  To this end,  we consider  the minimal  lagrangian 

L = g'" tr ( / ) , , z ' / ) , . z )  + ~ i ~ D 6  

i .x t ,  ~ tz ~ (1 [ "  l . t l . - ( . l  ~ ¢i = g D,~z, D,.z, + ~lg tO y , ,D ,~  , (2.30M) 
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where the covariant derivatives 

/)~,z = 0 .z  - zA.  i.e. 

L).~, = a.~b - ~0.4. i.e. 

° a a T b a  b 
D . z i  = O~,zi - A u z i  , 

" a a ~ b a t [ i b  D , . 6  = a , d ,  - - . .  , 
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refer to a new, a priori independent gauge potential ,4.. (This procedure is motivated 
by the quantum theory, where - at least in the functional integral approach and 
within the l / n  expansion (see sect. 3) - the gauge potential acquires the status of  
an independent field.) Now the lagrangian (2.30m) contains no derivatives of  "4u, 
so that variation with respect to ,4,, leads to an algebraic equation of motion: 

. 4 y  - o h  , .=o  . b  = , %  -~z~ y,~, , (2.32m) 

and with this equation, (2.30m) reduces to (2.17m). 
Of  course, the supersymmetric model can be handled in the same spirit. However, 

part of  the above motivation is lost because we have to start from a minimal 
lagrangian with an additional chiral Gross-Neveu- type  interaction term, namely 

L = gU,' tr (/guz*/),,z) + ~ i ~ b  + ]£vs  

= g " " D . z ~ , l ) , , z ~  ' + ~ i g " ' ~ , Y u ~ ) , , g  '", + ~£FS, (2.30as) 

with 

/•FS 
where as before, the covariant derivatives 

[ ) , z  -- O . z  - z / t ,  i.e. 

t),~0 =,~,~0- M .  i.e. 

" a a "2ha  h 
D ~ z  i = c3~z i - . . ' t ~  z ,  , 

D . ~ , , - "  ~ ~ ° , 1 ,  ~ - - t~ i x~J i  "=p. "~'i , (2.31s) 

refer to a new, a priori independent gauge potential .,~.. Once again, fi,. satisfies 
an algebraic equation of motion: 

~ a b  a b  I . "Ta - -  b A~, = A~, - 21~i y.~u, , (2.32s) 

and with this equation, (2.30s) reduces to (2.17s). 
In terms of the covariant der ivat ives/) , ,  the Noether current J~, (cf. (2.19), (2.20)) 

takes the simple form 

( J . ) o  = z~, E)~,z~ - E ) . z : ~ ]  ; (2.33M) 

( J~,)o = z~, lgu z ]  - L )~z7  5~ + iq~  y,~b ~ . (2.33s) 

In sect. 3, we shall find it convenient to slightly modify the minimal model by 
allowing the fermionic sector to come in n identical copies. (Otherwise, we would 
not be able to set up a consistent l /n-expansion.)  We leave it to the reader as an 
exercise to adapt  the preceding analysis to this situation. 

(2.30bs) 

(2.31m) 
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3. The quantum model and the l /n  expansion 

The 1In expansion for the Go(p,  n - p )  model is, in many respects, a straightfor- 
ward generalization of the 1/n expansion for the CP "-~ model, which has been 
formulated in some detail in [14, 17]; see also ref. [18]. For simplicity, we work in 
euclidean space; the final results can then be transferred to Minkowski space by 
the standard Wick rotation techniques. Throughout,  the action S = ~ d2x L (as given 
in sect. 2) and the fields z,L~0, q~ are rescaled according to S ~ ( n / 2 f ) S ,  z ~  
(n/2f)~/2z, ~.~(n/2f)~/2L tO~(n/2j ' ) I /~,  d/~(n/2f) l /2~.  (Note that the minimal 

model and the supersymmetric model now both involve an (n ×p) -mat r ix  scalar 
field z -- (z, ~) and an (n xp) -mat r ix  Dirac spinor field q, = (4J7), and differ only in 
the structure of the fermionic self-interaction term L~.) 

3.1. THE PURE MODEL 

For the pure Grassmann model, the generating functional of  the euclidean Green 
functions is 

Z(J ,  J )  = N - i f  ~.~.~;z ..... Ilb ~5( ~'~'(x)zb'(x)-nfab'~2f ] 

[ I . . . .  ,] xexp  - S +  d x { J i z , + z ,  Ji , (3.1) 

with 

S = d x(O,zi +--"b-b . . . .  ,%, z, )t%z, - A ,  zi) 

= f  d2x{O,~.'i'~?,z~,+~fA~bA~"}, (3.2) 

A~ ~ = f eT"~,z ~, (3.3) 

(compare (2.3), (2.4), (2.6)). The functional integral in (3.1) is rewritten by introduc- 
ing hermitian (p  xp) -ma t r ix  fields a and A which act as Lagrange multipliers for 
the (rescaled) constraint (2.1) and for the quartic A~ interaction terms, respectively: 

I1 ~(eT(x):~,(x) -~,5"b~ .... ~ 2f  / 

exp 2f  " " ' "  l J  

-- dA exp d x ~ - ~ A ~ ,  A~, * - f - - A ,  , ,  ~ j  . (3.4) 
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(Here, - means equality up to normalization constants.) Indeed, inserting (3.4) 
into (3.1), we see that the functional integral over ~, z becomes gaussian and can 
be carried out. The result is 

Z(J ,  J )  = N - '  I 

with 

and 

5~a 50~ exp [ -Sen+  S . . . . . .  ] (3.5) 

S . . . . . .  = .7. A~ 'J .  (3.7) 

Here, A a denotes the ( p × p)-  matrix differential operator given by 

i 
a a z  = D *  D,,z  + m2z  - ~nnZa,  (3.8) 

with D* the adjoint of  D,, (D* = - D , ,  under appropriate  boundary conditions), 
m > 0 an arbitrary - and so far irrelevant - constant (obtained from a redefinition 
of  the normalization constant N in (3.1)), and 

i 
D~,z = d~,z +--~n Z,~, . (3.9) 

Thus D,~ is the covariant derivative with respect to a new gauge potential, namely 
- i n  ~/2~, (compare (2.3)). Its appearance reflects a new local U ( p )  invariance of 
the effective theory, with gauge transformations acting according to 

z ~ z h ,  J ~ J h ,  

ot ~ h - l a h ,  A~, "~, h-tA~,h - ix/nn h-tO~,h. (3.10) 

The next step is to expand the logarithm in (3.6), which leads to an expansion 
of the effective action in powers of  1/~/n: 

Set~ = ~. n~-~ /2S t~  + c o n s t .  (3.11) 
v=l  

The first nontrivial term is computed to be* 

S,,,_itr,~(O)(+fd2p__ _ _ 1  ) - - 4 7 r 2 p 2 + m  ~ . (3.12) 

Regularizing the logarithmically divergent integral in (3.12) with, e.g., a Pauli-Villars 
cutoff A, we see that in order to cancel the infinite contribution to S ~), the bare 

* Our  conven t ion  on Four ier  t r ans format ions ,  deno ted  by ", is the same as in refs. [14, 17]. 

Sen = n tr In (An) 2f  J d2x tr a (3.6) 
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coupling f = f ( A )  must depend on the cutoff A according to 

2w A-" 2~" 
f(,4-----) = In - - - 5 + - - .  (3.13) 

p. f~,,(/x) 

Moreover, in order to cancel the finite contribution as well, and hence to satisfy 
the saddle-point condition S t " = 0 ,  the renormalized coupling J~, .=f~¢.(~) must 
depend on the normalization point p. according to 

2 2~- iz 
In (3.14) 

f~, .(#) m TM 

As in the CP "-~ case, the model therefore exhibits asymptotic freedom ( f (A ) - - ,O  
as A --, ~ )  and dynamical mass generation (all coupling constants can be eliminated 
in favor of  the, now physical, mass parameter  m). The second nontrivial term is 
precisely the term quadratic in the fields a, a and can be written 

I S~2~=~ d2xd2y{o t .b (x )F~ , ,~ (x_y )ab~(y )+  A ~ b ( x ) l . ~ ( x  b. - y ) ) t ,  (y)},  (3.15) 

where 

[ ' ' ) ( p ) = A ( p ) ,  / ~ ] ( p )  = ( ~ , ,  P~p--SP2~)F(p), 

1 1 ln~ /p2+4m2+x/p  2 
A(P) = 2"--- ~ ~ p 2 ( p 2 + a m 2 ) - ~ +  ~---~m 2 _ x/-~ ' 

(3.16) 

1 
F ( p )  = ( p2 + 4m2)A(  p ) - - - .  (3.17) 

"IT 

For later use, we note the behavior of the functions A and F at small momenta  and 
at large momenta  (to lowest order): 

1 p2 
A(P)~4~rm2,1 F ( P ) ~ 1 2 ~  " -  m2 for p2 .~m 2" (3.18) 

A 1 p2 1 p2 
(p)  = 2-'-~pZ I n - -  F ( p )  ~ ~--~ In for m 2 . rn2, ~ p ~ -  (3.19) 

We also want to mention that the calculation of I "~) will, in general, lead to the -- /.~1) 

result given in (3.16) only up to a term of the form a6, , ,  where a is a constant 
whose concrete value depends on the specific scheme employed in the regularization 
of the logarithmically divergent integrals appearing in this calculation. Later, 
however, we shall use a gauge in which the gauge field propagator  is transverse, 
and this will force a = 0. 
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So far, we have been able to manage  without  having to fix the gauge,  but this is 
o f  course a necessary prerequisi te  for the derivat ion of  Feynman  rules. As long as 
the gauge condi t ion is linear, the gauge f ix ing+ F a d d e e v - P o p o v  procedure  amounts  
to a redefinit ion of  the generat ing functional  Z by introducing a (p  x p ) -ma t r ix  field 
~" *, say, for  the Faddeev -  Popov ghosts and inserting a factor  ~ ~ "  exp [ - S~r-  SFp] 
on the r.h.s, o f  (3.5) ([19], pp. 579-582). In addit ion,  we want  to mainta in  eucl idean 
covariance.  Both requirements  are met by choosing a covariant  l inear gauge condit ion 
a~A,, =0 ,  where a[, is any two-vector  o f  pseudo-different ial  opera tors ;  more  
explicitly, we assume a~ to be given by 

I" d-'p ~,p .... 
(a ' . f ) ( x )  J 4rr2 e zp~,L(p).f(p) (3.20) 

with L an even funct ion of  m o m e n t u m  which is left unspecif ied for the moment .  
The gauge-fixing and F a d d e e v - P o p o v  contr ibut ions  to the total act ion are then 

- ~ I d2x a '  a"h,~ ' ,~b, S (3.21 ) gf--2~ / "u'-~, "'~'" ~ , 

~/ being some  non-negat ive  constant,  and 

SFp = ~" . ~  = I d2x ~ohMah"aC"~" (3.22) 

M denotes  the F a d d e e v - P o p o v  opera tor  in this gauge,  which is a (p2 xp2)_matr ix  

differential opera to r  given by 

i 
.¢¢~ = -,~'~D~, D~ = a,~ + ~-~[A~, ~]. (3.23) 

Moreover ,  the gauge-fixing t e r n  (3.21) can be combined  with S ~2~ (cf. (3.1 i ), (3.15)) 
and be absorbed  into a redefinition of  F ~ ,  which becomes  / "t~ - r t a ~ ,  r t ~  with - n e w  - -  - - o l d  - -  * g f  

"(X) 
(Psr ) ,~(P) = 7-'P,,P,,L(P) 2. (3.24) 

In the usual t rea tment  of  gauge theories in four  dimensions ,  one would of  course 
take a~, = a~,, i.e. L = 1, but here, in two.dimensions ,  the cor responding  gauge-fixing 
term in the act ion would lead to a b reakdown of  renormalizabil i ty.  This defect  can 

be cured by modi fy ing  the behavior  at large momen ta ,  and a part icular ly convenient  
choice is 

1 
L ( p ) ' - = - ~ F ( p )  , (3.25) 

which leads to 

b t v  x p C  

" The matrix elements of this field are anticommuting c-numbers. 

(3.26) 
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TABLE I 

Feynman rules for the Grassmann models: pure model, DC~(p) = F(p)- t ;  fermionic 
models, DtA~(p) = (F (p )+  l/¢r) -I 

Line Propagator 

a , i  b , i  ~/z line: ~ tS~,~,j ( p2 + m2)-t 
f 

13 

a line: 0.10 cd ,5,~a~bCA(p) t 

A line: 

;~za vertex: 

P 

cab ccl 

~t p v 

Vertex 

b, ~ cd 

cl I 

Vertex factor 

i 
/ 

.~zA vertex: 

° t l  

- ~n ~=a~h~,,(p~, + q~,) 

2zAA ve r t ex :  

b 

o,,f  

1 

n 

I n v e r s i o n  yie lds  the  p r o p a g a t o r s  

We shal l  u sua l l y  work  in  the  L a n d a u  gauge  3 ' = 0 ,  wh ich  gives a t r ansve r se  A- 

p r opaga to r .  
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TABLE 2 

Feynman rules for the Faddeev-Popov ghosts in the Grassmann models: pure model, 
L(p) 2--- ( l / p2 )F(p ) ;  fermionic models, L(p)  2= ( l / p 2 ) ( F ( p ) +  l/*r) 
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~/~" line: 

~rA vertex: 

Line Propagator 

ab c d  
. . . . . . . . .  t~ . . . . . . . .  8°aSbC(P2L(P))-I 

0 

Vertex Vertex factor 

c d  °'. 

""X'r'.q. e f 

ct b .....-.r/'p - 

~ ( 8oa8b*Sr, - _ 8~rSb~Sa')p~,L( p ) 

Now any Green function for the pure Grassmann model has a formal expansion 
in terms of  Feynman diagrams; the corresponding Feynman rules are collected in 
table 1 ~'. When specialized to the CP "-~ model, these Feynman rules coincide with 
those given in ref. [17] (except for a combinatorial factor 2 in the ~zAA vertex; see 
[19], p. 285, for a comment). We also refer to [17] for a list of forbidden diagrams: 
these are all one-loop diagrams with only one external leg (tadpoles) or with 
two identical external legs. Finally, we have included in table 2 the Feynman 
rules pertaining to the Faddeev-Popov ghosts, which are also slightly unusual due 

to our choice of  the Faddeev-Popov operator ~ (cf. (3.20), (3.23), (3.25)). Note, 
however, that as far as (sub)diagrams without external ghost lines are concerned, 
we could just as well have used the standard Feynman rules for the ghosts (where 
L =  1); in fact, it is obvious from table 2 that the L-factors cancel inside the ghost 
loops. 

As a systematic device to remove UV divergences in the Green functions of our 
model, we shall use the framework of BPHZ renormalization [19, 20], with all 
subtractions of Taylor terms in the integrands performed around zero external 
momenta. This supposes, of course, that we use an infrared cutoff for the massless 
fields appearing in the theory, and the question of possible IR divergences in the 
UV renormalized Green functions remains to be investigated separately. 

One of  the first steps in the BPHZ program is to determine the superficial degree 
of divergence, 8(F), of a given proper (sub)diagram F, thus fixing the necessary 
number of  subtractions to be performed. This degree can be obtained by using the 

* We follow the usual convention of orienting lines corresponding to charged fields A "from the ,'{ to 
the A" and letting their momenta flow in the direction of the resulting arrows. 
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asymptot ic  behavior  o f  the propagators  at large momenta  (cf. (3.19)) and the 

momen tum factors for the vertices, together with a few combinator ia l  rules (compare  
[21]): 

6 ( I ' ) = 2 - 2 E , , - E A - E ~ .  (3.28) 

(Ea denotes  the number  o f  external lines o f  type A. Note that f / z  lines (and ~/s  r 

lines) can only form uninterrupted strings or internal loops, so that E, = E= (and 
E# = Ec).) Now according  to (3.28), 8(1") does not depend on the number  o f  external 

~-/z lines, which at first glance seems a catas t rophe because it appears  to imply that 
the model  has an infinite number  of  UV-divergent Green functions,  hence also o f  

possible counter terms (containing higher and higher polynomials  in :?, z and their 

derivatives), and is therefore not renormalizable.  Fortunately,  however,  this problem 
does not arise due to cancellations o f  divergences between diiterent diagrams - 

cancellat ions which were first discovered by Aref ' eva  [22] (for the model  on spheres) 
and by Are f ' eva  and Azakov [21] (for the model  on complex projective spaces)• 

Briefly, this cancellat ion mechanism works as follows• Let !" be a (connected)  
Feynman (sub)diagram with r external :? lines and r external z lines, and maybe 

other  external lines as well, the former being arranged to form r pairs o f  external 

~/z  lines in such a way that the contr ibut ion from 1" is propor t ional  to 8,,j, • • • 8,,~,. 
(See fig. la.) Then if for some I, 1 <~ I<~ r, the /th pair of  external g / z  lines o f  /" 

does not join at the nearest :?zo~ vertex, one can define a new (connected)  Feynman 
(sub)diagram 1] by applying the following attaching procedure  to that pair: join 

the ;7 line with the z line and connect  the resulting new ~/z  loop via a new internal 
o~-line to a new pair o f  external 2 / z  lines. (See fig. lb.) (The condi t ion on I" is 

motivated by the fact that the attaching procedure  must not be repeated on one and 

the same pair  o f  external ~/z  lines because this would lead to a forbidden diagram.) 

Now if F is superficially divergent and proper,  it appears  as a renormalizat ion part 
Yt in F~, and the Taylor  terms to be subtracted in the process o f  renormalizing the 

contr ibut ions from 1" and from )'t ~ I]  are both propor t ional  to monomia ls  M(a)Ir[ , ,  
in partial derivatives o f  It, the unsubtracted integrand for / ;  with respect to the 

~, i i  bt,jt 
a[,il bbj  L pt'~i ~ 

(it=jl) 

(a) (b) 

(~=JO 

Fig. I. 
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external momenta  p,, q~ , . . . ,  p,, q , , . . . ,  evaluated at zero. Hence due to the basic 

identity 

f d2k 1 
D('~)(p) 47r2 [(k+½p)2+m2][(k_~p)2+m2] = 1, (3.29) 

the Taylor terms proportional to M(O)lr[o cancel as soon as M(8) does not involve 

any differentiation with respect to the external momenta  Pt or q~. 
A complete treatment of  the cancellation mechanism would of course require a 

systematic application of this attaching procedure to all sorts of  combinations of  

pairs of  external E/z lines, taking into account all possible renormalization parts 
according to Zimmermann ' s  strategy, as expressed in his forest formula [19, 20]. 
Without going into any details, we just state the result that UV divergences of  

diagrams with more than two pairs of external ~/z lines cancel among themselves. 
The rest of  the renormalization program, including the definition of normal 

products and the derivation of short-distance expansions, can now be carried through 
as usual [20]. For the Green functions, one is led to a wave function renormalization 
and a mass renormalization for the patton propagator,  i.e. to the addition of 
counterterms to the lagrangian which are proportional to D~,z~D~,z ~, and to E~z, ~, 
respectively. (Note that one may use the standard strategy of inserting (one or two) 

external A lines, with zero external momenta,  in all possible ways (compare [19], 
pp. 336/337) in order to show that UV divergences of  diagrams with one or two 
pairs of  external ~/z lines conspire to yield gauge-invariant counterterms. In other 
words, renormalization preserves gauge invariance, as expressed through the Ward-  
Takahashi identities.) For composite operators, one uses (3.29) to derive constraints 
on normal products, the most important of  these being the quantum counterparts 
of  the classical constraint (2.1) and of the classical expression (2.4) of  the gauge 

potential as a composite field [21, 22], namely 

X[~i~z, b] = const 8 ab , (3.30) 

and 

| ab ~"[(-k i~aS~aZib) T] = const ~ A ,, = ~ ( -  i cguzazb)T] ,  (3.31 ) 

respectively, where R T denotes the transverse part of  R, i.e. R S = (8,,~ -c9~,0~/c92) R~, 
The constant in both of  these equations should be the same in order to guarantee that 

JvT(+:?~ D,,z~) g] = 0 = AT(-  D,,z~z~)T] • (3.32) 

Its value depends on the normalization conditions, and we often choose these in 
such a way that it becomes zero. 

Having taken care of  the UV divergences, we are left with the problem of IR 

divergences; these appear  in diagrams containing internal A lines, due to the pole 
of  the gauge field propagator  at p2= 0 (cf. (3.18)). In vacuum expectation values 
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of  gauge-invariant  operators ,  however,  the IR divergences should cancel. In fact, 
this cancellat ion has been shown to occur  in the CP "-~ models  [23], and al though 
we did not check this explicitly, we expect the same mechanism to work in the 

Grassmann  models  as well. [Such an analogy can certainly not be ruled out by 

compar ing  the situation to that in four dimensions,  where the structure of  IR 
divergences in Q C D  is o f  course very different from that in Q E D :  in fact, a look 
at the Feynman  rules already reveals that the analogy between the non-abel ian case 

and the abelian case is much closer in two-dimensional  non-l inear  sigma models 
than it is in four-dimensional  gauge theories.] 

3.2. T H E  F E R M I O N I C  M O D E L S  

For the Grassmann  models  with fermions,  the whole procedure  is quite similar 
(a l though the supersymmetr ic  case is technically considerably more complicated)  
and so are the results - with one crucial difference: just as in the Schwinger  model  

(massless QED2),  vacuum polarization by the fermions shifts the pole in the gauge 

field p ropaga tor  away from p2=  0. 

Once again,  we begin with the generat ing functional  o f  the eucl idean Green 

functions,  which is 

Z ( J , J .  . ,  ~ ) =  N ' f  ~ z ~ O  [1 ~ ( ~ ' ~ ( x ) z ~ ( x ) - n 6 " b ~  
d • ~...b \ 2 f  / 

. . . . . . .  ] x e x p  - S +  d x { J , z , + z , J ~ + ~ O ~ + ~ n ~ }  . (3.33M) 

with 

I . -o _ + A ~ ,  z i ) ( O . z i  A .  ¢ I . - . -  . . r~ - - h . b . i  S = d - x { ( O u z i  . b -b  . " - -  Z~Ui YuqJ i ' a .  1 

d - x  + ~zO, .i(O, + = O . z , O . z ,  . 2 f " "  "-" J '  (3.34M) 

in the minimal case, and 

A~. b = f L"~'. z) + B i  b . (3.35) 

B". b = - if--~b'~'y.O b, . (3.36M) 
n 

I ( " 8ob] z ( J , Z , 7 , ? ) = N "  a / 

x H 
:~,a,b 

x e x p  - S +  2 - .  . - .  . -a . -a . rl~ O, + 4Jl r/i , (3.33s) 
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with 

S = d x (a,,z~ + A .  zi )(a.z~ - A,,~"zi)" 1. -~-  . - z6i" -" Y.6ibA.b" 

- b  a - a  b --b i / j a  

f { l ' -a - -  a rl AabAba ~ f  __ n BabBbal  = d~x ~.57O.zT+~,O, Z O , + U - .  " - B°bBb" 2f  ' ' J '  (3.34s) 

A~ b = f S " ~ ' z ~ +  B:  b, (3.35) 

B• h= - i f -07%,0~ ,  Bab = - i f - t ~ O ~ ,  B~b =- - f~ysO~,  (3.36s) 
tl I1 R 

in the supersymmetric case (compare (2.30)-(2.32); we have simply written A, 
instead of ,~,~,). The functional integral in (3.33) is rewritten by introducing hermitian 
(p ×p)-matrix fields a and ,~ as before and, in the supersymmetric case, an additional 
(p xp)-matrix field c and additional hermitian (p ×p)-matrix fields ¢ and ¢5 which 
act as Lagrange multipliers for the (rescaled) constraint (2.14s) and for the quartic 
B 2 and B~ interaction terms, respectively: 

I-1 
x.a.b 

~( e~(x)O T(x) )~( ~7(x)z~(x)  ) 

u-x.a.b exp 2 i 

e x p [ f  d2x{~fB~hBb~}] 

e x p [ f  d2x{2J " " j ] n B ~ b B ~ /  

- . exp d - x ( - ~ ¢ 5  &5 • (3.37s) 

(Here, - means equality up to normalization constants.) Indeed, inserting (3.4) 
and, in the supersymmetric case, (3.37s) into (3.33), we see that the functional 
integrals over 5, z and over ~, 0 become gaussian and can be carried out. The result 
is 

Z(J, .~ n, ~ ) =  N-~ [ ~ a ~ ) t  e x p [ - S ~ . + S  ... . . .  ] (3.38M) 
3 
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i~/ n P 

S~,t = n Tr In (AB) + .~ d2x tr a - n Tr in (A~), 

S .. . . . .  = ] .  A ~ ' J +  @. AF'r/, 

in the minimal case, and 

r / , -~ )=N t f ~ a ~ O ~ c ~ A ~ ¢ b ~ s e x p [ - S ~ n + S  . . . . . .  ] ,  Z ( J , J ,  
.1 

with 

(3.39M) 

(3.40M) 

(3.38s) 

S. ,  n Trln AB+ I~AFIc 2]" d2x tr 

- n  Tr In (AF)+~f  I d2x Iv (,b2+,b~) , (3.39s) 

S ......... = J ' .  JB +  dA~'c +~/ . J~ . ' r / ,  (3.40s) 

in the supersymmetric case. Here, J~ is as in (3.8), while J~ denotes the (p xp) -  
matrix differential operator given by 

aFO = } i ( ~ -  ~*)~b, (3.41 •) 

AF@ = ~ i ( D -  D*)@ + ,1--~(i06 - 75@6~), (3.41s) 

with D* the adjoint of D (D* = - D  under appropriate boundary conditions), and 

i 
D.tk = a.@ + -7= OA. (3.42) 

in accordance with our interpretation of - in ' / 2 A .  a s  a new gauge potential (compare 
(2.16)); the corresponding local U(p)  transformations act according to (3.10) and 

0 --" Oh, rl --. rib, (3.43u) 

0--" Oh, n ~ n h ,  

c~h"ch ,  ~--,h '¢bh, ~b~.-.h '4~h. (3.43s) 

Moreover, in the supersymmetric case, ?g~'c is a (p xp) -matr ix  integral operator 
with matrix elements 

( OA~_, c ) , b (x ,  y )  = c , , ' ( x ) (  A~, )~d(x ,  y)~d~(y), (3.44s) 
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and J', J '  are abbreviations for 
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J:"(x)=J,(x)+ d2yrla.(y)(A{:')a~(y,x)('(x), 

o J~"(x)=J,(x)+ , d2ycaC(x)(A;~)"d(x,y)rl~(y). (3.45s) 

[Here and in the following, we use the convention that if K is a (p xp)-matr ix  
integral operator (e.g. An ~,A~ ~,gA~-~cor(AH+(l /n)eA~c)  ~)and Kan(x,y) isits 
integral kernel, then for any p-vector valued function X, 

(K)c)a(x) = f d2y Kn~(y, x)gn(y). (3.46) 
J 

The transposition of indices and arguments guarantees that covariance of the 
operator K and of its kernel Kab(x, y) under gauge transformations )¢--'xh takes 
a simple form: Kx~(Kx)h,  Kan(x,y)--,(h-~)""(x)K"d(x,y)hdn(y).] 

The next step is, once again, to expand the logarithm in (3.39), and in order to 
make the terms S (~) in the resulting expansion (3.11) infrared finite, we introduce 
a fermion mass term. In the minimal case, this is done by hand, i.e./¢ is replaced 
by ,a'+ my, and the limit my--, 0 is taken in the final results. For example, calculation 
of S ~ gives, once again, 

S ( l ) = i t r a ( O )  - 47r 2 p 2 ~  (3.47M) 

(even before removing the infrared cutoff mF), SO the saddle-point condition S ~' -- 0 
implies that the minimal model exhibits, once again, asymptotic freedom and 
dynamical mass generation for the bosons, while the fermions stay massless. 
Moreover, the quadratic term S ~2) can, once again, be written 

ff an  -(  A ) ba S~-') = ~ d2x d2y{ot"n(x)l'("'(x-y)ah"(y)+A~, (x)l u, . (x-y)A, .  (y)}, (3.48M) 

where now 

F("'(p)=A(p), /"(~,)(p) = (~,,,, P-~P")(p2+4m2)A(p). (3.49M) 

In the supersymmetric case, we anticipate the fact that the quantum field 4, develops 
a non-vanishing vacuum expectation value, and we therefore shift the variable 4, 
in the functional integral (3.38s), i.e. 4,~h and ~ n  are replaced by 

an  q~ = 4,~n_~/n mv6,n, q~n = 4,~h . (3.46s) 
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Indeed, with this substitution, calculation of S ¢~> gives 

t~ 0 [ 1 f d2p 1 ) (~ f  I d2p 1 ) S<'~=itr ( ) ~ - J 4 7 r 2 p 2 + ~ -  ~ +2mvtr~(O) - 4 7 r 2 p ~  , (3.47s) 

so that the saddle-point condition S t~= 0 implies that the supersymmetric model 
exhibits asymptotic freedom, dynamical mass generation with equal masses for 
bosons and fermions (m=m~)  and spontaneous chiral symmetry breaking. 
Moreover, the quadratic term S <2) can be written 

S,2,=~ f d2xd2y{a~b(x)l . . ( , . , (x_y)ab~(y)+ .b (~) b~ A~. ( x )F , ,~ (x -y )A~  (y) 

+ 2aab(x)F~"~(x _ y)c ba (y) 

+ ~oab(x)l'~*)(x -- y)~o ba (y) + ~b(x)F~*O(x -- y)~o~a(y) 

ab (~,~) ba } +A~t'(x)F~O(x-y)~p~a(y)+~p5 ( x ) F ~  (x-y)A~ (y) , (3.48s) 

where 

I ) ' (" ' (p)=A(p) ,  /~'22(p) = 8~,~ ~ ) p  A tp ) ,  

[.te~(p) = _ t( p+ 2im)A(p)  , 

[ '¢¢)(p)=(p2+4m2)A(p) ,  l ' t~O(p)=p2A(p) ,  

~ O ( p )  = +2me~,~p,A(p), [.~,o,X~(p) = -2rne~p ,A(p ) .  (3.49s) 

The procedure of fixing the gauge and introducing Faddeev-Popov ghosts in the 
fermionic models is identical with that in the pure model - except that it is now 
more convenient to replace (3.25) by 

,2+4m2 
L(P) 2 p2 A (p )=  F ( p ) + ~  , (3.50) 

which leads to 

~,,A,(p)=_t,,,, (6t,~ P~'P~(p2+4m2)A(P)+Y-t-~(p2+4m2)A(p)p2 j . (3.51M) 

['~,,)(p)=(3t,,, P~p--iP2~)p2a(p)+y--l~-~(p2+4m2)a(p). (3.51s) 

Inversion yields the propagators 

( 1), 
D'~"(P)=A(P)  -' , D~)(P) = 6 t , , - ( 1 - r ) ~ 5 - - ) ~ F ( P ) +  , (3.52M) 
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in the minimal model, and 

D (~) (p ) = A (p ) - ,  (A) ( P~_~) ( 1 )  -1 , D , , ~  ( p )  = 8 ~ , ~ -  (I  - y )  F ( p ) + ~  , 

( D(e~)(p)=-2( i~-2im)  F (p )+  , 

( D ' ) ( p )  = F(p)+ , 
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1)_i  
D('P')(p) = F ( p ) + ~  , 

D(~,")(p) = +2m F ( p ) +  --M, 

(3.52s) 

in the supersymmetric model, where we have used 

!t - P~'P~ p2+4m2) P~--~P2~ +2me~,~p. p2 8.~ p2 ] +y- I (  P A(p  

-2men, p^ p2 

//o p ~. p ~'~ _ P,~P~ 
"1"- 

1 ] t t p  ~ p , ;  . 

= l~kOP, v - - 7 /  '~-'~'== - - 2 ? H E ~ K P K / P 2 1 , ' ,  " 2+ 4yn2-,A . . . .  l 

I 

\ +2me~Ap~/p 2 

Again, the Landau gauge y = 0 gives a transverse A propagator. 
The strategy for deriving the Feynman rules from the generating functional Z is 

as before, and the results are summarized in tables 1-4. Once again, these rules are 
to be supplemented by the prescription that certain diagrams are forbidden: see 
[14] for a list of such diagrams. 

TABLE 3 
Additional Feynman rules for the minimal model 

0/~ line: 

Line Propagator 

a,i b,J 
> - 8°b8,,~ 

P 

Ve~ex Veaex factor 

~OA ve~ex: 

Qfl 

l o ado bc~ 

,,In 
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TAl{t.r 4 

Additional Feynman rules for the supersymmetric model 

Line Propagator 

~/4J line: a,i ) b,j  _ 3"t'~5,,p~+/~+imm "~ 

P 

E/c line: 

line: 

¢~ line: 

A~s line: 

~sA line: 

ab cd 

P 

ab cd 

P 

ab cd 

ab cd 

p 

ab cd 

p 

( ') - 2~5"a3~" (/'~ - 2ira) F(p)+~ 

,"a,~" (F(p) + I ) - '  

2me p / I \-' 

2m~,.pJ 1 ~- ' 
+ ~5~a~' p2 ~ F(P)*~r } 

~zc vertex: 

~E vertex: 

Vertex 

b, j 

a,l  

b, i > . _ . . ~ . _ c d  

o.,i 

Vertex factor 

v n  

i 

,in 

~ A  vertex: 

o.,i 

x /n  
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TABLE 4 continued 
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b,j,  
a,i f ,/n 

b,j ~ cd 1_ ~o~h,8~ir 5 
0q,~5 vertex: ~/n 

cl, i 

As in the pure model, renormalization proceeds according to the BPHZ program 
[ 19, 20], starting out from the formula for the superficial degree of  divergence, 8(F) ,  
of  a given proper (sub)diagram F: 

8(F)  = 2-217,,, - E~ - E~ - E ,  (3.53M) 

8 ( r )  = 2 - 2E,, - E, - E c - El,,.>- E• - E~, - Ea,~, - E~a -/mixed 
(3.53S) 

(E~,c, = E,~ + Ee = Ec, + Ec) 

( EA denotes the number  of  external lines of  type A, and in the supersymmetric case, 
lmix,d is the number  of  internal mixed (ACs or ~osA) lines. Note that in the minimal 
case, the ~./z lines and 0 / O  lines can only form uninterrupted strings or internal 

loops, so that Ee = Ez and E~; = E~, while in the supersymmetric case, the presence 
of  ~?/c lines, ~zc vertices and :~0~? vertices complicates the situation; here, Ee - Ez = 
E e - E , . = - ( E ¢ , -  E¢).) Again, renormalizability follows after taking into account 
cancellations between different diagrams. In the minimal case, these are the same 
as in the pure model, while in the supersymmetric case, additional cancellations 
occur between diagrams containing pairs which are made from an external ~ line 
and an external z line or from an external :~ line and an external O line (both 

carrying the same flavor index): here, the attaching procedure described before must 
be carried out using an internal c line or ? line, respectively, rather than an a line. 
(See fig. 2.) 
The additional cancellations are then due to the identity 

I d2k ( J ( + ~ l f + i m )  
-D<e"~(P) 4rr 2 [(k +~p)2+ m2][ (k_ lp )2+  rn 2] = I . (3.54s) 

The rest of  the renormalization program proceeds as in the pure model (with standard 

techniques for taking care of  the fermions). For composite operators,  the minimal 
model does not present any new features, while in the supersymmetric model, one 
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o.i b,j 
a,~ b,j p ~ q  

(i=j) 

(al) (bt) 

(i--j) 

o.i b.j 

O,, b,J P ~ q  

(,=j) 

(a2) (b2) 

Fig. 2. 

I,-- jl 

uses (3.54s) to derive additional constraints on normal products, the most important 
of these being the quantum counterpart of the classical constraint (2.14s): 

(3.55s) 

4. Calculation of the quantum non-local charge 

Returning from euclidean space to Minkowski space, we shall define the quantum 
counterpart of the classical non-local charge as the limit 

Q(t) -- lim Qa(t) (4.1) 
,5~0 

of a cutoff charge, which reads 

l { f  dy, dy2 e(yl -- y2)(Jo),k( t, yl)(Jo)kj( t, Y2) 

- Z ( S )  f dy(Ji),s(t,y)} (4.2) 
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in the pure model (compare (2.13)), and 

l { f ,  dy, dy2e(y,-y2)(Jo),k(t,y,)(Jo)k~(t, y2) O~(l) =-~ y,-y21~,, 

- Z ( 8 )  f d Y ( J , ) o ( t , Y ) - Y ' ( 8 ) f d y ( i ' , ) , , ( t , Y ) - Y ( 8 ) I d y ( i , ) o ( t , y )  } 

(4.3) 

in the fermionic models (compare (2.29)). To explain our notation, we recall first 
that we have the constraint 

.NI ~.T z~] = Co 8"b , (4.4) 

with Co a constant (c0=0 in our normalization), while A~, will stand for the new 
quantum gauge potential of  sect. 3, i.e. 

i 
A.  = -~nn A.. (4.5) 

Moreover, j .  and J .  continue to denote the purely bosonic current and the total 
conserved Noether current, respectively, and we have split the matter field contribu- 
tion j~  = J~,-j~, to the latter into two pieces: 

( z , , ) , j  " " TM ~ -~ "' =- - /~z ,~k~, .~kzj ] ,  

( i ; , ) 0  • . - .  b - b  = - / ~ z ,  Ok y.O~zj ], 

(i~,) o = 0 ,  (4.6M) 

(i~,) 0 =/.NI~7%,tk?]. (4.6s) 

(For the group-theoretical interpretation of  this decomposition, we refer to [7].) 
Thus in the pure model 

( J ~ , ) 0  = (J~,)o = AIz~D--~zT], (4.7) 

while in the fermionic models 

( j ,  + i'~) o = .AC[z~D--~ ~7], (4.8) 

and 

where in all cases 

(4,),J = -~Iz~-S. eT], 

(4 , )0  = ~Iz,~ '~ eT] + / ~ 6 7  r.~.;'], 

(4.9M) 

(4.9s) 

+ 2zi A~, zj ].  (4.10) 

In order to show that the coefficients Z(8)  in (4.2) and Z(8),  Y'(8), Y(8) in 
(4.3) can be chosen in such a way that the limit Q in (4.1) exists, and in order to 
calculate its time derivative dQ/d t ,  we need a Wilson expansion for the (matrix) 
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c o m m u t a t o r  [ J .  (x + e), J,,(x)] of  two currents at nearby  (spacel ike separa ted)  points  
x + E ,  x(e2  < 0). 

In the pure  G r a s s m a n n  model ,  this shor t -d is tance  expans ion  is known [13] to 
take the form* 

o-p [J~,(x + e), J . ( x ) ]  = C~. (e )Jo(x  ) + D~,.(e)(G.Jo)(x) 

(0) trp (0) + crp + E .~(e)~,VIzF,.~z ](x) (4.11 + E.~(e )dv l zF . . z  ] (x ) .  ) 

The coefficients in this Wilson expans ion  can be de te rmined  per turbat ively  [11] or, 
more  elegantly,  f rom structural  proper t ies  o f  quan tum field theory**,  plus an 

appropr i a t e  normal iza t ion  condi t ion on the current ,  just  as for the models  on spheres  
[9] or complex  project ive spaces  [12]. The  result is 

C,,.,,(~ ) = 2,rr L g,,-",~ 2 e2 (E2) 2 J '  (4.12) 

O , ~ ' ( e ) = 2 - T L g - - 2 7  2e2 2e 2 2e 2 ~ 2e2 

(4.13) 

E (0)  ~rp . p  ~ p  ~,~(e) = E~°Je.~e "p, E .~ (e )  = Eq,~e , (4.14) 

where y = 0 . 5 7 7 7 . . .  is Euler 's  constant ,  and E t°~, E are two as yet unde te rmined  
constants.  The  explicit  de te rmina t ion  of  these coefficients requires a per turbat ive  
analysis which can be carried out a long the same lines as in the CP" -t model  [12]. 
Briefly, one uses (4.11) (at x = 0, say) to derive the relation 

t~ - a  "-h " c d  p r o p  3k^(OIT([J~,(e),J~(O)]-[J.(e),J~,(O)])ozt(q)z,.(r)A. (k)10> Iq . . . .  k=o 

= - r)A~ (k)10) Iq .=k=o (D. . (e)  D~,(e)) (OIT(a,.J,,),,(O)z~(q)z~ °¢d p.,p 

-4E'°~(OIT~'~I(zF~2z+)o(O)i?(q)z~(r),~'~a(k)lO)P~°°lo=,=k_o 

-4E~-~,(O[T.~"I(zF..z ),j(O)~?(q)z~(r).4~d(k)lo)Pr°rl,:.:k o. (4.15) 

* The index m) refers to contributions lying in the center u(1) of  the Lie algebra u (p) ,  i.e. A~ ~= 
( l /p ) ( t r  Au)lr,  , F I°)..-- (1/p)( t r  F,,~)I m etc. 

"" These structural properties include covariance (under  Lorentz transformations,  translations, parity 
and time reversal, internal symmetries and charge conjugation),  locality, gauge invariance and current 
conservation;  they should therefore be valid beyond perturbation theory. 
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(Note  that the ant isymmetrizat ion in /x and v has eliminated the C-terms from 
P (4.15) due to C~,  = C,~,.) Now both sides o f  (4.15) are evaluated graphically,  which 

is possible because there are really just a few graphs that must be computed  explicitly. 
For example,  the only contributiong to any of  the three terms appear ing on the r.h.s. 

come from tree graphs. (All other  graphs that might a priori contr ibute contain at 

least one loop and must be renormalized via subtractions which, as we recall, are 

performed a round  zero external momenta ,  so that nothing is left when we evaluate 

at q = r = k = 0.) Similarly, the only contributions to the I.h.s. come from one- loop 

graphs;  see [12] for more details. The result o f  the entire calculation is 

n 

E ~°)=0,  E =  27r (4.16) 

We note finally that in (4.11 ) we have omitted the normal  product  ~V[J~,, J , ]  because 
our  normalizat ion condit ion forces it to vanish: indeed, going through the derivation 

o f  (2.11) once again, we find that the constraint  (4.4) implies 

J ~ L ,  L ]  = - ½Co(a~,L - 8,J~, ) .  (4.17) 

(This also shows that if one wanted to use a normalizat ion where Co ~ 0, one could 
D,,~.) absorb the term ,q'[J~,, J , ]  into a redefinition o f  the coefficient "P 

Putting all this information together, we conclude that the non-local  charge Q is 
well defined if we choose  

n Z(8) = ~ - ~ ( ~ ,  - 1 + In (½mS)), ( 4 . 1 8 )  

but that it is not conserved;  rather, 

d___Q_ 2 
f dy~zFolz ']( t ,  y) 

dt - rr  j 
(4.19) 

a result valid to all orders in 1/n. 
To handle  the Grassmann models with fermions,  we follow the same basic strategy 

as in the pure case. First o f  all, the relevant short-distance expansion becomes 

[J~.tx + e), J~(x)] = C~,(e)J,(x) + DU~(e)(~,,Jp)(x) 
^ I p  . t  A I c r p  " t  + C~,,(e)zo(x) + D~,, (e)(c~,,lo)(x) 

+ C~. (e) ip(x)  ^ "p + D~..(e)(O,,ip)(x) 
( O ) c r p  " ( 0 )  + + E ~,~(~)~¢ [zF,,pz ](x) 

+ E~(E)N [zF , .pz ' - ] ( x )  + X [ J . ,  J . ] ( x ) .  (4.20) 

Of  course, there is a priori a large number of other operators that may appear on 
th~ r.h.s, of  (4.20), such as the (matrix) commutators N[jp, i'~], J~ j . ,  i~.], X[ i~,  i ' ]  
and .N'[ie, i,,], for example. To deal with this problem, one has to set up a complete 
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list of  such operators and analyze the behavior of  the corresponding coefficients. 
Then combining structural properties of  quantum field theory, plus an appropriate 
normalization condition on the current, plus Fierz identities, with general graphical 
arguments, one can show that all coefficients pertaining to operators not written in 

s~ (o) cr o ~ro (4.20) vanish, that the coefficients C~,,  D~°~, _ ,,~ and E~,, are the same as in the 
pure model (of. (4.12)-(4.14)), and that 

^ tO  __  , C . ~ - O  

^ t ~p  - -  D . .  - 0 ,  

(4.21) 

(4.22) 

(4.23) 

where 

B~ h = - ½/A~ q~,~ TMO~] (4.26) 

(compare (2.32)), and of course, 

D~,B~ = O~,B~ + .N'[ A~,, B~] .  (4.27) 

Now due to the axial anomaly [24], the fourth term on the r.h.s, of  (4.25) produces 

- possibly apart  f r o m . . ,  terms which are due to the fermionic equation of  motion 
(2.21) - a term proport ional  to N [ z F ~ , : + ] ,  with a coefficient which can be computed 
graphically. Once again, the only contribution to this coefficient comes from one-loop 

c;:,,(,) -? j ,  

2 :  2 :  

- ( ½ 3 ' - '  ' , 2 ;, ,W_~g, , , ,g ,W] ~ + ~ l n ( - ~ m  e ))e~,:  . (4.24) 

This is a long and tedious analysis which has been carried out explicitly for the 
supersymmetric CP "-~ model [12] and can be extended to the supersymmetric 
Go( p, n - p) model since the presence of color indices does not cause any problems; 
we shall not discuss this problem here. (Note that the corresponding investigation 
for the minimal model can be trivially reduced to that for the supersymmetric model.) 

The essential difference between the fermionic models and the pure model, 
however, lies in the fact that the normal product  A~[J,,, J~] is no longer zero: indeed, 

going through the derivation of (2.27) once again, but without using the fermionic 
equation of  motion (2.22), and wr i t ing . . ,  for all terms made up of operators which, 
according to the aforementioned analysis, do not contribute to the Wilson expansion 
( 4 . 2 0 ) ,  we find that the constraint (4.4) implies 

.NIL, ,  L ]  = - 'Co(O, . J .  - ~ J , . )  - '  . . . .  ' • ~(a,t .. - a..t.) + ~Co(a,,t. - aft,. ) 

- 2a~z(D~,B, - D ,B , ,  )z +] + .  • . ,  (4.25) 



E. Abdalla et al. / Non-linear tr models 173 

graphs - as it must be according to the Adler-Bardeen theorem [24] - and turns 
out to be - n / z r .  On the other hand, the perturbative calculation of  the coefficients 
E (°) and E appearing in (4.14) suffers no modifications, and therefore (4.16) remains 
intact. As a result, the last two terms on the r.h.s, of  (4.20) cancel, to all orders in 

l / n ,  except for a constant multiple of  the curl of  i~,. More explicitly, the Wilson 

expansion (4.20) simplifies as follows: 

a p  [J,,(x + ~), J~(x)] = c~,,(~)J,(x)+ D,,~(e) (~J~)(x)  
I o ' p  - t A t r p  - 

+~e~,~e (cg,,zp)(x)+ C ~ ( e ) i p t x ) +  D~,,(e)(O,,zp)(x). (4.28) 

The coefficients here are given by (4.12), (4.13), (4.23), (4.24). 
This information is now sufficient to conclude that the non-local charge Q is well 

defined if we choose Z ( ~ )  as before (cf. (4.18)) and set 

Y ( 8 )  = _ n ( y  _ 1 + In (½m~5)), Y'(8)  = - 1 .  (4.29) 
7'1" 

Moreover, we may check that Q is now conserved: 

dQ 0,  
dt 

(4.30) 

a result again valid to all orders in 1/n. 

5. On the determination of  the exact S-matr ix  

As a first step towards computing the S-matrix, we have to get an idea about the 
particle content of  the models under consideration - at least on the level of  
"fundamental  particles" (as opposed to bound states). 

In the pure model, the gauge field propagator  has a pole at p2 = 0, and hence the 
gauge field generates a long-range force between the patrons, leading to confinement. 
The fundamental  fields z a, ~ therefore do not correspond to particle states, but 
gauge-invariant composite fields such as z ~  should. There is of  course no reason 
to expect the corresponding meson bound state S-matrix to factorize, and calculating 
this S-matrix remains an important open problem, even in the CP"-t-case.  

When fermions are coupled to the model in a minimal or supersymmetric way, 
the gauge field propagator  loses its pole at p2 = 0, and the long-range force disappears. 
The partons are therefore deconfined, and the fermions stay unconfined. This 
however does not exclude the phenomenon of screening, which eliminates certain 
fermionic quantum numbers,  such as charge and chirality, from the physical spec- 
trum, i.e. these quantum numbers do not appear  in the physical states. In fact, this 
spurionization occurs in the massless Schwinger model [25] and in the chiral 

Gross -Neveu  model minimally coupled to a U(1) gauge theory [26], which are 
obtained as low-energy effective theories from the minimal and the supersymmetric 
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C P"-~ model, respectively. As far as the fermionic degrees of freedom are concerned, 
we therefore expect that in the minimal model, they are completely spurious, i.e., 
physically, they do not show up at all as asymptotic states, while in the supersym- 
metric model, they do appear asymptotically, but lead to constraints of the type 
that antiparticles can be identified with bound states of particles. This also applies 
when the projective spaces CP "-~ are replaced by the Grassmann manifolds 
G¢(p, n - p )  because the spurionization mechanism seems to survive the transition 
from abelian (U(I))  to non-abelian (U(p))  gauge fields [27, 28]. However, the details 
of this picture certainly deserve further investigation. 

In view of the preceding discussion, we introduce asymptotic states described by 
symbols b7(0) (/~,~(0)) for the bosonic (antibosonic) degrees of freedom. In the 
supersymmetric model, there are additional asymptotic states described by symbols 

f ? ( O )  ( f " , ( O ) )  for the fermionic (antifermionic) degrees of freedom. Here, 0 is the 
rapidity, related to the on-shell momentum p by 

p = m(cosh 0, sinh 0).  (5.1) 

The whole S-matrix should exhibit a ( U ( n ) x U ( p ) )  symmetry. In particular, the 
corresponding symmetry for the 2-body S-matrix leads us to introducing the notation 

a d  b c  ~h a ' d  ~ m = ( a , (  O )8""shd + a2( O ~k l  ~ v , 6 )SikS, t 

+ (a~( 0 )6""8  ~a + a4( O)6"a6bc)6 ,S jk ,  (5.2) 

and to adopt the convention that (5.2) remains in force when A is replaced by an 
arbitrary capital letter and a (in a l , . . . ,  a4) is replaced by the corresponding lower 
case letter. Then with the abbreviation 0 = 0, - 02, we can write the bosonic 2-body 
scattering amplitudes in the form 

O u t  c ~ d " a b 
(b~( 01)bl  ( 02)lb, ( O, )b j  (02))  i" 

= ~ ( ~ ,  0 1 ) ~ ( ~ , - 0 , ) ~  ~ ,~ - u ~ ,  ( 0 )  + a(t~,  - 0 ~ ) ~ ( ~  - 0 , )  ° ' ,  ~ c ,  0 ,-,zk ~ 0) ,  (5.3) 

°~'/b"lO\ k, t ,~balo .~lbO101)@(02))  .,I ,~ 

~(~, o , )~(~-o~)7/u~,( ,~ o)+~(g, o,)~(g+- °~ "~ = - " ~  " - - 0 , ) , 1  R k , ( O ) ,  ( 5 . 4 )  

plus an amplitude obtained from (5.3) by substituting/~ for b. In the supersymmetric 
model, there are additional 2-body scattering amplitudes, both fermionic and mixed, 
which take the form 

o,,(f~(ff,)fa( ff2)lf~(O,)f~( 02))'" 

= 8(~,-o,)~(~+-o.)~",]"~,'~,-8(~1. ,, . ~ , , ~ ,  - o~);~(g+-. 0,)o"~ v,~(o)~c , ( 5 . 5 )  

" - d  " a - - b  i n  
°~t(ffk( O~)f  , ( 02)Lf+ ( O~)f  , (02)) 

" a d  ¢ h  • = 8 ( g , - 0 , ) 6 ( 0 2 - 0 2 ) , ,  Vk,( ,Tr - 0 ) - 6 ( 0 1  - 0 2 ) 6 ( g 2 -  0,),,°" S~,(O),~b (5.6) 
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plus an amplitude obtained from (5.5) by substituting f for f, and 

out(b~(ff,)fd ( - a b ~, 02)lb, (O,) f j  (82)) 

- -  0 2 1 i  j Ckl (O)__~(~ l__O2) t~(~2  ab cd = -O~),j  D k t ( O ) ,  (5.7) 

oUt(bE(O,)fd(o2)lb,~(81)f~(02)) ~" 

~ ( ~ , - 0 , 1 8 ( ~ -  o~ c ~ .  = 02),~ Ckj(z~r-O)-8(O~-02)8(02- ~ ~b 0 , ) ,  Ek,(O) (5 .8)  

°U'(b~(ff,)/~¢(02)lfT(0~)f~(82))'" 

8 ( ~ ,  0 , ) ~ ( ~ :  - ~ " ° "  ~ ' ~ ' '  = - 0,),, Fk) (O) ,  (5.9) 

plus two amplitudes obtained from (5.7) and (5.8) by exchanging particles with 
antiparticles. (Note that in (5.4), (5.61, (5.8), (5.9) we have already used crossing 
symmetry to eliminate the transmission amplitudes in favor of the particle-particle 
amplitudes U, V, C, D.) 

Next, we make use of the fact that due to conservation of the quantum non-local 
charge Q, the S-matrix factorizes. This is proved just as in the case of spheres (pure 
model) and of complex projective spaces (minimal and supersymmetric model), 
namely by evaluating the action of Q on the asymptotic states [9, 29]. The resulting 
factorization equations also lead to severe restrictions on the 2-body scattering 
amplitudes: in particular, they imply that all reflection amplitudes R, S, E, F vanish, 
and they impose certain relations between the particle-particle amplitudes. For the 
bosonic amplitudes, these relations read 

27ri 2rri 
u3(O) = - - ~ - u , ( O ) ,  u4(O) = -  n~-ffu2(O). (5.101 

In the supersymmetric model, there are additional relations between the particle- 
particle amplitudes, which read 

and 

2~'i 2~ri 
v~(O)=+--~v,(O), v,(Ol=+--~v2(O), (5.111 

21ri 2rri 
c3(0) = - - - ~ c , ( O ) ,  c4(0) = - - ~  c2(0), (5.12/ 

27ri 27rid2(0) (5.13) d~(O) = - - ~ - f f  d , ( O ) ,  d , (O)  = -  nO " 

This reduces the determination of the 2-body S-matrix for the minimal model and 
for the supersymmetric model to the determination of the two functions ut(8), u2(8) 
and the eight functions Ul(O), u2(O), v~(O), v2(O), c~(O), c2(0), d~(O), d2(O), respec- 
tively, which are further constrained by unitarity and analyticity. 

In the CP "-~ case, the number of functions involved is automatically reduced by 
a factor of two, simply because in that case, only the sums a~+a2 and not the 
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ind iv idua l  coe l~cients  a , ,  a2 a p p e a r  (cf. (5.2)). On these grounds ,  an expl ic i t  so lu t ion  

can then be found  [29]. The  G r a s s m a n n  case,  however ,  is more  compl ica ted .  We 

have t r ied an ansa tz  o f  the form 

27ri 
a2(0) = : t : - ~ a l ( O ) ,  (5.14) 

which does  l ead  to a comple t e ly  expl ic i t  so lu t ion ;  however ,  we do  not  bel ieve  that  

it is correct  because  the ansa tz  (5.14) turns out  to be i nc ompa t ib l e  with a lowes t -o rder  

1/n ca lcu la t ion  (where  a 2 is o f  o rde r  1/n  while  a~ is of  o rde r  1). The comple t e  

solu t ion ,  therefore ,  r emains  to be found.  

Appendix 

DIRAC MATRICES, CHIRAL SYMMETRY AND FIERZ IDENTITIES IN TWO DIMENSIONS 

T h r o u g h o u t  this pape r ,  we work ei ther  in fiat Minkowsk i  space  or  in flat euc l idean  

space ,  with metr ic  t ensor  g,,~ and  d e t e r m i n a n t  t ensor  e,,~ given by goo = + 1, g~  = - 1, 

eo t=  - 1 ,  e~o = +1 or  by g,~ = tS~,~, el2 = +1,  e2t = - 1 ,  respect ively.  In bo th  cases,  the 

desc r ip t ion  o f  Di rac  sp inors  involves one  and  the same complex  two-d imens iona l  

vector  space  S, e q u i p p e d  with the posi t ive defini te  inner  p roduc t  

S x S - - , C  , 

(u, v)~-~u+v, (A . I )  

and  with a con juga t ion*  

S--~ S ,  

u ~-~ u * ,  (A.2) 

which shou ld  be an t iun i ta ry :  

( u * ) + v * = v + u  for  u , v ~ S .  (A.3) 

Usual ly ,  S is ident i f ied  with C 2 by choos ing  a fixed basis  in S which is s imu l t aneous ly  

o r t h o n o r m a i  and  real  (such a basis  exists due  to (A.3)).  Then the s t anda rd  spin  

r ep resen ta t ion  o f  the Cl i f ford a lgebra  assoc ia ted  with the given metr ic  is de t e rmined  

by some set o f  Di rac  matr ices  which sat isfy the s t anda rd  a n t i c o m m u t a t i o n  re la t ions  

%,7~ + 3'~7,~ = 2g~,v, (A.4) 

and  which  may,  and  will ,  be a s sumed  uni ta ry :  

+ 

7,, = ~',,~ • (A.5) 

• A conjugation on a complex vector space V is an antilinear transformation on V which is involutive, 
i.e. its own inverse. 
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Our definition of  "/5, motivated by the requirement that ~,~ = 1 and y~" = T5 always, 

is** 

Y5 = T o Y l  , (A.6M) 

Ts = - iTt T2" (A.6E) 

Thus (A.4) gives 

Y u 7 s  = e~,~5 '~ , (A.7M) 
• v 

T,~T5 = -ze~,~Y • (A.7E) 

This typically two-dimensional relation is responsible for many of the peculiar 
features of  fermions in two-dimensional space-time; for example, it plays a central 
r61e in the derivation of  non-local conservation laws for non-linear ty-models with 
fermions (see sect. 2 and [7]). 

The positive definite inner product (A.1) and the conjugation (A.2) play only an 
auxiliary r61e - in contrast to the invariant inner product 

S x S - - - ~ C  , 

(u, v)~-*~v, (A.8) 

and to charge conjugation 

S - - ,  S ,  

u~-*  u c . (A.9) 

Writmg 

~ v = u + p v  for u,  v e S ,  (A.10) 

u C = C - l u  * for u e S ,  (A.11) 

the latter are distinguished by demanding that 

+ + - 1  
p = p ,  %, = p s / ~ , p  , (A.12) 

C - I C  * = 1 , ~/* = e C ' y ~ , C  - I  , (A.13) 

where e is a sign which, in two dimensions, turns out to be uniquely determined 
by the signature of the given metric. (In higher dimensions, the situation is more 
complicated [30].) 

Explicit representations for the Dirac matrices in two dimensions can be given 
in terms of  the Pauli matrices 

cr|=(~ ;), tr2=(0i-0), er3=(~ _~). (A. 14) 
• * In this appendix, the indices M and E in the formulae stand for "minkowskian case" and "euclidean 

case", respectively, while equations not carrying any such index are valid in both cases simultaneously. 
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In this context,  we adhere  to the s tandard  terminology that the Dirac matrices are 

given in a 

(i) chiral representa t ion if 75 is diagonal~ 

(ii) Ma jo rana  representa t ion if C = 1, 

(iii) chiral Majorana  representat ion if both condi t ions  are met s imul taneous ly  

(which is the case if and  only if Y5 and C commute) .  

In the Minkowski  case, there is a chiral Ma jo rana  representat ion:  

To = o'2, Yl = i o h  , Y5 = 0 . 3 ,  

P = Yo, C = 1 , e = - 1  . (A.15M) 

In the euc l idean  case, we have to decide between a chiral representa t ion,  e.g. 

"Yl ~ Orl , "Y2 ~- 0"2 ~ ~5  : 0.3 , 

p = l  , C =0.1 , e = + l ,  (A.15aL) 

and  a Majo rana  representa t ion,  e.g. 

"~1 -~  0 . 3  , ' ) /2 : O r l  , "~5 - ~  0"2  , 

p = 1 , C = I , e = +1 . (A.15b~) 

Independen t ly  of any explicit  form of the representa t ion,  chiral symmetry transfor-  

mat ions  const i tute  a one-paramete r  group of matrices given by 

exp (ictys) = cos a I + i sin oc,/5 , (A.16M) 

exp (ays)  = cosh a 1 + sinh a y  5 . (A.16~:) 

Spinors and  their conjugates  t ransform according to 

u~exp( iays)u ,  ~ f ~ e x p ( i a y ~ ) ,  (A.17M) 

u-~exp(ays)u, ~ ~ t~ exp ( a y s ) ,  (A.17E) 

so that ~y~,v is invar iant ,  while 

tiv ~ cos (2a) t iv  + i sin (2ot)tiysv , 

tiy~v ~ i sin (2a )  t iv+ cos (2a)t~ysv,  (A.18M) 

tiv ~ cosh (2a)f iv  + sinh ( 2 a ) ~ y s v ,  

flyby ~ sinh (2a) t iv  + cosh (2a)t~Tsv. (A.I 8~..) 

Fierz identi t ies const i tute  a technique for rearranging terms in quart ic  polynomials  

in fermion fields and,  in two dimensions ,  are based on the formula  

I "t- ~,.s6~,t3 =2{~,~tj6~,~ (ys).t3(ys)~,~+g~'~(y~.)~,t3(%)~,~} (A.19) 
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w h i c h  c a n  b e  c h e c k e d  e.g. b y  a n  exp l i c i t  c a l c u l a t i o n  in e a c h  o f  t h e  r e p r e s e n t a t i o n s  

(A.15) .  M o r e  g e n e r a l l y ,  i f  F a n d  F '  a re  a r b i t r a r y ,  

p _ l ! - i  / z l ~  - t  I , , ,F~ ,~ -~{F , , oF~ ,a+(Frs ) , , ¢ ( I  3 ' s ) ~ , + g  (F3 , , ) , ,~ ( I  7 , ) ~ , } .  (A .20)  

A p a r t i c u l a r  c o n s e q u e n c e  a re  t he  F ie rz  i d e n t i t i e s "  

g ~ " ( O " T , ~ b b ) ( O % / ~ a ) = + { ( O " & a ) ( ~ " ~ b ) - - ( O " 7 , O a ) ( O ~ 7 , O b ) }  , (A .21)  

e~'~(O~3,,.Ob)(O~3,~od) = ± { ( 0 ~ 3 , 5 0 d ) ( ~ b  h) - - ( 0 " 0 d ) ( ~ / S f f b ) } ,  (A.22M) 

~,~,  - a  b - c  d e ( 0  "Y,O ) ( 0  ")t,,0 ) = ± i { ( ~ a 3 / 5 O a ) ( ~ r o b ) - - ( O a O a ) ( O " ~ / 5 ~ l b ) } ,  (A.22E) 

w h e r e  t h e  u p p e r  a n d  l o w e r  s ign  s h o u l d  b e  u s e d  w h e n e v e r  t he  c o m p o n e n t s  o f  a re  

c o m m u t i n g  a n d  a n t i c o m m u t i n g  c - n u m b e r s ,  r e s p e c t i v e l y .  

A.L.S.  w i s h e s  to  t h a n k  Dr .  V. K u r a k  fo r  d i s c u s s i o n s  a b o u t  t he  S - m a t r i x .  
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