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A general  criterion for the absence or presence of anomalies in the quan tum non-local charge 
of the non-l inear  ~r-model on a r iemannian symmetr ic  space is presented.  

1. Introduction 

Classically, the two-dimensional generalized non-linear o--models are known to 

be integrable and to possess higher conservation laws, both non-local and local, 

whenever the field takes values in a riemannian symmetric space [1-3]. At  the 
quantum level, however, the situation is more involved because even if one is able 

to quantize the (first) non-local charge and define it as a genuine operator, this 
charge may develop an anomaly and need no longer be conserved. For example, 
in the S •-1 model (usually called the O(N)-invariant non-linear o'-model) as well 
as in the CP N-1 model, the quantum non-local charge may be defined and analyzed 

within the 1/N expansion, and it turns out to be conserved in the former [4], while 
it develops an anomaly in the latter [5]. As a consequence, the S-matrix of the 
S ~r-1 model factorizes [4] and can be calculated exactly [6], while the S-matrix of 

the CP N-1 model does not factorize and is still unknown. 
In this paper, we give a simple and general criterion for the absence or presence 

of anomalies in the quantum non-local charge of the non-linear o--model on an 
irreducible riemannian globally symmetric space M of the compact type. This means, 
in particular, that we may represent M as a quotient space M = G/H,  where G is 
a compact connected semisimple Lie group with Lie algebra y and H c G is a closed 
(hence compact) subgroup with Lie algebra ~ c y .  For simplicity, we also assume 
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that G is simply connec ted -which  forces H to be c o n n e c t e d - a n d  that G acts 
almost effectively on M. (Thus, for example, the complex grassmannians should be 

represented in the form SU(p+q)/S(U(p)×U(q)), and not in the form U ( p +  
q)/(U(p)xU(q)), in order for our criterion below to be applicable. For more 
details on the mathematics, the reader is referred to the books by Helgason [7] 
and Kobayashi and Nomizu [8].) Under these circumstances, our criterion is a 

simple condition on (the Lie algebra ,~ of) the stability group H: 
(i) Anomalies are forbidden if ~ is simple. (This is understood to include the 

1-dimensional abelian case ~ ~ •, which occurs for the non-linear o--model on 
S 2 ~ Cp 1. 

(ii) Anomalies are allowed, and are to be expected, if 8 contains non-trivial ideals. 
In particular, this condition excludes anomalies in the S N-1 model, where ~ = 
so(N - 1), but allows anomalies in the CP N-1 model, where 8 = s(u(1) × u(N - 1)) ~- 

u(N - 1), as long as N > 2. It also excludes anomalies in the "irreducible" principal 
chiral models, i.e. the non-linear o--models on compact simple Lie groups, in 
agreement with arguments based on higher local charges [9]. 

2. The model 

We begin by briefly reviewing the formulation of the classical two-dimensional 

non-linear or-model on a riemannian globally symmetric space M = G / H ,  subject 
to the restrictions mentioned in the introduction. 

First of all, the Lie algebra ~ admits an orthogonal, Ad(H)-invariant direct 
decomposition 

= , ~ ® ~  (2.1) 

into the Lie algebra ~ of the stability group H and a complementary subspace ~ ,  
with commutation relations 

[ ~ , 8 ] c ~ ,  [ ~ , ~ ] c ~ ,  [,n, ~ ] c , ~ ,  (2.2) 

and the corresponding decomposition of elements X e g will be written 

X = X~ + X,, .  (2.3) 

Moreover, the stability group H being compact, its Lie algebra ~ admits a further 
orthogonal, Ad(H)-invariant direct decomposition 

= ~00 ,~10"  • • OSr (2.4) 

into its center ~o and r simple ideals ~1 . . . . .  ~r, with commutation relations 

['~,, ~i] = {0}, for i # f ,  (2.5) 

and the corresponding decomposition of elements X ~ ~ will be written 

X = X m) + X ~1) + .  • • + X Ir~ . (2.6) 



E. A b d a l l a  et al. / Origin o f  anomal ies  183 

We assume in addition that r<~2 and that the center do of ff is at most one- 
dimensional, which can be justified, e.g., simply by going through the list of all 
irreducible riemannian globally symmetric spaces [7]. Note also that, M being 
irreducible, the subspace m does not admit any non-trivial Ad(H)-invariant sub- 
spaces. Thus 

g = ,~0 O,Q O" • • O//r O ~  (2.7) 

constitutes an orthogonal, Ad(H)-invariant direct decomposition of g into Ad(H)- 
irreducible subspaces (some of which may be {0}). 

Next, following [1-3], the field q =q (x )  taking values in M =  G / H  is (locally) 
lifted to a field g = g(x) taking values in G, subject to the natural gauge equivalence 

there exists a field h = h (x) 
g 2 ( x )  ~ g l ( X )  ' ¢~  q 2 ( x )  = q l ( X )  <:::> taking values in H such that (2.8) 

g 2 ( x ) = g l ( X ) h ( x ) ,  

under H. As usual, we consider the (left translated) derivative field g-~O,~g (taking 
values in ~) and split it into its vertical part, which is the gauge potential A ,  (taking 
values in ~), and its horizontal part, which is the (left-translated) covariant derivative 
field k ~ -  g-aD,~g (taking values in ~):  

A~ = (g-~O~g),~, k~ -~ g-~D~g = (g-10,g)~.  (2.9) 

The gauge potential can be further split into its components along the variou,s 
ideals ~i: 

• 4. A (r) A .  =...a(°) ----t*4a(1) + "  " - - - - t *  • (2.10) 

[Cf. (2.3) and (2.6) for the notation.] Indeed, it follows from the Ad(H)-invariance 
of the direct decompositions (2.1) and (2.4) that under gauge transformations 

, , ( i )  g -* gh, A ,  and ~ ,  transform as gauge potentials (i.e. A,~ ~ h - ~ A , h  + h-18,h and 
A (f ~ h ~ A (f h + (h-10uh)(i)), and k ,  is covariant (i.e. k ,  ~ h -  ~ k , h  ). This motivates 

- (i) the introduction of gauge fields (curvature tensors) F . .  for A .  and F(~ ~, for A . ,  
and of a covariant derivative D . k .  for k.:  

F . .  = 0.A~ - 0~A. + [A.,  A . ] ,  (2.11) 

F "),.,, = ,9.A (i). - ~ . . . a  zt ") * [ zt ")_~.." , A(~ i) ] , (2.12) 

D~.k. = O,~k. + [ A . ,  k . ] .  (2.13) 

Observe that due to (2.5) and (2.10), F . .  is simply the sum of the _../z(i) : 
F.v - ~.(o) , r-.(1) ~(r) ----.~ - e r . .  +" • • + / ~ . , .  (2.14) 

Moreover,  as a consequence of the symmetric space structure of M, the identities 

F.~ = - [ k . ,  k . ] ,  (2.15) 

D.k~  = D~k~ (2.16) 
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hold for any field configuration; in fact, according to (2.2), eq. (2.15) [(2.16)] is 
simply the vertical part (g-component) [horizontal part (s-component)]  of the 
identity 

t3~ (g-lc3~g) + g - l ~ g g - l O ~ g  = ~ (g ~ g )  + g - l ~ g g - l a ~ g .  

Passing to gauge-invariant quantities (taking values in y), we have the Noether 
current 

i,~ = - gk,~g- ~ = - D , ~ g g -  ~ , (2.17) 

as well as the symmetric tensor 

J ,~  = - g D , k ~ g  -1 (2.18) 

(cf. (2.16)) and the antisymmetric tensors 

G , ~  = gF, .vg  -~ , (2.19) 

o ( i )  ,-,(i) 1 ~ = g r  ~ g  . (2.20) 

Observe that due to (2.14), G ~  is simply the sum of the ~(~1 

G g ~ ,  = tc~r (°) ..{_ r , ( 1 )  _ ~ r ( r )  ~ , ~ _ ~ , ~ - . . . + _ , ~ .  (2.21) 

Moreover, as a consequence of the symmetric space structure of M, the identities 

G,v = -[L,,  J~], (2.22) 

O~]'v = J,~ + G,,~ (2.23) 

hold for any field configuration. 
The classical two-dimensional non-linear o--model on M is defined in terms of 

its action functional 

S = 1  1 d2x (agq (x ) '  O " q ( x ) ) = ~  I dZx(D~ 'g(x ) '  D ' g ( x ) ) ,  (2.24) 

which by the usual variational principle leads to the field equations 

D , D  " g - D , . g g -  ~D " g = O . (2 .25)  

These imply that the current is conserved, i.e. 

aNY" = 0,  (2.26) 

and conversely, (2.26) implies (2.25) [10]. Thus in the form of the conservation 
law (2.26), and together with the identity 

a~i~ - 04", + 2[/',, f~] = 0 ,  (2.27) 

which results from (2.22), (2.23), the equations of motion are equivalent to the 
integrability, for any value of the (real) parameter h, of the following system of 
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first-order linear differential equations: 

Ou U ~  = UC~{j u (1 - cosh h) - e~d ~ sinh h }. (2.28) 

Similarly, one can check that they imply conservation (i.e. time-independence) of 
the (first) non-local charge: 

f dyl dy20(yl-ye)[jo(t ,  yl),/0(t, Y2)]- f dyjx(t, y ) .  (2.29) O(1)( t )  
3 3 

3. Quantum non-local charge and anomalies 

For the purposes of quantization, we shall work in some faithful N-dimensional 
representation of G by unitary matrices, which yields a faithful N-dimensional 
representation of g by antihermitian matrices. The basic fields of the model are 
then the (NxN)-ma t r ix  fields g and g+ (+ denoting hermitian adjoint) which, 
classically, satisfy the unitarity condition 

g+g = 1 = gg+ , (3.1) 

and are subject to a local H-invariance g ~ g h ,  g + ~ h + g  + which enforces the use 
of covariant derivatives 

Dug = Oug - gAu  , DuD~g = O,D~g - D~g A u  , 
(3.2) 

+ + + 
Dug =Oug + A u g  , DuD~g + =OuD~g+ + A , D ~ g  4", 

etc. Differentiating (3.1) gives 
4-  + 4-  4 .  

Dug g + g  D u g = O = D , g g  +gDug  • (3.3) 

In the quantum theory, products of field operators at the same point will in 
general not be well-defined, and one has to use some definite normal product 
prescription for subtracting the singularities. We suppose here that such a normal 
product prescription X[. • .] does exist, and that it is "reasonable" in the sense of 
maintaining the constraints (up to possible renormalization-dependent constants) 
and preserving the internal symmetry properties. Thus the definitions of the various 
composite fields in sect. 2 [eqs. (2.9)-(2.13) and (2.17)-(2.20)] and above [eq. (3.2)] 
can be transferred from the classical to the quantum theory by writing*g + for g-1 
and applying a normal product symbol to any product or commutator. Moreover, 

* For symmetric spaces of the non-compact type, where G is non-compact and does not admit any 
faithful finite-dimensional unitary representations, a quantum definition of g 1 is much more involved 
because g - I  will depend non-linearly on g. Thus, although in some cases (such as the duals of the 
real, complex or quaternionic grassmannians) this problem can be circumvented by using a suitable 
pseudo-unitary representation, we have for simplicity restricted ourselves to symmetric spaces of 
the compact type. 
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we require that 
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x[{7, g+ged  = cx[eled, 
(3.4) 

Ac[{Ttgg+C72] = c2¢'[{71{72], 

and, differentiating (3.4), that 

X[{7~D~g +g{72] +X[{Ttg +D~g{72] = 0 ,  
(3.5) 

W[{71D, ,gg  +{72] +.ac[tglgDug +{72] = 0 ,  

for all formal products t?x, {72 of g, g+ and their covariant derivatives, where c is a 
renormalization-dependent constant. 

Formulas (3.4) and (3.5) are the quantum analogues of constraints (3.1) and 
(3.3), respectively, and should be considered as part of the defining properties of 
the model. Other  constraints, defining G as a closed subgroup of U(N),  should be 
handled similarly. Finally, we require that under global G-transformations g-+ 

+ + + + 
g0g, g ~ g go and under local H-transformations g-+gh, g+-+ h+g , any normal 
product behaves precisely like its classical counterpart  (i.e. satisfies the correct 
Ward identities), and that, in particular, identities (2.15), (2.16), (2.22) and (2.23) 
are preserved in the quantum theory [with a normal product symbol in front of 
the commutators on the r.h.s, of (2.15) and (2.22)]. 

It should be mentioned at this point that in cases where standard techniques can 
be applied to construct normal products within the framework of renormalized 
perturbation theory [11], these requirements are indeed satisfied [5, 12]. 

The correct definition of the (first) quantum non-local charge, which is to be the 
quantum analogue of (2.29), requires the examination of the short-distance behavior 
of the commutator  between two currents. This behavior is supposed to take the 
form of a Wilson expansion 

[ ] ~ , ( x + e ) , ] ~ ( x - e ) ] = E C C ~ ) ~ ( e ) X [ { T k ( x ) ] ,  ( e 2 < 0 ) ,  (3.6) 
k 

where k labels a complete, linearly independent set of composite local operators 
aV'[{Tk (x )] of (canonical) dimension <~2. This is justified in view of the asymptotic 
freedom of this class of models [13]. Moreover,  due to e 2 < 0  and locality, these 
operators should take values in , ,  and they should be globally G-covariant and 
locally H-invariant. But the only operators which satisfy all these requirements are 
the following: 

D i m e n s i o n  O: - ; 

D i m e n s i o n  1: ]~ (x);  
(0)  ¢ ' 7 ( r )  (X'~ D i m e n s i o n  2:  J . v ( x )  and G , v ( x )  . . . . . .  ~.~. ]. 

In the proof, we shall for simplicity omit the normal product symbols: 
First, observe that g, g+ being dimensionless, any composite local operator  must 

be constructed from a chain of the type 

L t g L 2 g  ÷ • • • L2~ l g L 2 k g  ÷ ,  (3.7) 
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if it is to be globally G-covariant and locally H-invariant, and from a chain of the 
type 

L l g + L 2 g  • • • L 2 k _ l g + L z k g ,  (3.8) 

if it is to be globally G-invariant and locally H-covariant. Here  and below, the L 's  
are either the identity or products of covariant derivatives, and the total number 
of derivatives is equal to the dimension of the composite operator  under consider- 
ation. Moreover,  using the constraints (3.1) and (3.3), we can eliminate superfluous 
products g+g, gg+ and transfer the covariant derivatives from 8 + to g, so that the 
chains (3.7) and (3.8) can be rewritten in the form 

L l g g  + . . .  Lkgg + , (3.9) 

g + L l g  ' ' '  g + L k g ,  (3.10) 

respectively. Note also that because of 9 c u(N), we have to eliminate the hermitian 
parts of (3.9) and (3.10), and at least for operators of dimension ~2,  it turns out 
that this is in fact sufficient to construct operators which take values in y [and not 
just in u(N)]. Finally, the resulting opera to r s - inso fa r  as they are globally G- 
invariant and locally H - c o v a r i a n t - m a y  be decomposed into irreducible parts, 
without spoiling their internal symmetry properties, by using the Ad(H)-invariant 
decomposition (2.7). 

In more concrete terms, this strategy proceeds as follows: 
D i m e n s i o n  O: There is no candidate. 
D i m e n s i o n  1: There is a unique candidate, namely 

D ~ g g  + = - j~.  = gk~.g + . 

This is already antihermitian and does indeed take values in 9 [rather than just 
in u(N)]. The decomposition of k .  into irreducible parts is trivial and shows that 
/'. is the basic composite operator  of dimension 1. 

D i m e n s i o n  2:  There are two linearly independent candidates, namely 

D . g g  +D~gg +, 

D ~ D , g  g + - D~,g g+ D ~ g  g + = 0~, ( D , g  g +) = - O . j , ,  . 

Due to 

(D~gg+D~,gg+)  ÷ = gD~g+gD,~g + = D , , g g + D ~ g g  + , 

( ~ , , L )  ÷ = - o , , L ,  

the antihermitian parts are 

1 + + + + 1 1 + 
~(D~gg  D v g g  - O , g g  D , g g  ) =~[/'~,,/'v] = ~G,~ : ~gF~,~g , 

O.i~ = J~v + G~,~ = g ( D , k ,  + F ~ , ) g  + , 

and do indeed take values in ~ [rather than just in u(N)]. The decomposition of 
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F ~  and of D~k~ +F.~ into irreducible parts then shows that J~.~ and G (°) G (~) / ~ v ,  • • • , ~ v  

are the basic composite operators of dimension 2. 
Using this result, together with (2.21) and the identity (2.23), we can write the 

Wilson expansion (3.6) in the form 

[/.(x +~),i~(x - ~ ) ]  = C~,(~)L(x)+D~°~(e)(o~L)(x) 

r'~(i)o'oi x . . - - , ( i )  ~ + l-.I,v Le)l.Jo-pLX), ( e 2  < ~  0 )  , (3.11) 
i = 0  

with the subsidiary condition 

• -,(i),,ol~a _ 0 (3.12) / - - J  p .v  ~ e )  - -  • 
i = 0  

D , v ( e )  to (Equivalently, we could have required ~o be symmetric in (r and 03 The 
tensorial nature of the linearly divergent coefficient function C°,v(e) and the 
logarithmically divergent coefficient functions ~o r).)~o D . v  (e) and (e) can be deter- ~ b ~ u  

mined from general principles such as covariance (under the full Poincar6 group, 
i.e. including parity and time reversal), current conservation, etc. This derivation 
proceeds along the same lines as for the S N-z model [4] and CP ~-1 model [14], 
and we shall not repeat it here. 

Following [4, 5], we now define the (first) quantum non-local charge as the limit 

Q(1)(t) = lim Q~I)(t) (3.13) 
3 ~ 0  

of a cutoff charge 

Q~l)(t) = [ dyl dy20(ya-y2)[jo(t ,  yl), jo(t, Y2)] 
al y l - - Y 2 1 ~ 8  

where 

- Z ( 6 )  I dyjl(t, y ) ,  (3.14) 

Z(6 )  = const • In (/x6). (3.15) 

Here,  tz is a mass parameter,  and the constant is chosen in such a way as to cancel 
the linear divergence (for 6 ~ 0) in the first integrand on the r.h.s, of (3.14). 

Concerning conservation of this charge, we distinguish two cases: 
(i) ff is simple. (As mentioned in the introduction, this is understood to include 

the case where K is one-dimensional and abelian.) There  is only one non-zero 
summand in the decomposition (2.4), and (3.11) simplifies to 

[j~,(x+e),jv(x-e)]=C°~v(e)l'o(x)+D~°~(e)(O~jo)(x), (62<0).  (3.16) 

Following [4], one may then verify that the charge Q(X) is indeed conserved. 
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(ii) ,'~ has non-trivial ideals. (As mentioned in sect. 2, we are assuming the center 
g0 of ,~ to be at most one-dimensional.) There are at least two non-zero summands 
in the decomposition (2.4), and the last term on the r.h.s, of (3.11) provides an 
anomaly, so that the charge Q(1) will in general no longer be conserved. This 
happens, for example, in the CP N-~ model, where the coefficients have been 
calculated within the 1IN expansion and have been shown to be non-zero to leading 
order in 1/N [5] and, more recently, to all orders in 1/N [14]. 

4. Examples 

To conclude, we want to facilitate the comparison of our result with earlier work 
[4, 5] by exhibiting the explicit form of the fields j,~, J~,~ and v~,~,~(°)..., v~(r)-- the 
basic building blocks for the Wilson expansion (3 .11)- in  the case of real and 
complex grassmannians. 

For the complex grassmannians SU(N)/S(U(p)×U(q)), where N =p+q, ~ is 
the Lie algebra su(N) of all traceless antihermitian complex (N × N) matrices, for 
which we use the block matrix notation: 

('_~,) $ N----(( ' ' ' )  ( ' ' ' ) )  ~P (4.1) 

N ('~") ('~,') ~ q p q 

Then (2.1) holds with 

+ = - A ,  B + = - B ]  (4.2) 
' = { ( 0  A O ) / A t r A + t r B = O  I '  

._-/( ° -0-+)) 
and (2.4) holds with r = 2 and 

ff° = [ ih( 1/pO ---° 

O ] / A + = - A ~ s u ( p  ) 
0 1 / t r A  = 0 J 

0 ) / B + = - B ~  
B } /  tr B = 0 / ~ s u ( q ) "  

(4.4) 

(4.5) 

Furthermore, the field g is written in the form g = (X, Y), where all matrices 
have N rows and g, X, Y have N, p, q columns, respectively. In these terms, the 
constraints 

g+g = l u ,  gg+ = 1N, 
become 

X + X =  lp, X + Y = 0 ,  Y + X = 0 ,  Y + Y =  lq, (4.7) 

(4.6) 
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X X  + + Y Y +  = 1 ~ ,  (4.8) 

respect ive ly .  Next ,  using cova r i an t  der iva t ives  

D g X  = O~.X - X X + a ~ , X ,  D~,DvX = c3~,D~X - D ~ X X + O ~ . X ,  
(4.9) 

D . Y = O . Y -  YY+O, .Y ,  D~.D~Y=O~,D~Y-D~YY+O~.Y ,  

etc. ,  we get  

A~, = X  O~X 
= , wi th  v + , (4.10) AN A~. A~, = Y O~,Y 

4- 

k~, = + , (4.11) 
Y D~,X 0 

0 '~ x + + - D ~ X  D,~X F~V)  with  F~v =D,~X  D ~ X  (4.12) 
' F ~ \  + + ' = D . Y  D ~ Y - D ~ Y  D~,Y 

X 

0o ovx x+o; vY) D , k v  = ( \ y  , (4.13) 

while  (2.10) and (2.14) ho ld  wi th  

o o) 
~, = ( t r A  - 1 / q  1/q ' 

X 

""~ 0 0 ' (4.15) 

. = y y , (4.16) 
A . -  1/q t r A ~  

and  

v,(o) = ( t r F X )  1 p 0 = ( t r F V )  p 0 (4.17) 
--"~ - 1 / q  1/q ' 

F ( I ~ = (  F " x - 1 / p t r F ~ ' x  ~) (4.18) 
/xv 0 

'~ F ,~  - 1/q tr F~Y 

Now in t roduc ing  the  an t i symmet r i c  t ensors  

X X + + + G ~ , , = X F . , , X  = X D ~ X  D , , X X  + + - X D ~ X  D ~ X X  

= D . Y D ~ Y  + - D , , Y D . Y  + , (4.20) 

G ~ \  Y + + ÷ + + = Y D ~ Y  D v Y Y  - YF~.vY = Y D v Y  D . Y Y  
+ + 

= D , .XD~X - D v X D  ~.X , (4.21) 
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which obviously satisfy 

G~ x + G v = G ~  = --~v~(°) _v.~-~(1) _v~4-~(2), (4.22) 

(~r~ o) G (~) (7r(2) we can rewrite the gauge- invar iant  fields/ ' . ,  J .~ and _ , ~ ,  .v, --~v purely in terms 

of the field X or  purely in terms of  the field Y: 

/~ = X D ~ X  ÷ - D ~ X X  ÷ 

= Y D .  Y +  - D .  Y Y + ,  (4.23) 

= D . D ~ X X  - X D . D ~ X  + G . ~  

D . D ~ y y  + + G r = - Y D ~ D ~ Y  + ~ ,  (4.24) 

G¢O~ = __1 (tr F x ~ ) ( N X X  + - p  1N) 
Pq 

1 
= - -  (tr F s . ) ( N Y Y  + - q  1N),  (4.25) 

Pq 

G~. x _1(  .v = G . ~  tr F X ~ ) x x 4 -  
P 

= D"YD~Y +_D~YD"Y+_l (tr F Y ) ( Y Y  +- IN), (4.26) 
P 

G(~) v 1 v ~ = G ~  - -  (tr F ~ )  Y Y  + 
q 

+ + 
= D . X D ~ X  - D . X D ~ X  - -  (tr F x . ) ( X X  4-- 1N). (4.27) 

q 

Thus we see that  the true complex grassmannian model ,  with p I>2 and q i>2, 

contains two linearly independen t  opera tors  which can give rise to anomalies.  If 
p = 1 or  q = 1, we are dealing with the CP N-~ model  and have ~ 1  = {0} o r  ~ 2  = { 0 } ,  

respectively,  so that  writing z instead of X or  Y, respectively,  

a l z v  ~--- 4- z + + 
zz  F . ~  + D . z D ~ z  - D ~ z D . z  (4.28) 

+ z + 4- 
is the curl of  the current,  but  zz  F . ~  ( o r D . z D ~ z  - D ~ z D . z  ) for itself is a linearly 
independen t  ope ra to r  which can give rise to an anomaly.  This does not,  however ,  

apply to the case of the CP t model ,  where  p = q  = 1 and ¢~1 = ¢¢2 = {0}, so that  

z G.~ = F . ~  (2zz  + - 1),  (4.29) 

and so there can be no anomaly.  
For  the real grassmannians  S O ( N ) / S O ( p )  × SO(q),  where  N = p + q, the previous  

analysis applies if we replace + (hermitian adjoint) by T (transpose), discard all 
imaginary parts  and observe  that now if0 = {0}. Thus  we see that the true real 
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g r a s s m a n n i a n  m o d e l ,  w i t h  p t>2 a n d  q / > 2 ,  c o n t a i n s  o n e  l i nea r ly  i n d e p e n d e n t  

o p e r a t o r  w h i c h  can  g ive  r ise  to  an  a n o m a l y .  I f  p = 1 o r  q = 1, we  a re  d e a l i n g  w i t h  

t h e  S N-1 m o d e l  a n d  h a v e  ,¢1 = {0} or  g2 = {0}, r e s p e c t i v e l y ,  so  tha t  wr i t i ng  q i n s t e a d  

of  X o r  Y, r e s p e c t i v e l y ,  

T T 
G~,~ = O~,q O,,q - Ovq O,,q (4 .30)  

is t he  cur l  of  t h e  cu r r en t ,  and  so  t h e r e  can  b e  n o  a n o m a l y .  
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