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For two-dimensional non-linear o-models on riemannian symmetric spaces G/II, there 
exists a natural formulation in terms of a single gauge-invariant G-valued field. The solu- 
tion spaces of the G/H models are subspaces of the solution space of the principal G 
model. For hermitian symmetric spaces, the (anti-)instanton solutions are fixed points 
under the dual symmetry. 

1. Introduction 

The non-linear o-models are simple and prominent examples for field theories of 
geometric nature. Their prototypes are the non-linear o-models on the spheres S N, 
whose classical as well as quantum theoretical properties have been investigated by 
a number of authors over the last couple of years. 

In a recent paper [ 1 ], we have started a general analysis of the classical structure 
of the two-dimensional non-linear o-models on homogeneous spaces G/H. Our aim 
was to disentangle certain structures of these models from their superficial depen- 
dence on properties of the orthogonal group and to find their appropriate differen- 
tial geometric setting. We formulated the non-linear o-model on G/H in terms of a 
G-valued field with gauge symmetry, where H is the gauge group and G is the global 
symmetry group. For the case of riemannian symmetric spaces [2,3], we were then 
able to give a general construction of the dual symmetry and the related set of 
infinitely many conserved non-local charges [4]. 

In the present communication, we continue our analysis in the framework of 
riemannian symmetric spaces. As our main result, we show that in this case there 
exists a natural gauge-invariant formulation of the o-model dynamics in terms of a 
single G-valued field Q which is subject to a quadratic constraint. This is based on 
an embedding of the symmetric space G/H into the group G - going back to 
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Cartan [5] - which realizes the former as a closed totally geodesic submanifold of  
the latter, characterized by a simple quadratic condition. As an immediate con- 
sequence, the solution spaces of  all o-models on symmetric spaces with the same 
global symmetry group G appear as subspaces of  the solution space of the principal 
G model. This means that a complete description of  the space of solutions to the 
principal G-model - as intended in [6] - implies a complete description of the 
spaces of  solutions to all G/H models where G/H is symmetric. In this respect, our 
work clarifies and generalizes an idea of  Zakharov and Michailov [6]. It also sheds 
new light on the role of  tile gauge group H (foi the classical dynamics) because in 
the gauge-invariant formulation the latter is coded into the constraint. 

For the quantum dynamics, tile situation is less clear: whereas the global sym- 
metry group G as well as tile employed representation are essential ingredients in 
the computation of  bootstrap S-matrices [7- 9], tile influence of the stability group 
H is obscure. For example, lacking a reliable field-theoretic check, we do not know 
which of  the complex grassmannian o-models, if any, leads to the S-matrix with 
adjoint SU(N) symmetry [9]. 

In the second part of  the paper, we explain how in the case of  hermitian sym- 
metric spaces, the differential equations of  the dual symmetry can be integrated 
explicitly on the (anti-)instanton solutions. An immediate consequence of  the 
resulting formula is the fact that (anti-)instantons are fixed points under the dual 
symmetry.  

2. Tile role of  tile principal field 

First of  all, we briefly describe tile geometric framework we are dealing with 
(tile reader will find all necessary background information in the books by Helga- 
son [2] and Kobayashi-Nomizu [3]). 

Let us start with a riemannian locally symmetric space 1~. From IVl we may go 
over to a riemannian globally symmetric space M which is locally isometric with 1~ 
and which, without loss of  generality, may be assumed to be simply connected. 1~ 
splits into a direct product 

/ ~ = M o × M _ × M + ,  

where M o is a euclidean space and M_ and M+ are riemannian globally symmetric 
spaces of  the compact and non-compact type, respectively. Since Mo is flat, the cor- 
responding sector of  the o-model is a free field theory, and consequently we shall 
ignore its contribution completely in the following. We stress, however, that there 
is no reason to drop the non-compact part, as there are important examples of  
physical interest: for example, the Sp(2, IR) invariant Gross-Neveu model is closely 
related to the non-linear o-model on 0(2,  1)/O(2) which is a symmetric space of the 
non-compact type [10]. So we consider 

M = M _ × M + ,  
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and defining G+ (G_.) to be the identity component of  the group of isometries of  
M~(M_) and H+(H_ ) to be the stability g,oup of some arbitrarily chosen point of  
M+(M_), we may write 

M =M_ X M+ =G_/H_ X G~/I-i+ =G/H, 

where 

G = G _ X G , ,  H = I I  X H ~ .  

There exists an involutive automorphism o of  G such that 

(Go)o C H C Go , 

where Go is the set of  fixed points of  o and (Go)o is its identity component.  The 
tangent map ~ = doll splits the Lie algebra g = g_ m g+ of G into eigenspaces 
h = h _  m h+ and k = k_  m k+ corresponding to the eigenvalues +1 and -1  of/r ,  
respectively. On g, we have an Ad(G)-invariant non-degenerate symmetric bilinear 
form ( , )  which is positive definite on k. Take on g+ tile Killing form of G+ and on 
g_ the negative of  tile Killing form of G_.  This form on g and its restriction to k 
extend to a bi-invariant pseudo-riemannian metric ( , )  on G and to a left G-invariant 
riemannian metric ( , ) on G/H, respectively. 

Now consider the non-linear o-model on the riemannian symmetric space G/H. 
In terms of  the gauge covariant G-valued field g [ 1 ] the action is given by 

S = -~ f ' d 2 x  (Dug, D " g ) ,  (1) 

and the field equations read 

DuDtag - Dugg-1DUg = 0 ,  (2) 

where 

Dug =g  ~(1 - o)(g- 'c3ug ) (3) 

is the horizontal part of  i)ug. Under the above assumptions, the invariance of S 
under global left G translations implies the conservation law 

a~/~" = 0 (4) 

for tile Noether current 

i~ = - D ~ g g  -~ • (5) 

In fact, (2) and (4) are equivalent. 
Next, let us introduce the gauge-invariant formulation of these models. The 

elements of  H being fixed points of  the involution o, the field 

O = o ( g ) g - l  (6) 
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is gauge invariant. With the help of  tile fornmla 

O**o(g) = o(g) 6(g--l O~g) , (7) 

we compute 

{13uQ = ODugg- I (8) 

so that 

/u = ~ Q - ' a u Q "  (9) 

Thus from (4), (9) and (6) we find that the gauge-invariant G-valued field Q obeys 
the following two equations: 

a ~ Q  - 3uQQ-I~UQ = 0 , (10a) 

o(Q)O = 1. (10b) 

Eq. (10a) being the field equation for the principal field, this tells us that the solu- 
tion space of  the G/It  model appears as a subspace of the solution space of the 
principal G model due to the following theorem. 

Theorem [5]: The smooth mapping 

43: G/H -+ G , 

g l l  ~+ q,@H) = o(g)g - l  (11) 

is a diffeomorphism of  G/H onto the closed totally geodesic submanifold 

M o = { Q E G I  o(Q)Q = I} (12) 

of  G. 
For the proof, let us first define a smooth mapping 

qs: G--+ G , 

Q ~ q s ( Q ) =  o (Q)Q.  (13) 

The kernel of  its tangent map TO~: TQG -+ To(r2)oG at Q is 

Ker TQg' = Qk(2 , (14) 

where 

k O = {X@ gl o(X) + Ad(Q)X = 0} . (15) 

Hence the rank of  q; at Q is equal to the dimension of  h and independent of  Q, so 
that by the constant rank theorem [2], M o is a closed submanifold of  G. Next, take 
any geodesic r in G which is tangent to M o at Q; it has the form rr = Q exp t X  with 
X C  g, where 

QX E Tc2M,~ = Ker ToqJ = Q k  O , 
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i .e.,  

(~(X) + Ad(Q)X = O, 

implying 

o(rt)r t  = o(Q) exp t o (X)Q exp tX  = 1 . 

Hence M o is totally geodesic. Obviously, Mo contains the image of ~, so that we 
are left with proving the converse inclusion M o c im op. To this end, let Qo be any 
point in Mo. There always exists a finite number of points Qi in Ma and of geodesics 
ri in Mo joining Qi-  l with Qi, 1 <~ i <~ N, such that QN = O(gN)g~¢ 1 E im qb. As 
shown before, we can write 

QN-I  =Q~v exp tX, with X E  k Q N C  g ,  

for some suitable value of the parameter t. But this implies 

o(exp(-~  tX) gN )(exp(--~X) gN ) -1 

= exp(-½to(X)) o(gN)gF¢ i exp(~/X) 

= exp(~t Ad(QN)X ) QN exp(~-tX) 

= QN exp tX  

=aN--l, 

i.e., QN- l E im ~. Repeating the argument for the Qi with 0 <~ i ~< N, we see that 
Qo E im ~p, i.e., Mo c im ¢P, and the proof is complete. 

As anexample, let us consider the complex Grassmann manifold U(m + n)/  
U(m) × U(n). Its involution is given by 

o (g )=®g®_l ,  ® = ( ~ m  0 ) (16) 
0 - - !  n ' 

and writing g = (X, Y) E U(m + n), where X(Y) is a matrix with m + n rows and 
re(n) columns, we find from (6) 

Q = O(2P - l ) ,  

and P = X X  + projects onto the m-dimensional subspace of ~m+n spanned by the 
column vectors of X. Thus we arrive at the well-known formulation of the grass- 
mannian o-models it) terms of projector fields [6,1 ]. Eq. (10b) is the generalization 
of the "reduction condition" g2 = 1 of [6]. 

The equations for Q have the obvious discrete symmetry 

Q ~ Q - l  . (17a) 

In terms of the g fields, it is given simply by 

g ~ o(g). (17b) 
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In tile light of  (10a,b), tile dual symmetry and tile non-local charges of  tile G/H 
model are merely restrictions of  tile respective structures in the principal G model. 
For example, the dual symmetry [ 1 ] is given by 

Q ~ Q(V) = o(U(V))QU ( v ) l  , (18) 

where U (~t) is defined by tile compatible differential equations 

auU (v) = ½ U('r)Q - l  ((l - c(~))OuQ -s(~)euuO~Q} . (19) 

Here, 7 = e/X, c(~) = cos ~, s(h) = sin X in the euclidean case and 7 = e±X, c(~) = 
-+cosh ~,, s(X) = -+sinh ,I in the Minkowski case. Observe that tile transformation law 
(18) is compatible with (10b). 

In addition, we note tile following property of  (19): 

U ~-v) = o(U(~)) U (-  ~) (20) 

(e l  [4]), where an appropriate normalization of  U (v) has been assumed. Eq. (20)is  
easily derived from the formula 

6(Q -1 auQ ) + OuQQ - I  = O, 

which follows from (10b). In particular, 

U( - t )  =Q,  Q(-1) = Q - i  . (21) 

3. instantons and dual symmetry on hermitian symmetric spaces 

Finally, let us turn to the question of instantons in the framework of symmetric 
spaces. As is well known [ 11,12], all o-models on K/ihJer manifolds possess instan- 
tons solving self-duality equations which are nothing but the Cauchy-Riemann 
equations. Concerning the relationship of  instantons and dual symmetry,  we there- 
fore confine our attention to the case where G/H is a hermitian symmetric space 
rather than just a riemannian one. Thus we have an Adcl(H)-invariant complex 
structure (i.e., a concept of multiplication by i) on fzw~ich extends uniquely to a 
left G-invariant and right H-invariant complex structure on the horizontal bundle of  
G ~ G/H and to a left G-invariant complex structure on G/H. 

(Anti-)instantons are the solutions of  tile (anti-)self duality equations 

euvDvg = (+) iD~g. (22) 

Under the additional assumptions that H is compact,  G is semisimple and acts 
effectively on G/H, there exists [3] an element J in the center of  h which induces 
the complex structure according to 

[ J ,X]  =0 ,  f o r X ~ h ,  [ J , X ] = i X ,  f o r X C k  . (23) 

With the help of  J,  we can explicitly integrate the differential equations for the dual 
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symmetry [ 1 ] on (anti-)instantons g: 

U or) = g exp((+_)XJ)g- l (24) 

In fact, using (22) and (23), it is a straightforward exercise to check that (24) satis- 
fies the correct differential equations. 

Consequently, 

g(y) : g exp((+_)XJ), 

which means that on (anti-)instantons the dual symmetry reduces to a gauge trans- 
formation (cf.  [13,1]). 

As aRe×ample, let us again consider U(rn + n)/U(m) X U(n). We have 

= Ccomplex m X n matrix . 

Then in k, multiplication by i is given by C-+ iC and 

(; '(). 
It is induced by 

I n 0 1 
i m + n  [ 1 "=[ l' 

0 - i  - m 
m +rl 

and (24) takes the form 

U (v) = e(-~)iXm/(m+")(! - - (1  - - (7) )P)  

(cf. [11). 
Conversely, however, not every fixed point of  the dual symmetry is an (anti-) 

instanton with respect to the complex structure of the space under consideration. 
For example, take any instanton of  the 0(3) /0(2)  rnodel [ 14] with non-zero 
topological charge. It may equally well be regarded as a solution of  the ¢pN model 
(N >t 2) with vanishing gauge field and, consequently, vanishing topological charge. 
So it is not an instanton of  the ~pN model, but of course a fixed point of  the dual 
symmetry both of  the 0(3) /0(2)  model and the ~pN model. 
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