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We analyze the dual symmetry which is responsible for the existence of infinitely 
many conserved non-local charges in the classical two-dimensional non-linear a models. 
For compact global symmetry groups, we prove that the a model has the dual symmetry 
if and only if the field takes values in a symmetric space. 

I. Introduction 

One of  the most interesting features of  the classical two-dimensional O(A r) invari- 
ant non-linear a models is the existence of  a highly non-trivial hidden symmetry 
which was discovered in 1975 by Pohlmeyer [1 ]. Starting with one solution of  the 
classical equations o f  motion, this "dual symmetry" generates a whole one-parame- 
ter family of  new solutions and gives rise to the existence of  infinitely many con- 
served non-local charges [2]. 

It is well-known that these charges can properly be defined as operators in the 
quantized u model [3]. Their action on the asymptotic states strongly constrains 
the physics of  the o models: in each scattering process, the number of  particles is 
conserved. On the basis of  general axiomatic assumptions this fact leads to the fac- 
torization of  the S-matrix into two-body amplitudes [4] which have been calculated 
exactly [5]. 

The existence o f  the dual symmetry is not specific .to the O(A r) invariant o models. 
In fact, the question whether all a models based on homogeneous spaces G/H should 
be integrable was one of  the motivations for the introduction of  the ~paV o models 
[6]. The outcome of  these investigations was that there are very special orbits of  the 
adjoint representation of  SU(A0 which admit a dual symmetry transformation, 
namely the complex Grassmann manifolds 

u(m + n)/(U(m) x U(n)). 
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On the other hand, the principal field introduced in [8] - it corresponds to the 
homogenous space G/{1} - has the symmetry also. So, up to now, we have a variety 
of  integrable o models but we lack a unifying point of  view connecting all these 
models. 

This rather confusing situation was the starting point of  our investigation. In 
sect. 2, beginning with an intrinsic definition of  the o model on G/H, we derive nec- 
essary and sufficient conditions for the existence of  the dual symmetry, and conse- 
quently of  the higher conserved charges, in terms of  the Lie algebras of  G and H. 
These conditions involve two, at first sight different, situations. In sect. 3 we discuss 
the principal field and thereby show that both situations are essentially identical. Our 
general considerations are illustrated in sect. 4 by the example of  the Grassmannian 
fields containing the O(N) invariant a models as well as the CpN o models. 

2. The general result 

Let G be a connected Lie group with Lie algebra g and H C G be a closed sub- 
group with Lie algebra h c g such that the group Adg(H) of linear transformations 
on g of  the form Ad(h), h E H, is compact *. Then there exists an Adg(H) - invari- 
ant inner product ( . ,  .) on g %, and writing k for the orthogonal complement h i of 
h and 7r, 1 - 7r for the orthogonal projection from g onto h, k with kernel k, h ,  
respectively, we have Adg(H) k c k, and in particular 

[h, h] c h ,  [h, k] C k .  (2.1) 

Let G/H be the homogenous space of  left cosets gH of  H, g E G, and consider the 
natural projection p: G ~ G/H as a fibration: this defines a principal H-bundle on 
which G operates transitively from the left. In other words, G acts on G and on G/H 
by left multiplication (transitively on both), while H acts on G and on G/H by right 
multiplication (trivially on G/H), and both actions are compatible with the projec- 
tion p. This principal H-bundle carries a natural left-invariant connection, as well as 
other additional structures. On the one hand, the Adg(H)-invariant inner product 
( . ,  .) on g and its restriction to k extend uniquely to a left G-invariant and right 
H-invariant Riemannian metric on G and to a left G-invariant Riemannian metric on 
G/H, respectively, which will both be denoted by ( . ,  .) as well. On the other hand, 
there exist two distinguished 1-forms on G with values in g, namely the left-invariant 
Maurer-Cartan form g - l d g  and the right-invariant Maurer-Cartan form dgg- l .  The 
natural left-invariant connection mentioned above can now be described in several 
equivalent ways: 

* Ad denotes the adjoint representation. 
t Observe that we do not have to assume G itself, or even H itself, to be compact, although H 

will have to be compact if it does not meet the center of G except at the unit element. How- 
ever, ff G is compact, the inner product (., .) on g will be Ad(G)-invariant, and the Rie- 
mannian metric (., .) on G will be bi-invariant. 
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(a) Left translation of  the various tangent spaces of  G to the tangent space g of  
G at the unit element takes the vertical spaces to h and the horizontal  spaces to k. 

(b) The horizontal  bundle is the orthogonal complement of  the vertical bundle. 
(c) The connection form is the vertical part of  the left-invariant Maurer-Cartan 

form on G: 

A = rr(g- ldg) .  (2.2) 

For simplicity, we write rr for the vertical projection and 1 - rr for the horizontal  
projection at each point.  

With this machinery at hand, we study non-linear a models in two dimensions, 
where the field q(x)  takes values in G/H and is (locally) lifted to a f ie ldg(x)  taking 
values in G, which leads to a natural equivalence of  two such liftings: 

g2 (x) ~ g l  (x) ¢~ there exists a field h (x) taking values in H such that 

g2(x) = g l  (x) h (x ) .  (2.3) 

This is the by now familiar method [7,9] of  introducing a gauge symmetry into a 
non-linear o model, H being the gauge group. It implies that on gauge-invariant 
quantities such as the field q (x), ordinary derivatives are relevant, while on gauge 
covariant quantities such as the field g(x),  they have to  be replaced by covariant 
derivatives. In particular, we define * 

Dug = bug - gA u , (2.4) 

which can also be written in the form 

gA u = ~r(bug ) = vertical part of  bug ,  (2.5) 

Dug = (1 - 7r)(bug ) = horizontal  part  of  b u g .  (2.6) 

Using these covariant derivatives, we introduce a gauge-invariant current 

JU = ~ u g g  - 1  ' (2.7) 

and a gauge-covariant current 

k u = a g - l D u g  = ~(1 - rr)(g - 1 b u g  ) , (2.8) 

where a E IR is some suitable constant introduced for later convenience. Again, the 
gauge transformation law (g -+gh implies ]u -+iv, ku -+ h-aku h) dictates the kind of  
derivatives to be used; in particular 

Dukv = bukv + [A u, kv] • (2.9) 

* In expressions likegAu, g- l~ug , Dugg-1 etc., the simplified product notation stands for the 
action of G on its tangent bundle TG by left and right translations. 
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The action for the non-linear o model is 

S = ½ : d Z x ( 3 s q ,  3Uq) = ~ : d 2 x ( D u g ,  DUg),  (2.10) 

and the field equations read 

DsDSg  - D s g g - l D S g  = 0 .  (2.11) 

They imply that is is conserved and k s is covariantly conserved: 

3uju = 0 ,  (2.12) 

D u k  u = O. (2.13) 

Due to (2.1) and 

3 s A  v - 3vA s = - r r (g -13ugg -13vg )  + 7r(g-13vgg-13ug) 

= --rg[g-lDsg + A s, g - l D v g  + Av] , 

the curvature form is 

Fur = as A v - 3vA s + [As, Av] = -Tr[g- l  Dsg,  g - l  Dvg] . (2.14) 

Observe that in this formulation o f  non-linear a models, the two groups H and G 
play entirely different roles: H is a gauge group, while G is a global symmetry group. 
In particular,] is just the Noether current corresponding to the left G-invariance o f  
the theory. To tie up with the usual notation, we introduce (local) coordinates ~, ~? 
which are complex coordinates in the Euclidean case and light-cone coordinates in 
the Minkowski case: 

= 1~ = ½(x - i y ) ,  ~7 : ½z = ~(x + i v ) ,  

3~ = 23/3-f = 3 o + i31 , a n = 23/3z = 3 o - i a  a , 

= l ( t  + x ) ,  ~? = l ( t -  x ) ,  

~=30+31 , 3n=30-- ~l , 

The action for the non-linear o model becomes 

f _1 f d z x ( D ~ g ,  Dng) (2.10) S= ~1 d2x(3~q, 3nq) _ ~ 

and the field equations read 

D~ Dng + DnD~g - D~gg- l  Dng - D n g g - l  D~ g = 0 ,  (2.11) 

while the conservation laws take the form 

3dn  + a n h  = o , 

D~ k n + D n k~ = 0 ,  

withx  = x  ° = x o , y  = x 1 = x 1 ,  

(Euclidean case) , 

with t = x ° = x o, x = x a = - x a ,  

(Minkowski case). (2.15) 

(2.12) 

(2.13) 
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and the curvature form is 

F~n = ~ A  n - ~nA~ + [A~,An] = -Tr[g-lD~g,g- lDng] . (2.15) 

According to the standard strategy [1,2,6], our definition of  the dual symmetry is 
based on the following one-parameter family of  differential equations 

a~ c~r) -- (1 - v -1 )  v( r )  h = - ~ ( 1  - ~,-1) t C r ) D ~ g g - 1 ,  

an U(r) = (1 - 7) U(r)]n =---~(1-,,[)U(r)Dngg -1 . (2.16) 

] being gauge invariant, so is the G-valued function U (r). Existence and uniqueness 
of  U (r) (up to a constant factor which is specified by setting U (r) = ~ at some pre- 
scribed point of  space-time) are guaranteed by the Frobenius theorem [10] if the 
expression 

(1  - 7 )  ~)~./~ - ( 1  - -  , ) , - 1 )  Or/./~- + ( 1  - 7 - 1 ) ( 1  - 7)[]~,]n] 

vanishes. Due to (2.12), this integrability condition reduces to the 7-independent 
equation 

a~Jn - bn]~ + 2[/~,]n] = 0 .  (2.17) 

But 

~Jn - ~nJ~ + 2[j~,Jn] = o~g(2ot - 1 - rr)[g-lD~g,g-lDng] g - 1  . 

This leads us to distinguish two cases: 
Case A: [k, k] C h. This implies 7r[g-lD~g,g-lDng] = [g- lD~g,g- lDng] ,  

and to satisfy (2.17), we choose a = 1. 
Case B: [k, fz] C k. This implies 7r[g-lD~g,g-lDng] ; 0, and to satisfy (2.17), 

we choose a = ½. Notice that in this case, F = 0 and [9, /z] C k, so that the natural 
connection in p: G -~ G/H is flat and right-invariant as well as left-invariant. 

Before commenting on the significance of  these two cases, let us complete our 
discussion of  the dual symmetry. 

Case A. The U (r) generate a one-parameter family of  transformations on the 
space of  solutions o f  the equations of  motion simply by left translation 

g ~ g(r) = u(r )g .  (2.18) 

We have gO) =g  and 

O~g(r) = 7-1U('r)D~g + g(r)A~, 

where u(r)D~g is horizontal and g(r)A~ is vertical, which implies 

Dtr)g(r) = 7 - '  u(r)D~g , Air) =A~ . (2.19) 
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Similarly 

D('r)g ('y) = 3' U('r)Dng , A ('y) = A n . (2.20) 

Thus the action (2.10) is invariant under the transformations (2.18), and solutions 
of  the field equations are taken to solutions o f  the field equations. 

1 .  Case B. Due to the factor a = ~ in the definition of/ ' ,  the t ransformation (2.18) 
does not  leave the action invariant; thus it has to be replaced by a somewhat  more 
complicated ansatz. To this end, let us consider the following one-parameter family 
o f  differential equations 

D~ 123') = (1 - 3 '-1) iA~')k~ = ½(1 - 3 ' - 1 )  V(q,)g-lD~g ' 

D n I/(3') = (1 - 3') IA'Y)k n = ½(1 - 3') I A T ) g - l h n g .  (2.21) 

k being gauge covariant (g -->gh implies k -+ h - l k h ) ,  so is the G-valued function 
I27) (g ~ g h  implies 127)-+ lAy)h)" Thus (2.21) can be rewritten in the form 

a~ IA'~) =(1 - 3'-1) V(-Y)k~ + V(-r)A~ = ½(1 - 3'-1) V( ' r )g- lD~g+ V(V)A~, 

a n lA'r)= (1 - 3') IA'r)k n + 12"r)A n : 1(1 - 3') 12"~)g-lDng + IA'Y)An. (2.22) 

Again, existence and uniqueness o f  IA'r) (up to a constant factor which is specified 
by setting V ('r) = ll at some prescribed point o f  space-time) are guaranteed by the 
Frobenius theorem [10] if the expression 

3~((1 - 3') k n + A n )  - On((1 - 3'-1)  k~ + A 0 

+ [(1 - 3'-1) k~ + A~, (1 - 3') k n + An] 

= (1 - 3') D ~ k  n - (1 - 3'-1) Dnk~ + (1 - 3 ' - 1 ) 0  - 7) [k~, k n] + F~n 

vanishes. Due to (2.13) and because o f  F~n = 0, this integrability condit ion reduces 
to the 3'-independent equation 

D~ kn - Dn k~ + 2 [k~, kn] = 0 .  (2.23) 

But 

D ~ k  n -  D n k  ~ + 2[k~,kn]  = -½F~n = 0 .  

Now the U ('r) and IA'r) generate a one-parameter family of  transformations on the 
space of  solutions o f  the field equations by 

g --)-g('~) = U(q')gV ( ' t)-I  V O) . (2.24) 

We have gO) = g  and 

3~g('r) = 7 -1  U('Y)D~gV('r)-I V O) + g("r)A~ , 
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w h e r e  U ( 3 ' ) D ~ g V  (~ ')-1 1/(1) is horizontal and g(Y)A~ is vertical, which implies 

Dt'Y)g(y) = 3'-1 U('r)D~gV("/)-I V(I), At3')  = A~. (2.25) 

Similarly 

D(Y)g(3') = 3' U('Y)DnglA'r)-I IAO, A~ "r) = A , .  (2.26) 

Thus once again, the action (2.10) is invariant under the transformations (2.24), and 
solutions o f  the field equations are taken to solutions o f  the field equations. 

In both cases, the current transforms according to 

]~ ...>liT)= 3'--1 U('y)jl ~ U(T)- I  , 

]n ---> ](v) = 3" U(Y)jn U(~')-I , (2.27) 

and performing a Taylor expansion in w = (7 - 1)/(3' + l) around w = O, one obtains 
the desired infinite series of  conserved (non-local) currents and charges [2] starting 
with 

QI = . f  d x ] o ( t , x ) ,  

+oo X +~ 

o2 = 2 f  dx f Jo(,, y)Jo(,, x) - f dx j,(,, x). 

For the convenience o f  the reader, we rewrite the most important formulae in 
terms of  the standard (local) coordinates x u, using the Hodge star operator which 
on 1-forms in two dimensions is given by *c,o u = euvoov. 

Euclidean case: with the conventions 3' = e ix and e °l =eol  = 1, and observing 
that eUKeKv = --Sv u, i.e., ,2 = --1, we find 

Ou g.A'r)= U(y) ~u(1 _ cos X) - % sin X}, (2.16) 

D u IA'~)= IAV){ku(1 - cos X) - *k u sin X} , (2.21) 

j~ ~ j('Y) = U('Y) ~ju cos X + */'u sin X} U (7)- '  . (2.27) 

Minkowsk i  case: with the conventions 3' = e x and - - e  01 = e01 = 1, and observing 
that eUKeKv = 6 if, i.e., ,2 = 1, we find 

b u U ('r) = U('r) (ju(1 - cosh X) - *Ju sinh X}, (2.16) 

D u lA'r)= lA'r){ku( 1 _ cosh X) - *k u sinh X}, (2.21) 

lu ~J('Y) = U('r) ~Ju cosh ~ + *j~ sinh X} U (3')-' . (2.27) 
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In both  cases 

~u *ju + [/'u, *ju] = 0 ,  (2.17) 

D u*k u + [ku, *k u] = 0 .  (2.23) 

These formulae provide a certain amount of  motivation for the term "dual symme- 
t ry"  because its definition is based on mixing the current with its Hodge dual via a 
rotation in the plane spanned by the two. 

We still have to clarify the role of  the two cases A and B for which we have now 
shown the existence of the dual symmetry,  and we claim that in both  cases we are 
actually dealing with a symmetric space situation [11,12]. 

In case A, this is obvious because if  G/H is a Riemannian symmetric space, we 
have (2.1) and 

[k, k l c h ,  

and conversely, whenever we have (2.1) and 

[k, k l c h ,  

the linear map @: g -+ g which is +1 on h and - 1  on k is an isometric Lie algebra 
automorphism, and if  it can be lifted to an isometric Lie group automorphism 
o: G ~ G (e.g., always if  G is simply connected),  G/H is a Riemannian symmetric 
space. 

In case B, on the other hand, the relation is less direct: The first step is to observe  
that whenever we have (2.1) and 

[k, k l c k ,  

G/H is canonically isomorphic to the connected normal Lie subgroup K in G gener- 
ated by the ideal k in g, and if  the action of  H on k (by Lie algebra automorphisms) 
can be lifted to an action of  H on K (by hie group automorphisms) (e.g., always if  
K is simply connected), G is the semidirect product [14] H ~ K of  H and K with 
respect to the latter *. Thus in case B, we are actually dealing with the principal o 
model [8] where the field takes values in a connected Lie group K, decorated with 
a gauge symmetry  which is more or less superfluous; in other words, there is no loss 
of  generality in assuming h = 0 right from the start. The second step is to realize 
that K is canonically isomorphic to the symmetric space 

K × K / A K ,  

and that under this isomorphism, the principal o model appears as a special example 
of  case A, at least under the physically reasonable assumption that K is compact,  
which makes K × K/AK a Riemannian symmetric space; we give the details in sect. 3. 

* However, if G is compact, we have [ h, k] = 0, implying that modulo a discrete central sub- 
group, G is the direct product H X K of H and K. 
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Keeping in mind our additional assumptions which have been made for technical 
reasons-G is simply connected in case A, K is compact in case B-we  may summarize 
our result in the following theorem: 

A non-linear a model in two dimensions, where the field takes values in a homo- 
genous space G/H as explained at the beginning of  this section, possesses the dual 
symmetry if and only if G/H is a symmetric space. 

Of course, this theorem does not rule out the existence of  higher conserved 
charges in other types of  non-linear o models. However, this would require a gener- 
alization of  the concept of  dual symmetry going beyond (2.16), (2.18), and so far, 
nothing in this direction seems to be known. 

3. The principal field 

In this section, we discuss in detail the principal field [8]. We show that this the- 
ory can be reformulated as a o model on a symmetric space. 

The principal field model is by definition the o model on G/H where H = { l}. So 
we have 

where 

h = ( 0 } ,  k -~ g ,  

[k, kl c k .  

Writing l ~ for the field which takes values in G, the gauge fields vanish. The dual 
symmetry is given by 

P --> P('Y) = UI'r)r IX-r)-1, (3.1) 

where 

0~ U ('y) = (1 - ~,-1) U ( - y ) [ _ ~ 0 ~ r r - l ] ,  

0r7 U (~) = (1 - ~') U (~) [- a,rr-ll, 
a~ lA'r) = (1 - ~/-1) IA~)[~-r-10~r] ,  

a ,  lX~) = (1 - 7) l X T ) [ - ~ r - l a , r l .  (3.2) 

Now it is well-known [12] that every connected Lie group G can be considered as a 
symmetric space: let 

AG = ( ( g , g ) l g E G }  

be the diagonal of  G × G, and define o: G × G -+ G X G by 

a(g ,g ' )  : (g ' , g ) .  
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Then G X G/AG is a symmetric space with involution o. The set of  fixed points of  
o coincides with AG. G itself is diffeomorphic with G × G/AG, the diffeomorphism 
being induced by the map 

G X G - ~ G ,  

(gl,g2) ~ r =g lg~  -1 . 

This motivates us to study the o model on G X G/AG. In this ease, 

g e g = h e k ,  

where 

h= ((a,a)la~ g} , k= ((a , -a)[aE g) , 

[ k , k ] c h .  

Obviously, 

n(a, b) 1 1 = ( i (a  + b), + . ~(a b)) 

Writingg = (gl,g2) for the field which takes values in G X G, we have the gauge 
field 

1 --1 Au = (~(gl 3tagl +g213#g2), l(gllalagl +g2-1Dug2)) • 

The dual symmetry is given by 

(gl, g2) -+ (g('Y), g(~)) = (U~ ~'), U~'r))(gl, g2) = (U~V)g,, U~V)g2), (3.3) 

where 

(0f U~ v), 0f U~ ~)) = (1 - T- ' ) (U~ v), U~ q')) [-D~(g,, g2)" (g,, g2) -1 ] , 

(a n ~v) ,  an u~-Y)) = (1 - 7 ) ( ~  ~), U~'Y))[-D,~(gl,g2) • (gl ,g2)-l] .  (3.4) 

Evaluating the covariant derivative and using the embedding prescription P = g lg f  l, 
we arrive at 

(Of U(I"Y), 3f U(2~) ) = (1 - ")'-l)(U~l~), ~s))(--~3~r r -1, ½r-ld r), 

(3, u(?). 3, ~v)) = (1 - v ) (~  ~), ~))(--~ 3, r r - l .  l~r-l 3 , r )  . (3.5) 

With the identification U ('r) = U(I"Y), V (~) = U(2"D, and comparing (3.3), (3.5) with (3.1), 
(3.2), we see that the principal field is in fact an integrable o model on a symmetric 
space. 

Moreover, from these considerations and the discussion at the end of  sect. 2, it 
follows that in the whole case B of sect. 2 we are deafing with integrable a models 
on symmetric spaces. 
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Thus our general analysis has shown that all integrable o models have a common 

property which is responsible for the existence of  the dual symmetry: contrary to 
the claim expressed in [8], the field has to take its values not on an arbitrary homog- 
enous space, but on a symmetric one. From this point of  view, the trouble with the 
principal field does not arise at all: If the principal field is defined properly on the 
symmetric space G × G/AG, the field when lifted correctly to G X G admits the 
general dual transformation (2.16), (2.18). The fact that some special symmetric 
spaces are diffe.omorphic with Lie groups enables us to simplify the corresponding 
principal field theory. However, the price one has to pay is the introduction of  an 
auxiliary transformation 1,47). 

4. The Grassmannian fields 

The o model on the complex Grassmann manifold U(m + n)/(U(m) × U(n)) 
provides a useful example for the general structure discussed in sect. 2. For n = 1, 
it reduces to the ~pm o model [6,7]. Following sect. 2, we start with a U(m + n) 
valued field g 

g=(X,  Y) , g+g: l ,  

where X(Y) is a matrix with m + n rows and m(n) columns. We introduce the 
orthogonal projectors 

P= XX + , if= YY+, P+_fi= 1, 

which map ¢m+,, onto the m(n) dimensional subspaces spanned by the column vec- 
tors of  X (Y). Gauge transformations act on g as 

(X, Y) -> (Xhl, Yh2), 

where 

(~10h2)E(U(m)XU(n)). 
The gauge field is 

and the covariant derivative is 

Du(X, Y) = (P~u X, P3u Y) = (Du X, D u ii) . 

Of course, the action and the field equations split into two separate parts: 

S = ~ fd2x(tr[DuX(DUX) +] + trIDu Y(DU Y)+]} , (4.1) 

DuDUX + X(DuX)+DUX=O , DuDUY + Y(DuY)+DuY=O . (4.2) 
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We may rewrite (4.1), (4•2) in terms of the projector fields to make contact with 
the formulation used in [6,8] : 

1 -Jr d2x tr(3up3up) = ½ f d2x S = {  tr(3uP3UP) 
d 

[De, e] = 0 ,  [De, e] : 0 .  

According to (2.16), (2.18), the dual symmetry is defined by 

(x,  Y) - ve,)(x,  Y), 

where 

3~ u(~) = (1 - ,r -1)  v<~') [ -D~(X,  Y) . (X, Y)+], 

(4.1) 

(4.2) 

a n v<~)= (1 - ~) v<~) [ - D , ( X ,  r 3 .  (X,  r) +1 . 

Observing that 

-D~(X, Y) .  (X, Y)+= [P, 3~P] = [if, 3~ff] , 

we recover the well-known transformation 

e -+  u(~)PU (~)+ , P-+ u(~)Pu (~)+ , 

for the projector fields. 
The same discussion applies to the real Grassmann manifold SO(m + n)/SO(m) × 
SO(n) if we replace + (hermitian adjoint) by T (transpose) throughout.  For n = 1, 
we may thus rederive the dual symmetry in the SO(m + 1) invariant o model found 
by Pohlmeyer [1 ]. In this case, the projector f i takes the form 

Pi/ = q iq / , 

and q = (q 1 . . . . .  q m + l ) ,  [[q II = 1, is the field vector of  the previously studied 
SO(m + 1) invariant o model• 

We should like to conclude this section with a remark concerning the influence 
of  the dual transformation on instantons. As is well-known [15], the second 
homotopy group of U(m + n)/(U(m) X U(n)) is isomorphic to Z ,  and conse- 
quently the Euclidean P fields are labelled by their integer topological charge 

Q(P) = l---L-- f d2x euv tr(P[3uP, G P ] ) .  
47rm a 

The action is bounded from below by 

S(P) >1 2rrm IQ(P) I ,  

and equality holds if and only i f P  is (anti) self-dual: 

3P = (+) [3P, P] , with 3 = 30 - i31 , 3- = 30 + i31 • 
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How does the dual  symmet ry  act on a self-dual field P?. F rom 

0 U ('y) = - ( 1  - 7) U ('y) OP, 

~ U  ('r) = (1 - 7-) U(~r)~e, (4.3) 

we guess the explicit  solut ion 

U ('~) = ~ - (1 - 3') P ,  

where U (~) has been suitably normalized.  (For  anti-self-dual P, the solut ion of  

a v ( ~ )  = (1 - "r) u ( ~ ) a p ,  

~U('r) = - (  1 - 9 )  U(v)~P, 7 E ¢ ,  171 = 1 , (4.3) 

U (~/) = n - (1 - ~ P .) 

So we have P('/) = P if  P is (anti)  self-dual. 
Thus  the Grassmannian  ins tan tons  are invariant  under  the dual symmetry .  For  

the 0 ( 3 )  invariant  o model ,  this fact was already noted  in [13].  

The authors are indebted  to K. Pohlmeyer  for a critical reading of  the manu-  
script. They have profi ted from discussions with M. Liischer, B. Schroer and  
P. Weisz. 
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