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We give a full classification of the possible schemes for obtaining the distribution of
multiplets observed in the standard genetic code by symmetry breaking in the context
of finite groups, based on an extended notion of partial symmetry breaking that incor-
porates the intuitive idea of “freezing” first proposed by Francis Crick, which is given a
precise mathematical meaning.
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The purpose of this letter is to present results concerning the possibility of repro-

ducing the multiplet structure of the standard genetic code, as shown in Table 1,

through the procedure of symmetry breaking using finite groups. Combined with

the analogous analysis using Lie algebras and Lie superalgebras carried out earlier,

this completes the mathematical program of performing a full search for symme-

tries in the genetic code, as set forth in Ref. 1. Methodologically, the main outcome

is the explicit formulation of a procedure of “partial” symmetry breaking which is

more general than the traditional Goldstone–Higgs type mechanism, incorporating
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Table 1. The standard genetic code.

First Second base Third
base U C A G base

Phe Ser Tyr Cys U
Phe Ser Tyr Cys CU
Leu Ser Stop Stop A

Leu Ser Stop Trp G

Leu Pro His Arg U
Leu Pro His Arg CC
Leu Pro Gln Arg A
Leu Pro Gln Arg G

Ile Thr Asn Ser U
Ile Thr Asn Ser CA
Ile Thr Lys Arg A
Met Thr Lys Arg G

Val Ala Asp Gly U
Val Ala Asp Gly CG
Val Ala Glu Gly A
Val Ala Glu Gly G

the intuitive idea of “freezing” in the evolution of the genetic code first proposed

in 1968 by Francis Crick.2

The genetic code is the table of codon to amino acid assignments that governs

the process of protein synthesis in all living organisms. The genetic information

for protein synthesis is stored in DNA and RNA in the form of sequences of four

nucleic bases, namely adenine A, cytosine C, guanine G and thymine T (in DNA)

or uracile U (in RNA), from where it is read in triplets called codons. Hence there

are altogether 64 different codons which constitute the basic units of genetic infor-

mation. On the other hand, proteins are synthesized from 20 different amino acids.

The genetic code is the dictionary governing the process of information transfer, or

translation, from the DNA/RNA language with 64 words to the protein language

with 21 words (20 amino acids plus the “Stop” signal). It is degenerate in the sense

that codons can be arranged into multiplets such that two codons belong to the

same multiplet if and only if they code for the same amino acid, or the “Stop”

signal. This gives rise to a decomposition of the 64 codons into three sextets (Arg,

Leu, Ser), five quartets (Ala, Gly, Pro, Thr, Val), two triplets (Ile, “Stop”), nine

doublets (Asn, Asp, Cys, Gln, Glu, His, Lys, Phe, Tyr) and two singlets (Met, Trp).

In the first decade after its definite establishment, the genetic code was gener-

ally believed to be universal — used by all living organisms. However, the discovery

that mammalian mitochondria use a slightly different code, where the significance

of the UGA codon is changed from “Stop” to Trp, and the subsequent identification

of entire families of nonstandard codes, mitochondrial as well as nuclear, triggered

renewed interest among biologists concerning the origin of the code and its prop-

erties. A phylogenetic analysis of these deviations revealed that these nonstandard

codes are relatively recent (no more than about 1.5 billion years old) and have been
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formed from the standard code (whose origin dates back to about 3.8 billion years

ago) by posterior deviations.3,4 Understanding the formation of the nonstandard

codes from the standard code and understanding the evolution of the standard

code itself are therefore logically distinct and a priori independent problems, the

latter being intimately tied up with the quest for understanding the origin of life

on Earth.

The central idea of the algebraic approach proposed in Ref. 1, and exposed in

detail in Ref. 5, is to view the distribution of multiplets found in the standard code

as the result of a symmetry breaking process. Starting out from a 64-dimensional

irreducible representation — or codon representation, for short — of some primor-

dial symmetry group or algebra, the standard code has, according to this picture,

evolved into its present form through a sequence of transitions, each of them ac-

companied by a reduction of the symmetry existing at the previous stage to an

appropriate maximal subgroup or subalgebra. In the last step, this reduction is

allowed to be partial, in the sense that some of the multiplets that would normally

break up are allowed to remain intact, or “frozen.”

This general strategy can be implemented in various algebraic categories and

involves two distinct steps: (1) the determination of the codon representations, and

(2) the analysis of their branching rules under reduction to subgroups/subalgebras

or chains of subgroups/ subalgebras. Such a program was first carried out for Lie

algebras1 (see Refs. 5 and 6 for a detailed exposition) and later extended to Lie

superalgebras.7 Performing such a classification for finite groups, which is perhaps

the most natural context for this kind of investigation, is however much more diffi-

cult and has for a long time remained a challenging open problem. In what follows,

we shall present the central results of this analysis, which has been completed

recently.8

Our starting hypothesis is that the primordial symmetry should be given by a

simple finite group or by one of its satellites, which are its upward, downward or

mixed extensions. The main tool used here is the classification theorem for simple

finite groups, whose proof has been completed in the 1980’s. (See Ref. 9 for a

presentation of the pertinent theory.) Briefly, the simple finite groups fall into four

different types: the cyclic groups Zp of prime order p; the alternating groups Altn

for n ≥ 5; the 16 series of simple finite groups of Lie type, also known as the

(untwisted or twisted) Chevalley groups; and finally the 26 sporadic groups, the

largest of which is the famous monster. Their satellites include: (a) proper central

extensions, or covering groups (upward extensions); (b) extensions by groups of

outer automorphisms (downward extensions); and (c) mixtures of both. All three

types of extension are well known from Lie group theory: for example, the first

occurs when passing from SO(3) to SU(2) in order to include half-integer spin,

whereas the second corresponds to extending SO(3) to O(3) in order to include

parity. In particular, admitting central extensions allows the inclusion of projective

representations.
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Table 2. Number N
l

of linear and Np of projec-

tive codon representations of simple finite groups and
their downward extensions: alternating and symmet-
ric groups.

G |G| N
l

Np

Alt
8

20.160 1 1

Alt
10

1.814.400 0 2

Alt
14

43.589.145.600 0 1

Alt
15

653.837.184.000 0 2∗

Alt
65

65!/2 1 0

Sym
8

= Alt
8
.Z

2
40.320 2 2

Sym
13

= Alt
13

.Z
2

6.227.020.800 0 1

Sym
14

= Alt
14

.Z
2

87.178.291.200 0 2∗

Sym
65

= Alt
65

.Z
2

65! 2 0

The first task is the determination of all codon representations of the simple

finite groups and their satellites. The main difficulty to overcome here is the es-

tablishment of sufficiently stringent cutoffs on the parameters for the infinite series

of these groups, which requires the use of a combination of sophisticated theorems

from finite group theory, some of which have only recently become available. The

remaining cases can then be handled using the Atlas,10 which is the basic source

of information on representations of simple finite groups and their satellites, as well

as the computer program GAP,11 which allows the calculation of character tables

of arbitrary finite groups, up to a certain order. Details of this analysis will be pub-

lished elsewhere,12 here we just summarize the results. First, the cyclic groups can

be discarded immediately because they are abelian, and inspection of the Atlas

shows that only one sporadic group appears, namely the second Janko group J2:

it has two inequivalent pseudo-real projective codon representations. For the alter-

nating groups and their satellites, among which one finds the symmetric groups,

the list of codon representations is given in Table 2; partial results in this direc-

tion can already be found in Ref. 14. Similarly, for the Chevalley groups and their

satellites, the list of codon representations is given in Table 3. (In both cases, the

symbol 2 indicates the presence of two independent codon representations, whereas

the symbol 2∗ stands for a pair of complex conjugate codon representations.)

The second task is the determination of the branching rules of all these codon

representations, with a few exceptions, in order to see whether any of them, when

reduced to an appropriate subgroup, will reproduce the multiplet structure of the

genetic code. The exceptions concern the huge groups Alt65 and Sym65, which have

been excluded since, obviously, their codon representations can be broken so as to

reproduce any distribution of multiplets whatsoever, as well as the large alternating

and symmetric groups Sym13, Alt14, Sym14 and Sym15, for which the computer

calculations are unfeasible, mainly due to the lack of memory. For the remaining

cases, the program has been fully implemented on a personal computer with the
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Table 3. Number N
l

of linear and Np of projective codon repre-

sentations of simple finite groups G and their downward extensions
G.A: Chevalley groups

G |G| N
l

Np

A2(4) = PSL3(4) 20.160 1 1 +2∗+ 2∗

B2(3) = PSp
4
(3) 25.920 1 1

2B2(8) = Sz(8) 29.120 1 1
2A2(4) = PSU3(4) 62.400 1

A1(64) = PSL2(64) 262.080 1

A1(127) = PSL2(127) 1.024.128 0 2∗

B3(2) = PSp
6
(2) 1.451.520 0 2∗

G2(3) 4.245.696 2∗ 0

G2(2) = 2A2(3).Z2 12.096 1

A2(4).(Z2)1 40.320 2 2

A2(4).(Z2)2 40.320 2 2 +2∗+ 2∗

A2(4).(Z2)3 40.320 2 2 +2∗+ 2∗

A2(4).Z3 60.480 1 +2∗ 0

A2(4).Z6 120.960 2 + 2∗+ 2∗ 0

B2(3).Z2 51.840 2 2∗

2B2(8).Z3 87.360 1 +2∗ 0
2A2(4).Z2 124.800 2
2A2(4).Z4 249.600 2 + 2∗

A1(64).Z2 524.160 2

A1(64).Z3 786.240 1 + 2∗

A1(64).Z6 1.572.480 2 + 2∗+ 2∗

G2(3).Z2 8.491.392 2∗+2∗ 0

help of GAP. The first and most tedious step is the calculation of the lattice of

subgroups for each of the pertinent groups, up to conjugacy. Due to the structure of

the algorithm used by GAP in this calculation, it turns out that — in contrast to the

situation prevailing for Lie algebras and Lie superalgebras — nothing is to be gained

by restricting to maximal subgroups, so it is at this stage more efficient to disregard

chains of maximal subgroups and instead proceed directly to the final subgroup or,

when “freezing” is involved, to the pair of subgroups formed by the penultimate and

the final subgroups in the chain, calculating the corresponding branching schemes.

Details will be published elsewhere,13 but the final result is surprisingly simple.

As in the case of Lie algebras and Lie superalgebras, it turns out that there is no

subgroup which would reproduce the distribution of multiplets found in the genetic

code by symmetry breaking in the traditional sense. However, when “freezing” is

allowed, there appear three cases in which the correct branching can be obtained,

in any one of the available (linear or projective) codon representations, through

branching to any one of several subgroup pairs (H, K), provided the breaking from

H to K is performed using an adequate freezing prescription:
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• G = B2(3).Z2, G̃ = Sp4(3).Z2: six branching schemes with H = Q8 : (Z2
3 : Z

2
2)

and six branching schemes with H = Q8 : (Z2
3 : Z2), with various choices for K,

• G = B3(2), G̃ = Sp6(2): one branching scheme, with H = (Z2
2.Z

4
2) : Z

2
3 and

K = Q8 : (Z2

3 × Z2),

• G = G2(3), G̃ = G2(3): six branching schemes, all with H = Q8 : (Z2

3 : Z2) and

with various choices for K.

Here, G̃ is the “minimal” covering group of G needed to rewrite all projective

representations of G that occur as linear representations of G̃. In all cases, the

subgroups H and K are solvable and are constructed from the group Q8 of unit

quaternions, the symmetric group S3 or the dihedral group D12 and the cyclic

groups Z2 and Z3 by iteratively taking direct products (denoted by G1 × G2),

semidirect products (denoted by G1 : G2), and nonsplit extensions (denoted by

G1. G2); in particular, Z
n

p
is an abbreviation for Z

p
× . . .×Z

p
(n factors) while the

convention in the last two cases is that G1 denotes the normal subgroup and G2

the quotient.

In order to derive complete branching trees, the subgroup pairs (H, K) must be

completed to descending chains of subgroups, each maximal in the previous one,

that interpolate between G and H . This can of course be done in many different

ways, but the final symmetry breaking patterns are often identical or very similar.

In Fig. 1, we present as an example the pattern generated by symmetry breaking

along the shortest chain for the smallest primordial symmetry group and which

exhibits the smallest amount of freezing in the last step; this is the chain

G ⊃ M ⊃ H ⊃ K (1)

where G is Sp4(3).Z2, of order 103.680, M is its maximal subgroup of order 2.592

(for its structure, see the Atlas), H is Q8 : (Z2

3
: Z

2

2
), of order 288, and K is

Q8 : D12, of order 96. (The pattern is the same for all four codon representations.)

The methodology employed in the analysis of finite groups suggests a technical

definition of an extended form of symmetry breaking which is only partial, allowing

for a certain amount of “accidental degeneracies” in the final distribution of mul-

tiplets. Such a partial symmetry breaking is described by a group G with a given

representation and a pair (H, K) of subgroups of G such that K is a maximal sub-

group of H . Considering the decomposition of the original representation of G into

irreducible representations of H , and then the further splitting into irreducible rep-

resentations of K, some of the irreducible H-multiplets that would normally split

into several irreducible K-multiplets are allowed to remain intact, or “frozen.” The

restriction we propose to impose on this phenomenon of (partial) freezing is that

whenever the same H-multiplet occurs with multiplicity > 1, all of its copies should

behave in the same way: either they all split or else they all remain unbroken. In

other words, the alternative of freezing applies not to single multiplets, but rather

to isotypic components. This is the rule that has been used in our analysis, for Lie
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64
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12

12

16

18

12

41

11

12

22

41

12

12

22

32

31

23

41

22

32

41

41

32

23

31

23

13

1
3

32

22

41

61

12

41

61

12

12

12

31

31

41

41

41

41

61

41

12

Fig. 1. Branching pattern for the codon representations of G = Sp4(3). Z
2

along the chain (1):
lower indices label irreducible representations of the same dimension with distinct characters.

algebras,6 for Lie superalgebras,7 and for finite groups.8,13 We propose to call it the

Higgs–Crick mechanism.

It would be interesting to find explicit examples of physical systems where sym-

metry breaking occurs with accidental degeneracies that fit into an extended notion

of symmetry breaking such as the Higgs–Crick mechanism proposed here.

Summarizing, the question posed ten years ago1 of whether there exists some

symmetry principle underlying the degeneracy of the genetic code can now be

completely answered. If one restricts the procedure of symmetry breaking to the

traditional Goldstone–Higgs mechanism, there is no solution. However, with the

extended Higgs–Crick mechanism formalized here, there are three Lie algebras,

one Lie superalgebra, and three simple finite groups, that are able to generate the
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degeneracies of the code. Remarkably, symplectic algebras/groups appear in all

three categories, suggesting strongly that the symplectic symmetry has been se-

lected by evolution.
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