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How to give a natural geometric definition of a covariant Poisson bracket in classical
field theory has for a long time been an open problem—as testified by the extensive
literature on “multisymplectic Poisson brackets,” together with the fact that all these
proposals suffer from serious defects. On the other hand, the functional approach does
provide a good candidate which has come to be known as the Peierls–De Witt bracket
and whose construction in a geometrical setting is now well understood. Here, we
show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s
can be derived from the Peierls–De Witt bracket, applied to a special class of func-
tionals. This relation allows to trace back most (if not all) of the problems encountered
in the past to ambiguities (the relation between differential forms on multiphase
space and the functionals they define is not one-to-one) and also to the fact that this
class of functionals does not form a Poisson subalgebra. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4932011]

I. INTRODUCTION

The quest for a fully covariant hamiltonian formulation of classical field theory has a long
history which can be traced back to the work of Carathéodory,3 De Donder,7 and Weyl34 on the
calculus of variations. From a modern point of view, one of the main motivations is the issue of
quantization which, in traditional versions like canonical quantization as well as more recent ones
such as deformation quantization, starts by bringing the classical theory into hamiltonian form. In
the context of mechanics, where one is dealing with systems with a finite number of degrees of
freedom, this has led mathematicians to develop entire new areas of differential geometry, namely,
symplectic geometry and then Poisson geometry, whereas physicists have been motivated to embark
on a more profound analysis of basic physical concepts such as those of states and observables.
In the context of (relativistic) field theory, however, this is not sufficient since, besides facing
the formidable mathematical problem of handling systems with an infinite number of degrees of
freedom, we have to cope with new physical principles, most notably those of covariance and of
locality. The principle of covariance states that meaningful laws of physics do not depend on the
choice of (local) coordinates in space-time employed in their formulation: extending the axiom
of Lorentz invariance in special relativity, it is one of the cornerstones of general relativity and
underlies the modern geometrical approach to field theory as a whole. Equally important is the
principle of locality, stating that events (including measurements of physical quantities) localized in
regions of space-time that are spacelike separated cannot exert any influence on each other. Clearly,
a mathematically and physically correct hamiltonian formalism for classical field theory should
respect these principles: it should be manifestly covariant and local, as is the modern algebraic
approach to quantum field theory; see, e.g., Ref. 2.

As an example of a method that does not meet these requirements, we may quote the stan-
dard hamiltonian formulation of classical field theory, based on a functional formalism in terms of
Cauchy data: there, the mere necessity of choosing some Cauchy surface spoils covariance from the
very beginning! To avoid that, a different approach is needed.

0022-2488/2015/56(10)/102901/26/$30.00 56, 102901-1 © 2015 AIP Publishing LLC
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Over the last few decades, attempts to construct such a different approach have produced a
variety of proposals that, roughly speaking, can be assembled into two groups.

One of these extends the geometrical tools that were so successful in mechanics to the situation
encountered in field theory by treating spatial derivatives of fields on the same footing as time
derivatives: in the context of a first order formalism, as in mechanics, this requires associating
to each field component, say ϕi, not just one canonically conjugate momentum πi = ∂L/∂ϕ̇i but
rather n canonically conjugate momenta π

µ
i = ∂L/∂ ∂µϕ

i, where n is the dimension of space-time.
(In mechanics, time is the only independent variable, so n = 1.) Identifying the appropriate geomet-
rical context has led to the introduction of new geometrical entities now commonly referred to
as “multisymplectic” and/or “polysymplectic” structures, and although their correct mathematical
definition has only recently been completely elucidated,11 the entire circle of ideas surrounding
them is already reasonably well established, forming a new area of differential geometry; see
Refs. 4, 16–21, and 27–31 for early references.

A different line of thought is centered around the concept of “covariant phase space,”5,6,35

defined as the space of solutions of the equations of motion: using this space to substitute the
corresponding space of Cauchy data eliminates the need to refer to a specific choice of Cauchy
surface and has the additional benefit of providing an embedding into the larger space of all field
configurations, allowing us to classify statements as valid “off shell” (i.e., on the entire space of field
configurations) or “on shell” (i.e., only on the subspace of solutions of the equations of motion).

Each of the two methods, the multisymplectic formalism as well as the covariant functional
formalism, has its own merits and its own drawbacks, and experience has shown that best results are
obtained by appropriately combining them.

As an example to demonstrate how useful the combination of these two approaches can
become, we shall in the present paper discuss the problem of giving an appropriate definition of the
Poisson bracket, or better, the covariant Poisson bracket. From the point of view of quantization,
this is a question of fundamental importance, given the fact that the Poisson bracket is expected to
be the classical limit of the commutator in quantum field theory. Moreover, quantum field theory
provides compelling motivation for discussing this limit in a covariant setting, taking into account
that the (non-covariant) equal-time Poisson brackets of the standard hamiltonian formulation of
classical field theory would correspond, in the sense of a classical limit, to the (non-covariant)
equal-time commutators of quantum field theory, which are known not to exist in interacting
quantum field theories, due to Haag’s theorem.

Unfortunately, in the context of the multisymplectic formalism, the status of covariant Poisson
brackets is highly unsatisfactory. This may come as a bit of a surprise, given the beautiful and
conceptually simple situation prevailing in mechanics, where the existence of a Poisson bracket on
the algebra C∞(P) of smooth functions on a manifold P is equivalent to the statement that P is a
Poisson manifold and, as such, qualifies as a candidate for the phase space of a classical hamiltonian
system: for any such system, the algebra of observables is just the Poisson algebra C∞(P) itself
or, possibly, an appropriate subalgebra thereof, and the space of pure states is just the Poisson
manifold P itself. In particular, this is true in the special case when P is a symplectic manifold,
with symplectic form ω, say, and where the Poisson bracket of two functions f , g ∈ C∞(P) is the
function { f , g} ∈ C∞(P) defined by

{ f , g} = iXg
iX f

ω = ω(X f ,Xg), (1)

where X f ∈ X(P) denotes the hamiltonian vector field associated with f ∈ C∞(P), uniquely deter-
mined by the formula

iX f
ω = df . (2)

This situation changes considerably, and for the worse, when we pass to the multisymplectic
setting, where ω is no longer a 2-form but rather an (n + 1)-form and the hamiltonian vector field X f

is no longer associated with a function f but rather with an (n − 1)-form f , n being the dimension
of space-time. It can then be shown that Equation (2) imposes restrictions not only on the type of
vector field that is allowed on its lhs but also on the type of differential form that is allowed on its
rhs. Indeed, the validity of an equation of the form iXω = df implies that the vector field X must be
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locally hamiltonian, i.e., we have LXω = 0, but it also implies that the form f must be hamiltonian,
which by definition means that its exterior derivative df must vanish on all multivectors of degree
n whose contraction with the (n + 1)-form ω is zero, and this is a non-trivial condition as soon
as n > 1. (It is trivial for n = 1 since ω is assumed to be non-degenerate.) Thus it is only on the
space Ωn−1

H (P) of hamiltonian (n − 1)-forms that Equation (1) provides a reasonable candidate for
a Poisson bracket. And even with this restriction, we get a Lie algebra Ωn−1

H (P) which, in contrast
to the situation in mechanics, has a huge center, containing the entire space Zn−1(P) of closed
(n − 1)-forms on P, since the linear map from Ωn−1

H (P) to XLH(P) that takes f to X f is far from
being one-to-one: its kernel is precisely Zn−1(P). Still, the argument suggests that the transition
from mechanics to field theory should somehow involve a replacement of functions by differential
forms of degree n − 1 — which is not completely unreasonable when we consider the fact that,
in field theory, conservation laws are formulated in terms of conserved currents, which are closed
(n − 1)-forms.

Unfortunately, this replacement leads to a whole bunch of serious problems, some of which
seem insurmountable. First and foremost, there is no reasonable candidate for an associative product
on the space Ωn−1

H (P) which would provide even a starting point for defining a Poisson algebra.
Second, as has been observed repeatedly in the literature,16,22–27 the condition of being a locally
hamiltonian vector field or a hamiltonian (n − 1)-form forces these objects to depend at most
linearly on the multimomentum variables, and moreover we can easily think of observables that
are associated to forms of other degree (such as a scalar field, corresponding to a 0-form, or the
electromagnetic field strength tensor, corresponding to a 2-form): this by itself provides enough
evidence to conclude that hamiltonian (n − 1)-forms constitute an extremely restricted class of
observables and that setting up an adequate framework for general observables will require going
beyond this domain. And finally, as has already also been noted long ago,16,17,20,27–29 the multisym-
plectic Poisson bracket defined by Equation (1) fails to satisfy the Jacobi identity. In the case of an
exact multisymplectic form (i.e., when ω = −dθ), this last problem can be cured by modifying the
defining equation (1) through the addition of an exact (hence closed) term, as follows12:

{ f , g} = iXg
iX f

ω + d
(
iXg

f − iX f
g − iXg

iX f
θ
)
. (3)

However, this does not settle any of the other two issues, namely,

• the lack of an associative product to construct a Poisson algebra;
• the restriction to hamiltonian forms and forms of degree n − 1, which leads to unreason-

able constraints on the observables that are allowed, excluding some that appear naturally in
physicists’ calculations.

It should be mentioned here that these are long-standing problems: they have been recognized since
the early stages of development of the subject (see, e.g., Refs. 16 and 27 and also Refs. 25 and 26)
but have so far remained unsolved.

A simple idea in this direction that has already been exploited is based on the observation that
differential forms do admit a natural associative product, namely, the wedge product, so one may
ask what happens if, in the above construction, vector fields are replaced by multivector fields and
(n − 1)-forms by forms of arbitrary degree. As it turns out, this leads to a modified super-Poisson
bracket, defined by a formula analogous to Equation (3).13,14 But it does not help to overcome either
of the aforementioned other two issues.

On the other hand, in the context of the covariant functional formalism, there is an obvious
associative and commutative product, namely, just the pointwise product of functionals, and apart
from that, there also exists a natural and completely general definition of a covariant Poisson bracket
such that, when both are taken together, all the properties required of a Poisson algebra are satisfied:
this bracket is known as the Peierls–De Witt bracket.8–10,15,32

Thus the question arises as to what might be the relation, if any, between the covariant func-
tional Poisson bracket, or Peierls–De Witt bracket, and the various candidates for multisymplectic
Poisson brackets that have been discussed in the literature, among them the ones written down in
Equations (1) and (3). That is the question we shall address in this paper.
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In the remainder of this introduction, we want to briefly sketch the answer proposed here:
details will be filled in later on. Starting out from the paradigm that, mathematically, classical fields
are to be described by sections of fiber bundles, suppose we are given a fiber bundle P over a base
manifold M , where M represents space-time, with projection ρ : P −→ M , and suppose that the
classical fields appearing in the field theoretical model under study are sections φ : M −→ P of
P (i.e., maps φ from M to P satisfying ρ ◦ φ = idM), subject to appropriate regularity conditions:
for the sake of definiteness, we shall assume here that all manifolds and bundles are “regular” in
the sense of being smooth, while the regularity of sections may vary between smooth (C∞) and
distributional (C−∞), but whenever it is left unspecified, we will tacitly be assuming that we are
dealing with smooth sections. To fix terminology, we define, for any section f of any vector bundle
V over P, its base support or space-time support, denoted here by supp f , to be the closure of the
set of points in M such that the restriction of f to the corresponding fibers of P does not vanish
identically, i.e.,

supp f =
�
x ∈ M | f |Px , 0

	
. (4)

(Using the abbreviation “supp” for the base support rather than the ordinary support, which would
be a subset of P, constitutes a certain abuse of language, but will do no harm since the ordinary
support will play no role in this paper.) Now suppose that f is a differential form on P of degree p,
say, and that Σ is a closed p-dimensional submanifold of M , possibly with boundary, subject to the
restriction that Σ and supp f should have compact intersection, so as to guarantee that the following
integral is well defined, providing a functional F

Σ, f on the space of sections of P,

FΣ, f [φ] =

Σ

φ∗ f , (5)

where φ∗ f is of course the pull-back of f to M via φ. (Note that the aforementioned restriction
is automatically satisfied if Σ is compact and also if f has compact base support; moreover, given
an arbitrary differential form f on P, we can always construct one with compact base support by
multiplying with a “cutoff function,” i.e., the pull-back to P of a function of compact support on
M .) Regarding boundary conditions, we shall usually require that if Σ has a boundary, it should not
intersect the base support of f ,

∂Σ ∩ supp f = ∅. (6)

This simple construction provides an especially interesting class of functionals for various reasons,
the most important of them being the fact that they are local, since they are simple integrals, over
regions or more general submanifolds of space-time, of local densities such as, e.g., polynomials
of the basic fields and their derivatives, up to a certain order. (More specifically, derivatives up to
order r , say, of fields that are sections of some fiber bundle E over M are incorporated by taking
P to be the rth order jet bundle JrE of E.) This is an intuitive notion of locality for functionals
of classical fields, but as has been shown recently, it can also be formulated in mathematically
rigorous terms.1 Either way, it is clear that the product of two local functionals of the form (5) is
no longer a local functional of the same form: rather, we get a “bilocal” functional associated with
a submanifold of M × M and a differential form on P × P. Therefore, a mathematically interesting
object to study would be the algebra of “multilocal” functionals which is generated by the local
ones, much in the same way as, on an ordinary vector space, the algebra of polynomials is generated
by the monomials.

But the point of main interest for our work appears when we assume P to be a multisymplectic
fiber bundle11 and M to be a Lorentz manifold, usually satisfying some additional hypotheses
regarding its causal structure: more specifically, we shall assume M to be globally hyperbolic since
this is the property that allows us to speak of Cauchy surfaces. In fact, as is now well known, M
will in this case admit a foliation by Cauchy surfaces defined as the level sets of some smooth time
function. However, it is often convenient not to fix any metric on M “a priori” since, in the context
of general relativity, the space-time metric itself is a dynamical entity and not a fixed background
field. Within this context, and for the case of a regular first-order hamiltonian system where fields
are sections of a given configuration bundle E over M and the dynamics is obtained from a regular
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first-order lagrangian via Legendre transform, it has been shown in Ref. 15 that, using this extra
structure, one can define the Peierls–De Witt bracket as a functional Poisson bracket on covariant
phase space. Here, we want to show how, in the same context, multisymplectic Poisson brackets
between forms, such as in Equations (1) and (3), can be derived from the Peierls–De Witt bracket
between the corresponding functionals. For the sake of simplicity, this will be done for the case of
(n − 1)-forms, but we expect similar arguments to work in any degree.

Concretely, we shall prove that given a fixed hypersurface Σ in M (typically, a Cauchy surface)
and two hamiltonian (n − 1)-forms f and g, we have

�
FΣ, f , FΣ,g

	
= F

Σ,{ f ,g }, (7)

where the bracket on the lhs is the Peierls–De Witt bracket of functionals and the bracket { f , g}
that appears on the rhs is a “multisymplectic pseudo-bracket” or “multisymplectic bracket” given
by a formula analogous to Equation (1) or to Equation (3). A more detailed explanation of this
result will be deferred to the main body of the paper—mainly because of several technical issues
that appear when trying to formulate it with the required amount of mathematical rigor. In fact,
the construction turns out to involve both types of multiphase space that appear in field theory
and that we refer to as “ordinary multiphase space” and “extended multiphase space,” respectively:
they differ in that the latter is a one-dimensional extension of the former, obtained by including an
additional scalar “energy type” variable. Geometrically, extended multiphase space is an affine line
bundle over ordinary multiphase space, and the hamiltonian H of any theory with this type of “field
content” is a section of this affine line bundle. Moreover, each of these two multiphase spaces comes
equipped with a multisymplectic structure which is exact (i.e., the multisymplectic form is, up to a
sign introduced merely for convenience, the exterior derivative of a multicanonical form), naturally
defined as follows. First, one constructs the multisymplectic form ω and the multicanonical form θ
on the extended multiphase space by means of a procedure that can be thought of as a generalization
of the construction of the symplectic structure on the cotangent bundle of an arbitrary manifold.
Then, the corresponding forms on the ordinary multiphase space are obtained from the previous
ones by pull-back via the hamiltonian H: therefore, they will in what follows be denoted by ωH
and by θH to indicate their dependence on the choice of hamiltonian. We can express this by saying
that the multisymplectic structure on extended multiphase space is “kinematical,” whereas that on
ordinary multiphase space is “dynamical.” Correspondingly, we shall often refer to the brackets on
extended multiphase space, defined by Equation (1), together with Equation (2), or by Equation (3),
as “kinematical multisymplectic (Poisson) brackets,” and to the brackets on ordinary multiphase
space, defined by the analogous equations

{ f , g} = iXg
iX f

ωH = ωH(X f ,Xg), (8)

together with

iX f
ωH = df (9)

or

{ f , g} = iXg
iX f

ωH + d
(
iXg

f − iX f
g − iXg

iX f
θH

)
(10)

as “dynamical multisymplectic (Poisson) brackets.” In both cases, the brackets defined by the
simpler formulas (1) and (8) are really only “pseudo-brackets” because they fail to satisfy the Jacobi
identity, and the correction terms that appear in Equations (3) and (10) are introduced to cure this
defect. As we shall see, what appears on the rhs of Equation (7) above is the dynamical bracket
on ordinary multiphase space and not the kinematical bracket on extended multiphase space—in
accordance with the fact that the Peierls–De Witt bracket itself is dynamical.

We conclude this introduction with a few comments about the organization of the paper. In
Section II, we set up the geometric context for the functional calculus in classical field theory,
introduce the class of local functionals to be investigated and give an explicit formula for their first
functional derivative. In Section III, we present a few elementary concepts from multisymplectic
geometry, which is the adequate mathematical background for the covariant hamiltonian formula-
tion of classical field theory. In Section IV, we combine the two previous sections to formulate, in
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this context, the variational principle that provides the dynamics and derive not only the equations
of motion (De Donder–Weyl equations) but also their linearization around a given solution (line-
arized De Donder–Weyl equations), with emphasis on a correct treatment of boundary conditions.
Although much of this material can be found in the literature, it is included here to set the stage,
explain important parts of the necessary background and fix the notation, so as to make the paper
reasonably self-contained. In Section V, we present the classification of locally hamiltonian and
exact hamiltonian vector fields on both types of multiphase space; it is stated in Theorem 1 for
extended multiphase space and in Theorem 2 for ordinary multiphase space. We would like to point
out that to our knowledge, Theorem 2 is new (and as explained above, it is this version that covers
the case of interest here), whereas Theorem 1 has been known for some time; in fact, an even more
general classification, namely, of (locally or exact) hamiltonian multivector fields—rather than just
vector fields—on extended multiphase space has been established in Ref. 14. Still, we found it
worthwhile to include both cases here, mainly to facilitate comparison between the two situations
and to illustrate to what extent the statements are parallel and where deviations occur. In Section VI,
we complete our discussion of the background by briefly reviewing the central theorems of Ref. 15,
and then pass on to present the main result of this paper, specifying a precise formulation of the
connection between multisymplectic Poisson brackets and the functional Poisson bracket of Peierls
and De Witt. Finally, Section VII provides further discussion of this result, its implications and
perspectives for future investigations.

The paper presents a substantially revised and expanded version of the main results contained
in the PhD thesis of the second author,33 which was elaborated under the supervision of the first
author.

II. GEOMETRIC SETUP FOR THE FUNCTIONAL CALCULUS

We begin by collecting some concepts and notations that we use throughout the article. As
already mentioned in the introduction, classical fields are sections of fiber bundles over space-time,
so our starting point will be to fix a fiber bundle P over the space-time manifold M (not necessarily
endowed with a fixed metric, as mentioned before), with projection ρ : P −→ M . The space of field
configurations C is then the space of (smooth) sections of P, or an appropriate subspace thereof,

C ⊂ Γ∞(P), (11)

whose elements will, typically, be denoted by φ. Formally, we can view this space as a manifold
which, at each point φ, has a tangent space TφC and, similarly, a cotangent space T∗φC. Explicitly,
denoting by Vφ the vertical bundle of P, pulled back to M via φ,

Vφ = φ∗(VerP), (12)

and by V ~φ its twisted dual, defined by taking the tensor product of its ordinary dual with the line
bundle of volume forms over the base space,

V ~φ = V ∗φ ⊗
nT∗M, (13)

we have that, according to the principles of the variational calculus, TφC is the space of smooth
sections of Vφ, or an appropriate subspace thereof,

TφC ⊂ Γ∞(Vφ), (14)

whose elements will, typically, be denoted by δφ and called variations of φ, whereas T∗φC is the
space of distributional sections of V ~φ , or an appropriate subspace thereof,

T∗φC ⊂ Γ−∞(V ~φ ). (15)

The reader will note that in Equations (11), (14), and (15), we have required only inclusion, rather
than equality. One reason is that the system may be subject to constraints on the fields which cannot
be reduced to the simple statement that they should take values in some appropriate subbundle of
the original bundle (this case could be handled by simply changing the choice of the bundle P).
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But even for unconstrained systems, which are the only ones that we shall be dealing with in this
paper, there is another reason, namely, that we have not yet specified the support properties to be
employed. One obvious possibility is to set

TφC = Γ
∞
c (Vφ), T∗φC = Γ

−∞(V ~φ ), (16)

which amounts to allowing only variations with compact support. At the other extreme, we may set

TφC = Γ
∞(Vφ), T∗φC = Γ

−∞
c (V ~φ ). (17)

And finally, there is a third option, specifically adapted to the situation where the base space is a
globally hyperbolic lorentzian manifold and adopted in Ref. 15, which is to take

TφC = Γ
∞
sc(Vφ), T∗φC = Γ

−∞
tc (V ~φ ), (18)

where the symbols “sc” and “tc” indicate that the sections are required to have spatially compact
support and temporally compact support, respectively. These options correspond to different
choices for the support properties of the functionals that will be allowed.

Generally speaking, given a functional F on C, we define its base support or space-time
support, denoted here simply by supp F , as follows1:

x < supp F ⇐⇒
There exists an open neighborhood Ux of x in M

such that for any two field configurations φ1, φ2 ∈ C

satisfying φ1 = φ2 on M \Ux , F [φ1] = F [φ2].
(19)

This definition implies that supp F is a closed subset of M since its complement is open: it is
the largest open subset of M such that, intuitively speaking, F is insensitive to variations of its
argument localized within that open subset. It also implies that the functional derivative of F (if it
exists) satisfies

F ′[φ] · δφ = 0 if supp F ∩ supp δφ = ∅. (20)

For later use, we note that the functional derivative will often be expressed in terms of a (formal)
variational derivative,

F ′[φ] · δφ =

M

d nx
δF
δφi

[φ](x) δφi(x). (21)

Typically, as always in distribution theory, the functional derivative will be well defined on varia-
tions δφ such that supp F ∩ supp δφ is compact. Thus if no restrictions on the space-time support
of F are imposed, we must adopt the choice made in Equation (16). At the other extreme, if the
space-time support of F is supposed to be compact, we may adopt the choice made in Equa-
tion (17). And finally, the choice made in Equation (18) is the adequate one for dealing with
functionals that have temporally compact support, i.e., space-time support contained in the inverse
image of a bounded interval in R under some global time function: the typical example is that of a
local functional of the form given by Equation (5) when Σ is some Cauchy surface. More generally,
note that for local functionals of the form given by Equation (5), we have

supp FΣ, f = Σ ∩ supp f . (22)

However, it should not be left unnoticed that the equality in Equations (16)-(18) and, possibly, in
Equation (22), can only be guaranteed to hold for non-degenerate systems, since in the case of
degenerate systems, there will be additional constraints implying that we must return to the option
of replacing equalities by inclusions, as before.

In what follows, we shall make extensive use of the fact that variations of sections can always
be written as compositions with projectable vector fields, or even with vertical vector fields, on the
total space P. To explain this, recall that a vector field X on the total space of a fiber bundle is called
projectable if the tangent map to the bundle projection takes the values of X at any two points in the
same fiber to the same tangent vector at the corresponding base point, i.e.,

Tp1
ρ · X(p1) = Tp2

ρ · X(p2) for p1,p2 ∈ P such that ρ(p1) = ρ(p2). (23)
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This is equivalent to requiring that there exists a vector field XM on the base space which is
ρ -related to X ,

XM(m) = Tp ρ · X(p) for p ∈ P such that ρ(p) = m. (24)

In particular, X is called vertical if XM vanishes. Now note that given any projectable vector field X
on P, we obtain a functional vector field X on C whose value at each point φ ∈ C is the functional
tangent vector X [φ] ∈ TφC, denoted in what follows by δXφ, defined as

δXφ = X(φ) − Tφ (XM), (25)

or more explicitly,

δXφ(m) = X(φ(m)) − Tmφ (XM(m)) for m ∈ M . (26)

Conversely, it can be shown that every functional tangent vector can be obtained in this way from a
vertical vector field X on P, i.e., given a section δφ of φ∗(VerP), there exists a vertical vector field
X on P representing it in the sense that δφ is equal to δXφ. (To do so, we can apply the implicit
function theorem to construct, for any point m in M , a system of local coordinates (xµ, yα) for P
around φ(m) in which ρ corresponds to the projection onto the first factor, (xµ, yα) → xµ, and φ
corresponds to the embedding in the first factor, xµ → (xµ,0). Moreover, in these coordinates, δφ is
given by functions δφα(xµ), whereas X is given by functions Xα(xµ, yβ), so we may simply define
an extension of the former to the latter by requiring the Xα to be independent of the yβ, setting
Xα(xµ, yβ) = δφα(xµ) in a neighborhood of the origin in y-space and then using a smooth cutoff
function in y-space.)

Of course, the reader may wonder why, in this context, we bother to allow for projectable vector
fields rather than just vertical ones. The point is that although vertical vector fields are entirely suffi-
cient to represent variations of sections, we shall often encounter the converse situation in which we
consider variations of sections induced by vector fields which are not vertical but only projectable,
such as the hamiltonian vector fields appearing in Equations (1)-(3) and (8)-(10).

Regarding notation, we shall often think of a projectable vector field as a pair X = (XP,XM)
consisting of a vector field XP on the total space P and a vector field XM on the base space M ,
related to one another by the bundle projection: then Equations (25) and (26) should be written as

δXφ = XP(φ) − Tφ (XM), (27)

and

δXφ(m) = XP(φ(m)) − Tmφ (XM(m)) for m ∈ M , (28)

respectively. The same argument as in the previous paragraph can then be used to prove the
following.

Lemma 1. Let φ be a section of a fiber bundle P over a base manifold M. Given any vector field
XM on M, there exists a projectable vector field Xφ

P on P which is φ-related to XM, i.e., satisfies
Xφ
P(φ) = Tφ(XM), and then we have φ∗(i

X
φ
P
α) = iX

M
(φ∗α), for any differential form α on P.

As an example of how useful the representation of variations of sections of a fiber bundle by
composition with vertical vector fields or even projectable vector fields can be, we present explicit
formulas for the first and second functional derivatives of a local functional of the type considered
above—beginning with a more detailed definition of this class of functionals.

Definition 1. Given a fiber bundle P over an n-dimensional base manifold M, let Σ be a
p-dimensional submanifold of M, possibly with boundary ∂Σ, and f be a p-form on the total space
P such that the intersection of Σ with the base support of f is compact. The local functional asso-
ciated to Σ and f is the functional F

Σ, f : C −→ R on the space C ⊂ Γ∞(P) of field configurations
defined by

FΣ, f [φ] =

Σ

φ∗ f for φ ∈ C. (29)

These functionals are differentiable, and their derivative is given by a completely explicit formula.
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Proposition 1. Given a fiber bundle P over an n-dimensional base manifold M, let Σ be a
p-dimensional submanifold of M, possibly with boundary ∂Σ, and f be a p-form on the total space
P such that the intersection of Σ with the base support of f is compact. Then the local functional

F
Σ, f associated to Σ and f is differentiable, and representing variations of sections of P in the

form δXφ where X = (XP,XM) is a projectable vector field, its functional derivative is given by the
formula

F ′Σ, f [φ] · δXφ =

Σ

(
φ∗
�
LXP

f
�
− LXM

�
φ∗ f

�)
for φ ∈ C, δXφ ∈ TφC, (30)

where LZ denotes the Lie derivative along the vector field Z.

Remark 1. Under the boundary condition that the intersection of ∂Σ with the base support of f
is empty, Equation (30) can be rewritten as follows:

F ′Σ, f [φ] · δXφ =

Σ

(
φ∗
�
iXP

df
�
− iXM

�
φ∗df

�)
for φ ∈ C, δXφ ∈ TφC. (31)

The same equation holds when this boundary condition is replaced by the requirement that δXφ
should vanish on ∂Σ.

Proof. Recall first that for any functional F on C, its functional derivative at φ ∈ C along
δφ ∈ TφC is defined by

F ′[φ] · δφ = d
dλ

F [φλ]���λ=0
,

where the φλ ∈ C constitute a smooth one-parameter family of sections of P such that

φ = φλ
���λ=0

, δφ =
d

dλ
φλ

���λ=0
.

Fixing φ and δφ and choosing a projectable vector field X = (XP,XM) that represents δφ as δXφ,
according to Equation (25), consider its flow, which is a (local) one-parameter group of (local)
automorphisms Φλ = (ΦP,λ,ΦM,λ) such that

XP =
d

dλ
ΦP,λ

���λ=0
and XM =

d
dλ
ΦM,λ

���λ=0
.

This allows us to take the one-parameter family of sections φλ of P to be given by the one-
parameter group of automorphisms Φλ, according to

φλ = ΦP,λ ◦ φ ◦ Φ−1
M,λ.

Now we are ready to calculate

F ′Σ, f [φ] · δXφ =
d

dλ

( 
Σ

φ∗λ f
) ����λ=0

=


Σ

d
dλ

φ∗λ f
����λ=0

=


Σ

d
dλ

�
ΦP,λ ◦ φ ◦ Φ−1

M,λ

�∗ f
����λ=0

=


Σ

(
φ∗

( d
dλ

�
Φ

∗
P,λ f

�����λ=0

)
+

d
dλ

(
Φ
−1
M,λ

∗�
φ∗ f

�) ����λ=0

)
=


Σ

(
φ∗
�
LXP

f
�
− LXM

�
φ∗ f

�)
.

To derive Equation (31) from Equation (30), it suffices to apply standard formulas such as LZ =

d iZ + iZ d and the fact that d commutes with pull-backs, together with Stokes’ theorem, and use
the boundary condition (6) to kill the resulting two integrals over ∂Σ. The same argument works
when δXφ is supposed to vanish on ∂Σ, since we may then arrange XM to vanish on ∂Σ and XP to
vanish on P|∂Σ. �
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III. MULTIPHASE SPACES AND MULTISYMPLECTIC STRUCTURE

As has already been stated before, the bundle P appearing in Secs. I and II, representing the
multiphase space of the system under consideration, will be required to carry additional structure,
namely, a multisymplectic form. There has been much debate and even some confusion in the
literature on what should be the “right” definition of the concept of a multisymplectic structure, but
all proposals made so far can be subsumed under the following.

Definition 2. A multisymplectic form on a manifold P is a differential form ω on P of degree
n + 1, say, which is closed,

dω = 0 (32)

and satisfies certain additional algebraic constraints—among them that of being non-degenerate, in
the sense that for any vector field X on P, we have

iXω = 0 =⇒ X = 0. (33)

Of course, this definition is somewhat vague since it leaves open what other algebraic constraints
should be imposed besides non-degeneracy. One rather natural criterion is that they should be
sufficient to guarantee the validity of a Darboux type theorem. Clearly, when n = 1, the above
definition reduces to that of a symplectic form, and no additional constraints are needed. But when
n > 1, which is the case pertaining to field theory rather than to mechanics, this is no longer so. An
important aspect here is that P is not simply a manifold but rather the total space of a fiber bundle
over the space-time manifold M , which is supposed to be n-dimensional, so one restriction is that
the degree of the form ω is linked to the space-time dimension. Another restriction is that ω should
be (n − 1)-horizontal, which means that its contraction with three vertical vector fields vanishes,

iXiYiZω = 0 for X,Y, Z vertical. (34)

And finally, there is a restriction that, roughly speaking, guarantees existence of a “sufficiently
high-dimensional” lagrangian subbundle of the tangent bundle of P, but since we shall not need it
here, we omit the details: they can be found in Ref. 11.

The main advantage of the definition of a multisymplectic form as given above is that we
can proceed to discuss a number of concepts which do not depend on the precise nature of the
additional algebraic constraints to be imposed. For example, a vector field X on P is said to be
locally hamiltonian if

LXω = 0, (35)

which according to Cartan’s formula LX = d iX + iXd (to be used without further mention
throughout this paper) is equivalent to the condition that iXω is closed, and is said to be globally
hamiltonian, or simply hamiltonian, if iXω is exact, that is, if there exists an (n − 1)-form f on P
such that

iXω = df . (36)

Reciprocally, an (n − 1)-form f on P is said to be hamiltonian if there exists a vector field X on P
such that Equation (36) holds: this condition is trivially satisfied when n = 1 but not when n > 1.
Note that due to non-degeneracy of ω, X is uniquely determined by f and will therefore often be
denoted by X f , whereas f is determined by X only up to addition of a closed form: despite this
(partial) ambiguity, we shall say that X is associated with f and f is associated with X . In the
special case when ω is exact, i.e., we have

ω = − dθ, (37)

where θ is an appropriate n-form on P called the multicanonical form, a vector field X on P is said
to be exact hamiltonian if

LXθ = 0. (38)

In this case, of course, the associated hamiltonian form can be simply chosen to be iXθ, since
diXθ = LXθ − iXdθ = iXω. In particular, this happens when P is the total space of a vector bundle
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(over some base space E, say, which in turn will be the total space of a fiber bundle over the
space-time manifold M), provided that ω is homogeneous of degree one with respect to the corre-
sponding Euler vector field or scaling vector field Σ, i.e.,

LΣω = ω, (39)

since we may then define θ by

θ = − iΣω. (40)

Moreover, we can then employ Σ to decompose vector fields and differential forms on P according
to their scaling degree, and as we shall see below, this turns out to be extremely useful for the classi-
fication of hamiltonian vector fields (whether locally or globally or exact) and of hamiltonian forms.

The standard example of this kind of structure is provided by any (first order) hamiltonian
system obtained from a (first order) lagrangian system via a non-degenerate covariant Legendre
transformation. In this approach, one starts out from another fiber bundle over M , denoted here
by E and called the configuration bundle: the relation between the two bundles E and P is then
established by taking appropriate duals of first order jet bundles. Namely, consider the first order
jet bundle of E, denoted simply by JE, which is both a fiber bundle over M (with respect to the
source projection) and an affine bundle over E (with respect to the target projection), together with
its difference vector bundle, called the linearized first order jet bundle of E and denoted here by
J⃗E, which is both a fiber bundle over M (with respect to the source projection) and a vector bundle
over E (with respect to the target projection), and introduce the corresponding duals: the affine dual
J#⋆E of JE and the usual linear dual J⃗~E of J⃗E. In what follows, we shall refer to the latter as the
ordinary multiphase space and to the former as the extended multiphase space of the theory. As it
turns out and has been emphasized since the beginning of the “modern phase” of the development
of the subject in the early 1990s (see, e.g., Ref. 4), both of these play an important role since not
only are both of them fiber bundles over M and vector bundles over E, but J#⋆E is also an affine
line bundle over J⃗~E, and the dynamics of the theory is given by the choice of a hamiltonian,
which is a section H : J⃗~E −→ J#⋆E of this affine line bundle. Moreover, and this is of central
importance, both of these multiphase spaces carry a multisymplectic structure. Namely, J#⋆E comes
with a naturally defined multisymplectic form of degree n + 1, denoted here by ω, which (up to sign)
is the exterior derivative of an equally naturally defined multicanonical form of degree n, denoted
here by θ, i.e., ω = −dθ, and if we choose a hamiltonian H : J⃗~E −→ J#⋆E, we can pull them back
to obtain a corresponding multicanonical form

θH = H∗θ (41)

and a corresponding multisymplectic form

ωH = H∗ω (42)

on J⃗~E, so again, ωH = −dθH. The main difference between the extended and the ordinary multi-
phase space is that θ and ω are universal and “kinematical,” whereas θH and ωH are “dynamical.”
In terms of local Darboux coordinates (xµ,qi,pµ

i ) for J⃗~E and (xµ,qi,pµ
i ,p) for J#⋆E, induced by

the choice of local coordinates xµ for M , qi for the typical fiber Q of E and a local trivialization of
E over M , we have

θ = pµ
i dqi ∧ d nxµ + p d nx, (43)

and

ω = dqi ∧ dpµ
i ∧ d nxµ − dp ∧ d nx, (44)

so that writing H = −H d nx,

θH = pµ
i dqi ∧ d nxµ − H d nx, (45)

and

ωH = dqi ∧ dpµ
i ∧ d nxµ + dH ∧ d nx, (46)
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or more explicitly,

ωH = dqi ∧ dpµ
i ∧ d nxµ +

∂H
∂qi

dqi ∧ d nx +
∂H
∂pµ

i

dpµ
i ∧ d nx, (47)

where d nxµ is the (local) (n − 1)-form obtained by contracting the (local) volume form d nx with
the local vector field ∂µ ≡ ∂/∂xµ; for more details, including a global definition of θ that does not
depend on any of these choices, we refer to Refs. 4, 15, and 19. (It may be worthwhile to note that
whereas the form ω is always non-degenerate, the form ωH is degenerate in mechanics, i.e., for
n = 1, but is non-degenerate in field theory, i.e., for n > 1.)

IV. VARIATIONAL PRINCIPLE AND EQUATIONS OF MOTION

The fundamental link that merges the functional and multisymplectic formalisms discussed in
Secs. II and III into one common picture becomes apparent when the construction of functionals of
fields from forms on multiphase space outlined in the introduction is applied to the multicanonical
n-form θH on (ordinary) multiphase space: this provides the action functional S of the theory, defin-
ing the variational principle whose stationary points are the solutions of the equations of motion.
Indeed, the action functional is really an entire family of functionals SK on the space C of field
configurations φ (see Equation (11)), given by

SK[φ] =

K

φ∗ θH, (48)

where K runs through the compact submanifolds of M which are the closure of their interior in M
and have smooth boundary ∂K .

Within this setup, a section φ in C is said to be a stationary point of the action if, for any
compact submanifold K of M which is the closure of its interior in M and has smooth boundary ∂K ,
φ becomes a critical point of the functional SK restricted to the (formal) submanifold

CK,φ =
�
φ̃ ∈ C | φ̃|∂K = φ|∂K

	
(49)

of C, or equivalently, if the functional derivative S′K[φ] of SK at φ vanishes on the subspace

TφCK,φ =
�
δφ ∈ TφC | δφ = 0 on ∂K

	
(50)

of TφC. As is well known, this is the case if and only if φ satisfies the corresponding equations of
motion, which in the present case are the De Donder–Weyl equations; see, e.g., Refs. 15, 18, and 19.
Globally, these can be cast in the form

φ∗(iX ωH) = 0
for any vertical vector field X on P,

(51)

or even

φ∗
�
iXP

ωH
�
= 0

for any projectable vector field X = (XP,XM), (52)

whereas, when written in terms of local Darboux coordinates (xµ,qi,pµ
i ) as before, they read

∂µϕ
i =

∂H
∂pµ

i

(ϕ,π), ∂µπ
µ
i = −

∂H
∂qi

(ϕ,π), (53)

where P = J⃗~E, φ = (ϕ,π) and H = −H d nx. Similarly, given such a solution φ, we shall say that
a section δφ in TφC is an infinitesimal stationary point of the action if it is formally tangent to the
(formal) submanifold of solutions, or equivalently, if it satisfies the corresponding linearized equa-
tions of motion, which in the present case are the linearized De Donder–Weyl equations. Globally,
representing δφ in the form δXφ where X = (XP,XM) is a projectable vector field, these can be cast
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in the form

φ∗(iYLXP
ωH) = 0

for any vertical vector field Y on P,
(54)

or even

φ∗(iYP
LXP

ωH) = 0
for any projectable vector field Y = (YP,YM), (55)

whereas, when written in terms of local Darboux coordinates (xµ,qi,pµ
i ) as before, they read

∂µ δϕ
i = +

∂2H
∂q j ∂pµ

i

(ϕ,π) δϕ j +
∂2H

∂pνj ∂pµ
i

(ϕ,π) δπνj ,

∂µ δπ
µ
i = −

∂2H
∂q j ∂qi

(ϕ,π) δϕ j − ∂2H
∂pνj ∂qi

(ϕ,π) δπνj ,
(56)

where P = J⃗~E, φ = (ϕ,π), δφ = (δϕ, δπ) , and H = −H d nx.

Proof. For the first part (concerning the derivation of the full equations of motion from the
variational principle), we begin by specializing Equation (30) to vertical vector fields X on P
(i.e., setting XM = 0 and replacing XP by X), with f = θH, and using standard facts such as the
formula LZ = d iZ + iZ d or that d commutes with Lie derivatives and pull-backs, together with
Stokes’ theorem, to obtain that, for any vertical vector field X on P,

S ′K[φ] · δXφ = −

K

φ∗(iX ωH
�
+


∂K

φ∗(iX θH
�
.

Obviously, condition (51) implies that this expression will be equal to zero for all vertical vector
fields X on P which vanish on P|∂K . Conversely, it follows from Lemma 2 below that if this is the
case, then condition (51) holds. Moreover, it is easily seen that this condition is really equivalent to
the condition

φ∗
�
iXP

ωH
�
− iXM

�
φ∗ωH

�
= 0

for any projectable vector field X = (XP,XM),
but it so happens that the form φ∗ωH is identically zero, for dimensional reasons. Finally, a simple
calculation shows that Equation (51), when written out explicitly in local Darboux coordinates, can
be reduced to the system (53).

For the second part (concerning the linearization of the full equations of motion around a given
solution φ), we proceed as in the proof of Proposition 1: fixing φ and δφ, suppose we are given a
smooth one-parameter family of sections φλ ∈ C of P such that

φ = φλ
���λ=0

, δφ =
d

dλ
φλ

���λ=0
,

as well as a projectable vector field X = (XP,XM) that represents δφ as δXφ, according to Equa-
tion (25), together with its flow, which is a (local) one-parameter group of (local) automorphisms
Φλ = (ΦP,λ,ΦM,λ) such that

XP =
d

dλ
ΦP,λ

���λ=0
and XM =

d
dλ
ΦM,λ

���λ=0
,

allowing us to take the one-parameter family of sections φλ of P to be given by the one-parameter
group of automorphisms Φλ, according to

φλ = ΦP,λ ◦ φ ◦ Φ−1
M,λ.
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Then for any vertical vector field Y on P, we have
d

dλ
φ∗λ

�
iY ωH

����λ=0
=

d
dλ

(
ΦP,λ ◦ φ ◦ Φ−1

M,λ

)∗�
iY ωH

����λ=0

=
d

dλ
φ∗

(
Φ
∗
P,λ(iY ωH)) ���λ=0

+
d

dλ
(Φ−1

M,λ)∗
(
φ∗(iY ωH)) ���λ=0

= φ∗
�
LXP

iY ωH
�
− LXM

�
φ∗(iY ωH)�

= φ∗
�
iYLXP

ωH
�
+ φ∗

�
i[XP,Y ]ωH

�
− LXM

�
φ∗(iY ωH)�,

where the last two terms vanish according to Equation (51), and the same argument holds with Y
replaced by YP where Y = (YP,YM) is any projectable vector field. Finally, an elementary but some-
what lengthy calculation shows that Equation (54), when written out explicitly in local Darboux
coordinates, can be reduced to the system (56), provided φ satisfies the system (53). �

The lemma we have used in the course of the argument is the following.

Lemma 2. Given a fiber bundle P over an n-dimensional base manifold M, let φ be a section
of P and α be an (n + 1)-form on P such that, for any compact submanifold K of M which is the
closure of its interior in M and has smooth boundary ∂K, and for any vertical vector field X on P
that vanishes on P|∂K together with all its derivatives, the integral

K

φ∗(iXα)
vanishes. Then the form φ∗(iXα) vanishes identically, for any vertical vector field X on P (not
subject to any boundary conditions).

Proof. Suppose X is any vertical vector field on P and m is a point in M where φ∗(iXα) does
not vanish. Choosing an appropriately oriented system of local coordinates xµ in M around m, we
may write φ∗ (iXα) = a d nx where a is a function that is strictly positive at the coordinate origin
(corresponding to the point m) and hence, for an appropriate choice of sufficiently small positive
numbers δ and ϵ , will be > ϵ on B̄δ (here we denote by Br and by B̄r the open and closed ball
of radius r around the coordinate origin, respectively). Choosing a test function χ on M such that
0 6 χ 6 1, supp χ ⊂ Bδ and χ = 1 on B̄δ/2, lifted to P by pull-back and multiplied by X to give a
new vertical vector field χX on P that vanishes on P|∂B̄δ

together with all its derivatives, we get
B̄δ

φ∗(iχXα) =

B̄δ

d nx χ(x)a(x) >

B̄δ/2

d nx a(x) > ϵ vol(B̄δ/2) > 0,

which is a contradiction. �

To summarize, the space of stationary points of the action, denoted here by S and considered as
a (formal) submanifold of the space of field configurations C, can be described in several equivalent
ways: we have

S =
�
φ ∈ C | φ is stationary point of the action

	
, (57)

or

S =
�
φ ∈ C | φ satisfies the equations of motion (53)

	
, (58)

or

S =
�
φ ∈ C | φ∗(iXP

ωH) = 0 for any projectable vector field X = (XP,XM)	, (59)

or

S =
�
φ ∈ C | φ∗(iX ωH) = 0 for any vertical vector field X on P

	
. (60)

This space S plays a central role in the functional approach: it is widely known under the name
of covariant phase space. Moreover, given φ in S and allowing X = (XP,XM) to run through the
projectable vector fields, the (formal) tangent space TφS to S at φ is

TφS =
�
δφ ∈ TφC | δφ is infinitesimal stationary point of the action

	
, (61)
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or

TφS =
�
δφ ∈ TφC | δφ satisfies the linearized equations of motion (56)

	
, (62)

or

TφS =
�
δXφ ∈ TφC | φ∗(iYP

LXP
ωH) = 0

for any projectable vector field Y = (YP,YM)
	
, (63)

or

TφS =
�
δXφ ∈ TφC | φ∗(iYLXP

ωH) = 0
for any vertical vector field Y on P

	
. (64)

V. LOCALLY HAMILTONIAN VECTOR FIELDS

The results of Sec. IV, in particular, Equations (63) and (64), provide strong motivation for
studying projectable vector fields X = (XP,XM) on (ordinary) multiphase space which are locally
hamiltonian (that is, such that XP is locally hamiltonian), since they imply that each of these
provides a functional vector field X on covariant phase space defined by a simple algebraic compo-
sition rule:

X [φ] = δXφ for φ ∈ S. (65)

As we shall see in Sec. VI, this functional vector field is also hamiltonian with respect to the natural
symplectic form on covariant phase space to be presented there. But before doing so, we want to
address the problem of classifying the locally hamiltonian vector fields and, along the way, also
the globally hamiltonian and exact hamiltonian vector fields on multiphase space. For the case of
extended multiphase space, using the forms ω and θ, this classification has been available in the
literature for some time,13,14 even for the general case of multivector fields. But what is relevant here
is the corresponding result for the case of ordinary multiphase space, using the forms ωH and θH,
for a given hamiltonian H. As we shall see, there is one basic phenomenon common to both cases,
namely, that when n > 1, the condition of a vector field to be locally hamiltonian imposes severe
restrictions on the momentum dependence of its components, forcing them to be at most affine
(linear + constant): this appears to be a characteristic feature distinguishing mechanics (n = 1) from
field theory (n > 1) and has been noticed early by various authors (see, e.g., Refs. 16 and 27) and
repeatedly rediscovered later on (see, e.g., Refs. 12–14, 25, and 26). However, despite all similar-
ities, some of the details depend on which of the two types of multiphase space we are working
with, so it seems worthwhile to give a full statement for both cases, for the sake of comparison.

We begin with an explicit computation in local Darboux coordinates (xµ,qi,pµ
i ) for J⃗~E and

(xµ,qi,pµ
i ,p) for J#⋆E induced by the choice of local coordinates xµ for M , qi for the typical

fiber Q of E and a local trivialization of E over M , supposing that we are given a hamiltonian
H : J⃗~E −→ J#⋆E which we represent in the form H = −H d nx, as usual. Starting out from
Equations (43)-(47), we distinguish two cases.

A. Extended multiphase space

Using Equations (43) and (44) and writing an arbitrary vector field X on J#⋆E as

X = X µ ∂

∂xµ
+ X i ∂

∂qi
+ X µ

i

∂

∂pµ
i

+ X0
∂

∂p
(66)

we first note that X will be projectable to E if and only if the coefficients X µ and X i do not depend
on the energy variable p nor on the multimomentum variables pκ

k
and will be projectable to M if

and only if the coefficients X µ depend neither on the energy variable p nor on the multimomentum
variables pκ

k
nor on the position variables qk. Next, we compute
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iXω = Xν dqi ∧ dpµ
i ∧ d nxµν − X µ

i dqi ∧ d nxµ + X i dpµ
i ∧ d nxµ

+ X µ dp ∧ d nxµ − X0 d nx
(67)

and

iXθ = (pµ
i X i + p X µ) d nxµ − pµ

i Xν dqi ∧ d nxµν. (68)

Then we have

Theorem 1. Any locally hamiltonian vector field on J#⋆E is projectable to E. Moreover, given
any vector field X on J#⋆E which is projectable to E, X is locally hamiltonian if and only if

1. If N > 1, X is also projectable to M, i.e., the coefficients X µ do not depend on the position
variables qk.

2. The coefficients X µ
i and X0 can be expressed in terms of the previous ones and of new coeffi-

cients X µ
− which, once again, depend neither on the energy variable p nor on the multimomen-

tum variables pκ
k
, according to

X µ
i = − p

∂X µ

∂qi
− pµ

j

∂X j

∂qi
+ pνi

∂X µ

∂xν
− pµ

i

∂Xν

∂xν
+

∂X µ
−

∂qi
, (69)

X0 = − p
∂X µ

∂xµ
− pµ

i

∂X i

∂xµ
+

∂X µ
−

∂xµ
. (70)

Finally, X is exact hamiltonian if and only if, in addition, the coefficients X µ
− vanish.

Proof. The proof is carried out by “brute force” computation and a term by term analysis of the
coefficients that appear in the Lie derivative of ω along X : it will be omitted since an explicit proof
of a more general statement along these lines can be found in Ref. 14. �

B. Ordinary multiphase space

Using Equations (45)-(47) and writing an arbitrary vector field X on J⃗~E as

X = X µ ∂

∂xµ
+ X i ∂

∂qi
+ X µ

i

∂

∂pµ
i

, (71)

we first note that X will be projectable to E if and only if the coefficients X µ and X i do not depend
on the multimomentum variables pκ

k
and will be projectable to M if and only if the coefficients

X µ depend neither on the multimomentum variables pκ
k

nor on the position variables qk. Next, we
compute

iXωH = Xν dqi ∧ dpµ
i ∧ d nxµν −

(
X µ
i + X µ ∂H

∂qi

)
dqi ∧ d nxµ

+

(
X iδνµ − Xν ∂H

∂pµ
i

)
dpµ

i ∧ d nxν +
(
X i ∂H

∂qi
+ X µ

i

∂H
∂pµ

i

)
d nx,

(72)

and

iXθH = (pµ
i X i − H X µ) d nxµ − pµ

i Xν dqi ∧ d nxµν. (73)

Then we have

Theorem 2. Any locally hamiltonian vector field on J⃗~E is projectable to E, except possibly
when N = 1 and n = 2, and any exact hamiltonian vector field on J⃗~E is projectable to E. More-
over, given any vector field X on J⃗~E which is projectable to E, X is locally hamiltonian if and only
if

1. If N > 1, X is also projectable to M, i.e., the coefficients X µ do not depend on the position
variables qk.
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2. The coefficients X µ
i can be expressed in terms of the previous ones and of new coefficients X µ

−
which, once again, do not depend on the multimomentum variables pκ

k
, according to

X µ
i = H

∂X µ

∂qi
− pµ

j

∂X j

∂qi
+ pνi

∂X µ

∂xν
− pµ

i

∂Xν

∂xν
+

∂X µ
−

∂qi
, (74)

where the first term is absent as soon as N > 1.
3. The coefficients X µ, X i and X µ

− satisfy the compatibility condition

∂H
∂xµ

X µ +
∂H
∂qi

X i +
∂H
∂pµ

i

X µ
i = − H

∂X µ

∂xµ
+ pµ

i

∂X i

∂xµ
− ∂X µ

−
∂xµ

. (75)

Finally, X is exact hamiltonian if and only if, in addition, the coefficients X µ
− vanish.

Maybe somewhat surprisingly, the case where N = 1 and n = 2, concerning the theory of a single
real scalar field in two space-time dimensions, is somewhat exceptional in that it allows for locally
hamiltonian vector fields which fail to be projectable and are not covered by the above classification
theorem; we shall address this question in Remark 2 below.

Proof. As in the case of Theorem 1, the proof is carried out by “brute force” computation. First,
we apply the exterior derivative to Equation (72) and collect terms to get

LX ωH =
*
,

∂

∂xµ

(
X µ
i + X µ ∂H

∂qi

)
+

∂

∂qi
*
,

X j ∂H
∂q j

+ Xν
j

∂H
∂pνj

+
-
+
-

dqi ∧ d nx

− *
,

∂

∂xν

(
δνµ X i − Xν ∂H

∂pµ
i

)
− ∂

∂pµ
i

*
,

X j ∂H
∂q j

+ Xν
j

∂H
∂pνj

+
-
+
-

dpµ
i ∧ d nx

+

(
δkl

(
δσκ

∂Xτ

∂xτ
− ∂Xσ

∂xκ

)
+

∂

∂pκ
k

(
Xσ
l + Xσ ∂H

∂ql

)
+

∂

∂ql

(
δσκ X k − Xσ ∂H

∂pκ
k

))
dql ∧ dpκk ∧ d nxσ

− ∂

∂q j

(
X µ
i + X µ ∂H

∂qi

)
dq j ∧ dqi ∧ d nxµ

+
∂

∂pκ
k

*
,
δσλ X l − Xσ ∂H

∂pλ
l

+
-

dpκk ∧ dpλ
l ∧ d nxσ

+
∂Xσ

∂qk
dqk ∧ dql ∧ dpλ

l ∧ d nxλσ

− ∂Xσ

∂pκ
k

dql ∧ dpκk ∧ dpλ
l ∧ d nxλσ.

Numbering the terms in this equation from 1 to 7, we begin by analyzing terms no. 7, 5, and 6.
Obviously, when X is projectable to E and the coefficients X µ satisfy the condition stated in item
1. of the theorem, these terms vanish identically (term no. 6 is absent when N = 1), so what we need
to analyze is the converse statement.

• Term No. 7: For any choice of indices i, j,m, µ, ν and mutually different indices ρ1, . . . , ρn−2,
contracting LXωH with the multivector field ∂m ∧ ∂ i

µ ∧ ∂
j

ν ∧ ∂ρ1
∧ . . . ∧ ∂ρn−2

gives the rela-
tion

δ
j
m

∂Xσ

∂pµ
i

ϵνσρ1...ρn−2
= δim

∂Xσ

∂pνj
ϵ µσρ1...ρn−2

. (76)

Now if to begin with, we fix only the indices i and µ, together with some other index ρ,
we can always choose the remaining free indices in this equation to be such that m = j
and ν, ρ1, . . . , ρn−2 are all mutually different and ,ρ: this reduces the lhs to the expression
± ∂X ρ/∂pµ

i , while the rhs vanishes if we take m , i, which is possible as soon as N > 1. Thus
we conclude that
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∂X ρ

∂pµ
i

= 0,

except perhaps when N = 1. But even when N = 1, where Equation (76) reduces to

∂Xσ

∂pµ
i

ϵνσρ1...ρn−2
=

∂Xσ

∂pνi
ϵ µσρ1...ρn−2

, (77)

this conclusion remains valid as long as n > 2. Indeed, if we choose ν, ρ1, . . . , ρn−2 as above
(all mutually different and ,ρ), then if ρ , µ, the lhs reduces to the expression ± ∂X ρ/∂pµ

i , as
before, while the rhs vanishes since in that case, µ must appear among the indices ρ1, . . . , ρn−2,
whereas if ρ = µ, the equation assumes the form

∂X µ

∂pµ
i

ϵνµρ1...ρn−2
=

∂Xν

∂pνi
ϵ µνρ1...ρn−2

(no sum over µ and ν),

which implies

∂X µ

∂pµ
i

= − ∂Xν

∂pνi
=

∂Xκ

∂pκi
= − ∂X µ

∂pµ
i

(no sum over µ, ν and κ),

for mutually different µ, ν, κ. On the other hand, when N = 1 and n = 2, these arguments fail,
and the only conclusion that can be drawn from Equation (77) is that the following divergence
must vanish:

∂X µ

∂pµ
i

= 0. (78)

• Term No. 5: For any choice of indices i, j, µ, ν and mutually different indices ρ1, . . . , ρn−1,
contracting LXωH with the multivector field ∂ i

µ ∧ ∂
j

ν ∧ ∂ρ1
∧ . . . ∧ ∂ρn−1

gives the relation

∂

∂pµ
i

*
,
δσν X j − Xσ ∂H

∂pνj
+
-
ϵσρ1...ρn−1

=
∂

∂pνj

(
δσµ X i − Xσ ∂H

∂pµ
i

)
ϵσρ1...ρn−1

,

so that, for any choice of indices i, j, µ, ν, ρ, taking ρ1, . . . , ρn−1 to be ,ρ shows that

δ
ρ
ν

∂X j

∂pµ
i

− ∂X ρ

∂pµ
i

∂H
∂pνj

= δ
ρ
µ

∂X i

∂pνj
− ∂X ρ

∂pνj

∂H
∂pµ

i

. (79)

When N > 1 or n > 2, we can use the result of the previous item to conclude that

δ
ρ
ν

∂X j

∂pµ
i

= δ
ρ
µ

∂X i

∂pνj
.

Now if to begin with, we fix only the indices i, j, and µ, we can always choose the other free
indices ν and ρ in this equation to be equal and ,µ: this reduces the lhs to the expression
± ∂X j/∂pµ

i , while the rhs vanishes. Thus we conclude that

∂X j

∂pµ
i

= 0.

On the other hand, when N = 1 and n = 2, Equation (79) reduces to a simple statement of
symmetry,

ϵ µν
(
δ
ρ
ν

∂X i

∂pµ
i

− ∂X ρ

∂pµ
i

∂H
∂pνi

)
= 0. (80)

• Term No. 6: For any choice of indices i, j,m, ν and mutually different indices ρ1, . . . , ρn−2,
contracting LXωH with the multivector field ∂i ∧ ∂j ∧ ∂m

ν ∧ ∂ρ1
∧ . . . ∧ ∂ρn−2

gives the rela-
tion

δmj
∂Xσ

∂qi
ϵνσρ1...ρn−2

= δmi
∂Xσ

∂q j
ϵνσρ1...ρn−2

.
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As before, this implies

∂X ρ

∂qi
= 0,

except when N = 1: in this case, the whole term vanishes identically and no conclusion can be
drawn.

Note that when N = 1, the “internal” index on the position and multimomentum variables can only
assume a single fixed value, say i, and so in equations such as (78) or (80), we could in principle just
omit it, or else repeat it as often as we like.

To proceed further, we write down the equations obtained from the remaining terms:

• Term No. 1:

∂

∂qi

(
X j ∂H

∂q j
+ Xν

j

∂H
∂pνj

)
= − ∂

∂xµ

(
X µ
i + X µ ∂H

∂qi

)
. (81)

• Term No. 2:

∂

∂pµ
i

(
X j ∂H

∂q j
+ Xν

j

∂H
∂pνj

)
=

∂

∂xν

(
δνµ X i − Xν ∂H

∂pµ
i

)
. (82)

• Term No. 3:

∂

∂pνj

(
X µ
i + X µ ∂H

∂qi

)
= − ∂

∂qi
*
,
δ
µ
ν X j − X µ ∂H

∂pνj
+
-
+ δ

j
i

∂X µ

∂xν
− δ

µ
ν δ

j
i

∂Xκ

∂xκ
. (83)

• Term No. 4:

∂X µ
i

∂q j
=

∂X µ
j

∂qi
. (84)

Assuming that X is projectable to E, we observe that Equation (83) can be integrated directly to
conclude that

X µ
i = H

∂X µ

∂qi
− pµ

j

∂X j

∂qi
+ pνi

∂X µ

∂xν
− pµ

i

∂Xκ

∂xκ
+ Y µ

i ,

where the Y µ
i are local functions on E which, once again, are independent of the multimomentum

variables pκ
k
. Substituting this relation into Equation (84), we get

∂Y µ
i

∂q j
=

∂Y µ
j

∂qi
,

which can be solved by setting

Y µ
i =

∂Y µ
−

∂qi
,

where the Y µ
− are local functions on E which, as before, are independent of the multimomentum

variables pκ
k
. Finally, substituting this expression into Equations (81) and (82), we get

∂

∂qi
*
,
H

∂Xν

∂xν
− pνj

∂X j

∂xν
+

∂Yν
−

∂xν
+

∂H
∂xν

Xν +
∂H
∂q j

X j +
∂H
∂pνj

Xν
j
+
-
= 0,

and

∂

∂pµ
i

*
,
H

∂Xν

∂xν
− pνj

∂X j

∂xν
+

∂Yν
−

∂xν
+

∂H
∂xν

Xν +
∂H
∂q j

X j +
∂H
∂pνj

Xν
j
+
-
= 0,

showing that

H
∂Xν

∂xν
− pνj

∂X j

∂xν
+

∂Yν
−

∂xν
+

∂H
∂xν

Xν +
∂H
∂q j

X j +
∂H
∂pνj

Xν
j = Y−,
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where Y− is a local function on M which is independent of the position variables qk and multimo-
mentum variables pκ

k
. Writing Y− as a divergence,

Y− =
∂Y ′ µ−
∂xµ

,

and putting X µ = Y µ
− − Y ′ µ− , we arrive at Equations (74) and (75).

All that remains to be shown now is the final statement concerning exact hamiltonian vector
fields. To this end, we apply the exterior derivative to Equation (73) and subtract the expression in
Equation (72); then collecting terms, we get

LX θH = d
�
iX θH

�
− iX ωH

=

(
− ∂X µ

∂xµ
H +

∂X i

∂xµ
pµ
i −

(
∂H
∂xµ

X µ +
∂H
∂qi

X i +
∂H
∂pµ

i

X µ
i

) )
d nx

+

(
∂X j

∂qi
pµ
j −

∂X µ

∂xν
pνi +

∂Xν

∂xν
pµ
i −

∂X µ

∂qi
H + X µ

i

)
dqi ∧ d nxµ

+

(
∂X i

∂pνj
pµ
i −

∂X µ

∂pνj
H

)
dpνj ∧ d nxµ

+
∂Xν

∂q j
pµ
i dqi ∧ dq j ∧ d nxµν

+
∂Xν

∂pκ
k

pµ
i dqi ∧ dpκk ∧ d nxµν.

Numbering the terms in this equation from 1 to 5, we see that the conditions imposed by the fact that
X should be exact hamiltonian are the following:

• Term No. 5: This term vanishes if and only if the coefficients X µ do not depend on the
variables pκ

k
.

• Term No. 3: Due to the previous condition, this term vanishes if and only the coefficients X i do
not depend on the variables pκ

k
.

• Term No. 4: This term vanishes if and only if the coefficients X µ do not depend on the
variables qk, except when N = 1: in this case the whole term vanishes identically and no
conclusion can be drawn.
• Term No. 2: This term vanishes if and only if the coefficients X µ

i are defined in terms of the
coefficients X µ and X i according to Equation (74), with X µ

− = 0.
• Term No. 1: This term vanishes if and only if Equation (75) is required to hold, with X µ

− = 0.

�

Remark 2. The classification of locally hamiltonian vector fields provided by Theorem 2 is not
quite complete since it does not cover non-projectable locally hamiltonian vector fields. This may
not be a reason for great concern since such vector fields are pathological in the sense that their
flows do not respect any of the bundle structures involved and, perhaps more importantly, since such
vector fields can only exist in one very special and exceptional case, namely, when N = 1 and n = 2.
Still, it is somewhat annoying that they do not seem to admit any reasonable classification. To give
an idea of what is involved, consider first the more general case of one degree of freedom in any
space-time dimension (N = 1, n > 1), where it is common practice to omit the “internal” index i on
the variables qi and pµ

i ; it is then appropriate to redefine the components of X in Equation (71), say
by writing

X = X µ ∂

∂xµ
+ X̃

∂

∂q
+ X̃ µ ∂

∂pµ
. (85)

Then when n = 2, the arguments presented in the proof above do not allow to conclude that the
coefficients X µ and X̃ are independent of the multimomentum variables pκ, but only that

∂X µ

∂pµ
= 0, (86)
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as stated in Equation (78), and

∂ X̃
∂pµ

− ∂Xν

∂pµ

∂H
∂pν

= 0, (87)

which, taking into account Equation (78) and using the relation ±ϵ µνϵκλ = δκµδ
λ
ν − δκνδ

λ
µ (with any

fixed sign convention for ±), is easily shown to be equivalent to Equation (80). Introducing a new
function F defined as

F = X̃ − X µ ∂H
∂pµ

, (88)

together with the Hessian matrix Hµν of the hamiltonian function H ,

Hµν =
∂2H

∂pµ ∂pν
, (89)

and its inverse Hµν, it is possible to express all coefficients of X in terms of F and H and their
partial derivatives up to first order (for F) or second order (for H),

X µ = −Hµν ∂F
∂pν

, (90)

X̃ = F − Hµν ∂H
∂pµ

∂F
∂pν

, (91)

X̃ µ = Hµν

(
∂F
∂xν

+
∂H
∂pν

∂F
∂q
− ∂ 2H

∂q ∂pν
F
)

− Hµκ

(
∂ 2H

∂xκ ∂pλ
− ∂ 2H

∂xλ ∂pκ
+

∂H
∂pκ

∂ 2H
∂q ∂pλ

− ∂H
∂pλ

∂ 2H
∂q ∂pκ

)
Hλν ∂F

∂pν
.

(92)

However, finding the general solution of the entire system seems to be an exceedingly difficult
task, except if one makes some simplifying assumptions on the hamiltonian H . One obvious choice
would be to take

H = 1
2 gµν(x) pµpν + Aµ(x) pµ + V (x,q), (93)

where g represents a Lorentz metric, A is a gauge potential and V is some scalar potential, but
even in this situation we have not come to a definite conclusion. The only case in which a complete
solution has been found is in the absence of external fields, i.e., when the metric tensor g and
the scalar potential V are both independent of x, whereas the gauge potential A vanishes, so M is
two-dimensional Minkowski space R2 and g is the standard Minkowski metric η; see the Appendix
of Ref. 27.

VI. COVARIANT PHASE SPACE

A. Symplectic structure on covariant phase space

One of the most important properties of the covariant phase space S introduced above (see
Equations (57)-(60)) is that it carries a naturally defined symplectic structure5,6,35 which can in
fact be derived immediately from the multisymplectic structure on multiphase space.15 Namely,
generalizing the prescription of Equation (5) in the sense of using ordinary differential forms on
multiphase space to produce functional differential forms, rather than just functionals, we can define
functional canonical 1-forms ΘKΣ

and 2-forms ΩKΣ
on C, where Σ is a hypersurface in M (typically,

when a Lorentz metric is given, a Cauchy surface) and KΣ runs through the compact submanifolds
of Σ which are the closure of their interior in Σ and have smooth boundary ∂KΣ, by setting

(ΘKΣ
)φ(δXφ) =


KΣ

φ∗(iXθH), (94)

for φ ∈ C and δXφ ∈ TφC with X vertical, and
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(ΩKΣ
)φ(δX1

φ, δX2
φ) =


KΣ

φ∗(iX2
iX1

ωH), (95)

for φ ∈ C and δX1
φ, δX2

φ ∈ TφC with X1,X2 vertical. (The same formulas continue to hold if we
require the vector fields X, X1, X2 to be only vertical on the image of φ.) As observed, e.g., in
Refs. 5, 6, and 35 and, in the present context, in Ref. 15, the restriction of the form ΩKΣ

to S does
not depend on the submanifold KΣ, provided that appropriate boundary conditions are imposed: this
happens because when φ ∈ S and δX1

φ, δX2
φ ∈ TφS, the expression under the integral in Equa-

tion (95) is a closed form (called the “symplectic current” in Ref. 5), so that according to Stokes’
theorem, its integral over any compact submanifold without boundary vanishes. (For example, when
we compare the integral in Equation (95) over two compact submanifolds K1,Σ1 and K2,Σ2 of hyper-
surfaces Σ1 and Σ2 in M whose union K1,Σ1 ∪ K2,Σ2 is the boundary ∂K of a compact submanifold K
of M , we will get the same result. This also happens when K1,Σ1 ∪ K2,Σ2 is just part of the boundary
of a compact submanifold K of M but the remainder, ∂K \ (K1,Σ1 ∪ K2,Σ2), has empty intersection
with the intersection of the base supports of δX1

φ and δX2
φ.) Thus, at least formally, covariant phase

space becomes a symplectic manifold—albeit an infinite-dimensional one; its symplectic form will
in what follows be simply denoted byΩ and is explicitly given by the formula

Ωφ(δX1
φ, δX2

φ) =

Σ

φ∗(iX2
iX1

ωH), (96)

where Σ is any Cauchy surface in M and where φ ∈ S and δX1
φ, δX2

φ ∈ TφS, with X1,X2 vertical
(or possibly just vertical on the image of φ) and such that supp δX1

φ ∩ supp δX2
φ ∩ Σ is compact.

B. Functional Hamiltonian vector fields and Poisson brackets

The central result obtained in Ref. 15 can be summarized in the form of two theorems which
we state explicitly because they form the background for the work reported here. The basic object
that appears there is the Jacobi operator J[φ], obtained by linearizing the De Donder–Weyl operator
around a solution φ ∈ S and whose kernel is precisely the space TφS of solutions of the linearized
equations of motion, and its causal Green function Gφ.

Theorem 3. Given a functional F with temporally compact support on covariant phase space
S, the functional hamiltonian vector field XF on S associated to F , as defined by the formula

Ωφ

�
XF [φ], δφ

�
= F ′[φ] · δφ for φ ∈ S, δφ ∈ TφS, (97)

is given by “convolution” of the variational derivative of F (see Equation (21)) with the causal
Green function of the corresponding Jacobi operator,

X i
F [φ](x) =


M

d ny Gi j
φ (x, y)

δF
δφ j

[φ] (y) for φ ∈ S. (98)

Note that the condition that F should have temporally compact support will guarantee that both
sides of Equation (97) make sense provided we interpret TφS as being the space of solutions of the
linearized equations of motion of spatially compact support, i.e., we regard it as the subspace of the
space TφC given by Equations (61)-(64) where the latter is defined according to Equation (18).

With this statement at hand, it is easy to write down the Poisson bracket of two functionals F
and G on S : in complete analogy with the formula { f , g} = iXg

iX f
ω = −dg(X f ) from mechanics,

it can be defined by

{F ,G }[φ] = −G′[φ]�XF [φ]
�

for φ ∈ S, (99)

or more explicitly,

{F ,G }[φ] = −

M

d nx
δG
δφ k

[φ](x) X k
F [φ](x) for φ ∈ S. (100)

Combining this expression with that given in Theorem 3, we arrive at the second main conclusion.
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Theorem 4. Given two functionals F and G with temporally compact support on covariant
phase space S, their Poisson bracket {F ,G }, with respect to the symplectic form Ω introduced
above, is precisely their Peierls–De Witt bracket, given by

{F ,G }[φ] =

M

d nx

M

d ny
δF
δφ k

[φ](x) Gkl
φ (x, y) δG

δφ l
[φ](y) for φ ∈ S. (101)

Note that in view of the regularity conditions imposed to arrive at these results, the previous
constructions do not apply directly to degenerate systems such as gauge theories: these require a
separate treatment.

C. The main theorems

In this subsection, we present the two main theorems of the present paper which, for local
functionals generated by locally hamiltonian forms according to Equation (5), provide a simple
algebraic construction of the functional hamiltonian vector field associated with such a functional
and, as a corollary, a simple algebraic formula for the Poisson bracket of two such functionals.
That such formulas should exist is not at all obvious, taking into account that the corresponding
formulas for general functionals, as given in Theorem 3 and Theorem 4 above, are essentially ana-
lytic: to apply them in concrete examples, one needs to solve a system of (linear) partial differential
equations in order to calculate the corresponding causal Green function. Surprisingly, for local
functionals of the form given by Equation (5), the “convolution type” integral operator which has
this Green function as its kernel collapses.

Theorem 5. Suppose we are given a fiber bundle E (the field configuration bundle) over an
n-dimensional globally hyperbolic space-time manifold M and a hamiltonian H : J⃗~E −→ J#⋆E,
which is a section of extended multiphase space J#⋆E over ordinary multiphase space J⃗~E, together
with a hamiltonian (n − 1)-form f on J⃗~E of spatially compact support such that the corresponding
hamiltonian vector field X f on J⃗~E, defined by the formula iX f

ωH = df , is projectable to M.
(Recall that according to Theorem 2, this is automatic if N > 1.) Then given any Cauchy surface Σ
in M and writing F

Σ, f for the local functional on S associated to Σ and f , as in Definition 1, and
X FΣ, f for the functional hamiltonian vector field on S associated to F

Σ, f , as in Theorem 3, we have

X FΣ, f [φ] = δX f
φ for φ ∈ S. (102)

Note that this is a version of Noether’s theorem, i.e., we are dealing with a conservation law, for the
lhs of Equation (102) appears to depend on Σ and the theorem states that it is equal to the rhs, which
does not!

Proof. Rather than analyzing the integral formula (98), we shall show directly that the algebraic
formula (102) satisfies all required conditions. First of all, we note that δX f

φ has spatially compact
support because f does. Moreover, it is clear from the results of Section IV that Equation (102) does
provide a functional vector field not only on C but also on S since, according to Equation (63), X f

being locally hamiltonian with respect to ωH and projectable to M implies that δX f
φ ∈ TφS when

φ ∈ S . Therefore, all that needs to be verified is that the expression given in Equation (102) satisfies
the condition (97). To this end, let X f ,M denote the projection of X f to M and, for any given φ ∈ S,

apply Lemma 1 to construct some projectable vector field X̃φ
f

on J⃗~E which is φ-related to X f ,M;

then the difference X f − X̃φ
f

will be vertical on the image of φ, and according to Equation (25),
Equation (102) becomes

X FΣ, f [φ] = (X f − X̃φ
f
)(φ) = δ(X

f
−X̃φ

f
)φ.
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Inserting this expression into Equation (96), we get, for any δXφ ∈ TφS where X is some vertical

vector field on J⃗~E of spatially compact support,

Ωφ

�
X FΣ, f [φ], δXφ

�
= Ωφ

�
δ(X

f
−X̃φ

f
)φ, δXφ

�
=


Σ

φ∗
�
iXi(X

f
−X̃φ

f
)ωH

�
.

Now observe that the expression

φ∗
�
iXi

X̃
φ
f

ωH
�
= − φ∗

�
i
X̃
φ
f

iXωH
�
= − iX

f ,M

�
φ∗(iXωH)�

vanishes due to the assumption that φ is a solution of the equations of motion. Therefore,

Ωφ(X FΣ, f [φ], δXφ) =

Σ

φ∗
�
iXiX f

ωH
�
,

which, according to Proposition 1, is equal to

F ′Σ, f [φ] · δXφ =

Σ

φ∗
�
iXdf

�
=


Σ

φ∗
�
iXiX f

ωH
�
.

�

An immediate corollary of this theorem is that we can express the Peierls–De Witt bracket
between two local functionals associated to hamiltonian (n − 1)-forms directly in terms of their
“multisymplectic Poisson bracket.”

Theorem 6. Suppose we are given a fiber bundle E (the field configuration bundle) over an
n-dimensional globally hyperbolic space-time manifold M and a hamiltonian H : J⃗~E −→ J#⋆E,
which is a section of extended multiphase space J#⋆E over ordinary multiphase space J⃗~E, together
with two hamiltonian (n − 1)-forms f and g on J⃗~E of spatially compact support such that the
corresponding hamiltonian vector fields X f and Xg on J⃗~E are projectable to M. (Recall that
according to Theorem 2, this is automatic if N > 1.) Then given any Cauchy surface Σ in M, the
Peierls–De Witt bracket between the local functionals F

Σ, f and F
Σ,g on S associated to Σ and f

and to Σ and g, as in Definition 1, is the local functional associated to Σ and any of the multisym-
plectic Poisson brackets { f , g} on J⃗~E that can be found in the literature, among them the simple
“pseudo-bracket” defined by Equation (8) as well as the modified bracket defined by Equation (10).
In other words, with any one of these choices, we have

�
FΣ, f , FΣ,g

	
= F

Σ,{ f ,g }. (103)

Proof. Combining Equation (99) with Equation (102) from the previous theorem and applying
Equation (31) from Proposition 1 (which is applicable because the relevant integral need only be
extended over a compact subset of Σ such that the base supports of f and g are contained in its
interior), we obtain, for any φ ∈ S,

�
FΣ, f , FΣ,g

	[φ] = − F ′Σ,g[φ]
(
X FΣ, f [φ]

)
= −F ′Σ,g[φ]

(
δX f

φ
)

= −

Σ

(
φ∗
�
iX f

dg
�
− iX f ,M

�
φ∗dg

�)
.

Using that dg = iXg
ωH, we see that the second integral vanishes due to the equations of mo-

tion (52), and we get

�
FΣ, f , FΣ,g

	[φ] =

Σ

φ∗
(
iXg

iX f
ωH

)
=


Σ

φ∗{ f , g} = F
Σ,{ f ,g }[φ],

where the second equality is obvious if we employ the “pseudo-bracket” of Equation (8) but holds
equally well if we employ the modified bracket of Equation (10) since, once again, the relevant
integral need only be extended over a compact subset of Σ such that the base supports of f and g are
contained in its interior and then the integral over the additional term can, by Stokes’s theorem, be
converted to an integral over the boundary of that compact subset and hence vanishes. �
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VII. CONCLUSIONS AND OUTLOOK

In this paper we have established a link between the multisymplectic Poisson brackets that
have been studied by geometers over more than four decades and the covariant functional Poisson
bracket of classical field theory, commonly known as the Peierls–De Witt bracket. This link is based
on associating to each differential form on the pertinent multiphase space a certain local functional
obtained by pulling that form back to space-time via a solution of the equations of motion and inte-
grating over some fixed submanifold of space-time of the appropriate dimension, considering the
result as a functional on covariant phase space (the space of solutions of the equations of motion).
Here, we have restricted attention to forms of degree n − 1, where n is the dimension of space-time,
which have to be integrated over submanifolds of codimension 1 (hypersurfaces), but we cannot
see any obvious obstruction to extending this kind of analysis to forms of other degree. This would
be of considerable interest since in physics there appear many functionals that are localized on
submanifolds of space-time of other dimensions, such as values of observable fields at space-time
points (dimension 0), Wilson loops (traces of parallel transport operators around loops) in gauge
theories (dimension 1), electromagnetic field strength tensors and curvature tensors (dimension 2),
etc.

The overall picture that emerges is that the correct approach to the concept of observables
in classical field theory is to regard them as smooth functionals on covariant phase space. As
is well known, covariant phase space is, at least formally and for nondegenerate systems, an
(infinite-dimensional) symplectic manifold, so the space of all such functionals constitutes a Pois-
son algebra, and that is what we are referring to when we speak about the “algebra of observables”
in classical field theory. Of course, this algebra is huge, and the construction of local functionals
on covariant phase space from differential forms on multiphase space, as employed in this paper,
is merely a device for producing special (and quite small) classes of such observables. But the
reduction of the algebraic structure at the level of such functionals to some corresponding algebraic
structure for the generating differential forms is highly problematic: in fact, there is no reason to
expect that there might exist any product or bracket between differential forms on multiphase space
capable of reproducing the standard product or bracket between the corresponding functionals on
covariant phase space. One possible obstacle is that any such prescription would most likely be
highly ambiguous since a crucial piece of information is missing: after all, the functional does not
only depend on the differential form which (after pull-back) is being integrated but also on the
submanifold over which one integrates! One way out would be to restrict to functionals defined by
some fixed submanifold and hope that the resulting algebraic structure does not depend on which
submanifold (within a certain given class) is chosen: that is what we have done in this paper when
reducing the covariant Peierls–De Witt bracket to a multisymplectic bracket. But the fact that this
actually works is to a certain extent a miracle which cannot be expected to happen in general,
since we will very likely be forced into admitting functionals defined by integration over different
submanifolds, including submanifolds of different dimension. For example, this happens as soon
as we want to include differential forms of different degrees and/or explore the existence of a
relation between the product of functionals and the exterior product of forms, or some modified
form thereof. In particular, these arguments show why the notorious absence of a decent associative
product in the multisymplectic formalism should come as no surprise: it merely expresses the fact
that functionals of the form given by Equation (5) do not form a subalgebra.

At any rate, it is a highly interesting question what kind of algebraic structure on what kind of
spaces of differential forms (or pairs of submanifolds and differential forms) will ultimately result
from the functional approach advocated in this paper. These and similar questions are presently
under investigation and will be reported in a future publication.
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