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Continuing our attempt to explain the degeneracy of the genetic code using basic
classical Lie superalgebras, we present the branching schemes for the typical codon
representationétypical 64-dimensional irreducible representatioobasic classi-

cal Lie superalgebras and find three schemes that do reproduce the degeneracies of
the standard code, based on the orthosymplectic algeb(&|2) and differing only

in details of the symmetry breaking pattern during the last step2080 American
Institute of Physics.S0022-2488)0)06305-3

I. INTRODUCTION

In the context of the project proposed by Hornos and Hdrmdsich aims at explaining the
degeneracy of the genetic code as the result of a symmetry breaking process, we have carried out
a systematic analysis of the possibility to implement this idea by starting out from a typical codon
representatioiftypical 64-dimensional irreducible representajiofa basic classical Lie superal-
gebra, rather than a codon representat@tdimensional irreducible representaliai an ordi-
nary simple Lie algebra. The investigation of such an algebraic approach to the genetic code using
alternative concepts of symmetry such as supersymmetry, where ordinary Lie algebras are re-
placed by Lie superalgebras, has already been suggested in the original papept for the
restriction to basic classical Lie superalgeh@particular class of simple Lie superalgebrasd
to typical representatior(a particular class of irreducible representatjonsly under this restric-
tion, which is of a technical nature, does there exist a sufficiently well developed mathematical
theory, due to Kaé? to allow for the kind of analysis that is necessary to carry out such a
program. As a first step, we have in a previous papeesented a complete classification of all
typical codon representations of basic classical Lie superalgebras: there are altogether 18 such
representations involving 12 different Lie superalgebras. Our goal in the present paper is to
analyze all possible branching schemes that can be obtained from these representations with
regard to their capability of reproducing the degeneracy of the genetic code, following the strategy
used in Ref. 1 and explained in detail in Ref. 5, but with one essential restriction: supersymmetry
will be broken right away, in the very first step.

To motivate this assumption, note that the distribution of multiplets found in the genetic code
today does not appear to correspond to the kind of scheme one would expect from the represen-
tation theory of Lie superalgebras. Thus, if some kind of supersymmetry has been present at the
very beginning of the evolution of the genetic code, it must have been broken. Moreover, it does
not seem plausible to us that this breaking should have occurred only in the last step of the
process, where the phenomenon of “freezing” would have been able to prevent a complete
breakdown(see Ref. 5 for more detajlsBut if supersymmetry has been broken before, then there
is mathematically no loss of generality in assuming that it has been broken in the very first step,
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because as soon as we may exclude freezing, symmetry breaking through chains of subalgebras
that differ only in the order in which the successive steps are perfofmeth asgD gD g:MNgo
andgDg,Dg,MNgy) will lead to the same end result.

Il. THE FIRST STEP: BREAKING THE SUPERSYMMETRY

With the above picture in mind and using the fact that among the semisimple ordinary Lie
algebras which are subalgebras of a given basic classical Lie superajgehege is a unique
maximal one, namely the semisimple p@%stof its even parfjy, our task for the first step of the
symmetry breaking process is to compute, for each of the 18 codon representations of the 12 basic
classical Lie superalgebras found in Ref. 4, its branching into irreducible representations under
restriction fromg to g%s. There are two different methods for doing this. One consists in comput-
ing all weight vectors that result from the action of products of generators associated with the
negative odd roots on the highest weight vector, where every negative odd root appears at most
once in such a product: these are the candidates for highest weight vectors of irreducible repre-
sentations og%s that appear in the direct decomposition of the original codon representatpn of
The problem is to decide which of these representations really appear, and with what multiplicity.
Although there is an explicit formula for calculating such multiplicities, due to Kac and Kostant,
the procedure involves a summation over the Weyl group and is cumbersome to apply in practice.
Therefore, we shall, following common usage, adopt the other method, which is based on the use
of Young superdiagrams—a generalization of the usual Young diagrams from ordinary Lie alge-
bras to Lie superalgebras.

In order to understand how this technique works, it is useful to recall how Young diagrams
arise in the representation theory of ordinary simple Lie algebras. Given a simple Lie ajgebra
consider the first fundamental representatioggfi.e., the irreducible representation @f with
highest weight equal to the first fundamental weight, denoted in what follovi. ByJternatively,
we may characterizB as the lowest-dimensiongaiontrivial) irreducible representation gf;: for
the matrix Lie algebrasi(n), so(n), andsp(n), it is simply then-dimensional defining repre-
sentation. The basic idea is now to look at all tensor po€t8 of D and reduce them into their
irreducible constituents. This reduction is achieved by considering symmetric tensors, antisym-
metric tensors and, more generally, tensors of mixed symmetry type. In fact, permutation of the
factors induces a representation of the symmetric g&&upn the representation spacefP and
this action ofS, commutes with that ofi;, so that both actions can be simultaneously decomposed
into irreducible constituents. More precisely, this is achieved by combining them into a “joint
action” and then performing a decomposition into irreducible constituents in the usual sense: each
of these has the property that its multiplicity as a representatids), @quals its dimension as a
representation ofi; and its multiplicity as a representation gf equals its dimension as a repre-
sentation ofS,. (The concept of “joint action” used here can be formulated in mathematically
rigorous terms by introducing the connected, simply connected, simple Lie @guprrespond-
ing to go and considerind andD®P as representations &; then the joint action 08, andg,
corresponds to a representation of the direct pro@yetG,.) The usefulness of this approach
stems from an important theorem of Weyl which states that any irreducible representation of the
classical Lie algebrasl(n) andsp(n), as well as any tensorial irreducible representation of the
classical Lie algebraso(n), can be obtained in this wayAn irreducible representation ef(n)
of highest weight [ ,...,I,_1,l,) is tensorial, or nonspinorial, if, is even forn=2r+1 odd(B
serieg and ifl, _,+1, is even fom=2r even(D serie$.) Therefore, a Young diagram pfboxes,
which originally stands for an irreducible representation of the symmetric ggguglso deter-
mines an irreducible representation gf contained inD®P. In the case okl(n), the latter is
simply obtained by considering tensors of a specific symmetry type, given by the projection
operator of symmetrizing along the rows and antisymmetrizing along the columns of the corre-
sponding standard Young tableilwhereas in the case ap(n) andso(n), the existence of
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invariant bilinear forms foD (antisymmetric fosp(n) and symmetric foso(n)) implies that this
operation alone is not sufficient to produce an irreducible representation: here, a given Young
diagram stands for tensors of the corresponding symmetry type which in addition are totally
traceless with respect to the pertinent bilinear form, that is, traceless in all indices in which they
are antisymmetric in the case §f(n) and traceless in all indices in which they are symmetric in
the case ofo(n).

The rules for constructing Young tableaux and diagrams can be extended in such a way as to
also cover spinorial representationsso{n). To this end, one must include the spinor represen-
tation(s), i.e., the standard spinor representat®of highest weight0,..., 0, 2 if nis odd and the
two chiral spinor representatioi® andS~, of highest weight0,..., 0, 1, ¢ and(0,..., 0, 0, 1,
respectively, ifn is even: this turns out to be sufficient because according to a modified form of
Weyl's theorem, an arbitrary irreducible representatios«ih) can be obtained as a subrepre-
sentation of the representatidd®P®S if n is odd and of one of the two representations
D®P®S" or D®P®S™ if nis even, for adequate. Therefore, it is convenient to introduce
generalized Young tableaux and diagrams containing “spinor” or “half” boxes, one at the be-
ginning of each row, and characterized by inserting the let&8rifito each of them, as well as a
possible “negative” last row instead of the usual “positive” one wheis even, thus allowing to
distinguish between the two chiralities for the spindi&he property of having only one spinor
box per row reflects the fact that the spinor represent@icmppear only once in the tensor
product, so that in particular, there is no problem with symmetrization or antisymmetrization of
spinor indices.For a summary of the conventions that we shall follow, the reader is referred to the
Appendix of Ref. 8.

An important point to be noticed is that although differégeneralizeyl Young diagrams
correspond to different irreducible representations of the permutation @oughey may very
well describe the same irreducible representatioggpfthus the characterization of irreducible
representations ofi; by (generalizeyl Young diagrams is ambiguous. In order to remove this
ambiguity, one introducemodification ruleswhich allow to reduce everygeneralized Young
diagram to itsstandardform, as explained, for instance, in Ref. 9: this is done in such a way that
every irreducible representation corresponds to precisely one stafgtareralizedl Young dia-
gram.

The technique ofgeneralizefl Young tableaux and Young diagrams for characterizing irre-
ducible representations has been extended from the classical simple Lie algebras to the special
linear and orthosymplectic Lie superalgebras, giving rise¥tming supertableauand Young
superdiagramswhich we shall distinguish from their nonsupersymmetric counterparts by the
insertion of a diagonal line across each box. They describe typical representations as well as
atypical ones. As in the nonsupersymmetric case, several different Young superdiagrams may
provide the same irreducible representation, and modification rules are needed to remove the
ambiguity: they serve to reduce a Young superdiagram tetasdardform. For an atypical
representation, this procedure is still not unambiguous, leading to different standard Young super-
diagrams describing the same representation, whereas for a typical representation, the correspond-
ing Young superdiagram can be constructed directly from its highest weight, and conversely, the
Kac-Dynkin labels of the highest weight may be read off from the Young superdiagram. Note that
fixing the highest weight includes fixing the Kac—Dynkin labgbf the simple odd root, which
for type | Lie superalgebras can take continuous values: the corresponding irreducible represen-
tation will in that case carry an additional continuous parameter. Its dimension and its branching
rules under reduction frong, to g%swill however not depend on the valuelgfwhich in Ref. 4 had
remained unspecified, except for the constraints imposed by requiring typicality of the represen-
tation. Here, we shall make a choice fgtthat leads to the simplest possible Young superdiagram
which is consistent with these constraints; this value, together with the resulting Young superdia-
gram, is specified in Tables I-I1l.

For the special linear Lie superalgebrém|n), the procedure of constructing irreducible
representations from Young superdiagrams is straightforward. The main difference from the case
of the special linear Lie algebrag(n) is that the process of symmetrization and antisymmetriza-
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TABLE I. Branching of codon representations of type | Lie superalgebras in the firsgﬁtgﬁps: Part 1.

LSA | Highest weight Young Highest Weights d
g of g-multiplet Superdiagram of gg-multiplets
sl(2]1) (15,12) =1 (16) 17
2 x (15) 2 x 16
...14 boxes ... |/] (14) 15
sl(3]1) (1,1,%) 3=1 (2,1) 15
(1,2) 15
2x(1,1) 2x8
(2,0) 6
(0,2) 6
(1,0) 3
(0,1) 3
sl(4]1) (1,0,0,44) =1 (1,1,0) 20
(1,0,1) 15
(2,0,0) 10
(0,1,0) 6
(0,0,1) 4
2 % (1,0,0) 2x4
(0,0,0) 1
sl(6]1) | (0,0,0,0,0,l) leg=1 (0,0,1,0,0) 20
(0,1,0,0,0) 15
(0,0,0,1,0) 15
(1,0,0,0,0) 6
(0,0,0,0,1) 6
2x(0,0,0,0,0) | 2x1

tion involved in the definition of the Young idempotents that project onto a tensor of a specific
symmetry type must now be understood in the appropriate supersymmetric or graded sense:
symmetrization or antisymmetrization of two fermionic indices involves an extra minus sign to
take into account the anticommuting character of these variables. This implies that there no longer
exists an invariant totally antisymmetric tensor of top dedieeariant volume ofe-tensoy, so the
irreducible representationd and D become independent; therefore Young superdiagrams for
sl(m|n) are in general composed of “undotted” and “dotted” boxes, as happens in the case of
Young diagrams fogl(n). For the applications needed in this paper, however, we shall find it
sufficient to use the conventional type of Young superdiagram containing only “undotted” boxes.
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TABLE Il. Branching of codon representations of type | Lie superalgebras in the firsgilgﬁs: Part 2.
LSA Highest weight Young Highest Weights d
g of g-multiplet | Superdiagram | of g&-multiplets
s[(2]2) (3,15,0) I, =2 (3) = (2) 12
2x((4)-(1) |2x10
(5) - (0) 6
2x((2)=(1)) | 2x6
3x((3)=(0) | 3x4
(1) = (0) 2
(1,0,1) ;=3 2x((2)=-(2)) | 2x9
(3)—(1) 8
(1) - (3) 8
4x((1)=(1)) | 4x4
2x((2)—(0)) | 2x3
2x((0)=(2) | 2x3
2x((0)=(0)) | 2x1
5[(3[2) (0,0,13,0) 1322 (1,1)—‘(1) 16
(1,0) - (2) 9
(07 1) - (2) 9
(2,0) - (0) 6
(0,2) - (0) 6
(1,0) — (1) 6
(0,1) = (1) 6
(0,0) - (3) 4
2x((0,0)—-(0)) | 2x1
0sp(2]4) (I4,1,0) =1 (1,1) 16
2 x(2,0) 2x10
% 2 % (0,1) 2% 5
4 % (1,0) 4x4
2 x (0,0) 2x1
0sp(2]6) | (14,0,0,0) =3 (0,0,1) 14
2 x(0,1,0) 2x 14
L1 3% (1,0,0) | 36
4%(0,0,0) | 4x1
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TABLE Ill. Branching of codon representations of type Il Lie superalgebras in the firstgsteg .

LSA Highest weight Young Highest Weights | d
g of g-multiplet | Superdiagram | of gs-multiplets
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The relation between such Young superdiagrams and Kac—Dynkin labels of irreducible rep-
resentations fosl(m|n) can be summarized as follows. First, recall that an ordinary Young
diagram, characterized by a nonincreasing sequéepee..=b, of positive integers giving the
lengths of itsr rows, will be an allowed Young diagram fef(n) if and only if r<n; in this case
it will describe an irreducible representation«fn) with Dynkin labelsl,...,|,_; given by

Ii = bi_bi+l fOI‘ i = 1,n_l (1)

(It is to be understood thdi,>0 butb;=0 if i>r). Similarly, according to Ref. 10, a Young
superdiagram containing only ‘“undotted” boxes, characterized by nonincreasing sequences
b,=---=b, andc,=---=c, of positive integers giving the lengths of itsows ands columns,
respectively, will be an allowed Young superdiagramdigm|n) if and only if b,,, ;=<n; in this

case, it will describe an irreducible representation séfm|n) whose Kac-Dynkin labels
l1,....lm+n_1 can be found as follows. Define the reduced column lengths by

¢/ = (c;—m)o(c;—m), (2

where @ is the step function; then

li = bi_bi+1 for i = 1,...m—1,

Im = bm+Civ ©)

I+ = Cj’_cj’ﬂ for j =1,..n-1

(Again, it is to be understood thét>0 andcs>0 butb;=0 if i>r andc;=0 if j>s.)

On the other hand, the branching rules under reduction from the Lie superaig@hja) to
the semisimple paii(m)®s((n) of its even subalgebra in terms of Young diagrams and super-
diagrams can, according to Ref. 11, be derived immediately from the corresponding branching
rules under reduction from the ordinary Lie algebs§m+n) to the same subalgebra
sl(m)@sl(n), which in turn are given in Ref. 12, for a large class of examples. In fact, all that
needs to be done is to replace the Young diagram for the second sumaftr@ndvhich represents
the odd sector of the representation space, by its transposed diagram, exchanging rows and col-
umns. As an example, we show on the next page the decomposition of the Young superdiagram
given byr=2, s=2 with b;=3=c,, b,=2=c,, andby=1=c3; which, according to Eq92)
and(3), corresponds to the typical codon representatiosi(@ 1), of highest weight (1,13) with
I3=1, as well as to the typical codon representatiosl2|2), of highest weight (15,1) with
I,=3. The highest weights with respectdi§3) and tosl(2)® s[(2) corresponding to the ordinary
Young diagrams resulting from this decomposition are also exhibited and the “illegal” diagrams
are identified: they are the ones that must be eliminated to comply with the prescription that
Young diagrams fos[(k) must not have more thaarows. In this way, we arrive at the branching
schemes for the typical codon representations(@h|n) given in Table | and Table I, since the
remaining cases can be checked directly from the rules given in Table 1 of Ref. 11.
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|
= (B )+ () v (B0
L] |
sl(3]1) (1,1) illegal illegal
sl(2]2) illegal illegal (1-1)
(B5) (3 5) - ()
+ ? + -_— ) + )
(1,2) (2,0) T (0,1)
(1-1 illegal illegal
1]
+(B7.8)-(H.8)+(F8)
illegal illegal illegal
(2 - 0) (0 =0) illegal
1 L L1 | L]
S(B ) () ()
1) (0,2) —(1,0)
@-2) (0-2) illegal
( | :> (I [ 1] l)
+{ 0 . )+ , L
illegal illegal
illegal 3-1)
(D 1) (D [ l) (EI )
+ ) + s | + )
u ||
illegal illegal illegal
1-1) illegal illegal
[ ] |
illegal illegal illegal
(0-2) (0-0) illegal
N [ ] L1l L1 J
() () ()
illegal illegal illegal
2-2) (2-0) illegal
B | ] L1
(go)+ (8 )
illegal (1,1)
illegal (1-3)

Downloaded 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 41, No. 8, August 2000 Branching schemes 5431

For the orthosymplectic Lie superalgebras(M|N), where M=2m+1 or M=2m and
N=2n, the procedure is somewhat more complicated; it is described in Ref. 8. First of all, it must
be noted that the construction and interpretation of Young superdiagramssifov|N), as
compared to that fosl(m|n), is subject to the same adjustments as that of ordinary Young
diagrams forsp(N) andso(M), as compared to that faii(n): in particular, they may contain
“spinor” or “half” boxes (referring, of course, only to theo(M) part of the even subalgebra
which by convention will be located in then ¢ 1)st row. We shall follow the notation of Ref. 8,
except that we shall continue to distinguish Young superdiagrams from their nonsupersymmetric
counterparts by the insertion of a diagonal line across each box, including the “spinor” or “half”
boxes. The relation between the lengths=...=b,, of the firstn rows andc,=...=c,, of the first
m columns on one hand and the Kac—Dynkin labgls..,l,,_1,l,lh11,---lhem ON the other
hand is summarized in Eg&3.1), (3.4), and(3.5) of Ref. 8. The prescription for determining the
branching rules under reduction from the Lie superalgebsa(M|N) to its even part
sp(N)@®so(M) has also been determined and is formally summarized in(Bd, (3.3), and(3.6)
of Ref. 8. The starting point is to dissect the given Young superdiagram into two ordinary Young
diagrams: one for thep(N) part formed by the firsh rows and one for theo(M) part formed by
the remaining rows, but reflected along the main diagonal. Together, they stand for the irreducible
subrepresentation of the even subalgefyéN)®so(M) generated from the original highest
weight vector by application of all even generators. It forms the ground floor of a building in
which all the other irreducible subrepresentations of the even subalgebra are arranged in higher
floors, each counted according to the minimum number of odd generators required to reach it from
the ground floor. The procedure for determining which Young diagrams describe the irreducible
subrepresentations that do appear in the higher floors is complicated, requiring the use of gener-
alized Young diagrams fosp(N) with negative boxes, as introduced in Ref. 13, that must be
multiplied to standard Young diagrams fes(M),* plus rules for eliminating Young diagrams
resulting from this process that represent nontracefree parts. A discussion of the general formulas
presented in Ref. 8 is not very instructive, so we prefer to just illustrate them by presenting two
important examples: the branching schemes for the typical codon representatiepd2) with
highest weight §,0,1) and ofosp(5|2) with highest weight3, 0, 1).

We begin by calculating thep(2)®so(4) content of the typical codon representation of
osp(4]2) with highest weight3, 0, 1). According to Eq(3.4) of Ref. 8, the label®,=...=b, and
Cc,=...=cC,, of the corresponding Young superdiagram are given by

by =13 = 11— 3(I,+13) = 3,

(4)

¢y = n+3(latly) =

NIw

NIw

_ 1 _
C, = n+3(lz—1ly) =

so the Young superdiagram has the form indicated in Table III:

Therefore, the Young diagram for the even subalgeb(@)®so(4) is
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(2-B)

It describes the irreducible representation of highest wei@ht(0, 1) which forms the ground
floor. The irreducible representations on the following floors are computed graphically as follows:

1. floor: (dXEIIl,DX):(l 0. |+Iﬂm)’

corresponding to the highest weigh®—(1, 2) and (2)—(1, 0),

2. floor: (EE XEED,BX)=<D’ : +li_SD+)’

corresponding to the highest weighty—(0, 3), (1)—(2, 1), and(1)—(0, 1),

3. floor: ([ll xI Il,Dx>=(1,; +|i|m)’

corresponding to the highest weight®—(1, 2 and (0)—(1, 0. These are precisely the highest
weights listed in Table Il for this case.

We proceed to calculate the(2)®so(5) content of the typical codon representation of
osp(5]2) with highest weight3, 0, 1). According to Eq(3.1) of Ref. 8, the label®,=...=b, and
ci=...=C,, of the corresponding Young superdiagram are given by

wr

w

_ 10 _ 1y
by =17 = li—l—2l3 = 2,

¢y = n+tly+ils =3, )

C; = nt+ily =3,

so the Young superdiagram has the form indicated in Table III:

Therefore, the Young diagram for the even subalgeb(@)®so(5) is
(0-8)

It describes the irreducible representation of highest wei@ht(0, 1) which forms the ground
floor. The irreducible representations on the following floors are computed graphically as follows:

L floor (d~0.8-8)=(0.FP)

corresponding to the highest weigh)—(1, 1),
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2. floor: (EEXED’BX)=(1’ )’

corresponding to the highest weigt)—(0, 3). Again, these are precisely the highest weights
listed in Table Il for this case.

Finally, it should be mentioned that we have omitted from Tables I-Ill some of the typical
codon representations determined in Ref. 4 because their branching schemes are obvious from
those that are listed. Examples are the typical codon representatisitd| bf with highest weight
(0,0,11,) and ofsl(2|2) with highest weight (0,,3), which are complex conjugate to those with
highest weight (1,0,0,) and (3l,,0), respectively, and which therefore exhibit the same branch-
ing schemes, in all phases, except for complex conjugation which however does not affect dimen-
sions. Similarly, it is known that the branching rules of typical representations of the Lie super-
algebraosp(4/2, @) upon reduction to its even part do not dependagi so that we may without
loss of generality putv=1. Moreover, our calculations have shown that the three typical repre-
sentations with highest weighs, 0, 0, (4 3, 0, and (3, 0, 3, as well as the three typical
representations with highest weigBt 1, 1), (3, 1, 0, and(4, 0, 1), although inequivalent, have the
same branching rules under this reduction, so we have listed only one of each.

L[]

w

lll. THE SEARCH FOR SURVIVING CHAINS

In the preceding section, we have described in some detail the arguments that are needed to
analyze the first step of the symmetry breaking process through chains of subalgebras, during
which the original supersymmetry is removed. All further steps involve only ordinary Lie algebras
and are carried out according to the strategy already used in Ref. 1 and explained in detail in
Ref. 5. Briefly, the main criterion for excluding a given chain without having to analyze all of its
ramifications is the occurence of one of the following situations:

« Total pairing: all multiplets come in pairs of equal or complex conjugate representations. No
further breaking is able to remove this feature, excluding the possibility to produce multiplets
with odd multiplicity, that is, the 3 sextets, 5 quartets, and 9 doublets found in the genetic
code.

* More than 2 singlets. No further breaking is able to reduce the number of singlets, excluding
the possibility to produce no more than the 2 singlets found in the genetic code.

« More than 4 odd-dimensional multiplets. No further breaking is able to reduce the number of
odd-dimensional multiplets, excluding the possibility to produce no more than the 2 triplets
and 2 singlets found in the genetic code.

In what follows, we list the chains that can be excluded by one of these arguments, together with
the relevant information on the distribution of multiplets obtained after the last step.

« A(2|0)=sl(3]1):
Total pairing.
« A(3|0)=sl(4]1):
Continuing the symmetry breaking process, we obtain the following chains, all of which can
be excluded:
— A(3|0)DA3DA,: 10 triplets and 6 singlets.
— A(3|0)DA3;DC,DA;®A;: 4 triplets and 4 singlets.
— A(3|0)DA;DC,DA;: 2 septets, 2 quintets, 2 triplets and 2 singlets.
— A(3|0)DA3DA®A;: 2 nonets, 4 triplets and 2 singlets.
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« A(5|0)=sl(6]1):
Continuing the symmetry breaking process, we obtain the following chains, all of which can
be excluded:
— A(5|0)DAsDA,: 4 quintets and 4 singlets, as well as total pairing.
— A(5|0)DAsDA;: Total pairing.
— A(5|0)DA;DC3: 4 singlets.
— A(5|0)DA5DA,: Total pairing.
— A(5|0)DA;DA;®A;: 4 singlets.
— A(5|0)DAsDA,3A,: 4 nonets, 8 triplets and 4 singlets.
— A(5/0)DAsDA A, DA AL, where A,DA corresponds tosu(3)Dsu(2):
4 triplets and 4 singlets.
— A(5/0)DAsDA®A, DA ®AP, where A,DA? corresponds tosu(3)Dso(3):
2 nonets, 2 quintets, and 4 singlets.
e A(1]1)°=5l(2|2), the central extension @(1/1), highest weight (15,1):
Too many odd-dimensional multiplets.
* A(2]1)=51(3|2):
Continuing the symmetry breaking process, we obtain the following chains, all of which can
be excluded:
—A(2]1)DA8A; DA AN whereA, DAY corresponds teu(3)Dsu(2): 4triplets and
4 singlets.
- A(2]1)DA,®A; DA BAP, where A,DAP corresponds tau(3)Dso(3): 2 nonets,
2 quintets and 4 singlets.
» C(3)=0sp(2|4):
Continuing the symmetry breaking process, we obtain the following chains, all of which can
be excluded:
— C(3)DC,DA @A, : 4 triplets and 4 singlets.
— C(3)DC,DA;: 2 septets, 2 quintets, 2 triplets and 2 singlets.
» C(4)=0sp(2|6):
Too many singlets.

In the terminology of Ref. 5, we are thus left with six basic classical Lie superalgebras whose
codon representations, up to the end of the first phase of the symmetry breaking process, produce
surviving chains: their remaining symmetry is described by a direct susf(2)f algebras.

Finally, we must pass to the second phase of the symmetry breaking process, during which
some of thesl(2) algebras are broken. There are two ways of doing this, depending on whether
one uses the operatbr, or the 0peratoL§ as the symmetry breaking term in the model Hamil-
tonian; we shall in what follows refer to these two possibilities as “strong” breaking and “soft”
breaking, respectively. However, only the first of them corresponds to a genuine symmetry break-
ing at the level of Lie algebras, namely from the Lie algebi@) to its Cartan subalgebra. A
natural interpretation of both possibilities as a legitimate symmetry breaking requires passing from
the complex Lie algebral(2) to its compact real fornau(2) and from there to the corresponding
connected, simply connected Lie group(&))which all have the same representation theory: then
as has been observed in Ref. 16, we may break the symmetry undeotimectegigroup SU2)
in two different waysia) down to its maximal connected subgrouflli=SQ(2) (strong breaking
or (b) down to its maximalnonconnectedsubgroupZ, x U(1)=0(2) (soft breaking. The effect
on a multiplet of dimension £+ 1, corresponding to an irreducible representation of2${or
su(2) or sl(2)) of spins and highest weight € is to break it(a) strongly into Z+1 singlets,
corresponding to the different eigenvalues of the operajoror (b) softly into

* sdoublets and one singlet &is integer, or
» sdoublets ifsis half-integer,
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TABLE IV. Branching of the codon representation @ (3|4) (first phasg

sp(4)®s0(3) sl(2)@sl(2)®sl(2) 50(2)1,®51(2)

Highest Weight d Highest Weight d Highest Weight d
(1,0—(5) 24 (1)—-(0)—(5) 12 (1)—-(5) 12
0—(D)—-(5) 12 ) 12
0,13 20 (1)—-(1)-(3) 16 2- 12
0-() 4
0-0-(3) 4 0-(3) 4
(1,0-(1) 8 (1)-0-(1) 4 (D-(2) 4
0-(1)-(1) 4 (D-(2) 4
(0,0-(7) 8 09-0)-(7) 8 0—(7) 8
0,0-(3) 4 0-0-(3) 4 0-() 4

5 subspaces 8 subspaces 9 subspaces

corresponding to the different eigenvalues of the operlaior

The main complication in this second phase of the symmetry breaking process arises from the
necessity to take into account the possibilityjeértially) “freezing” the symmetry breakdown in
the last step; for more details, see the discussion in Ref. 5.

As an immediate consequence of the previous discussion, we see that the chain resulting from
the codon representation ef(2|1) can be excluded: all multiplets are of dimensioh so that
further symmetry breaking is needéde, no freezing is allowed but the remaining symmetry
algebra being a single copy ef(2), any further breaking will produce only singlets or doublets.

The most stringent criterion for a chain to be surviving during the second phase of the
symmetry breaking process comes from the requirement of producing the correct number of
sextets(3) and triplets(2): it demands, among other things, that the number

sum of the dimensions of all multiplets

ds = whose dimension is a multiple of 3

which during this phase cannot decrease, must always rem2dn As an example, note that this
condition immediately eliminates the codon representatiosspf3|2), for which d;=18, accord-
ing to Table Ill. The remaining cases must be handled case by case, as follows.

« A(1]1)°=5l(2|2), the central extension @&(1|1), highest weight (3;,0):

Up to the end of the first phase, we have a unique chain:
s1(2]2)Dsl(2) @sl(2).

The corresponding distribution of multiplets can be read off from Table II; there are alto-
gether 10 multiplets, witld;=30. However, among the four multiplets whose dimension is
a multiple of 3, we have one multiplet of dimension 6, nam@ly-(0), which cannot break

into triplets, one multiplet of dimension 12, naméB)—(2), which can either break into four
triplets or else will produce no triplets at all, and finally two identical multiplets of dimension
6, namely(2)—(1), which together can also either break into four triplets or else produce no
triplets at all. Thus, there is no possibility to generate the two triplets found in the genetic
code, so this chain may be discarded.

» B(1|2)=0sp(3|4), highest weight0, 3, 3).

Up to the end of the first phase, we have the following chains:

1. 05p(3]4)Dsp(4)®s0(3)Dsl(2)@sl(2)Dsl(2).
The corresponding distribution of multiplets can be read off from Table IV; there are
altogether8 multiplets, witll;=24. However, the two multiplets whose dimension is a
multiple of 3, namely(1)—(0)—(5) and (0)—(1)—(5), both of dimension 12, cannot break
into triplets, so this chain may be discarded.
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TABLE V. Branching of the codon representationwf(5|2) (first phasg

sp(2)@so(5) sl(2)@sl(2)®s(2) 50(2)1,95((2)

Highest Weight d Highest Weight d Highest Weight d
(1)1, 32 (D-2)-(1) 12 (3-1) 8
(D-(2) 4
(D-(1)-(2 12 (2-(2 9
0-2) 3
(D-(1)-(0) 4 (20 3
(0-(0) 1
(1D-(0)—-(1) 4 (D=1 4
(0-(0,3 20 0-2)-(1) 6 (21 6
0-(1)-(2) 6 (1= 6
(0-3)-(0) 4 (3-(0 4
0-0-(3) 4 0-(3) 4
2-0,9 12 (2-(1)-) 6 (3-(0 4
(1)-©0) 2
(2-0-(1) 6 (2—(1) 6

3 subspaces 10 subspaces 14 subspaces

2. 05p(3|4)Dsp(4)ds0(3)Dsl(2)Dsl(2).
The corresponding distribution of multiplets is identical with that shown in Table Ill, since
no further branching occurs in the second reduction; there are altogether 5 multiplets, with
d;=24. However, the unique multiplet whose dimension is a multiple of 3, nai3ely
(5), of dimension 24, cannot break into triplets, so this chain may be discarded.

Continuing the first chain by diagonal breaking from three copies(8j to two gives rise to
the following additional chain.

3. 05p(3|4)Dsp(4)®50(3)Dsl(2)®sl(2)DsI(2)Dsl(2)1,951(2).
The corresponding distribution of multiplets can be read off from Table 4; there are
altogether 9 multiplets, witll;=36. However, among the three multiplets whose dimen-
sion is a multiple of 3, we have two identical multiplets of dimension 12, nartigi/(5),
which cannot break into triplets, and one other multiplet of dimension 12, nai@el{3),
which can either break into four triplets or else will produce no triplets at all. Thus there
is no possibility to generate the two triplets found in the genetic code, so this chain may be
discarded.

The other possibilities of diagonal breaking by contracting the first or sesi¢®dwith the

third can be ruled out because they lead to a total of 11 multiplets where the ndgmbas
already dropped to 21, so there is no chance of producing the correct number of sextets and
triplets.

« B(2]1)=0sp(5|2), highest weight3, 0, 1).
Up to the end of the first phase, we have the following chains:

1. 05p(5]2)Dsp(2)@s0(5)Dsl(2)®sl(2)Dsl(2).
The corresponding distribution of multiplets can be read off from Table V; there are
altogether 10 multiplets, witlil;=48. Note also the symmetry of the distribution of
multiplets under exchange of the second with the thif@).
In the first step, we must consider the following four options:
1. Breaking the first((2) softly generates 12 multiplets witth;= 36.
2. Breaking the first((2) strongly generates 18 multiplets with=36.
3. Breaking the secongl(2) softly generates 13 multiplets witdy = 30.
4. Breaking the seconsl(2) strongly generates precisely 21 multiplets with= 30.
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Note that the last option leads to an interesting scheme that comes close to the genetic
code but is slightly different, with 3 sextets, 5 quartets, 4 triplets, 5 doublets, and 4
singlets. In the other three cases, the symmetry breaking process must proceed to the next
stage, leading to the following options:

1.1 Breaking the firstl(2) down strongly generates 18 multiplets with= 36, so the
symmetry breaking must continue and there can be no freezing at this stage, leading to
the same situation as option 2 above.

1.2 Breaking the secongl(2) softly generates 15 multiplets witdy, = 18.

1.3 Breaking the secong(2) strongly generates 25 multiplets withy=18.

2.1 Breaking the second(2) softly generates 22 multiplets wiily = 18.

2.2 Breaking the secong(2) strongly generates 35 multiplets witiz=18.

3.1 Breaking the firssl(2) softly generates 15 multiplets witlhy= 18.

3.2 Breaking the firstl(2) strongly generates 22 multiplets withy=18.

3.3 Breaking the secongl(2) strongly generates precisely 21 multiplets with= 30,
leading to the same situation as option 4 above.

3.4 Breaking the third((2) softly generates 16 multiplets witly=12.

3.5 Breaking the thirdl(2) strongly generates 26 multiplets with=12.

As before, options 1.2, 3.1, and 3.4 are excluded, whereas in the cases of options 1.3, 2.1,

2.2, 3.2, and 3.5, the symmetry breaking process must terminate, and we must take into

account the possibility of freezing. However, the multiplets of dimensi®must not be

frozen. As it turns out, it is impossible to generate the correct number of se8jets
triplets (2), and singlets(2). In the cases of options 1.3 and 3.5, we must break the

multiplet of dimension 12 coming from thd—1-2 and can therefore generate at most 3

sextets or 2 sextets and 2 triplets. In the cases of options 2.1 an@vBiéh without

freezing would produce the same distribution of multipletiere is no possibility of
generating triplets. Finally, in the case of option 2.2, breaking or freezing any combination
of the two doublets coming from th&—1-0, the two doublets coming from tH®—3-0

and the three doublets coming from tt#&-1-0Q will generate 14, 12, 10, 8, 6, 4, or no

singlets, but not 2 singlets.

2. 05p(5[2)Dsp(2)@s0(5)Dsl(2)®sl(2).

The corresponding distribution of multiplets is easily obtained; there are altogether 7

multiplets, withd;=30. However, among the three multiplets whose dimension is a mul-

tiple of 3, we have one multiplet of dimension 12, namély—(5), and one multiplet of
dimension 6, namely0)—(5), both of which cannot break into triplets, and one other
multiplet of dimension 12, namel2)—(3), which can either break into four triplets or else

will produce no triplets at all. Thus there is no possibility to generate the two triplets found

in the genetic code, so this chain may be discarded.

Continuing the first chain by diagonal breaking from three copie$(@j to two gives rise to

the following additional chain:

3. 05p(5]2) Dsp(2) P 50(5)Dsl(2)sl(2)Bsl(2)Dsl(2)1,851(2).
The corresponding distribution of multiplets can be read off from Table V; there are
altogether 14 multiplets, witk;= 33.
In the first step, we must consider the following four options:
1. Breaking the first((2) softly generates precisely 21 multiplets wilg=18.
2. Breaking the first((2) strongly generates 35 multiplets withy=18.
3. Breaking the secongl2) softly generates 18 multiplets witly = 24.
4. Breaking the secong(2) strongly generates 28 multiplets with = 24.
Note that the first option leads to an an interesting scheme that comes close to the genetic
code but is slightly different, with 2 sextets, 7 quartets, 2 triplets, 8 doublets, and 2
singlets. In the cases of options 2 and 4, the symmetry breaking process must terminate,
and we must take into account the possibility of freezing. However, the multiplet of
dimension 9 must not be frozen, so we get at least 3 triplets and at least 6 odd-dimensional
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TABLE VI. Branching of the codon representation @f(5|2) (second phageFirst option.

sl(2)®sl(2)®sl(2) s1(2)1,®51(2) L3, (L3,L3)

25,—25,— 25, d 251,—2s;3 d 2s1,—-2m; d 2my,—2ms d
1-2-1 12 3-1 8 31) 8 (£3)—(*1) 4
(£1)—(x1) 4
1-1 4 14=+1) 4 (£1)—(+1) 4
1-1-2 12 2-2 9 26+2) 6 (£2)—(+2) 4
0—(x2) 2
2-0 3 (+2)-0 2

0-0 1
0-2 3 04+2) 2 0~(*+2) 2

0-0 1 0-0 1
1-1-0 4 2-0 3 2-0 3 (x2-0 2
0-0 1

0-0 1 0-0 1 0-0 1
1-0-1 4 1-1 4 1651) 4 (£1)—(=1) 4
0-2-1 6 2-1 6 2¢E1) 6 (£2)—(*1) 4
0—(*1) 2
0-1-2 6 1-2 6 1622) 4 (x1)—~(=2) 4
1-0 2 (x1)-0 2
0-3-0 4 3-0 4 3-0 4 (x3)-2 2
(=1)-0 2
0-0-3 4 0-3 4 06£3) 2 0~=*3) 2
0—(*1) 2 0~(=*1) 2
2-1-0 6 3-0 4 3-0 4 (=3)-0 2
(x1)-0 2
1-0 2 1-0 2 (=1)-0 2
2-0-1 6 2-1 6 26+1) 6 (£2)—(*=1) 4
0—(*+1) 2

10 subspaces 14 subspaces 18 subspaces 26 subspaces

multiplets. Therefore, the only possibility of continuing the symmetry breaking process is
case 3, leading to the following options:

3.1 Breaking the firss[(2) softly generates 26 multiplets witly= 0.

3.2 Breaking the firss[(2) strongly generates 42 multiplets withy= 0.

3.3 Breaking the secong(2) down strongly generates 28 multiplets widh= 24.

In all three cases, the symmetry breaking process must terminate, and we must take into
account the possibility of freezing. However, the multiplet of dimension 8 must not be
frozen and will break either into 2 quartets or into 4 doublets. In all three cases, we are
able to reproduce the genetic code, provided the freezing is chosen appropriately, as
indicated in Tables VI-VIII by vertical bars.

The remaining possibility of diagonal breaking by contracting the sesti@flwith the third
can be ruled out because it leads to a total of 14 multiplets where the nambes already
dropped to 12, so there is no chance of producing the correct number of sextets and triplets.

» D(2]|1)=0sp(4|2), highest weight5, 0, 0.

Up to the end of the first phase, we have a unique chain:
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TABLE VII. Branching of the codon representation @fp(5/2) (second phageSecond option.

sl(2)@sl(2)@sl(2) 51(2)1,®50(2) L3, (Lio,,L3)

25,—25,—2s; d 281,—2S; d 2s15—2m; d 2my,—2m;3 d
1-2-1 12 3-1 8 3E1) 8 (+3)—(x1) 2
(=3)—(*1) 2
(+1)—(*1) 2
(=D)-(x1) 2
1-1 4 14+1) 4 (+1)—(=1) 2
(=1)—(=1) 2
1-1-2 12 2-2 9 2(+2) 6 (+2)—(*2) 2
(—2)=(%2) 2
0—~(*2) 2

2-0 3 (+2)-0 1

(=2)-0 1

0-0 1
0-2 3 04=2) 2 0~(*2) 2

0-0 1 0-0 1

1-1-0 4 2-0 3 2-0 3 (+2)-0 1
(=2-0 1

0-0 1

0-0 1 0-0 1 0-0 1
1-0-1 4 1-1 4 1e01) 4 (+1)—(x1) 2
(-1)—(x1D 2
0-2-1 6 2-1 6 2¢E1) 6 (+2)—(*1) 2
(—2)—(*1) 2
0—(*1) 2
0-1-2 6 1-2 6 1682) 4 (+1)—(=2) 2
(—1)—(%2) 2

1-0 2 (+1)-0 1

(=1)-0 1

0-3-0 4 3-0 4 3-0 4 (+3)-0 1
(=3)-0 1

(+1)-0 1

(=1)-0 1
0-0-3 4 0-3 4 0&£3) 2 0+=3) 2
0—(*1) 2 0~(=*1) 2
2-1-0 6 3-0 4 3-0 4 (+3)-0 1
(=3)-0 1
(+1)-0 1
(-1)-0 1
1-0 2 1-0 2 (+1)-0 1
(=1)-0 1
2-0-1 6 2-1 6 2¢E1) 6 (+2)—(*1) 2
(—2)—(*1) 2
0—+=*1) 2

10 subspaces 14 subspaces 18 subspaces 42 subspaces
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TABLE VIIl. Branching of the codon representation efp(5|2) (second phageThird option.

sl(2)@sl(2)@sl(2) s1(2)1,®50(2) L3, L3,
28,—25,—2s; d 25,,—2s; d 2s,,—2m; d 2s1,—2m; d
1-2-1 12 3-1 8 3(+1) 8 3+(+1) 4
3—+(-1) 4
1-1 4 14+1) 4 1-(+1) 2
1-(-1) 2
1-1-2 12 2-2 9 2(+2) 6 2-(+2) 3
2—(-2) 3
2-0 3 2-0 3
0-2 3 0<+2) 2 0++2) 1
0—+(-2) 1
0-0 1 0-0 1
1-1-0 4 2-0 3 2-0 3 2-0 3
0-0 1 0-0 1 0-0 1
1-0-1 4 1-1 4 16-1) 4 1-(+1) 2
1-(-1) 2
0-2-1 6 2-1 6 26+1) 6 2—(+1) 3
2—(-1) 3
0-1-2 6 1-2 6 1682) 4 1-(+2) 2
1-(-2) 2
1-0 2 1-0 2
0-3-0 4 3-0 4 3-0 4 3-0 4
0-0-3 4 0-3 4 06:3) 2 0~(+3) 1
0—+(—-3) 1
0—+(*1) 2 0—~(+1) 1
0—+(-21) 1
2-1-0 6 3-0 4 3-0 4 3-0 4
1-0 2 1-0 2 1-0 2
2-0-1 6 2-1 6 26+1) 6 2—(+1) 3
2—(-1) 3
10 subspaces 14 subspaces 18 subspaces 28 subspaces

1. 05p(4]2)Dsl(2)®sl(2)®sl(2).

The corresponding distribution of multiplets can be read off from Table llI; there are
altogether 6 multiplets, witld;=42. Note also the symmetry of the distribution of mul-
tiplets under exchange of the second with the thif®). However, among the four
multiplets whose dimension is a multiple of 3, we have one multiplet of dimension 6,
namely(5) — (0) — (0), which cannot break into triplets, and three multiplets of dimension
12, namely(3) — (2) — (0), (3) — (0) — (2), and(2) — (1) —(1), each of which can either
break into four triplets or else will produce no triplets at all. Thus there is no possibility to
generate the two triplets found in the genetic code, so this chain may be discarded.
Continuing this chain by diagonal breaking from three copies/(@ to two gives rise to the
following additional chains.

2. 05p(4]|2)Dsl(2)®s1(2)Dsl(2)Dsl(2)1,P51(2).
The corresponding distribution of multiplets is easily obtained; there are altogether 10

multiplets, withd;=36. However, among the four multiplets whose dimension is a mul-
tiple of 3, we have one multiplet of dimension 12, naméy — (1), and two identical
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multiplets of dimension 6, namelg) — (0), all of which cannot break into triplets, and
one other multiplet of dimension 12, naméB) — (2), which can either break into four
triplets or else will produce no triplets at all. Thus there is no possibility to generate the
two triplets found in the genetic code, so this chain may be discarded.

3. 05p(4[2)Dsl(2)@sl(2)@sl(2) Dsl(2) D sl(2),3.
The corresponding distribution of multiplets can be read off from Table IX; there are
altogether 8 multiplets, witll;=57.
In the first step, we must consider the following four options:
1. Breaking the first((2) softly generates 18 multiplets witlh;= 48.
2. Breaking the first((2) strongly generates 32 multiplets withy=48.
3. Breaking the seconsl(2) softly generates 12 multiplets witly = 18.
4. Breaking the seconsl(2) strongly generates 16 multiplets withy=18.
As before, options 3 and 4 are excluded, whereas in the case of option 2, the symmetry
breaking process must terminate, and we must take into account the possibility of freezing.
However, the multiplets of dimension 6 and of dimension 5 must not be frozen, so we
get at least 16 triplets and 5 singlets. Therefore, the only possibility of continuing the
symmetry breaking process is case 1, leading to the following options:
1.1 Breaking the first((2) strongly generates 32 multiplets witiy=48.
1.2 Breaking the secong(2) softly generates 27 multiplets witly=0.
1.3 Breaking the secongl(2) strongly generates 35 multiplets withy= 0.
In all three cases, the symmetry breaking process must terminate, and we must take into
account the possibility of freezing. However, we already have 2 triplets and 2 singlets at
the previous stage, and the requirement that no new triplets or singlets may be generated
forces the large majority of the multiplets to be frozen. As it turns out, it is possible to
generate the correct number of sexi@s triplets (2), and singlet$2), but not of quartets
(5) and doubletg9); we get at most 4 quartets and at least 11 doublets.

» D(2|1)=0sp(4]2), highest weightZ, 0, 1).

Up to the end of the first phase, we have a unique chain:

1. 05p(4]|2)Dsl(2)@sl(2)@sl(2).
The corresponding distribution of multiplets can be read off from Table IlI; there are
altogether 8 multiplets, witlil;=42. Note also the symmetry of the distribution of mul-
tiplets under exchange of the first with the thid2).
In the first step, we must consider the following four options:
1. Breaking the first((2) softly generates 11 multiplets witly = 36.
2. Breaking the first[(2) strongly generates 18 multiplets with = 36.
3. Breaking the seconsl(2) softly generates 9 multiplets witth; = 30.

TABLE IX. Branching of the codon representation @ (4|2) with highest weight5,0,0 (first phasg

sl(2)@sl(2)asl(2) 5[(2)®sl(2),3
Highest Weight d Highest Weight d

@-(1)—(1) 20 @-(2) 15

(4-0) 5
(3-(2-(0) 12 (3-(2 12
(3)-(0-(2) 12 (3-2 12
(2-(1)—(1) 12 2-(2 9

(2-(0) 3
(5—-(0)-(0) 6 (5-0) 6
(1)-0)—(0) 2 (10 2

6 subspaces 8 subspaces
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4. Breaking the seconsl(2) strongly generates 14 multiplets withy=30, but among

them are 2 nonets, 4 triplets and 2 singlets.

In the first three cases, the symmetry breaking process must proceed to the next stage,

leading to the following options:

1.1 Breaking the first(2) strongly generates 18 multiplets with =36, so the symmetry
breaking must continue and there can be no freezing at this stage, leading to the same
situation as option 2 above.

1.2 Breaking the secongl(2) softly generates 12 multiplets witdly = 24.

1.3 Breaking the secongl(2) strongly generates 19 multiplets with,=24, but among
them are 4 triplets and 4 singlets.

1.4 Breaking the thirdil(2) softly generates 15 multiplets witdly=12.

1.5 Breaking the thirdil(2) strongly generates 24 multiplets with=12.

2.1 Breaking the secong(2) softly generates 20 multiplets witth;= 24.

2.2 Breaking the second(2) strongly generates 30 multiplets with=24.

2.3 Breaking the third((2) softly generates 24 multiplets witth;=12.

2.4 Breaking the thirdl(2) strongly generates 40 multiplets with=12.

3.1 Breaking the firs$l(2) softly generates 12 multiplets withy= 24, leading to the same
situation as option 1.2.

3.2 Breaking the firstl(2) strongly generates 20 multiplets withy= 24, leading to the
same situation as option 2.1.

3.3 Breaking the second(2) strongly generates 14 multiplets with =30, leading to the
same situation as option 4 above.

As before, option 1.4 is excluded, whereas in the case of options 1.5, 2.2, 2.3, and 2.4, the

symmetry breaking process must terminate, and we must take into account the possibility

of freezing. However, the multiplets of dimensioré must not be frozen. In the cases of

options 1.5 and 2.3, we do not get any triplets or singlets at all. In the case of option 2.4,

we either do not get any triplets or singlets at all or else we get too r@ngast 4. In

the case of option 2.2, we are able to produce the correct number of s@xtéiplets(2)

and singletq?2), but there is no possibility to generate the correct number of quaBets

and doublet$9): we can only get 2 quartets and 15 doublets. In the case of option 2.1, we

already have 20 multiplets but no triplets and no singlets: their generation would require
breaking at least two multiplets in the next stepe sextet and one doublet, for example
leading to at least 22 multiplets. We are thus left with a single surviving option for
continuing the symmetry breaking process, namely=B2Z, which consists in breaking
both the first and the seconf(2) softly, generating 12 multiplets witti;= 24, giving rise

to the following options:

(a) Breaking the firsts[(2) strongly generates 20 multiplets with,=24, leading to the
same situation as option 2.1 above.

(b) Breaking the secongl(2) strongly generates 19 multiplets with= 24, leading to the
same situation as option 1.3 above.

(c) breaking the thirds[(2) softly generates 16 multiplets witl,= 0.

(d) breaking the thirds[(2) strongly generates 26 multiplets with= 0.

As before, optior(c) is excluded, whereas in the case of optidih we do not get any
triplets or singlets at all.

Continuing this chain by diagonal breaking from three copies/(@ to two gives rise to the
following additional chain.
2. 05p(4]|2)Dsl(2)®s1(2)@sl(2)Dsl(2)15D51(2).
The corresponding distribution of multiplets is easily obtained; there are altogether 11
multiplets, withd;=24. However, among the three multiplets whose dimension is a mul-
tiple of 3, we have one multiplet of dimension 12, nam@y~(2), which can either break
into four triplets or else will produce no triplets at all, and two identical multiplets of
dimension 6, namelyl)—(2), which together can also either break into four triplets or else
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produce no triplets at all. Thus, there is no possibility to generate the two triplets found in
the genetic code, so this chain may be discarded.

The remaining possibility of diagonal breaking by contracting the $i(&) with the third can be
ruled out because it leads to a total of 14 multiplets among which there are 1 nonet, 2 quintets, 4
triplets, and 1 singlet.

IV. CONCLUSIONS

The main results of the analysis presented in Ref. 4 and in the present paper, which in
preliminary form were announced in Refs. 17 and 18, can be summarized as follows.

The idea of describing the degeneracies of the genetic code as the result of a symmetry
breaking process through chains of subalgebras can be investigated systematically within the
context of typical codon representations of basic classical Lie superalgebras, instead of ordinary
codon representations of ordinary simple Lie algebras. The first result is negative: as before, there
is no symmetry breaking pattern through chains of subalgebras capable of reproducing exactly the
degeneracies of the genetic code. In other words, the phenomenon of “freezing” remains an
essential part of the approach. The second result is positive and, as far as the uniqueness part is
concerned, more stringent than its nonsupersymmetric counterpart: admitting the possibility of
“freezing” during the last step of the procedure, we find three schemes that do reproduce the
degeneracies of the standard code, all based on the orthosymplectic algebl2) and differing
only in the detailed form of the symmetry breaking pattern during the last step. The most natural
scheme, shown in Tables V and VI, is the one that allows for a simple choice of Hamiltonian, in
the sense used in Ref. 1 and explained in more detail in Ref. 5, namely, the following:

H = Ho+\Cy(50(5))+ asLi+ asL5+ asl i+ arlLi+L )%+ Bsl3,
+ (L1 + L2)2_2)(|—1,z+ Lz,z)z- (6)

The investigation of the resultingsp(5/2) model for the genetic code is presently under way.

ACKNOWLEDGMENTS

The authors would like to thank Professor J. E. M. Hornos for his incentive and support of the
present project, Professor A. Sciarrino and Professor P. Jarvis for clarifying correspondence on the
representation theory of Lie superalgebras and Professor A. Grishkov for fruitful discussions. This
work was supported by FAPESPunda@o de Amparo &Pesquisa do Estado dedRaulo and
CNPq(Conselho Nacional de Desenvolvimento Ciot e Tecnolgico), Brazil.

1J. E. M. Hornos and Y. M. M. Hornos, “Algebraic Model for the Evolution of the Genetic Code,” Phys. Rev.7lett.
4401-4404(1993.

2V. G. Kac, “Lie Superalgebras,” Adv. Math26, 8—96(1977).

3V. G. Kac, “Representations of Classical Lie Superalgebras,Pinceedings of the VIth International Conference on
Differential Geometric Methods in Theoretical Physics, Bonn, Germany,, 1®¢ture Notes in Mathemati¢Springer,
Berlin, 1978, Vol. 676, pp. 597-626.

4M. Forger and S. Sachse, “Lie Superalgebras and the Multiplet Structure of the Genetic Code. I. Codon Representa-
tions,” J. Math. Phys41, 5407-54222000.

5J. E. M. Hornos, Y. M. M. Hornos, and M. Forger, “Symmetry and Symmetry Breaking: An Algebraic Approach to the
Genetic Code,” Int. J. Mod. Phys. B3, 2795-28851999.

5H. Boerner,Representations of Grougblorth-Holland, Amsterdam, 1970

M. Hamermesh@Group Theory and its Application to Physical Problemdgidison-Wesley, Reading, MA, 1982

8B. Morel, A. Sciarrino, and P. Sorba, “RepresentationsGBM|2n) and Young Supertableaux,” J. Phys. 8,
1597-16131985.

9C. J. Cummins and R. C. King, “Young Diagrams, Supercharacte@&3M|N) and Modification Rules,” J. Phys. A
20, 3103-3120(1987; “Composite Young Diagrams, SupercharacterdJgM|N) and Modification Rules,’ibid. 20,
3121-31331987

10, Bars, B. Morel, and H. Ruegg, “Kac-Dynkin Diagrams and Supertableaux,” J. Math. Rhy2253-22621983.

1A, B. Balantekin and I. Bars, “Branching Rules for the Supergr@lg(N|M) from those ofSUN+M),” J. Math.
Phys.22, 1239-12471981).

Downloaded 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



5444 J. Math. Phys., Vol. 41, No. 8, August 2000 M. Forger and S. Sachse

12C. Itzykson and M. Nauenberg, “Unitary Groups: Representations and Decompositions,” Rev. Mod3&185-120
(1966.

13G. Girardi, A. Sciarrino, and P. Sorba, “Kronecker ProductSyi(2n) Representations Using Generalized Young
Tableaux,” J. Phys. AL6, 2609-26141983.

14G. Girardi, A. Sciarrino, and P. Sorba, “Kronecker Products$@X2p) Representations,” J. Phys. 25, 1119-1129
(1982.

153, Van der Jeugt, “Irreducible Representations of the Exceptional Lie Superalget@és;a),” J. Math. Phys.26,
913-924(1985.

1M, Forger, Y. M. M. Hornos, and J. E. M. Hornos, “Global Aspects in the Algebraic Approach to the Genetic Code,”
Phys. Rev. E56, 7078—70821997.

173, Sachse and M. Forger, “Lie Superalgebras and the Multiplet Structure of the Genetic Coegtiedings of the
5th Wigner Symposium, Wien, Austria, 198dited by P. Kasperkovitz and D. Gratorld Scientific, Singapore, 1998
pp. 254-256.

183, Sachse and M. Forger, “An Orthosympletic Symmetry for the Genetic Code@roup 22-Proceedings of the
XXlInd International Colloquium on Group Theoretical Methods in Physics, Hobart, Australia,, ¥ifiged by S. P.
Corney, R. Delbourgo, and P. D. Jarylsternational Press, Boston, MA 199%p. 147-151.

Downloaded 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



