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Lie superalgebras and the multiplet structure
of the genetic code. II. Branching schemes

Michael Forgera) and Sebastian Sachseb)

Instituto de Matema´tica e Estatı´stica, Universidade de Sa˜o Paulo,
Cx. Postal 66281, BR-05315-970 Sa˜o Paulo, S.P., Brazil

~Received 7 June 1999; accepted for publication 11 February 2000!

Continuing our attempt to explain the degeneracy of the genetic code using basic
classical Lie superalgebras, we present the branching schemes for the typical codon
representations~typical 64-dimensional irreducible representations! of basic classi-
cal Lie superalgebras and find three schemes that do reproduce the degeneracies o
the standard code, based on the orthosymplectic algebraosp~5u2! and differing only
in details of the symmetry breaking pattern during the last step. ©2000 American
Institute of Physics.@S0022-2488~00!06305-2#

I. INTRODUCTION

In the context of the project proposed by Hornos and Hornos1 which aims at explaining the
degeneracy of the genetic code as the result of a symmetry breaking process, we have car
a systematic analysis of the possibility to implement this idea by starting out from a typical c
representation~typical 64-dimensional irreducible representation! of a basic classical Lie supera
gebra, rather than a codon representation~64-dimensional irreducible representation! of an ordi-
nary simple Lie algebra. The investigation of such an algebraic approach to the genetic cod
alternative concepts of symmetry such as supersymmetry, where ordinary Lie algebras
placed by Lie superalgebras, has already been suggested in the original paper,1 except for the
restriction to basic classical Lie superalgebras~a particular class of simple Lie superalgebras! and
to typical representations~a particular class of irreducible representations!: only under this restric-
tion, which is of a technical nature, does there exist a sufficiently well developed mathem
theory, due to Kac,2,3 to allow for the kind of analysis that is necessary to carry out suc
program. As a first step, we have in a previous paper4 presented a complete classification of
typical codon representations of basic classical Lie superalgebras: there are altogether 1
representations involving 12 different Lie superalgebras. Our goal in the present paper
analyze all possible branching schemes that can be obtained from these representatio
regard to their capability of reproducing the degeneracy of the genetic code, following the st
used in Ref. 1 and explained in detail in Ref. 5, but with one essential restriction: supersym
will be broken right away, in the very first step.

To motivate this assumption, note that the distribution of multiplets found in the genetic
today does not appear to correspond to the kind of scheme one would expect from the re
tation theory of Lie superalgebras. Thus, if some kind of supersymmetry has been presen
very beginning of the evolution of the genetic code, it must have been broken. Moreover, i
not seem plausible to us that this breaking should have occurred only in the last step
process, where the phenomenon of ‘‘freezing’’ would have been able to prevent a com
breakdown~see Ref. 5 for more details!. But if supersymmetry has been broken before, then th
is mathematically no loss of generality in assuming that it has been broken in the very firs
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because as soon as we may exclude freezing, symmetry breaking through chains of suba
that differ only in the order in which the successive steps are performed~such asg.g1.g1ùg2
andg.g2.g1ùg2) will lead to the same end result.

II. THE FIRST STEP: BREAKING THE SUPERSYMMETRY

With the above picture in mind and using the fact that among the semisimple ordinar
algebras which are subalgebras of a given basic classical Lie superalgebrag, there is a unique
maximal one, namely the semisimple partg

0̄

ss
of its even partg0̄ , our task for the first step of the

symmetry breaking process is to compute, for each of the 18 codon representations of the 1
classical Lie superalgebras found in Ref. 4, its branching into irreducible representations
restriction fromg to g

0̄

ss
. There are two different methods for doing this. One consists in com

ing all weight vectors that result from the action of products of generators associated wi
negative odd roots on the highest weight vector, where every negative odd root appears a
once in such a product: these are the candidates for highest weight vectors of irreducible
sentations ofg

0̄

ss
that appear in the direct decomposition of the original codon representationg.

The problem is to decide which of these representations really appear, and with what multip
Although there is an explicit formula for calculating such multiplicities, due to Kac and Kos
the procedure involves a summation over the Weyl group and is cumbersome to apply in pr
Therefore, we shall, following common usage, adopt the other method, which is based on t
of Young superdiagrams—a generalization of the usual Young diagrams from ordinary Lie
bras to Lie superalgebras.

In order to understand how this technique works, it is useful to recall how Young diag
arise in the representation theory of ordinary simple Lie algebras. Given a simple Lie algebg0,
consider the first fundamental representation ofg0, i.e., the irreducible representation ofg0 with
highest weight equal to the first fundamental weight, denoted in what follows byD. Alternatively,
we may characterizeD as the lowest-dimensional~nontrivial! irreducible representation ofg0: for
the matrix Lie algebrassl(n), so(n), andsp(n), it is simply then-dimensional defining repre
sentation. The basic idea is now to look at all tensor powersD ^ p of D and reduce them into thei
irreducible constituents. This reduction is achieved by considering symmetric tensors, an
metric tensors and, more generally, tensors of mixed symmetry type. In fact, permutation
factors induces a representation of the symmetric groupSp on the representation space ofD ^ p and
this action ofSp commutes with that ofg0, so that both actions can be simultaneously decompo
into irreducible constituents. More precisely, this is achieved by combining them into a ‘‘
action’’ and then performing a decomposition into irreducible constituents in the usual sense
of these has the property that its multiplicity as a representation ofSp equals its dimension as
representation ofg0 and its multiplicity as a representation ofg0 equals its dimension as a repr
sentation ofSp . ~The concept of ‘‘joint action’’ used here can be formulated in mathematic
rigorous terms by introducing the connected, simply connected, simple Lie groupG0 correspond-
ing to g0 and consideringD andD ^ p as representations ofG0 ; then the joint action ofSp andg0
corresponds to a representation of the direct productSp3G0 .) The usefulness of this approac
stems from an important theorem of Weyl which states that any irreducible representation
classical Lie algebrassl(n) andsp(n), as well as any tensorial irreducible representation of
classical Lie algebrasso(n), can be obtained in this way.~An irreducible representation ofso(n)
of highest weight (l 1 ,...,l r 21 ,l r) is tensorial, or nonspinorial, ifl r is even forn52r 11 odd ~B
series! and if l r 211 l r is even forn52r even~D series!.! Therefore, a Young diagram ofp boxes,
which originally stands for an irreducible representation of the symmetric groupSp , also deter-
mines an irreducible representation ofg0 contained inD ^ p. In the case ofsl(n), the latter is
simply obtained by considering tensors of a specific symmetry type, given by the proje
operator of symmetrizing along the rows and antisymmetrizing along the columns of the
sponding standard Young tableau,6,7 whereas in the case ofsp(n) and so(n), the existence of
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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invariant bilinear forms forD ~antisymmetric forsp(n) and symmetric forso(n)) implies that this
operation alone is not sufficient to produce an irreducible representation: here, a given
diagram stands for tensors of the corresponding symmetry type which in addition are t
traceless with respect to the pertinent bilinear form, that is, traceless in all indices in which
are antisymmetric in the case ofsp(n) and traceless in all indices in which they are symmetric
the case ofso(n).

The rules for constructing Young tableaux and diagrams can be extended in such a wa
also cover spinorial representations ofso(n). To this end, one must include the spinor repres
tation~s!, i.e., the standard spinor representationSof highest weight~0,..., 0, 1! if n is odd and the
two chiral spinor representationsS1 andS2, of highest weight~0,..., 0, 1, 0! and ~0,..., 0, 0, 1!,
respectively, ifn is even: this turns out to be sufficient because according to a modified for
Weyl’s theorem, an arbitrary irreducible representation ofso(n) can be obtained as a subrepr
sentation of the representationD ^ p

^ S if n is odd and of one of the two representatio
D ^ p

^ S1 or D ^ p
^ S2 if n is even, for adequatep. Therefore, it is convenient to introduc

generalized Young tableaux and diagrams containing ‘‘spinor’’ or ‘‘half’’ boxes, one at the
ginning of each row, and characterized by inserting the letter ‘‘s’’ into each of them, as well as a
possible ‘‘negative’’ last row instead of the usual ‘‘positive’’ one whenn is even, thus allowing to
distinguish between the two chiralities for the spinors.~The property of having only one spino
box per row reflects the fact that the spinor representation~s! appear only once in the tenso
product, so that in particular, there is no problem with symmetrization or antisymmetrizati
spinor indices.! For a summary of the conventions that we shall follow, the reader is referred t
Appendix of Ref. 8.

An important point to be noticed is that although different~generalized! Young diagrams
correspond to different irreducible representations of the permutation groupSp , they may very
well describe the same irreducible representation ofg0: thus the characterization of irreducib
representations ofg0 by ~generalized! Young diagrams is ambiguous. In order to remove t
ambiguity, one introducesmodification ruleswhich allow to reduce every~generalized! Young
diagram to itsstandardform, as explained, for instance, in Ref. 9: this is done in such a way
every irreducible representation corresponds to precisely one standard~generalized! Young dia-
gram.

The technique of~generalized! Young tableaux and Young diagrams for characterizing ir
ducible representations has been extended from the classical simple Lie algebras to the
linear and orthosymplectic Lie superalgebras, giving rise toYoung supertableauxand Young
superdiagrams, which we shall distinguish from their nonsupersymmetric counterparts by
insertion of a diagonal line across each box. They describe typical representations as w
atypical ones. As in the nonsupersymmetric case, several different Young superdiagram
provide the same irreducible representation, and modification rules are needed to remo
ambiguity: they serve to reduce a Young superdiagram to itsstandard form. For an atypical
representation, this procedure is still not unambiguous, leading to different standard Young
diagrams describing the same representation, whereas for a typical representation, the corr
ing Young superdiagram can be constructed directly from its highest weight, and converse
Kac-Dynkin labels of the highest weight may be read off from the Young superdiagram. Not
fixing the highest weight includes fixing the Kac–Dynkin labell s of the simple odd root, which
for type I Lie superalgebras can take continuous values: the corresponding irreducible rep
tation will in that case carry an additional continuous parameter. Its dimension and its bran
rules under reduction fromg0 to g

0̄

ss
will however not depend on the value ofl s which in Ref. 4 had

remained unspecified, except for the constraints imposed by requiring typicality of the rep
tation. Here, we shall make a choice forl s that leads to the simplest possible Young superdiag
which is consistent with these constraints; this value, together with the resulting Young sup
gram, is specified in Tables I–III.

For the special linear Lie superalgebrassl(mun), the procedure of constructing irreducib
representations from Young superdiagrams is straightforward. The main difference from th
of the special linear Lie algebrassl(n) is that the process of symmetrization and antisymmetr
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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tion involved in the definition of the Young idempotents that project onto a tensor of a sp
symmetry type must now be understood in the appropriate supersymmetric or graded
symmetrization or antisymmetrization of two fermionic indices involves an extra minus sig
take into account the anticommuting character of these variables. This implies that there no
exists an invariant totally antisymmetric tensor of top degree~invariant volume ore-tensor!, so the

irreducible representationsD and D̄ become independent; therefore Young superdiagrams
sl(mun) are in general composed of ‘‘undotted’’ and ‘‘dotted’’ boxes, as happens in the ca
Young diagrams forgl(n). For the applications needed in this paper, however, we shall fin
sufficient to use the conventional type of Young superdiagram containing only ‘‘undotted’’ bo

TABLE I. Branching of codon representations of type I Lie superalgebras in the first stepg.g
0̄

ss
: Part 1.
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TABLE II. Branching of codon representations of type I Lie superalgebras in the first stepg.g
0̄

ss
: Part 2.
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TABLE III. Branching of codon representations of type II Lie superalgebras in the first stepg.g0̄ .
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The relation between such Young superdiagrams and Kac–Dynkin labels of irreducibl
resentations forsl(mun) can be summarized as follows. First, recall that an ordinary Yo
diagram, characterized by a nonincreasing sequenceb1>...>br of positive integers giving the
lengths of itsr rows, will be an allowed Young diagram forsl(n) if and only if r<n; in this case
it will describe an irreducible representation ofsl(n) with Dynkin labelsl 1 ,...,l n21 given by

l i 5 bi2bi 11 for i 5 1,...,n21. ~1!

~It is to be understood thatbr.0 but bi50 if i .r ). Similarly, according to Ref. 10, a Youn
superdiagram containing only ‘‘undotted’’ boxes, characterized by nonincreasing sequ
b1>•••>br andc1>•••>cs of positive integers giving the lengths of itsr rows ands columns,
respectively, will be an allowed Young superdiagram forsl(mun) if and only if bm11<n; in this
case, it will describe an irreducible representation ofsl(mun) whose Kac–Dynkin labels
l 1 ,...,l m1n21 can be found as follows. Define the reduced column lengths by

cj8 5 ~cj2m!u~cj2m!, ~2!

whereu is the step function; then

l i 5 bi2bi 11 for i 5 1,...,m21,

l m 5 bm1c18 , ~3!

l m1 j 5 cj82cj 118 for j 5 1,...,n21.

~Again, it is to be understood thatbr.0 andcs.0 but bi50 if i .r andcj50 if j .s.)
On the other hand, the branching rules under reduction from the Lie superalgebrasl(mun) to

the semisimple partsl(m) % sl(n) of its even subalgebra in terms of Young diagrams and su
diagrams can, according to Ref. 11, be derived immediately from the corresponding bran
rules under reduction from the ordinary Lie algebrasl(m1n) to the same subalgebr
sl(m) % sl(n), which in turn are given in Ref. 12, for a large class of examples. In fact, all
needs to be done is to replace the Young diagram for the second summandsl(n), which represents
the odd sector of the representation space, by its transposed diagram, exchanging rows a
umns. As an example, we show on the next page the decomposition of the Young superd
given by r 52, s52 with b1535c1 , b2525c2 , andb3515c3 which, according to Eqs.~2!
and~3!, corresponds to the typical codon representation ofsl(3u1), of highest weight (1,1,l 3) with
l 351, as well as to the typical codon representation ofsl(2u2), of highest weight (1,l 2,1) with
l 253. The highest weights with respect tosl(3) and tosl(2)% sl(2) corresponding to the ordinar
Young diagrams resulting from this decomposition are also exhibited and the ‘‘illegal’’ diag
are identified: they are the ones that must be eliminated to comply with the prescription
Young diagrams forsl(k) must not have more thank rows. In this way, we arrive at the branchin
schemes for the typical codon representations ofsl(mun) given in Table I and Table II, since th
remaining cases can be checked directly from the rules given in Table 1 of Ref. 11.
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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For the orthosymplectic Lie superalgebrasosp(M uN), where M52m11 or M52m and
N52n, the procedure is somewhat more complicated; it is described in Ref. 8. First of all, it
be noted that the construction and interpretation of Young superdiagrams forosp(M uN), as
compared to that forsl(mun), is subject to the same adjustments as that of ordinary Yo
diagrams forsp(N) and so(M ), as compared to that forsl(n): in particular, they may contain
‘‘spinor’’ or ‘‘half’’ boxes ~referring, of course, only to theso(M ) part of the even subalgebra!
which by convention will be located in the (n11)st row. We shall follow the notation of Ref. 8
except that we shall continue to distinguish Young superdiagrams from their nonsupersym
counterparts by the insertion of a diagonal line across each box, including the ‘‘spinor’’ or ‘‘h
boxes. The relation between the lengthsb1>...>bn of the firstn rows andc1>...>cm of the first
m columns on one hand and the Kac–Dynkin labelsl 1 ,...,l n21 ,l n ,l n11 ,...,l n1m on the other
hand is summarized in Eqs.~3.1!, ~3.4!, and~3.5! of Ref. 8. The prescription for determining th
branching rules under reduction from the Lie superalgebraosp(M uN) to its even part
sp(N) % so(M ) has also been determined and is formally summarized in Eqs.~3.2!, ~3.3!, and~3.6!
of Ref. 8. The starting point is to dissect the given Young superdiagram into two ordinary Y
diagrams: one for thesp(N) part formed by the firstn rows and one for theso(M ) part formed by
the remaining rows, but reflected along the main diagonal. Together, they stand for the irred
subrepresentation of the even subalgebrasp(N) % so(M ) generated from the original highes
weight vector by application of all even generators. It forms the ground floor of a buildin
which all the other irreducible subrepresentations of the even subalgebra are arranged in
floors, each counted according to the minimum number of odd generators required to reach
the ground floor. The procedure for determining which Young diagrams describe the irred
subrepresentations that do appear in the higher floors is complicated, requiring the use of
alized Young diagrams forsp(N) with negative boxes, as introduced in Ref. 13, that must
multiplied to standard Young diagrams forso(M ),14 plus rules for eliminating Young diagram
resulting from this process that represent nontracefree parts. A discussion of the general fo
presented in Ref. 8 is not very instructive, so we prefer to just illustrate them by presentin
important examples: the branching schemes for the typical codon representations ofosp(4u2) with

highest weight (72,0,1) and ofosp~5u2! with highest weight~5
2, 0, 1!.

We begin by calculating thesp(2)% so(4) content of the typical codon representation
osp(4u2) with highest weight~7

2, 0, 1!. According to Eq.~3.4! of Ref. 8, the labelsb1>...>bn and
c1>...>cm of the corresponding Young superdiagram are given by

b1 5 l 1
0 5 l 12 1

2~ l 21 l 3! 5 3,

c1 5 n1 1
2~ l 31 l 2! 5 3

2, ~4!

c2 5 n1 1
2~ l 32 l 2! 5 3

2,

so the Young superdiagram has the form indicated in Table III:

Therefore, the Young diagram for the even subalgebrasp(2)% so(4) is
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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It describes the irreducible representation of highest weight~3!–~0, 1! which forms the ground
floor. The irreducible representations on the following floors are computed graphically as fo

corresponding to the highest weights~2!–~1, 2! and ~2!–~1, 0!,

corresponding to the highest weights~1!–~0, 3!, ~1!–~2, 1!, and~1!–~0, 1!,

corresponding to the highest weights~0!–~1, 2! and ~0!–~1, 0!. These are precisely the highe
weights listed in Table III for this case.

We proceed to calculate thesp(2)% so(5) content of the typical codon representation
osp~5u2! with highest weight~5

2, 0, 1!. According to Eq.~3.1! of Ref. 8, the labelsb1>...>bn and
c1>...>cm of the corresponding Young superdiagram are given by

b1 5 l 1
0 5 l 12 l 22 1

2l 3 5 2,

c1 5 n1 l 21 1
2l 3 5 3

2, ~5!

c2 5 n1 1
2l 3 5 3

2,

so the Young superdiagram has the form indicated in Table III:

Therefore, the Young diagram for the even subalgebrasp(2)% so(5) is

It describes the irreducible representation of highest weight~2!–~0, 1! which forms the ground
floor. The irreducible representations on the following floors are computed graphically as fo

corresponding to the highest weight~1!–~1, 1!,
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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corresponding to the highest weight~0!–~0, 3!. Again, these are precisely the highest weig
listed in Table III for this case.

Finally, it should be mentioned that we have omitted from Tables I–III some of the typ
codon representations determined in Ref. 4 because their branching schemes are obvio
those that are listed. Examples are the typical codon representations ofsl~4u1! with highest weight
(0,0,1,l 4) and ofsl~2u2! with highest weight (0,l 2,3), which are complex conjugate to those wi
highest weight (1,0,0,l 4) and (3,l 2,0), respectively, and which therefore exhibit the same bran
ing schemes, in all phases, except for complex conjugation which however does not affect d
sions. Similarly, it is known that the branching rules of typical representations of the Lie s
algebraosp~4u2, a! upon reduction to its even part do not depend ona,15 so that we may without
loss of generality puta51. Moreover, our calculations have shown that the three typical re
sentations with highest weight~5, 0, 0!, ~7

2, 3, 0!, and ~7
2, 0, 3!, as well as the three typica

representations with highest weight~3, 1, 1!, ~7
2, 1, 0!, and~7

2, 0, 1!, although inequivalent, have th
same branching rules under this reduction, so we have listed only one of each.

III. THE SEARCH FOR SURVIVING CHAINS

In the preceding section, we have described in some detail the arguments that are ne
analyze the first step of the symmetry breaking process through chains of subalgebras,
which the original supersymmetry is removed. All further steps involve only ordinary Lie alge
and are carried out according to the strategy already used in Ref. 1 and explained in de
Ref. 5. Briefly, the main criterion for excluding a given chain without having to analyze all o
ramifications is the occurence of one of the following situations:

• Total pairing: all multiplets come in pairs of equal or complex conjugate representation
further breaking is able to remove this feature, excluding the possibility to produce mult
with odd multiplicity, that is, the 3 sextets, 5 quartets, and 9 doublets found in the ge
code.

• More than 2 singlets. No further breaking is able to reduce the number of singlets, excl
the possibility to produce no more than the 2 singlets found in the genetic code.

• More than 4 odd-dimensional multiplets. No further breaking is able to reduce the numb
odd-dimensional multiplets, excluding the possibility to produce no more than the 2 tr
and 2 singlets found in the genetic code.

In what follows, we list the chains that can be excluded by one of these arguments, togethe
the relevant information on the distribution of multiplets obtained after the last step.

• A(2u0)5sl(3u1):
Total pairing.

• A(3u0)5sl(4u1):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– A(3u0).A3.A2 : 10 triplets and 6 singlets.
– A(3u0).A3.C2.A1% A1 : 4 triplets and 4 singlets.
– A(3u0).A3.C2.A1 : 2 septets, 2 quintets, 2 triplets and 2 singlets.
– A(3u0).A3.A1% A1 : 2 nonets, 4 triplets and 2 singlets.
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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• A(5u0)5sl(6u1):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– A(5u0).A5.A4 : 4 quintets and 4 singlets, as well as total pairing.
– A(5u0).A5.A3 : Total pairing.
– A(5u0).A5.C3 : 4 singlets.
– A(5u0).A5.A2 : Total pairing.
– A(5u0).A5.A1% A3 : 4 singlets.
– A(5u0).A5.A2% A2 : 4 nonets, 8 triplets and 4 singlets.
– A(5u0).A5.A1% A2.A1% A1

(1) , where A2.A1
(1) corresponds to su(3).su(2):

4 triplets and 4 singlets.
– A(5u0).A5.A1% A2.A1% A1

(2) , where A2.A1
(2) corresponds to su(3).so(3):

2 nonets, 2 quintets, and 4 singlets.

• A(1u1)c5sl(2u2), the central extension ofA~1u1!, highest weight (1,l 2,1):
Too many odd-dimensional multiplets.

• A(2u1)5sl(3u2):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– A(2u1).A2% A1.A1% A1

(1) , whereA2.A1
(1) corresponds tosu(3).su(2): 4 triplets and

4 singlets.
– A(2u1).A2% A1.A1% A1

(2) , where A2.A1
(2) corresponds tosu(3).so(3): 2 nonets,

2 quintets and 4 singlets.

• C(3)5osp(2u4):
Continuing the symmetry breaking process, we obtain the following chains, all of which
be excluded:
– C(3).C2.A1% A1 : 4 triplets and 4 singlets.
– C(3).C2.A1 : 2 septets, 2 quintets, 2 triplets and 2 singlets.

• C(4)5osp(2u6):
Too many singlets.

In the terminology of Ref. 5, we are thus left with six basic classical Lie superalgebras w
codon representations, up to the end of the first phase of the symmetry breaking process, p
surviving chains: their remaining symmetry is described by a direct sum ofsl~2! algebras.

Finally, we must pass to the second phase of the symmetry breaking process, during
some of thesl~2! algebras are broken. There are two ways of doing this, depending on wh
one uses the operatorLz or the operatorLz

2 as the symmetry breaking term in the model Ham
tonian; we shall in what follows refer to these two possibilities as ‘‘strong’’ breaking and ‘‘so
breaking, respectively. However, only the first of them corresponds to a genuine symmetry
ing at the level of Lie algebras, namely from the Lie algebrasl~2! to its Cartan subalgebra. A
natural interpretation of both possibilities as a legitimate symmetry breaking requires passin
the complex Lie algebrasl~2! to its compact real formsu~2! and from there to the correspondin
connected, simply connected Lie group SU~2!, which all have the same representation theory: th
as has been observed in Ref. 16, we may break the symmetry under the~connected! group SU~2!
in two different ways:~a! down to its maximal connected subgroup U~1!>SO~2! ~strong breaking!
or ~b! down to its maximal~nonconnected! subgroupZ23U~1!>O(2) ~soft breaking!. The effect
on a multiplet of dimension 2s11, corresponding to an irreducible representation of SU~2! ~or
su~2! or sl~2!! of spin s and highest weight 2s, is to break it~a! strongly into 2s11 singlets,
corresponding to the different eigenvalues of the operatorLz , or ~b! softly into

• s doublets and one singlet ifs is integer, or

• s doublets ifs is half-integer,
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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corresponding to the different eigenvalues of the operatorLz
2.

The main complication in this second phase of the symmetry breaking process arises fr
necessity to take into account the possibility of~partially! ‘‘freezing’’ the symmetry breakdown in
the last step; for more details, see the discussion in Ref. 5.

As an immediate consequence of the previous discussion, we see that the chain resultin
the codon representation ofsl~2u1! can be excluded: all multiplets are of dimension.6 so that
further symmetry breaking is needed~i.e, no freezing is allowed!, but the remaining symmetry
algebra being a single copy ofsl~2!, any further breaking will produce only singlets or double

The most stringent criterion for a chain to be surviving during the second phase o
symmetry breaking process comes from the requirement of producing the correct num
sextets~3! and triplets~2!: it demands, among other things, that the number

d3 5
sum of the dimensions of all multiplets

whose dimension is a multiple of 3

which during this phase cannot decrease, must always remain>24. As an example, note that th
condition immediately eliminates the codon representation ofosp~3u2!, for which d3518, accord-
ing to Table III. The remaining cases must be handled case by case, as follows.

• A(1u1)c5sl(2u2), the central extension ofA(1u1), highest weight (3,l 2,0):

Up to the end of the first phase, we have a unique chain:

sl~2u2!.sl~2! % sl~2!.

The corresponding distribution of multiplets can be read off from Table II; there are
gether 10 multiplets, withd3530. However, among the four multiplets whose dimension
a multiple of 3, we have one multiplet of dimension 6, namely~5!–~0!, which cannot break
into triplets, one multiplet of dimension 12, namely~3!–~2!, which can either break into fou
triplets or else will produce no triplets at all, and finally two identical multiplets of dimens
6, namely~2!–~1!, which together can also either break into four triplets or else produc
triplets at all. Thus, there is no possibility to generate the two triplets found in the ge
code, so this chain may be discarded.

• B(1u2)5osp(3u4), highest weight~0, 5
2, 3!.

Up to the end of the first phase, we have the following chains:

1. osp(3u4).sp(4)% so(3).sl(2)% sl(2)% sl(2).
The corresponding distribution of multiplets can be read off from Table IV; there
altogether8 multiplets, withd3524. However, the two multiplets whose dimension is
multiple of 3, namely~1!–~0!–~5! and ~0!–~1!–~5!, both of dimension 12, cannot brea
into triplets, so this chain may be discarded.

TABLE IV. Branching of the codon representation ofosp(3u4) ~first phase!.

sp(4)% so(3) sl(2)% sl(2)% sl(2) sl(2)12% sl(2)

Highest Weight d Highest Weight d Highest Weight d

~1,0!–~5! 24 ~1!–~0!–~5! 12 ~1!–~5! 12
~0!–~1!–~5! 12 ~1!–~5! 12

~0,1!–~3! 20 ~1!–~1!–~3! 16 ~2!–~3! 12
~0!–~3! 4

~0!–~0!–~3! 4 ~0!–~3! 4
~1,0!–~1! 8 ~1!–~0!–~1! 4 ~1!–~1! 4

~0!–~1!–~1! 4 ~1!–~1! 4
~0,0!–~7! 8 ~0!–~0!–~7! 8 ~0!–~7! 8
~0,0!–~3! 4 ~0!–~0!–~3! 4 ~0!–~3! 4

5 subspaces 8 subspaces 9 subspaces
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2. osp(3u4).sp(4)% so(3).sl(2)% sl(2).
The corresponding distribution of multiplets is identical with that shown in Table III, si
no further branching occurs in the second reduction; there are altogether 5 multiplets
d3524. However, the unique multiplet whose dimension is a multiple of 3, namely~3!–
~5!, of dimension 24, cannot break into triplets, so this chain may be discarded.

Continuing the first chain by diagonal breaking from three copies ofsl~2! to two gives rise to
the following additional chain.

3. osp(3u4).sp(4)% so(3).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).
The corresponding distribution of multiplets can be read off from Table 4; there
altogether 9 multiplets, withd3536. However, among the three multiplets whose dim
sion is a multiple of 3, we have two identical multiplets of dimension 12, namely~1!–~5!,
which cannot break into triplets, and one other multiplet of dimension 12, namely~2!–~3!,
which can either break into four triplets or else will produce no triplets at all. Thus t
is no possibility to generate the two triplets found in the genetic code, so this chain m
discarded.

The other possibilities of diagonal breaking by contracting the first or secondsl~2! with the
third can be ruled out because they lead to a total of 11 multiplets where the numberd3 has
already dropped to 21, so there is no chance of producing the correct number of sexte
triplets.

• B(2u1)5osp(5u2), highest weight~5
2, 0, 1!.

Up to the end of the first phase, we have the following chains:

1. osp(5u2).sp(2)% so(5).sl(2)% sl(2)% sl(2).
The corresponding distribution of multiplets can be read off from Table V; there
altogether 10 multiplets, withd3548. Note also the symmetry of the distribution
multiplets under exchange of the second with the thirdsl~2!.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates 12 multiplets withd3536.
2. Breaking the firstsl~2! strongly generates 18 multiplets withd3536.
3. Breaking the secondsl~2! softly generates 13 multiplets withd3530.
4. Breaking the secondsl~2! strongly generates precisely 21 multiplets withd3530.

TABLE V. Branching of the codon representation ofosp(5u2) ~first phase!.

sp(2)% so(5) sl(2)% sl(2)% s(2) sl(2)12% sl(2)

Highest Weight d Highest Weight d Highest Weight d

~1!–~1,1! 32 ~1!–~2!–~1! 12 ~3!–~1! 8
~1!–~1! 4

~1!–~1!–~2! 12 ~2!–~2! 9
~0!–~2! 3

~1!–~1!–~0! 4 ~2!–~0! 3
~0!–~0! 1

~1!–~0!–~1! 4 ~1!–~1! 4
~0!–~0,3! 20 ~0!–~2!–~1! 6 ~2!–~1! 6

~0!–~1!–~2! 6 ~1!–~2! 6
~0!–~3!–~0! 4 ~3!–~0! 4
~0!–~0!–~3! 4 ~0!–~3! 4

~2!–~0,1! 12 ~2!–~1!–~0! 6 ~3!–~0! 4
~1!–~0! 2

~2!–~0!–~1! 6 ~2!–~1! 6

3 subspaces 10 subspaces 14 subspaces
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Note that the last option leads to an interesting scheme that comes close to the g
code but is slightly different, with 3 sextets, 5 quartets, 4 triplets, 5 doublets, a
singlets. In the other three cases, the symmetry breaking process must proceed to t
stage, leading to the following options:
1.1 Breaking the firstsl~2! down strongly generates 18 multiplets withd3536, so the

symmetry breaking must continue and there can be no freezing at this stage, lead
the same situation as option 2 above.

1.2 Breaking the secondsl~2! softly generates 15 multiplets withd3518.
1.3 Breaking the secondsl~2! strongly generates 25 multiplets withd3518.
2.1 Breaking the secondsl~2! softly generates 22 multiplets withd3518.
2.2 Breaking the secondsl~2! strongly generates 35 multiplets withd3518.
3.1 Breaking the firstsl~2! softly generates 15 multiplets withd3518.
3.2 Breaking the firstsl~2! strongly generates 22 multiplets withd3518.
3.3 Breaking the secondsl~2! strongly generates precisely 21 multiplets withd3530,

leading to the same situation as option 4 above.
3.4 Breaking the thirdsl~2! softly generates 16 multiplets withd3512.
3.5 Breaking the thirdsl~2! strongly generates 26 multiplets withd3512.
As before, options 1.2, 3.1, and 3.4 are excluded, whereas in the cases of options 1
2.2, 3.2, and 3.5, the symmetry breaking process must terminate, and we must tak
account the possibility of freezing. However, the multiplets of dimension.6 must not be
frozen. As it turns out, it is impossible to generate the correct number of sextets~3!,
triplets ~2!, and singlets~2!. In the cases of options 1.3 and 3.5, we must break
multiplet of dimension 12 coming from the~1–1–2! and can therefore generate at mos
sextets or 2 sextets and 2 triplets. In the cases of options 2.1 and 3.2~which without
freezing would produce the same distribution of multiplets!, there is no possibility of
generating triplets. Finally, in the case of option 2.2, breaking or freezing any combin
of the two doublets coming from the~1–1–0!, the two doublets coming from the~0–3–0!
and the three doublets coming from the~2–1–0! will generate 14, 12, 10, 8, 6, 4, or n
singlets, but not 2 singlets.

2. osp(5u2).sp(2)% so(5).sl(2)% sl(2).
The corresponding distribution of multiplets is easily obtained; there are altogeth
multiplets, withd3530. However, among the three multiplets whose dimension is a m
tiple of 3, we have one multiplet of dimension 12, namely~1!–~5!, and one multiplet of
dimension 6, namely~0!–~5!, both of which cannot break into triplets, and one oth
multiplet of dimension 12, namely~2!–~3!, which can either break into four triplets or els
will produce no triplets at all. Thus there is no possibility to generate the two triplets fo
in the genetic code, so this chain may be discarded.

Continuing the first chain by diagonal breaking from three copies ofs@~2! to two gives rise to
the following additional chain:

3. osp(5u2).sp(2)% so(5).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).
The corresponding distribution of multiplets can be read off from Table V; there
altogether 14 multiplets, withd3533.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates precisely 21 multiplets withd3518.
2. Breaking the firstsl~2! strongly generates 35 multiplets withd3518.
3. Breaking the seconds~2! softly generates 18 multiplets withd3524.
4. Breaking the seconds~2! strongly generates 28 multiplets withd3524.
Note that the first option leads to an an interesting scheme that comes close to the g
code but is slightly different, with 2 sextets, 7 quartets, 2 triplets, 8 doublets, a
singlets. In the cases of options 2 and 4, the symmetry breaking process must term
and we must take into account the possibility of freezing. However, the multiple
dimension 9 must not be frozen, so we get at least 3 triplets and at least 6 odd-dimen
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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multiplets. Therefore, the only possibility of continuing the symmetry breaking proce
case 3, leading to the following options:
3.1 Breaking the firstsl~2! softly generates 26 multiplets withd350.
3.2 Breaking the firstsl~2! strongly generates 42 multiplets withd350.
3.3 Breaking the secondsl~2! down strongly generates 28 multiplets withd3524.
In all three cases, the symmetry breaking process must terminate, and we must ta
account the possibility of freezing. However, the multiplet of dimension 8 must no
frozen and will break either into 2 quartets or into 4 doublets. In all three cases, w
able to reproduce the genetic code, provided the freezing is chosen appropriate
indicated in Tables VI–VIII by vertical bars.

The remaining possibility of diagonal breaking by contracting the secondsl~2! with the third
can be ruled out because it leads to a total of 14 multiplets where the numberd3 has already
dropped to 12, so there is no chance of producing the correct number of sextets and t

• D(2u1)5osp(4u2), highest weight~5, 0, 0!.

Up to the end of the first phase, we have a unique chain:

TABLE VI. Branching of the codon representation ofosp(5u2) ~second phase!: First option.

sl(2)% sl(2)% sl(2) sl(2)12% sl(2) L3,z
2 (L12,z

2 ,L3,z
2 )

2s1– 2s2– 2s3 d 2s12– 2s3 d 2s12– 2m3 d 2m12– 2m3 d

1–2–1 12 3–1 8 3–~61! 8 ~63!–~61! 4
~61!–~61! 4

1–1 4 1–~61! 4 ~61!–~61! 4

1–1–2 12 2–2 9 2–~62! 6 ~62!–~62! 4
0–~62! 2

2–0 3 ~62!–0 2
0–0 1

0–2 3 0–~62! 2 0–~62! 2
0–0 1 0–0 1

1–1–0 4 2–0 3 2–0 3 ~62!–0 2
0–0 1

0–0 1 0–0 1 0–0 1

1–0–1 4 1–1 4 1–~61! 4 ~61!–~61! 4

0–2–1 6 2–1 6 2–~61! 6 ~62!–~61! 4
0–~61! 2

0–1–2 6 1–2 6 1–~62! 4 ~61!–~62! 4
1–0 2 ~61!–0 2

0–3–0 4 3–0 4 3–0 4 ~63!–2 2
~61!–0 2

0–0–3 4 0–3 4 0–~63! 2 0–~63! 2
0–~61! 2 0–~61! 2

2–1–0 6 3–0 4 3–0 4 ~63!–0 2
~61!–0 2

1–0 2 1–0 2 ~61!–0 2

2–0–1 6 2–1 6 2–~61! 6 ~62!–~61! 4
0–~61! 2

10 subspaces 14 subspaces 18 subspaces 26 subspaces
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TABLE VII. Branching of the codon representation ofosp(5u2) ~second phase!: Second option.

sl(2)% sl(2)% sl(2) sl(2)12% sl(2) L3,z
2 (L12,z ,L3,z

2 )

2s1– 2s2– 2s3 d 2s12– 2s3 d 2s12– 2m3 d 2m12– 2m3 d

1–2–1 12 3–1 8 3–~61! 8 ~13!–~61! 2
~23!–~61! 2
~11!–~61! 2
~21!–~61! 2

1–1 4 1–~61! 4 ~11!–~61! 2
~21!–~61! 2

1–1–2 12 2–2 9 2–~62! 6 ~12!–~62! 2
~22!–~62! 2

0–~62! 2
2–0 3 ~12!–0 1

~22!–0 1
0–0 1

0–2 3 0–~62! 2 0–~62! 2
0–0 1 0–0 1

1–1–0 4 2–0 3 2–0 3 ~12!–0 1
~22!–0 1

0–0 1

0–0 1 0–0 1 0–0 1

1–0–1 4 1–1 4 1–~61! 4 ~11!–~61!
~21!2~61!

2
2

0–2–1 6 2–1 6 2–~61! 6 ~12!–~61! 2
~22!–~61! 2

0–~61! 2

0–1–2 6 1–2 6 1–~62! 4 ~11!–~62! 2
~21!–~62! 2

1–0 2 ~11!–0 1
~21!–0 1

0–3–0 4 3–0 4 3–0 4 ~13!–0 1
~23!–0 1
~11!–0 1
~21!–0 1

0–0–3 4 0–3 4 0–~63! 2 0–~63! 2
0–~61! 2 0–~61! 2

2–1–0 6 3–0 4 3–0 4 ~13!–0 1
~23!–0 1
~11!–0 1
~21!–0 1

1–0 2 1–0 2 ~11!–0 1
~21!–0 1

2–0–1 6 2–1 6 2–~61! 6 ~12!–~61! 2
~22!–~61! 2

0–~61! 2

10 subspaces 14 subspaces 18 subspaces 42 subspaces
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1. osp(4u2).sl(2)% sl(2)% sl(2).

The corresponding distribution of multiplets can be read off from Table III; there
altogether 6 multiplets, withd3542. Note also the symmetry of the distribution of mu
tiplets under exchange of the second with the thirdsl~2!. However, among the fou
multiplets whose dimension is a multiple of 3, we have one multiplet of dimensio
namely~5! – ~0! – ~0!, which cannot break into triplets, and three multiplets of dimens
12, namely~3! – ~2! – ~0!, ~3! – ~0! – ~2!, and~2! – ~1! –~1!, each of which can eithe
break into four triplets or else will produce no triplets at all. Thus there is no possibili
generate the two triplets found in the genetic code, so this chain may be discarded

Continuing this chain by diagonal breaking from three copies ofsl~2! to two gives rise to the
following additional chains.

2. osp(4u2).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).

The corresponding distribution of multiplets is easily obtained; there are altogethe
multiplets, withd3536. However, among the four multiplets whose dimension is a m
tiple of 3, we have one multiplet of dimension 12, namely~5! – ~1!, and two identical

TABLE VIII. Branching of the codon representation ofosp(5u2) ~second phase!: Third option.

sl(2)% sl(2)% sl(2) sl(2)12% sl(2) L3,z
2 L3,z

2s1– 2s2– 2s3 d 2s12– 2s3 d 2s12– 2m3 d 2s12– 2m3 d

1–2–1 12 3–1 8 3–~61! 8 3–~11! 4
3–~21! 4

1–1 4 1–~61! 4 1–~11! 2
1–~21! 2

1–1–2 12 2–2 9 2–~62! 6 2–~12! 3
2–~22! 3

2–0 3 2–0 3

0–2 3 0–~62! 2 0–~12! 1
0–~22! 1

0–0 1 0–0 1

1–1–0 4 2–0 3 2–0 3 2–0 3
0–0 1 0–0 1 0–0 1

1–0–1 4 1–1 4 1–~61! 4 1–~11! 2
1–~21! 2

0–2–1 6 2–1 6 2–~61! 6 2–~11! 3
2–~21! 3

0–1–2 6 1–2 6 1–~62! 4 1–~12! 2
1–~22! 2

1–0 2 1–0 2

0–3–0 4 3–0 4 3–0 4 3–0 4

0–0–3 4 0–3 4 0–~63! 2 0–~13! 1
0–~23! 1

0–~61! 2 0–~11! 1
0–~21! 1

2–1–0 6 3–0 4 3–0 4 3–0 4
1–0 2 1–0 2 1–0 2

2–0–1 6 2–1 6 2–~61! 6 2–~11! 3
2–~21! 3

10 subspaces 14 subspaces 18 subspaces 28 subspaces
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multiplets of dimension 6, namely~5! – ~0!, all of which cannot break into triplets, an
one other multiplet of dimension 12, namely~3! – ~2!, which can either break into fou
triplets or else will produce no triplets at all. Thus there is no possibility to generate
two triplets found in the genetic code, so this chain may be discarded.

3. osp(4u2).sl(2)% sl(2)% sl(2).sl(2)% sl(2)23.

The corresponding distribution of multiplets can be read off from Table IX; there
altogether 8 multiplets, withd3557.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates 18 multiplets withd3548.
2. Breaking the firstsl~2! strongly generates 32 multiplets withd3548.
3. Breaking the secondsl~2! softly generates 12 multiplets withd3518.
4. Breaking the secondsl~2! strongly generates 16 multiplets withd3518.
As before, options 3 and 4 are excluded, whereas in the case of option 2, the sym
breaking process must terminate, and we must take into account the possibility of fre
However, the multiplets of dimension. 6 and of dimension 5 must not be frozen, so w
get at least 16 triplets and 5 singlets. Therefore, the only possibility of continuing
symmetry breaking process is case 1, leading to the following options:
1.1 Breaking the firstsl~2! strongly generates 32 multiplets withd3548.
1.2 Breaking the secondsl~2! softly generates 27 multiplets withd350.
1.3 Breaking the secondsl~2! strongly generates 35 multiplets withd350.
In all three cases, the symmetry breaking process must terminate, and we must ta
account the possibility of freezing. However, we already have 2 triplets and 2 single
the previous stage, and the requirement that no new triplets or singlets may be gen
forces the large majority of the multiplets to be frozen. As it turns out, it is possibl
generate the correct number of sextets~3!, triplets~2!, and singlets~2!, but not of quartets
~5! and doublets~9!; we get at most 4 quartets and at least 11 doublets.

• D(2u1)5osp(4u2), highest weight~7
2, 0, 1!.

Up to the end of the first phase, we have a unique chain:

1. osp(4u2).sl(2)% sl(2)% sl(2).
The corresponding distribution of multiplets can be read off from Table III; there
altogether 8 multiplets, withd3542. Note also the symmetry of the distribution of mu
tiplets under exchange of the first with the thirdsl~2!.
In the first step, we must consider the following four options:
1. Breaking the firstsl~2! softly generates 11 multiplets withd3536.
2. Breaking the firstsl~2! strongly generates 18 multiplets withd3536.
3. Breaking the secondsl~2! softly generates 9 multiplets withd3530.

TABLE IX. Branching of the codon representation ofosp(4u2) with highest weight~5,0,0! ~first phase!.

sl(2)% sl(2)% sl(2) sl(2)% sl(2)23

Highest Weight d Highest Weight d

~4!–~1!–~1! 20 ~4!–~2! 15
~4!–~0! 5

~3!–~2!–~0! 12 ~3!–~2! 12
~3!–~0!–~2! 12 ~3!–~2! 12
~2!–~1!–~1! 12 ~2!–~2! 9

~2!–~0! 3
~5!–~0!–~0! 6 ~5!–~0! 6
~1!–~0!–~0! 2 ~1!–~0! 2

6 subspaces 8 subspaces
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4. Breaking the secondsl~2! strongly generates 14 multiplets withd3530, but among
them are 2 nonets, 4 triplets and 2 singlets.

In the first three cases, the symmetry breaking process must proceed to the next
leading to the following options:
1.1 Breaking the firstsl~2! strongly generates 18 multiplets withd3536, so the symmetry

breaking must continue and there can be no freezing at this stage, leading to the
situation as option 2 above.

1.2 Breaking the secondsl~2! softly generates 12 multiplets withd3524.
1.3 Breaking the secondsl~2! strongly generates 19 multiplets withd3524, but among

them are 4 triplets and 4 singlets.
1.4 Breaking the thirdsl~2! softly generates 15 multiplets withd3512.
1.5 Breaking the thirdsl~2! strongly generates 24 multiplets withd3512.
2.1 Breaking the secondsl~2! softly generates 20 multiplets withd3524.
2.2 Breaking the secondsl~2! strongly generates 30 multiplets withd3524.
2.3 Breaking the thirdsl~2! softly generates 24 multiplets withd3512.
2.4 Breaking the thirdsl~2! strongly generates 40 multiplets withd3512.
3.1 Breaking the firstsl~2! softly generates 12 multiplets withd3524, leading to the same

situation as option 1.2.
3.2 Breaking the firstsl~2! strongly generates 20 multiplets withd3524, leading to the

same situation as option 2.1.
3.3 Breaking the secondsl~2! strongly generates 14 multiplets withd3530, leading to the

same situation as option 4 above.
As before, option 1.4 is excluded, whereas in the case of options 1.5, 2.2, 2.3, and 2
symmetry breaking process must terminate, and we must take into account the pos
of freezing. However, the multiplets of dimension.6 must not be frozen. In the cases
options 1.5 and 2.3, we do not get any triplets or singlets at all. In the case of optio
we either do not get any triplets or singlets at all or else we get too many~at least 4!. In
the case of option 2.2, we are able to produce the correct number of sextets~3!, triplets~2!
and singlets~2!, but there is no possibility to generate the correct number of quartet~5!
and doublets~9!: we can only get 2 quartets and 15 doublets. In the case of option 2.1
already have 20 multiplets but no triplets and no singlets: their generation would re
breaking at least two multiplets in the next step~one sextet and one doublet, for exampl!,
leading to at least 22 multiplets. We are thus left with a single surviving option
continuing the symmetry breaking process, namely 1.253.1, which consists in breaking
both the first and the secondsl~2! softly, generating 12 multiplets withd3524, giving rise
to the following options:
~a! Breaking the firstsl~2! strongly generates 20 multiplets withd3524, leading to the

same situation as option 2.1 above.
~b! Breaking the secondsl~2! strongly generates 19 multiplets withd3524, leading to the

same situation as option 1.3 above.
~c! breaking the thirdsl~2! softly generates 16 multiplets withd350.
~d! breaking the thirdsl~2! strongly generates 26 multiplets withd350.

As before, option~c! is excluded, whereas in the case of option~d!, we do not get any
triplets or singlets at all.

Continuing this chain by diagonal breaking from three copies ofsl~2! to two gives rise to the
following additional chain.

2. osp(4u2).sl(2)% sl(2)% sl(2).sl(2)12% sl(2).
The corresponding distribution of multiplets is easily obtained; there are altogethe
multiplets, withd3524. However, among the three multiplets whose dimension is a m
tiple of 3, we have one multiplet of dimension 12, namely~3!–~2!, which can either break
into four triplets or else will produce no triplets at all, and two identical multiplets
dimension 6, namely~1!–~2!, which together can also either break into four triplets or e
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produce no triplets at all. Thus, there is no possibility to generate the two triplets fou
the genetic code, so this chain may be discarded.

The remaining possibility of diagonal breaking by contracting the firstsl(2) with the third can be
ruled out because it leads to a total of 14 multiplets among which there are 1 nonet, 2 quin
triplets, and 1 singlet.

IV. CONCLUSIONS

The main results of the analysis presented in Ref. 4 and in the present paper, wh
preliminary form were announced in Refs. 17 and 18, can be summarized as follows.

The idea of describing the degeneracies of the genetic code as the result of a sym
breaking process through chains of subalgebras can be investigated systematically wit
context of typical codon representations of basic classical Lie superalgebras, instead of o
codon representations of ordinary simple Lie algebras. The first result is negative: as before
is no symmetry breaking pattern through chains of subalgebras capable of reproducing exa
degeneracies of the genetic code. In other words, the phenomenon of ‘‘freezing’’ remai
essential part of the approach. The second result is positive and, as far as the uniquenes
concerned, more stringent than its nonsupersymmetric counterpart: admitting the possib
‘‘freezing’’ during the last step of the procedure, we find three schemes that do reproduc
degeneracies of the standard code, all based on the orthosymplectic algebraosp~5u2! and differing
only in the detailed form of the symmetry breaking pattern during the last step. The most n
scheme, shown in Tables V and VI, is the one that allows for a simple choice of Hamiltonia
the sense used in Ref. 1 and explained in more detail in Ref. 5, namely, the following:

H 5 H01lC2~so~5!!1a1L1
21a2L2

21a3L3
21a12~L11L2!21b3L3,z

2

1g12~~L11L2!222!~L1,z1L2,z!
2. ~6!

The investigation of the resultingosp~5u2! model for the genetic code is presently under way.
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