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Lie superalgebras and the multiplet structure
of the genetic code. I. Codon representations
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It has been proposed by Hornos and Hornos@Phys. Rev. Lett.71, 4401–4404
~1993!# that the degeneracy of the genetic code, i.e., the phenomenon that different
codons~base triplets! of DNA are transcribed into the same amino acid, may be
interpreted as the result of a symmetry breaking process. In their work, this picture
was developed in the framework of simple Lie algebras. Here, we explore the
possibility of explaining the degeneracy of the genetic code using basic classical
Lie superalgebras, whose representation theory is sufficiently well understood, at
least as far as typical representations are concerned. In the present paper, we give
the complete list of all typical codon representations~typical 64-dimensional irre-
ducible representations!, whereas in the second part, we shall present the corre-
sponding branching rules and discuss which of them reproduce the multiplet struc-
ture of the genetic code. ©2000 American Institute of Physics.
@S0022-2488~00!06205-8#

I. INTRODUCTION

The discovery of the molecular structure of DNA by Watson and Crick in 1953 was the
important step towards an understanding of the physiological basis for the storage and tran
genetic information. DNA is a macromolecule in the form of a double helix which encodes
information in a language with 64 three-letter words built from an alphabet with a set of
different letters~the four nucleic bases attached to the backbone of a DNA molecule!. These words
are called codons and form sentences called genes. Each codon can be translated into
twenty amino acids or a termination signal. This leads to a degeneracy of the code in the sen
different codons represent the same amino acid, that is, different words have the same mea
fact, the codons which code for the same amino acids form multiplets as follows:

• 3 sextets Arg, Leu, Ser
• 5 quadruplets Ala, Gly, Pro, Thr, Val
• 2 triplets Ile, Term
• 9 doublets Asn, Asp, Cys, Gln, Glu, His, Lys, Phe, Tyr
• 2 singlets Met, Trp

When a protein is synthesized, an appropriate segment of one of the two strings in the
molecule~or more precisely, the mRNA molecule built from it! is read and the correspondin
amino acids are assembled sequentially. The linear chain thus obtained will then fold to th
configuration of the protein.

These well-known facts, however, provide no explanation as to why just this special lan
has been chosen by nature. Since its discovery, the genetic code has essentially remaine
connecting codons~base triplets! with the amino acids they represent, but a complete underst
ing of its structure is still missing.

A new approach to the question was suggested in 1993 by Hornos and Hornos1 who proposed
to explain the degeneracy of the genetic code as the result of a symmetry breaking proce
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demand of this approach can be compared to explaining the arrangement of the chemical e
in the periodic table as the result of an underlying dynamical symmetry which is reflected
electronic shell structure of atoms. Another comparable example is the explanation of the mu
structure of hadrons as a result of a ‘‘flavor’’ SU~3! symmetry, which led to the quark model an
to the prediction of new particles. An interesting and important feature of this ‘‘flavor’’ symm
is its internal or dynamical nature, that is, it is an internal property of the dynamical equatio
the system, rather than being related to the structure of space–time.

In the same spirit, the idea of the above-mentioned authors was to explain the mu
structure of the genetic code through the multiplets found in the codon representation~5 irreduc-
ible 64-dimensional representation! of an appropriate simple Lie algebra and its branching ru
into irreducible representations of its semisimple subalgebras. They checked the tables of b
ing rules of McKay and Patera2 for semisimple subalgebras of simple Lie algebras of rank<8. The
most suitable multiplet structure found is derived from the codon representation of the symp
algebrasp(6) by the following sequence of symmetry breakings:

sp~6! . sp~4! % su~2! I

. su~2! % su~2! % su~2! II

. su~2! % u~1! % u~1! III/IV/V

The sequence of steps I–V is interpreted as the evolution of the genetic code in the early t
organic life. For a recent and detailed exposition, see Ref. 3.

This work, which had a strong resonance in the scientific community,4,5 raised a lot of new
interesting problems. One of these is that the last step in the symmetry breaking is incomple
lifting of degeneracy by breaking the last twosu(2) subalgebras tou(1) is not followed by all
codon multiplets. Only if some of them continue to represent a single amino acid can the
multiplet structure of the genetic code be obtained. This ‘‘freezing’’ had already been propos
biologists6 who claimed that a completely accomplished evolution of the genetic code should
resulted in 28 amino acids7 ~for a more recent review including an extensive bibliography,
Ref. 8!—in perfect agreement with the mathematical model under consideration. Howeve
phenomenon that some of the multiplets preserve a symmetry while it is broken in others
though it does not contradict a purely biological theory~in fact, biologists wonder why there
should be a mathematical theory at all!, is quite awkward from a mathematical point of view.

The basic idea behind the present project, already proposed in Ref. 1, is to investiga
‘‘vicinity’’ of ordinary Lie algebras, namely, quantum groups and Lie superalgebras. As it t
out, the main new problem which appears in this context, both for quantum groups and f
superalgebras, is the existence of indecomposable representations, i.e., representations w
reducible but not fully reducible: they contain irreducible subrepresentations but cannot b
composed into the direct sum of irreducible subrepresentations. As a result, the represe
theory of quantum groups and of Lie superalgebras is not developed to the same extent as
ordinary~reductive! Lie algebras. Therefore, the task of performing an exhaustive search is
ently not feasible: one may at best hope for partial results. Some steps in this direction
recently been taken by various authors.9–11

II. BASIC CLASSICAL LIE SUPERALGEBRAS

We begin by recalling that aLie superalgebra~LSA! is a Z2-graded vector space

g 5 g0̄% g1̄ ~1!

equipped with a bilinear map@ .,.#:g3g→g called thesupercommutatorwhich ishomogeneousof
degree 0~i.e., satisfies deg(@X,Y#)5deg(X)1deg(Y) for homogeneousX,YPg!, is graded anti-
symmetric,
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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@Y,X# 5 2~21!deg~X!deg~Y!@X,Y# for homogeneousX,YPg,

and satisfies thegraded Jacobi identity,

~21!deg~X!deg~Z!@X,@Y,Z##1~21!deg~X!deg~Y!@Y,@Z,X##1~21!deg~Y!deg~Z!@Z,@X,Y## 5 0

for homogeneousX,Y,ZPg.

In particular, the even partg0̄ of g is an ordinary Lie algebra and the odd partg1̄ of g carries a
representation ofg0̄ , i.e., is ag0̄ module. In the following, we shall be dealing exclusively wi
finite-dimensional complex Lie superalgebras which aresimple, i.e., admit no nontrivial ideals
Such a Lie superalgebra is calledclassicalif its even partg0̄ is reductive, that is, if it decompose
into the direct sum of its center and a semisimple subalgebra, or equivalently, if all represen
of g0̄ ~in particular that ong0̄ itself, which is the adjoint representation, and that ong1̄! are
completely reducible.12–15 Note that this property is not guaranteed automatically, as it would
for ordinary semisimple Lie algebras, according to Weyl’s theorem.~However, the term ‘‘classi-
cal’’ in this context is unfortunate because it suggests that ‘‘classical’’ for simple Lie super
bras bears some relation to the standard term ‘‘classical,’’ in the sense of ‘‘nonexceptional
simple Lie algebras, which is not the case.! A standard argument then shows14,15 that a classical
Lie superalgebra necessarily belongs to one of the following two types:

Type I:
The representation ofg0̄ on g1̄ is the direct sum of two mutually conjugate irreducible rep
sentations,

g1̄ 5 g1% g21 . ~2!

We distinguish two subcases:
Type I0 :
The centerz0̄ of g0̄ is trivial, i.e., g0̄ is semisimple.
Type I1 :
The centerz0̄ of g0̄ is nontrivial. In this case,z0̄ is one-dimensional and is generated by
elementc which, when appropriately normalized, acts as the identity ong1 and as minus the
identity ong21 .
Type II :
The representation ofg0̄ ong1̄ is irreducible. In this case, the center ofg0̄ is necessarily trivial,
or in other words,g0̄ is semisimple.

Another important concept for the analysis and classification of simple Lie superalgebras
question whether they admit nondegenerate invariant forms. Recall that a bilinear
B:g3g→C is calledevenif it is homogeneous of degree 0~i.e., satisfiesB(X,Y)50 if XPg0̄

andYPg1̄ or XPg1̄ andYPg0̄!, is calledgraded symmetricif

B~Y,X! 5 ~21!deg~X!deg~Y!B~X,Y! for homogeneousX,YPg,

and is calledinvariant if

B~@X,Y#,Z! 5 B~X,@Y,Z# ! for homogeneousX,Y,ZPg.

A simple Lie superalgebra is calledbasicif it admits an even, graded symmetric, invariant biline
form which is nondegenerate. Note, again, that this property is not guaranteed automaticall
would be for ordinary semisimple Lie algebras, according to Cartan’s criterion for semisimpl
In fact, it turns out that an even, graded symmetric, invariant bilinear form on a simple
superalgebra is either nondegenerate or identically zero14,15and that, in particular, the Killing form
of a simple Lie superalgebra defined by the supertrace operation in the adjoint representati
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ishes
graded

that of

the

o each

e
o

ative

on

next

ic

ity, it

odd,
ical Lie

f
e

posi-

5410 J. Math. Phys., Vol. 41, No. 8, August 2000 M. Forger and S. Sachse

Downloaded
vanish identically. Moreover, there are simple Lie superalgebras whose Killing form van
identically but which are still basic because they admit some other nondegenerate, even,
symmetric, invariant bilinear form.

The structure theory of basic classical Lie superalgebras is to some extent analogous to
ordinary semisimple Lie algebras. The first step is to choose a Cartan subalgebrah of g, which is
by definition just a Cartan subalgebra of its even partg0̄ : its dimension is called therank of g. ~If
g0̄ has a nontrivial centerz0 and a semisimple partg

0̄

ss
, so thatg0̄5z0̄% g

0̄

ss
, then h5z0̄% hss,

wherehss is a Cartan subalgebra ofg
0̄

ss
.! As in the case of ordinary semisimple Lie algebras,

specific choice of Cartan subalgebra is irrelevant, since they are all conjugate.14,15 This gives rise
to theroot systemD5D0øD1 of g, where the setD0 of even rootsis just the root system ofg0̄ ,
as an ordinary reductive Lie algebra, and the setD1 of odd rootsis just the weight system ofg1̄ ,
as ag0̄ module. Again as in the case of ordinary semisimple Lie algebras, one associates t
root aPD a unique generatorHaPh, defined by

B~Ha ,H ! 5 a~H ! for all HPh,

puts

~a,b! 5 B~Ha ,Hb! for a,bPD,

and considers the real subspacehR of h formed by linear combinations of theHa with real
coefficients. However, the restriction of the invariant formB to hR , which in the case of ordinary
semisimple Lie algebras is positive definite whenB is chosen to be the Killing form, may now b
indefinite since even in those cases where the Killing form ofg is nondegenerate, its restriction t
the simple ideals ing0̄ ~in most cases, there are precisely two such simple ideals! will on one of
these simple ideals be a positive multiple of its Killing form but on the other one be a neg
multiple of its Killing form, so that even rootsa will satisfy either (a,a).0 or (a,a),0
whereas odd rootsa will in many cases be isotropic: (a,a)50. Even worse: when the Killing
form of g vanishes identically, it may happen thatB cannot be chosen to take only real values
hR3hR .

This unusual kind of geometry is responsible for various complications that arise in the
steps, which are the choice of an ordering inD, corresponding to the choice of a system ofsimple
roots a i (1< i<r ), the definition of theCartan matrix a and the classification of the bas
classical Lie superalgebras in terms ofKac–Dynkin diagrams. To begin with, not all orderings are
equivalent: different choices may lead to different diagrams. To remove this kind of ambigu
is convenient to restrict the allowed orderings to a specific class, corresponding to adistinguished
choiceof simple roots, characterized by the fact that there is only one simple root which is
whereas the remaining ones are even. As an example, consider the class of basic class
superalgebrasg of type I1 ~see above!: here, the simple even roots are the simple roots ofg0̄ ,
extended to take the value 0 onc, whereas the simple odd root is minus the highest weight og1

as an irreducibleg0̄ module, which takes the value 1 onc. In general, any such ordering gives ris
to a Cartan–Weyl decomposition

g 5 n1
% h% n2, ~3!

wheren1 andn2 are the nilpotent subalgebras spanned by the generators corresponding to
tive and negative roots, respectively. Combining this with the direct decomposition~1!, one arrives
at the distinguishedZ gradation ofg,

g 5 g1% g0% g21 for type I,
~4!

g 5 g2% g1% g0% g21% g22 for type II,

where
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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g1 5 g1̄ùn1 and g21 5 g1̄ùn2 ~5!

are spanned by generators corresponding to positive and negative odd roots, respectively,

g2 5 @g1 ,g1# and g22 5 @g21 ,g21# ~6!

are spanned by generators that can be written as anticommutators of these.~Nonvanishing anti-
commutators of this kind exist only for basic classical Lie superalgebras of type II.! The simple
roots are linearly independent, and their numberr is equal to the rank ofg, except for the basic
classical Lie superalgebrasg of type I0, where the simple roots are subject to one linear relat
so their numberr exceeds the rank ofg by 1. The definition of the Cartan matrixa must also be
modified, due to the possible occurrence of simple odd roots of length 0. When (a i ,a i)Þ0, one
puts

ai j 5
2~a i ,a j !

~a i ,a i !
,

as usual, whereas if (a i ,a i)50, one defines

ai j 5
~a i ,a j !

~a i ,a i 8!
,

wherei 8 is an appropriately chosen index such that (a i ,a i 8)Þ0, whose precise definition is partl
a matter of convention. With a distinguished choice of simple roots, this can only happen f
unique simple odd root, i.e., wheni 5s, and the numbering of simple roots is then arranged
such a way that eitheri 85s11 or i 85s21. In this way,g is, up to isomorphism, determined b
its Cartan matrix, being generated byr positive generatorseiPn1 and r negative generators
f iPn2 satisfying the supercommutation relations

@ei , f j # 5 d i j hi , @hi ,hj # 5 0 , @hi ,ej # 5 ai j ej , @hi , f j # 5 2ai j f j

~plus Serre relations that we do not write down!. Finally, the Kac–Dynkin diagram associated wi
g is drawn according to the following rules:

• Simple even rootsa i are denoted by white blobss, while the unique simple odd rootas is
denoted by a crossed blob̂ if it has zero length and by a black blobd if it has nonzero
length.

• The j th andkth simple root are connected by max$uajk u,uakju% lines, except for the Lie supe
ralgebrasD(2u1;a), where the simple odd root is connected to each of the two simple
roots by a single line.

• When thej th andkth simple root are connected by more than a single line, an arrow is d
pointing from the longer one to the shorter one.

The Kac–Dynkin diagrams of all basic classical Lie superalgebras are listed in Table I.
Observe that the Cartan matrix cannot always be reconstructed uniquely from the corre

ing Kac–Dynkin diagram; in particular this happens for the Lie superalgebrasD(2u1;a).
The basic classical Lie superalgebras of type I0 are in many respects pathological, but almo

all the general results about basic classical Lie superalgebras~including the main ones from
representation theory! remain true if one replacesA(nun)5sl(n11un11)/^1& by its natural cen-
tral extensionsl(n11un11). ~This leads, for example, to an enrichment of the representa
theory, since the irreducible representations of the former form a subclass of the irred
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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representations of the latter: namely, those in which the central element is represented by t
operator.! We shall therefore, throughout the rest of this paper, adopt the following termino

• Type I Lie superalgebras:
sl(puq) with p>q>1 and (p,q)Þ(1,1)
~the casep5q51 is excluded sinceA(0,0) is not simple!,
osp(2u2n) with n>1 andnÞ1
~the casen51 is excluded sinceosp(2u2)>sl(3u2)!.
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



ly
ne-

ram of

all

of
Verma
cible
form

f a

s.
lue of

er,
imply

he
-
s.

t

5413J. Math. Phys., Vol. 41, No. 8, August 2000 Codon representations

Downloaded
• Type II Lie superalgebras:
osp(pu2n) with p51 or p>3 andnÞ1,
osp(4u2;a), F(4), G(3).

It is also interesting to compare the Kac–Dynkin diagram ofg with the Dynkin diagram of its even
partg0̄ and the Dynkin diagram of the subalgebrag0 that appears in the direct decomposition~3!.
For type I Lie superalgebras, whereg0̄5g0 , the latter is obtained from the former by simp
removing the simple odd rootas , which may therefore be thought of as representing the o
dimensional center of the even part, whereas for type II Lie superalgebras, the Dynkin diag
g0 is obtained from the Kac–Dynkin diagram ofg by removing the simple odd rootas and from
the Dynkin diagram ofg0̄ by removing one of its simple roots: this simple root, which we sh
denote byas

0, is usually referred to as the ‘‘hidden’’ simple root ofg0̄ because in the Kac–Dynkin
diagram ofg, it can be thought of as being ‘‘hidden behind’’ the simple odd rootas .

III. REPRESENTATION THEORY

The representation theory of basic classical Lie superalgebrasg ~with A(nun)
5sl(n11un11)/^1& replaced bysl(n11un11); see above! has been developed by Kac.12,13

Using the Poincare´–Birkhoff–Witt theorem, the finite-dimensional irreducible representationsg
are constructed by the method of induced representations, that is, as quotient spaces of
modules by their maximal invariant subspaces. This implies that all finite-dimensional irredu
representations ofg are highest weight representations, that is, representations of the
pL :g→End(VL) associated to a highest weightLPh* and characterized by the presence o
nonzero cyclic vectorvLPVL satisfying

n1~vL! 5 0 and H~vL! 5 L~H !vL for all HPh.

A necessary condition for such a representation to be finite-dimensional is thatL is dominant
integral, which means that the Dynkin labels

l i 5
2~L,a i !

~a i ,a i !
~7!

of L associated with the simple even rootsa i ( i 51,...,r ,iÞs) of g must be nonnegative integer
For type I Lie superalgebras, this is the only condition to be imposed. In particular, the va
the Dynkin label

l s 5
~L,as!

~as ,as8!
~8!

of L associated with the simple odd rootas of g may in this case be an arbitrary complex numb
whereas for type II Lie superalgebras, it is subject to additional restrictions: some of these s
express the requirement that the Dynkin label

l s
0 5

2~L,as
0!

~as
0,as

0!
~9!

of L associated with the hidden simple rootas
0 of g0̄ must also be a nonnegative integer, while t

others are supplementary conditions to guarantee thatL is the highest weight of a finite
dimensional irreducible representation not only ofg0̄ but also ofg. For detailed formulas see Ref
15, 12, 13, and 16.

An explicit construction of the representationpL :g→End(VL) of g starts out from the rep-
resentationpL,0 :g0→End(VL,0) of g0 with highest weightL, or more precisely, with highes
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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weight given by the restriction ofL to the intersection ofg0 with the Cartan subalgebrah of g.
This representation is first extended to a representation of the subalgebrak5g0% g1% g2 by letting
g1% g2 act trivially on VL,0 . Then define

V̄L 5 Indk
gVL,0 for type I Lie superalgebras,

V̄L 5 Indk
gVL,0 /M for type II Lie superalgebras,

~10!

where the invariant submoduleM is obtained by applying arbitrary linear combinations of pro
ucts of elements ofg ~i.e., the enveloping algebraU(g)! to the vector obtained by (l s

011)-fold
application of the even generatorE2a

s
0Pg22 to the highest weight vectorvL :

M 5 ^U~g!E
2a

s
0

l s
0
11

vL&.

The Kac moduleV̄L is finite-dimensional and contains a unique maximal submoduleĪ L . Then

VL 5 V̄L / Ī L . ~11!

Any finite-dimensional irreducible representation ofg can be obtained in this way. However, it
in general difficult to gain control over the submoduleĪ L , so explicit calculations are usually onl
possible when this submodule vanishes—which is one of the main reasons for the spec
played by the so-calledtypical representations:

Ī L 5 $0%, VL 5 V̄L for typical representations.

Typical representations are, by definition, irreducible representations that may appear as
summands in completely reducible representations only, whereas irreducible representati
pearing as subrepresentations of indecomposable~that is, reducible but not completely reducibl!
representations are called atypical. A useful criterion for an irreducible representation to be
is that (L1r,a)Þ0 for all odd rootsa for which 2a is not an even root, where

r 5 r02r1 , r0 5 1
2 (

aPD0
1

a, r1 5 1
2 (

aPD1
1

a.

Denoting the number of positive odd roots, i.e., the cardinality ofD1
1 , by N1 ~and similarly, the

number of positive even roots, i.e., the cardinality ofD0
1 , by N0!, one can write down an explici

formula for the total dimension of any typical representation:

dimVL 5 2N1 )
aPD0

1

~L1r,a!

~r0 ,a!
. ~12!

This formula can be simplified by expressing the product on the rhs in terms of the standard
dimension formula for an irreducible representationpL̄,0̄ :g0̄→End(VL̄,0̄) of the even partg0̄ of g

with highest weightL̃:

dimVL̄,0̄ 5 )
aPD0

1

~L̃1r0 ,a!

~r0 ,a!
. ~13!

To establish the desired relation, observe that (r1 ,a i)50 for all simple even rootsa i of g because
the corresponding positive and negative root generatorsEa i

and E2a i
belong tog0 and hence
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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preserve the subspaces in the direct decomposition~4!, implying that the number (2r1 ,a i), which
is precisely the trace of the operator ong1 representingHa i

5@Ea i
,E2a i

#, must vanish. Therefore

for type I Lie superalgebras, we may simply putL̃5L, so

dimVL 5 2N1 dimVL,0̄ . ~14!

An alternative argument for deriving this formula is to use the construction of the Kac mo
because, in this case,g0̄5g0 , VL,0̄5VL,0 and @Ea ,Eb#50 for all positive odd roots
a, bPD1

1 , so that

VL 5 V̄L 5 Indk
gVL,0 > Lg21 ^ VL,0 ,

whereLg21 denotes the exterior or Grassmann algebra overg21 , which has dimension 2N1. For
type II Lie superalgebras, we let$l1 ,...,ls21 ,ls

0,ls11 ,...,l r% denote the basis of fundament
weights dual to the basis$a1 ,...,as21 ,as

0,as11 ,...,a r% of simple roots forg0̄ and introduce the
shifted highest weight

L̃ 5 L2
2~r1 ,as

0!

~as
0,as

0!
ls

0, ~15!

which in terms of Dynkin labels means

l̃ i 5 l i for i Þ s, l̃ s
0 5 l s

02
2~r1 ,as

0!

~as
0,as

0!
. ~16!

It should be noted that although the original highest weightL is dominant integral, the shifted
highest weightL̃ need not be, since 2(r1 ,as

0)/(as
0,as

0) may assume half-integer values~see
Table II!, so l̃ s

0 may become half-integer and/or negative. In this case, Eq.~13! is only formal, in
the sense that the expression ‘‘dimVL̄,0̄’’ does not necessarily stand for the dimension of
irreducible representation ofg0̄ . Therefore, we introduce for every ordinary semisimple Lie al
bra a of rank p the abbreviationda to denote the dimension function for its irreducible repres
tations, which is a polynomial inp variables given by the standard Weyl dimension formula, a
we simply writed0̄ instead ofdg0̄

, so Eq.~13! is replaced by

d0̄~L̃ ! 5 )
aPD0

1

~L̃1r0 ,a!

~r0 ,a!
. ~17!

TABLE II. Shift of highest weight for type II Lie superalgebras.

LSA
2~r1,as

0!

~as
0,as

0!
b

B(mun)5osp(2m11u2n) m1
1
2 m

(m,n>1)
B(0un)5osp(1u2n)

1
2 0

(n>1)
D(mun)5osp(2mu2n) m m
(m>2,n>1)

D(2u1;a)5osp(4u2;a) 2 2
(aÞ0,21,̀ )

F(4) 4 4

G(3) 7
2

3
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Then Eq.~12! becomes

dimVL 5 2N1 d0̄~L̃ !. ~18!

In order to proceed further, we need more information on the behavior of the functiond0̄ . First of
all, we observe that as long as

l s
0 > b, i.e., l̃ s

0 > 2 1
2, ~19!

whereb is the integer part of 2(r1 ,as
0)/(as

0,as
0) ~see Table II!, all factors in the product on the rh

of Eq. ~17! remain positive. Hence in this region,d0̄ is positive and monotonically increasing i
the following sense: Suppose thatL̃ andM̃ are two highest weights forg0̄ , with Dynkin labelsl i ,
l̃ s

0 andmi , m̃s
0, respectively, wherei 51,...,r , iÞs and l̃ s

0,m̃s
0>2 1

2. Then, defining

L̃ > M̃ ⇔ l i > mi~1 < i < r ,i Þ s! and l̃ s
0 > m̃s

0, ~20!

and L̃.M̃ iff L̃>M̃ and L̃ÞM̃ , we have

L̃ > M̃ ⇒ d0̄~L̃ ! > d0̄~M̃ !,

L̃ . M̃ ⇒ d0̄~L̃ ! . d0̄~M̃ !. ~21!

Another important observation is that when the inequality~19! does not hold, then the Dynkin
labelsl 1 ,...,l r of L must satisfy certain supplementary conditions which can be shown to im
that the representation ofg characterized by the highest weightL is atypical; see below. As we ar
only interested in typical representations, this means that we may impose the inequality~19! and
make use of the monotonicity property~21! to provide lower bounds for the expression in E
~18!. There is also an abstract argument to show that the functiond0̄ continues to take intege
values as long as 2(r1 ,as

0)/(as
0,as

0) is an integer, due to the following.

Proposition:Let P be a polynomial of degreer in one real variable which takes integer values
all integers greater than some fixed integer. ThenP takes integer values on all integers.

Proof: The basic trick for the proof is to expand the polynomialP not in the standard basis o
polynomialsxl( l 50,1,...,r ) but in a different basis of polynomials defined by the binom
coefficients, that is, to write

P~x! 5 (
l 50

r

al S x
l D 5 (

l 50

r
al

l !
x~x21!...~x2 l 11!. ~22!

Observing that

S x11
l D2S x

l D 5 S x
l 21D

and therefore

P~x11!2P~x! 5 (
k50

r 21

ak11S x
kD ,

we may conclude by induction onr that the property ofP(n) being an integer for allnPZ and
the apparently weaker property ofP(n) being an integer for allnPZ satisfyingn>n0 for
somen0PZ are both equivalent to the fact that the coefficientsal of P in the expansion~22!
are all integers; in fact, they can be computed recursively from the formula
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(
i 50

p

~21!p2 i S p
i D P~x1 i ! 5 (

k50

r 2p

ak1pS x
kD , ~23!

which in turn can be inferred from the previous one by induction onp.

According to Table II, this implies that the only type II Lie superalgebras for whichd0̄ may take
noninteger values and hence dimVL need no longer be a multiple of 2N1 are those belonging to
the series B(mun)5osp(2m11u2n)(m,n>1), those belonging to the seriesB(0un)
5osp(1u2n) (n>1) and, finally, the exceptional Lie superalgebraG(3).

With these generalities out of the way, we can proceed to determine the typical codon
sentations, that is, the 64-dimensional irreducible representations, of basic classical Lie s
gebras. For type I Lie superalgebras, this is easily done by exploiting the dimension formula~14!,
which implies that the numberN1 of positive odd roots must not exceed 6 and thatL must be the
highest weight of an irreducible representation ofg0̄ of dimension 262N1:

• The seriessl(m11un11) with m.n>0:
Here,N1 equals (m11)(n11), so we must havem<2,n<1, which leaves the following
possibilities:
eithern50 andm50,1,2,3,4,5,
or n51 andm52.

• The seriessl(n11un11) with n>1:
Here,N1 equals (n11)2, so we must haven51.

• The seriesosp(2u2n) with n>2:
Here,N1 equals 2n, so we must haven<3.

This leads to the list of typical codon representations of type I Lie superalgebras presen
Table III. Note that the coefficientl s of L along the simple odd rootas remains unspecified: it can
take any complex value except 0 and a few other integers that must be excluded in or
guarantee that the representation is indeed typical; its choice has no influence on the dimen
the representation.

For type II Lie superalgebras, the analysis can be carried out along similar lines. To
with, we exclude the seriesB(0un)5osp(1u2n) (n>1), since it does not provide any 64
dimensional irreducible representations. This can be derived from the remarkable fact17,18 that the
irreducible representations of the type II Lie superalgebraB(0un)5osp(1u2n) ~which by the way
is the only one for which all irreducible representations are typical! are in one-to-one correspon
dence with those irreducible representations of the ordinary simple Lie algebraBn5so(2n11) for

TABLE III. Typical codon representations of type I Lie superalgebras.

Lie
superalgebra N1

Highest weight
of g

Highest weight
of g0̄

Typicality
condition

sl(2u1) 2 (15,l 2) 15 2 l 2Þ0,16
sl(3u1) 3 (1,1,l 3) ~1,1! 2 l 3Þ0,2,4

sl(4u1) 4
(1,0,0,l 4) ~1,0,0! 2 l 4Þ0,1,2,4
(0,0,1,l 4) ~0,0,1! 2 l 4Þ0,2,3,4

sl(6u1) 6 (0,0,0,0,0,l 6) ~0,0,0,0,0! 2 l 6Þ0,1,2,3,4,5

sl(2u2) 4
(3,l 2,0) ~3!–~0! l 2Þ24,23,0,1
(1,l 2,1) ~1!–~1! l 2Þ22,0,2
(0,l 2,3) ~0!–~3! l 2Þ21,0,3,4

sl(3u2) 6 (0,0,l 3,0) ~0,0!–~0! l 3Þ22,21,0,1
osp(2u4) 4 (l 1,1,0) ~1,0! l 1Þ0,2,4,6
osp(2u6) 6 (l 1,0,0,0) ~0,0,0! l 1Þ0,1,2,4,5,6
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which the last Dynkin label, i.e., the coefficientl n associated with the short simple root, is even—
correspondence that can be represented graphically in the form

~24!

Note that there is no change in the Dynkin labels, so that according to the integrality conditi
the Dynkin label~9!, l n must be even, since for theB(0un) series,s5n, an

052an and l n
05 1

2 l n .
But it is known from evaluation of the standard Weyl dimension formula that the only
dimensional irreducible representations of theBn series occur forB15so(3), with highest weight
63, for B25so(5), with highest weight~1, 3!, and for B65so(13), with highest weight
~0, 0, 0, 0, 0, 1!. For the remaining type II Lie superalgebras, we argue case by case, usin
supplementary conditions stated, e.g., in Ref. 15, pp. 251/252.

• The seriesB(mun)5osp(2m11u2n) with m,n>1:
For g5osp(2m11u2n), we have g0̄5so(2m11)% sp(2n), r 5m1n,s5n and
N15(2m11)n, so Eq.~18! takes the form

dimVL 5 2~2m11!n dsp~2n!~ l 1 ,...,l n21 , l̃ n
0! dso~2m11!~ l n11 ,...,l n1m21 ,l n1m!, ~25!

where

ln
0 5 ln2~ln111...1ln1m211

1
2 ln1m! ~26!

and

l̃ n
0 5 ln

02m21
2. ~27!

If l n
0,m, write l n

05k21 where 1<k<m; then the supplementary conditions require tha

ln1k 5¯5 ln1m 5 0,

and this forcesL1r to be orthogonal to the odd rooten
12ek

2. Similarly, if l n
05m and we

require in addition thatl n1m50, thenL1r will be orthogonal to the odd rooten
11em

2 . ~See
Ref. 15, pp. 513–521!. In both cases, this implies that the representation ofg characterized
by the highest weightL is atypical. Thus we may assume thatl n

0>m and use the monoto
nicity property~21!, distinguishing two cases:
l n
0.m: In this case,

dimVL > 2~2m11!n dsp~2n!~0,...,0,12! dso~2m11!~0,...,0,0! 5 22mnS 2n11
n D .

l n
05m: In this case,

dimVL > 2~2m11!n dsp~2n!~0,...,0,2 1
2! dso~2m11!~0,...,0,1! 5 2m~2n11!.

In both cases, we conclude that dimVL will exceed 64 except whenm51 andn<2 or when
m<2 andn51.

• The seriesD(mun)5osp(2mu2n) with m>2 andn>1:
For g5osp(2mu2n), we haveg0̄5so(2m) % sp(2n), r 5m1n, s5n and N152mn, so
Eq. ~18! takes the form

dimVL 5 22mn dsp~2n!~ l 1 ,...,l n21 , l̃ n
0! dso~2m!~ l n11 ,...,l n1m22 ,l n1m21 ,l n1m!, ~28!

where

ln
0 5 ln2~ln111...1ln1m221

1
2 ~ln1m211ln1m!! ~29!

and

l̃ n
0 5 ln

02m. ~30!

If l n
0,m, write l n

05k21 where 1<k<m, then the supplementary conditions require tha
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ln1k 5 ¯ 5 ln1m 5 0, if l n
0 , m21,

l n1m21 5 l n1m, if l n
0 5 m21,

and this forcesL1r to be orthogonal to the odd rooten
12ek

2. Similarly, if l n
05m and we

require in addition thatl n1m2150 and l n1m50, thenL1r will be orthogonal to the odd
root en

11em21
2 . ~See Ref. 15, pp. 525–532!. In both cases, this implies that the representat

of g characterized by the highest weightL is atypical. Thus we may assume thatl n
0>m and

use the monotonicity property~21!, distinguishing two cases:
l n
0.m: In this case,

dimVL > 22mn dsp~2n!~0,...,0,1! dso~2m!~0,...,0,0,0! 5 22mn11
1

n S 2n11
n21 D .

l n
05m: In this case,l n1m21.0 and

dimVL > 22mn dsp~2n!~0,...,0,0! dso~2m!~0,...,0,1,0! 5 2m~2n11!21,
or l n1m.0 and

dimVL > 22mn dsp~2n!~0,...,0,0! dso~2m!~0,...,0,0,1! 5 2m~2n11!21.
In both cases, we conclude that dimVL will exceed 64 except whenm52 andn51.

• The family D(2u1;a)5osp(4u2;a) with aÞ0,21,̀ :
For g5osp(4u2;a), we haveg0̄5su(2) % su(2) % su(2), r 53, s51 and N154, so Eq.
~18! takes the form

dimVL 5 16 dsu~2!~ l̃ 1
0! dsu~2!~ l 2! dsu~2!~ l 3!

516 ~11 l̃ 1
0!~11 l 2!~11 l 3!, ~31!

where

l1
0 5 l12

1
2 ~l21l3!, ~32!

and

l̃1
0 5 l1

022. ~33!

If l 1
0,2, the supplementary conditions require that

l2 5 l3 5 0 if l 1
0 5 0,

a~ l 311! 5 l 211 if l 1
0 5 1,

and this forcesL1r to be orthogonal to the simple odd roota1 in the first case and to the
odd root a11a2 in the second case~see Ref. 15, pp. 532–537!, which implies that the
representation ofg characterized by the highest weightL is atypical. Thus we may assum
that l 1

0>2.

• The algebraF(4):
For g5F(4), wehaveg0̄5su(2)% so(7), r 54, s51 andN158, so Eq.~18! takes the form

dimVL 5 256 dsu~2!~ l̃ 1
0! dso~7!~ l 4 ,l 3 ,l 2!

5 256 ~11 l̃ 1
0! dso~7!~ l 4 ,l 3 ,l 2!, ~34!

where

l1
0 5 1

3 ~2l123l224l322l4!, ~35!

and

l̃1
0 5 l1

024. ~36!

If l 1
0,4, the supplementary conditions require thatl 1

0Þ1 and

l2 5 l3 5 l4 5 0 if l 1
0 5 0,

l 2 5 l 4 5 0 if l 1
0 5 2,

l 2 5 2l 411 if l 1
0 5 3,

and this forcesL1r to be orthogonal to the simple odd roota1 in the first case, to the odd
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root a11a21a3 in the second case and to the odd roota11a21a31a4 in the third case
~see Ref. 15, pp. 537–541!, which implies that the representation ofg characterized by the
highest weightL is atypical. Thus, we may assume thatl 1

0>4 and deduce that the dimensio
of any typical representation ofF(4) is a multiple of 256.

• The algebraG(3):
For g5G(3), wehaveg0̄5su(2) % G2 , r 53, s51 andN157, so Eq.~18! takes the form

dimVL 5 128 dsu~2!~ l̃ 1
0! dG2

~ l 3 ,l 2!

5 128 ~11 l̃ 1
0! dG2

~ l 3 ,l 2!, ~37!

where

l1
0 5 1

2 ~l122l223l3!, ~38!

and

l̃1
0 5 l1

027
2. ~39!

If l 1
0,3, the supplementary conditions require thatl 1

0 Þ 1 and

l2 5 l3 5 0 if l 1
0 5 0,

l 2 5 0 if l 1
0 5 3,

and this forcesL1r to be orthogonal to the simple odd roota1 in the first case and to the
odd roota11a21a3 in the second case. Similarly, ifl 1

053 and we require in addition tha
l 250 andl 350, thenL1r will be orthogonal to the odd roota113a21a3 . ~See Ref. 15,
pp. 542–545!. In both cases, this implies that the representation ofg characterized by the
highest weightL is atypical. Thus we may assume thatl 1

0>3 and deduce that the dimensio
of any typical representation ofG(3) is a multiple of 64; moreover, the only candidate
dimension equal to 64~l 156, l 250, l 350! is excluded, because it is atypical.

With these restrictions, it is now an easy exercise to write down the highest weights
irreducible representations ofg0̄ of the correct dimension and to eliminate all candidates that
to satisfy the typicality conditions; the result is presented in Table IV. Note that in the fa
D(2u1;a)5osp(4u2;a), the parametera remains unspecified and can take any complex va
except 0,21, ` and a few other rational numbers that must be excluded in order to guarante
the representation is indeed typical; when this is done, the choice ofa has no influence on the
dimension of the representation.

IV. CONCLUSIONS AND OUTLOOK

The main result of the present paper, the first in a sequence of two, is the complete list
typical codon representations~typical 64-dimensional irreducible representations! of basic classi-

TABLE IV. Typical condon representations of type II Lie superalgebras.

Lie
superalgebra

Highest weight
of g

Highest weight
of g0̄

Typicality
condition

osp(3u2) (
17
2 ,15) ~1!–~15!

osp(5u2) (
5
2,0,1) ~2!–~0,1!

osp(3u4) (0,
5
2,3) ~0, 1!–~3!

osp(4u2;a) (
1
2 (5a15),0,0) ~5!–~0!–~0! aÞ2

5
3,2

3
5

(
1
2 (3a14),1,0) ~3!–~1!–~0! aÞ24,2

4
3

(
1
2 (4a13),0,1) ~3!–~0!–~1! aÞ2

1
4,2

3
4

(
1
2 (3a13),1,1) ~2!–~1!–~1! aÞ3,2

1
3

(
1
2 (2a15),3,0) ~2!–~3!–~0! aÞ2

5
2,

3
2

(
1
2 (5a12),0,3) ~2!–~0!–~3! aÞ2

2
5,

2
3
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cal Lie superalgebras, presented in Table III and Table IV: we find 12 basic classical Lie s
algebras with a total of 18 codon representations that are essentially different~conjugate repre-
sentations are not regarded as essentially different!. The analysis is based on the classification
basic classical Lie superalgebras and on their representation theory, which are briefly revie
Secs. II and III, respectively, in particular on the Weyl–Kac dimension formula for typical
resentations. The basic idea is the same as in the case of ordinary simple Lie algebras
according to the standard Weyl dimension formula, the dimension of an irreducible represen
grows with its highest weight, so that no algebra belonging to any of the classical series will,
a certain rank upwards, admit codon representations~or, more generally, nontrivial representatio
of dimension< 64! at all. The main difficulty to be overcome was to extend this monotoni
argument to the superalgebra case and to derive lower bounds on dimensions that are suf
sharp to exclude the appearance of algebras of higher rank. As it turns out, this can be do
the resulting bounds on the rank are even more stringent for basic classical Lie superalgebr
they are for ordinary simple Lie algebras.

On the other hand, our search for codon representations in the context of simple Lie su
gebras is somewhat less comprehensive than the corresponding search in the context of o
simple Lie algebras1,3 because it is restricted to a subclass of the class of all simple Lie sup
gebras, namely the basic classical ones, and to a subclass of the class of all irreducible
dimensional representations, namely, the typical ones. We would like to emphasize that we
see anya priori argument~mathematical or biological! to regard other simple Lie superalgebra
such as the strange superalgebrasP(n) andQ(n) or the Cartan type superalgebrasW(n), S(n),
S̃(n) andH(n) as being less relevant than the basic classical ones or to regard atypical rep
tations as being less relevant than the typical ones; see Ref. 15, pp. 258/259 for comments
matter. Rather, our main motivation for these restrictions has been to identify a class of simp
superalgebras and a class of irreducible representations within which we are able to pro
completeclassification of all codon representations. In particular, this has led us to exclude
cal representations since although dimension formulas for some classes of atypical represe
have been known for some time,17 a completely general dimension formula does not appear t
available; at present, the best result in this direction seems to be the character formula for so
generic representations derived in Ref. 19. It would be interesting to see whether our monot
argument, which is crucial in order to exclude the appearance of Lie superalgebras of arb
high rank, can be maintained in this context.

Despite these limitations, our investigation does provide a framework for the subse
investigation of branching schemes, the main goal being to identify the ones that reprodu
standard genetic code. This analysis will be performed in the forthcoming second paper
series.
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