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It has been proposed by Hornos and HorfBfys. Rev. Lett.71, 4401-4404
(1993 ] that the degeneracy of the genetic code, i.e., the phenomenon that different
codons(base triplets of DNA are transcribed into the same amino acid, may be
interpreted as the result of a symmetry breaking process. In their work, this picture
was developed in the framework of simple Lie algebras. Here, we explore the
possibility of explaining the degeneracy of the genetic code using basic classical
Lie superalgebras, whose representation theory is sufficiently well understood, at
least as far as typical representations are concerned. In the present paper, we give
the complete list of all typical codon representatid¢typical 64-dimensional irre-
ducible representatiopswhereas in the second part, we shall present the corre-
sponding branching rules and discuss which of them reproduce the multiplet struc-
ture of the genetic code. @000 American Institute of Physics.
[S0022-24880)06205-9

I. INTRODUCTION

The discovery of the molecular structure of DNA by Watson and Crick in 1953 was the most
important step towards an understanding of the physiological basis for the storage and transfer of
genetic information. DNA is a macromolecule in the form of a double helix which encodes this
information in a language with 64 three-letter words built from an alphabet with a set of four
different letterqthe four nucleic bases attached to the backbone of a DNA molediiiese words
are called codons and form sentences called genes. Each codon can be translated into one of
twenty amino acids or a termination signal. This leads to a degeneracy of the code in the sense that
different codons represent the same amino acid, that is, different words have the same meaning. In
fact, the codons which code for the same amino acids form multiplets as follows:

* 3 sextets Arg, Leu, Ser

e 5 quadruplets Ala, Gly, Pro, Thr, Val

e 2 triplets lle, Term

e 9 doublets Asn, Asp, Cys, GIn, Glu, His, Lys, Phe, Tyr

2 singlets Met, Trp

When a protein is synthesized, an appropriate segment of one of the two strings in the DNA
molecule(or more precisely, the mRNA molecule built from is read and the corresponding
amino acids are assembled sequentially. The linear chain thus obtained will then fold to the final
configuration of the protein.

These well-known facts, however, provide no explanation as to why just this special language
has been chosen by nature. Since its discovery, the genetic code has essentially remained a table
connecting codonébase tripletswith the amino acids they represent, but a complete understand-
ing of its structure is still missing.

A new approach to the question was suggested in 1993 by Hornos and Hetmgroposed
to explain the degeneracy of the genetic code as the result of a symmetry breaking process. The
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demand of this approach can be compared to explaining the arrangement of the chemical elements
in the periodic table as the result of an underlying dynamical symmetry which is reflected in the
electronic shell structure of atoms. Another comparable example is the explanation of the multiplet
structure of hadrons as a result of a “flavor” 8) symmetry, which led to the quark model and
to the prediction of new particles. An interesting and important feature of this “flavor” symmetry
is its internal or dynamical nature, that is, it is an internal property of the dynamical equations of
the system, rather than being related to the structure of space—time.

In the same spirit, the idea of the above-mentioned authors was to explain the multiplet
structure of the genetic code through the multiplets found in the codon represeftatioaduc-
ible 64-dimensional representatjoof an appropriate simple Lie algebra and its branching rules
into irreducible representations of its semisimple subalgebras. They checked the tables of branch-
ing rules of McKay and Patetdor semisimple subalgebras of simple Lie algebras of £z8ikThe
most suitable multiplet structure found is derived from the codon representation of the symplectic
algebrasp(6) by the following sequence of symmetry breakings:

sp(6) D sp(4)dsu(2) I
D su(2)@su(2)dsu(2) |
D su(2)eu(l)eu(l) /v

The sequence of steps |-V is interpreted as the evolution of the genetic code in the early time of
organic life. For a recent and detailed exposition, see Ref. 3.

This work, which had a strong resonance in the scientific comm@nitgjsed a lot of new
interesting problems. One of these is that the last step in the symmetry breaking is incomplete: the
lifting of degeneracy by breaking the last twa(2) subalgebras ta(1) is not followed by all
codon multiplets. Only if some of them continue to represent a single amino acid can the actual
multiplet structure of the genetic code be obtained. This “freezing” had already been proposed by
biologist€ who claimed that a completely accomplished evolution of the genetic code should have
resulted in 28 amino acidgfor a more recent review including an extensive bibliography, see
Ref. 8—in perfect agreement with the mathematical model under consideration. However, the
phenomenon that some of the multiplets preserve a symmetry while it is broken in others, even
though it does not contradict a purely biological thedity fact, biologists wonder why there
should be a mathematical theory at) ais quite awkward from a mathematical point of view.

The basic idea behind the present project, already proposed in Ref. 1, is to investigate the
“vicinity” of ordinary Lie algebras, namely, quantum groups and Lie superalgebras. As it turns
out, the main new problem which appears in this context, both for quantum groups and for Lie
superalgebras, is the existence of indecomposable representations, i.e., representations which are
reducible but not fully reducible: they contain irreducible subrepresentations but cannot be de-
composed into the direct sum of irreducible subrepresentations. As a result, the representation
theory of quantum groups and of Lie superalgebras is not developed to the same extent as that of
ordinary (reductive Lie algebras. Therefore, the task of performing an exhaustive search is pres-
ently not feasible: one may at best hope for partial results. Some steps in this direction have
recently been taken by various authdrs!

Il. BASIC CLASSICAL LIE SUPERALGEBRAS
We begin by recalling that hie superalgebraLSA) is aZ,-graded vector space
g = go®gr D

equipped with a bilinear mdp,.]:gX g— g called thesupercommutatowhich ishomogeneousf
degree Qi.e., satisfies de¢¥,Y]) =deg(X) +deg(Y) for homogeneouX,Y e g), is graded anti-
symmetri¢
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[Y,X] = —(—1)99XdedY)[x Y] for homogeneousX,Y e g,
and satisfies thgraded Jacobi identity
(—1)%edX)ded ) 1y 7]]+ (— 1)%edX)ded V) y [ 7 X]]+(—1)%edV)ded2 71X Y]] = 0
for homogeneousX,Y,Z e g.

In particular, the even pagfy of g is an ordinary Lie algebra and the odd pgytof g carries a
representation ofiy, i.e., is ag; module. In the following, we shall be dealing exclusively with
finite-dimensional complex Lie superalgebras which siraple i.e., admit no nontrivial ideals.
Such a Lie superalgebra is calleldssicalif its even partgy is reductive, that is, if it decomposes
into the direct sum of its center and a semisimple subalgebra, or equivalently, if all representations
of gg (in particular that ongy itself, which is the adjoint representation, and that gqm are
completely reduciblé?~'® Note that this property is not guaranteed automatically, as it would be
for ordinary semisimple Lie algebras, according to Weyl's theorgtowever, the term “classi-
cal” in this context is unfortunate because it suggests that “classical” for simple Lie superalge-
bras bears some relation to the standard term “classical,” in the sense of “nonexceptional,” for
simple Lie algebras, which is not the cgsa.standard argument then sho®$’ that a classical
Lie superalgebra necessarily belongs to one of the following two types:

Type I:

The representation afy on g7 is the direct sum of two mutually conjugate irreducible repre-

sentations,

g1 = 91991 (2

We distinguish two subcases:

Type b:

The centeny of gy is trivial, i.e., gg is semisimple.

Type k:

The center, of gg is nontrivial. In this casej, is one-dimensional and is generated by an
elementc which, when appropriately normalized, acts as the identitg0and as minus the
identity ong_.

Type II:

The representation gf, on g7 is irreducible. In this case, the centerggfis necessarily trivial,

or in other wordsgy is semisimple.

Another important concept for the analysis and classification of simple Lie superalgebras is the
question whether they admit nondegenerate invariant forms. Recall that a bilinear form
B:gx g—C is calledevenif it is homogeneous of degree @e., satisfieB(X,Y)=0 if Xegy
andY e gy or Xe gy andY e gp), is calledgraded symmetrid

B(Y,X) = (—1)d9edX)dedY)g(X Y) for homogeneousX,Y e g,
and is callednvariant if
B([X,Y],Z) = B(X,[Y,Z]) for homogeneousX,Y,Ze g.
A simple Lie superalgebra is calldxsicif it admits an even, graded symmetric, invariant bilinear
form which is nondegenerate. Note, again, that this property is not guaranteed automatically, as it
would be for ordinary semisimple Lie algebras, according to Cartan’s criterion for semisimplicity.
In fact, it turns out that an even, graded symmetric, invariant bilinear form on a simple Lie

superalgebra is either nondegenerate or identically*4&tand that, in particular, the Killing form
of a simple Lie superalgebra defined by the supertrace operation in the adjoint representation may

Downloaded 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



5410 J. Math. Phys., Vol. 41, No. 8, August 2000 M. Forger and S. Sachse

vanish identically. Moreover, there are simple Lie superalgebras whose Killing form vanishes
identically but which are still basic because they admit some other nondegenerate, even, graded
symmetric, invariant bilinear form.

The structure theory of basic classical Lie superalgebras is to some extent analogous to that of
ordinary semisimple Lie algebras. The first step is to choose a Cartan subajgafgawhich is
by definition just a Cartan subalgebra of its even pgrtits dimension is called theank of g. (If
go has a nontrivial centeg, and a semisimple pag%s, S{o] thatga=55@g%s, then h= 3@ 6%,
whereh*®is a Cartan subalgebra g%s.) As in the case of ordinary semisimple Lie algebras, the
specific choice of Cartan subalgebra is irrelevant, since they are all confddahis gives rise
to theroot systemA = Ay UA; of g, where the sef\; of even rootds just the root system afy,
as an ordinary reductive Lie algebra, and thefsgbf odd rootsis just the weight system aj7,
as ago module. Again as in the case of ordinary semisimple Lie algebras, one associates to each
root « € A a unique generatdd , e b, defined by

B(H,,H) = a«(H) for all Heb,
puts
(a,B) = B(H,,Hp) for a,feA,

and considers the real subspdage of h formed by linear combinations of thd, with real
coefficients. However, the restriction of the invariant foBnio b , which in the case of ordinary
semisimple Lie algebras is positive definite wH2is chosen to be the Killing form, may now be
indefinite since even in those cases where the Killing forng sf nondegenerate, its restriction to
the simple ideals iy (in most cases, there are precisely two such simple ifleallson one of
these simple ideals be a positive multiple of its Killing form but on the other one be a negative
multiple of its Killing form, so that even roots will satisfy either (@,a)>0 or (a,a)<0
whereas odd rootg will in many cases be isotropiciof,«) =0. Even worse: when the Killing
form of g vanishes identically, it may happen tHatannot be chosen to take only real values on
HrX by

This unusual kind of geometry is responsible for various complications that arise in the next
steps, which are the choice of an ordering\incorresponding to the choice of a systenswhfiple
roots «; (1<i=<r), the definition of theCartan matrix aand the classification of the basic
classical Lie superalgebras in termskafc—Dynkin diagramsTo begin with, not all orderings are
equivalent: different choices may lead to different diagrams. To remove this kind of ambiguity, it
is convenient to restrict the allowed orderings to a specific class, correspondimtistinguished
choiceof simple roots, characterized by the fact that there is only one simple root which is odd,
whereas the remaining ones are even. As an example, consider the class of basic classical Lie
superalgebrag of type |, (see above here, the simple even roots are the simple rootgyf
extended to take the value 0 enwhereas the simple odd root is minus the highest weiglat of
as an irreduciblgi; module, which takes the value 1 onln general, any such ordering gives rise
to a Cartan—Weyl decomposition

g=n"ehon, (3)

wheren™ andn™ are the nilpotent subalgebras spanned by the generators corresponding to posi-
tive and negative roots, respectively. Combining this with the direct decompo&ijioone arrives
at the distinguished gradation ofg,

g = 0:19g0®g_, for type |,
(4)
0= 0290:99099 199, for type Il

where
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g1 = g1Nn’ and g_; = g1Nn~ (5)
are spanned by generators corresponding to positive and negative odd roots, respectively, whereas

g2 = [g1,01] and g, =[g 1,9 1] (6)

are spanned by generators that can be written as anticommutators of(Meseanishing anti-
commutators of this kind exist only for basic classical Lie superalgebras of typ€hk. simple
roots are linearly independent, and their numbés equal to the rank of, except for the basic
classical Lie superalgebragsof type |, where the simple roots are subject to one linear relation,
so their number exceeds the rank gf by 1. The definition of the Cartan matraxmust also be
modified, due to the possible occurrence of simple odd roots of length 0. Whea;]+# 0, one
puts

_ 2(aj,a;)
AT ey

as usual, whereas ifof , ;) =0, one defines

- (a ,Olj)
T (eai)’

wherei’ is an appropriately chosen index such that, ;) # 0, whose precise definition is partly

a matter of convention. With a distinguished choice of simple roots, this can only happen for the

unique simple odd root, i.e., wher=s, and the numbering of simple roots is then arranged in

such a way that eithef =s+1 ori’=s—1. In this way,g is, up to isomorphism, determined by

its Cartan matrix, being generated bypositive generatorg, en® andr negative generators

fien” satisfying the supercommutation relations

[ei.fj] = &hi , [hi,hj] =0, [hi,e] = ae;, [hi,fj] = —ayf;

(plus Serre relations that we do not write dgwhinally, the Kac—Dynkin diagram associated with
g is drawn according to the following rules:

» Simple even rootg; are denoted by white blollS, while the unique simple odd roet; is
denoted by a crossed blab if it has zero length and by a black bl@® if it has nonzero
length.

« The jth andkth simple root are connected by njfa ||a} lines, except for the Lie supe-
ralgebrasD (2|1;«), where the simple odd root is connected to each of the two simple even
roots by a single line.

* When thejth andkth simple root are connected by more than a single line, an arrow is drawn
pointing from the longer one to the shorter one.

The Kac—Dynkin diagrams of all basic classical Lie superalgebras are listed in Table I.

Observe that the Cartan matrix cannot always be reconstructed uniquely from the correspond-
ing Kac—Dynkin diagram; in particular this happens for the Lie superalgdb(asl;a).

The basic classical Lie superalgebras of typark in many respects pathological, but almost
all the general results about basic classical Lie superalggbralsiding the main ones from
representation theoryemain true if one replaces(n|n) =sl(n+1|n+1)/(1) by its natural cen-
tral extensionsl(n+1|n+1). (This leads, for example, to an enrichment of the representation
theory, since the irreducible representations of the former form a subclass of the irreducible
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Table 1: Kac-Dynkin diagrams of the basic classical Lie superalgebras

LSA Type Diagram

A(m|n) = sllm+1|n+1) L O.----.O_®_O.----.O

Alnin) = slln+1|n+1)/{1) T O_____.O_®_O___--.O

B(m|n) = osp(2m + 1|2n) II OO—®—OO#O

(m,n > 1) —— —

B(0| n2n=zosl;;(1 |2n) I %O#.
C(n + 1()n=2 ols)p(Q | 2n) I ®_OTO:¢O

ey Q_TO—@)—OT

D(2|n) = osp(4]2n) 11 /O
)= Q= 0—8_
D(2|1;a) = 0sp(4]2; ) II
(a #0,—1,00)

() I ®—O=0

representations of the latter: namely, those in which the central element is represented by the zero
operator. We shall therefore, throughout the rest of this paper, adopt the following terminology:

e Type | Lie superalgebras:
sl(p|q) with p=q=1 and @,q) #(1,1)
(the casgp=q=1 is excluded sincé\(0,0) is not simplg
0sp(2|2n) with n=1 andn#1
(the casen=1 is excluded sincesp(2|2)=s1(3]2)).
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* Type Il Lie superalgebras:
osp(p|2n) with p=1 or p=3 andn#1,
0sp(4(2;a), F(4), G(3).

Itis also interesting to compare the Kac—Dynkin diagrarng wfith the Dynkin diagram of its even
part g, and the Dynkin diagram of the subalgelgathat appears in the direct decompositi@n

For type | Lie superalgebras, whegg=g,, the latter is obtained from the former by simply
removing the simple odd roats, which may therefore be thought of as representing the one-
dimensional center of the even part, whereas for type |l Lie superalgebras, the Dynkin diagram of
go is obtained from the Kac—Dynkin diagram gfoy removing the simple odd roets and from

the Dynkin diagram ofjy by removing one of its simple roots: this simple root, which we shall
denote byag, is usually referred to as the “hidden” simple root @f because in the Kac—Dynkin
diagram ofg, it can be thought of as being “hidden behind” the simple odd regt

Ill. REPRESENTATION THEORY

The representation theory of basic classical Lie superalgelgragwith A(n|n)
=sl(n+1|n+1)/(1) replaced bysl(n+1|n+1); see abovehas been developed by K&c'
Using the PoincareBirkhoff—Witt theorem, the finite-dimensional irreducible representations of
are constructed by the method of induced representations, that is, as quotient spaces of Verma
modules by their maximal invariant subspaces. This implies that all finite-dimensional irreducible
representations ofy are highest weight representations, that is, representations of the form
7, :g—End(V,) associated to a highest weighte h* and characterized by the presence of a
nonzero cyclic vectoro , e V,, satisfying

n"(vy) =0 and H(v,) = A(H)v, for all Heb.

A necessary condition for such a representation to be finite-dimensional ig\ tiatlominant
integral, which means that the Dynkin labels

_2(A )

(o)

i (7)

of A associated with the simple even roets(i=1,...r,i #s) of g must be nonnegative integers.
For type | Lie superalgebras, this is the only condition to be imposed. In particular, the value of
the Dynkin label

(A10‘s)

" (asag)

®)

ls
of A associated with the simple odd raef of g may in this case be an arbitrary complex number,

whereas for type Il Lie superalgebras, it is subject to additional restrictions: some of these simply
express the requirement that the Dynkin label

2(A,a)
0 _ S
ls = (ac aS:) ©)

of A associated with the hidden simple rafﬂ of gg must also be a nonnegative integer, while the
others are supplementary conditions to guarantee thas the highest weight of a finite-
dimensional irreducible representation not onlygbut also ofg. For detailed formulas see Refs.
15, 12, 13, and 16.

An explicit construction of the representatian, :g—End(V,) of g starts out from the rep-
resentationm, o:go— ENd(V, o) oOf go with highest weightA, or more precisely, with highest
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weight given by the restriction ok to the intersection of, with the Cartan subalgebiaof g.
This representation is first extended to a representation of the subatgefi@ g, g, by letting
919 g, act trivially onV, o. Then define

V), = IndfV, o for type | Lie superalgebras, 10
_ 10
V, = IndiV, o/M for type Il Lie superalgebras,

where the invariant submoduM is obtained by applying arbitrary linear combinations of prod-
ucts of elements of (i.e., the enveloping algebid(g)) to the vector obtained byl 3+ 1)-fold
application of the even generatELageg_z to the highest weight vectar, :

1941
M = <U(9)EfaoUA>-
S

The Kac moduIe\7A is finite-dimensional and contains a unique maximal submoﬁyleThen
V) = Vu/ly. (11)

Any finite-dimensional irreducible representationgofan be obtained in this way. However, it is

in general difficult to gain control over the submodujg, so explicit calculations are usually only
possible when this submodule vanishes—which is one of the main reasons for the special role
played by the so-calletypical representations

A =10}, V, = VA for typical representations.

Typical representations are, by definition, irreducible representations that may appear as direct
summands in completely reducible representations only, whereas irreducible representations ap-
pearing as subrepresentations of indecompogéie is, reducible but not completely reducible
representations are called atypical. A useful criterion for an irreducible representation to be typical
is that (A +p,a)#0 for all odd rootsa for which 2« is not an even root, where

P = po—p1, po=%2+a, pl=%2+a-

acly aEAl

Denoting the number of positive odd roots, i.e., the cardinalith pf, by N; (and similarly, the
number of positive even roots, i.e., the cardinality\gf , by Ny), one can write down an explicit
formula for the total dimension of any typical representation:

(A+p,a@)

dimv, = 2M [] o)
0>

+
aclhg

(12

This formula can be simplified by expressing the product on the rhs in terms of the standard Weyl
dimension formula for an irreducible representatiofi,: go— End(V, o) of the even partjy of g

with highest weightA :

(7\+P01a’)

dimvyo= ]I (poc)

+
aeclg

13

To establish the desired relation, observe that &;) = 0 for all simple even rootg; of g because
the corresponding positive and negative root generaig(sand E_q belong togy and hence
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TABLE II. Shift of highest weight for type Il Lie superalgebras.

2py,09)
LSA — b
(a,a5)
B(m|n) = osp(2m-+1|2n) m+ 3 m
(m,n=1)
B(0|n) = osp(1]2n) : 0
(n=1)
D(m|n)=osp(2m|2n) m m
(m=2n=1)
D(2|1;a)=0sp(4|2;c) 2 2
(a#0,— 1)
F(4) 4 4
G(3) : 3

preserve the subspaces in the direct decompogiipimplying that the number (2, «;), which
is precisely the trace of the operatorpprepresenting—lai=[Eai,E_ai], must vanish. Therefore,

for type | Lie superalgebras, we may simply putA, so
dimV, = 2M dimV, ;. (14

An alternative argument for deriving this formula is to use the construction of the Kac module
because, in this casegjo=go, Vi o0=Vao and [E,,Eg]=0 for all positive odd roots
@, Be A, so that

VA = VA = |ndgVA’0 = Ag_1® VA,O!

whereA g_, denotes the exterior or Grassmann algebra gver, which has dimension™. For
type Il Lie superalgebras, we Iél\l,...,)\S,l,)\o,)\sﬂ,...,)\,} denote the basis of fundamental
weights dual to the basi’ﬁ)zl,...,as,l,ag,asﬂ,...,ar} of simple roots forgy and introduce the
shifted highest weight

2(p1,ad)

A= —Was,as o (15

which in terms of Dynkin labels means

~_ ) . TO _ IO— 2(p17ag)
° (ag,ag)

(16)

It should be noted that although the original highest weijhis dominant integral, the shifted
highest weightA need not be, since 2(,ad)/(a2,a2) may assume half-integer valuésee
Table II), soTS may become half-integer and/or negative. In this case(E).is only formal, in

the sense that the expression “dff " does not necessarily stand for the dimension of an
irreducible representation @f. Therefore, we introduce for every ordinary semisimple Lie alge-
braa of rank p the abbreviatiord, to denote the dimension function for its irreducible represen-
tations, which is a polynomial ip variables given by the standard Weyl dimension formula, and
we simply writedy instead ofd;, so Eq.(13) is replaced by

(A+pg, )

) A7

do(A) =

aelA
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Then Eq.(12) becomes
dimV, = 2M dg(A). (18

In order to proceed further, we need more information on the behavior of the funigtidrirst of
all, we observe that as long as

12=b, ie, 12= -3 19

whereb is the integer part of %,ag)/(ag,ag) (see Table I\, all factors in the product on the rhs
of Eq. (17) remain positive. Hence in this regiodg is positive and monotonically increasing in

the following sense: Suppose thatandM are two highest weights faip, with Dynkin labeldl; ,
T% andm;, ™2, respectively, wheré=1,..., i#s and12,MJ=—1. Then, defining

A=Meli=zm@<is<r,i#s) adl?= (20)

andA>M iff A=M andA#M, we have

A =M= dyA) = dg(M),

A > M= dy(A) > dg(M). (21)

Another important observation is that when the inequdlit9) does not hold, then the Dynkin
labelsl,...,I, of A must satisfy certain supplementary conditions which can be shown to imply
that the representation gfcharacterized by the highest weighis atypical; see below. As we are
only interested in typical representations, this means that we may impose the ine(i8layd
make use of the monotonicity propert21) to provide lower bounds for the expression in Eq.
(18). There is also an abstract argument to show that the fundfocontinues to take integer
values as long as 2(,a2)/(a2,a?) is an integer, due to the following.

Proposition:Let P be a polynomial of degreein one real variable which takes integer values on
all integers greater than some fixed integer. TRetakes integer values on all integers.

Proof: The basic trick for the proof is to expand the polynoniaiot in the standard basis of
polynomialsx'(I=0,1,...r) but in a different basis of polynomials defined by the binomial
coefficients, that is, to write

r

Px) = 2 al; | = Izzo%x(x—l)...(x—lJrl). (22)

=0

X
I

Observing that

X
I

-

4l

and therefore

r-1
P(x+1)—P(x) = 2}0 A1

il

we may conclude by induction arthat the property oP(n) being an integer for ath € Z and
the apparently weaker property 8f(n) being an integer for alh e Z satisfyingn=n, for
someng e 7 are both equivalent to the fact that the coefficiemt®f P in the expansior22)
are all integers; in fact, they can be computed recursively from the formula
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TABLE lll. Typical codon representations of type | Lie superalgebras.

Lie Highest weight Highest weight Typicality
superalgebra N; of g of gy condition
s(2]1) 2 (151,) 15 —1,#0,16
sI(3]1) 3 (1,113) 1,9 —13#0,2,4
(1,0,01,) (1,0,0 —1,#0,1,2,4
@D 4 ooy 0,0, ~1,40,2,3.4
s1(6]1) 6 (0,0,0,0,0¢) (0,0,0,0,0 —1¢#0,1,2,3,4,5
(3,,0) (3)-(0) l,#-4,-3,0,1
s1(2[2) 4 (112,1) (D=1 l,#-20,2
(012.3) (0-(3 l,#-1,034
s1(3]2) 6 (0,015,0) (0,0—-(0) l3#-2,-1,0,1
0sp(24) 4 (11,1,0) (1,0 [,#0,2,4,6
osp(2|6) 6 (1,,0,0,0) (0,0,0 1,#0,1,2,4,5,6
r-p

X

p
> <—1)Pi(f’)P<x+i> = 2 A
i=0 k=0

which in turn can be inferred from the previous one by inductiorpon

According to Table I, this implies that the only type Il Lie superalgebras for whicinay take
noninteger values and hence dify need no longer be a multiple of'2 are those belonging to
the series B(m|n)=osp(2m+1|2n)(m,n=1), those belonging to the serie8®(0|n)
=o0sp(1]2n) (n=1) and, finally, the exceptional Lie superalgel3€3).

With these generalities out of the way, we can proceed to determine the typical codon repre-
sentations, that is, the 64-dimensional irreducible representations, of basic classical Lie superal-
gebras. For type | Lie superalgebras, this is easily done by exploiting the dimension fotdjula
which implies that the numbeM; of positive odd roots must not exceed 6 and thahust be the
highest weight of an irreducible representatiorggfof dimension 3~ N1

 The seriesi(m+1|n+1) with m>n=0:
Here,N; equals (n+1)(n+1), so we must haven<2,n=<1, which leaves the following
possibilities:
eithern=0 andm=0,1,2,3,4,5,
orn=1 andm=2.

 The seriesi(n+1|n+1) with n=1:
Here,N; equals 6+ 1)2, so we must have=1.

* The seriessp(2|2n) with n=2:
Here,N; equals 2, so we must have<3.

This leads to the list of typical codon representations of type | Lie superalgebras presented in

Table Ill. Note that the coefficient of A along the simple odd roats remains unspecified: it can

take any complex value except O and a few other integers that must be excluded in order to

guarantee that the representation is indeed typical; its choice has no influence on the dimension of
the representation.

For type Il Lie superalgebras, the analysis can be carried out along similar lines. To begin
with, we exclude the serieB(0|n)=o0sp(1/2n) (n=1), since it does not provide any 64-
dimensional irreducible representations. This can be derived from the remarkablé%twit the
irreducible representations of the type Il Lie superalgdhi@|n) =osp(1|2n) (which by the way
is the only one for which all irreducible representations are typiaed in one-to-one correspon-
dence with those irreducible representations of the ordinary simple Lie alBgbreo(2n+ 1) for
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which the last Dynkin label, i.e., the coefficidptassociated with the short simple root, is even—a
correspondence that can be represented graphically in the form

I Iy ln l ly b
din (O-~O=>=@) = dim (O--O>0) -
(24

Note that there is no change in the Dynkin labels, so that according to the integrality condition on
the Dynkin label(9), I, must be even, since for tH&(0|n) series,s=n, a2=2an andlgz%ln.

But it is known from evaluation of the standard Weyl dimension formula that the only 64-
dimensional irreducible representations of Byeseries occur foB;=s0(3), with highest weight

63, for B,=s0(5), with highest weight(1, 3), and for Bg=s0(13), with highest weight

(0, 0,0, 0, 0, 1 For the remaining type Il Lie superalgebras, we argue case by case, using the
supplementary conditions stated, e.g., in Ref. 15, pp. 251/252.

 The serieB(m|n)=osp(2m+ 1|2n) with m,n=1:
For g=osp(2m+1|2n), we have go=s0(2m+1)®sp(2n), r=m+n,s=n and
N;=(2m+1)n, so Eq.(18) takes the form

dimv, = 2(2min dsp(2n)(|1a---r|n—1aTg) deoizm+1)(Ins1s-dnsm-1:lnem), (25
where
Ig = =t Flopmoat %In+m) (26)
and
T =1°-m-4 (27)

If Iﬂ< m, write I2= k—1 where E=k=m; then the supplementary conditions require that

ik ==lhym=0,

and this forces\ +p to be orthogonal to the odd roef,— €2. Similarly, if 13=m and we
require in addition thatk, . ,= 0, thenA + p will be orthogonal to the odd rooﬁ+ eﬁq. (See
Ref. 15, pp. 513-521In both cases, this implies that the representatiog ofiaracterized
by the highest weighA is atypical. Thus we may assume thu%iam and use the monoto-
nicity property(21), distinguishing two cases:
19>m: In this case,

dimV, = 2™ g 500(0....,05) dgo2m+1)(0,...,0,0 = 22m”(2nn+1>.
19=m: In this case,

dimV, = 2@™ 0 g 500(0,...,07 ) degiams1)(0,..,0,3 = 2Mm2n+D,

In both cases, we conclude that difp will exceed 64 except whem=1 andn<2 or when
m=<2 andn=1.
The serieD (m|n)=o0sp(2m|2n) with m=2 andn=1:
For g=o0sp(2m|2n), we havegy=so(2m)®sp(2n), r=m+n, s=n and N;=2mn, so
Eq. (18) takes the form

dimVy = 22™d_om (1, Jno1,10) deoamUnrseednsm-2:lnsm-1:lnem)s  (28)
where
19 =1n=(nsatotlem2t 3 (nem-1FInem) (29)
and
T0=10-m, (30)

If I2< m, write Iﬂz k—1 where E=k=m, then the supplementary conditions require that
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k== lpsm=0, if 1< m—1,

lntm-1 = lnem if |2 = m—1,
and this forces\ +p to be orthogonal to the odd roaf— 2. Similarly, if I2=m and we
require in addition that,, ;=0 andl,, ,=0, thenA + p will be orthogonal to the odd
root 6,11+ frzn—l- (See Ref. 15, pp. 525—-584n both cases, this implies that the representation
of g characterized by the highest weightis atypical. Thus we may assume tm%ﬁam and
use the monotonicity properi{21), distinguishing two cases:
19>m: In this case,
dimV, = 22™"d_,51/(0,...,0,3 dgy2m)(0....,0,0,0 = 22Mn*+1 % (Znnjf).
12=m: In this case),;m_,>0 and
dimV, = 22™"d_,50)(0,...,0,0 dg(2m)(0.,...,0,1,0 = 2m&*+H-1,
orly,,m>0 and
dimV, = 22" d_,5,)(0,...,0,0 dgy2m)(0,...,0,0,0 = 2M@+H-L

In both cases, we conclude that diR will exceed 64 except whem=2 andn=1.
 The family D(2|1;a)=0sp(4|2;a) with a#0,—1,%:

For g=o0sp(4|2;a), we havegy=su(2) @ su(2) ® su(2), r=3, s=1 andN;=4, so Eq.

(18) takes the form

dimV,y = 16 doy2)(TD) dayz)(12) dayz)(13)

=16 (1+T)(1+1,)(1+15), (31
where
19 = 11=3(I,+1y), (32)
and
T=19-2. (33

If 19<2, the supplementary conditions require that
l,=13=0if 19 =0,
a(lzg+1) = I,+1 if 19 =1,
and this forces\ + p to be orthogonal to the simple odd roei in the first case and to the
odd root a;+ @, in the second casésee Ref. 15, pp. 532—-587which implies that the
representation of characterized by the highest weightis atypical. Thus we may assume
that19=2.
e The algebrd=(4):
Forg=F(4), wehavegy=su(2)®s0(7), r=4,s=1 andN;=8, so Eq.(18) takes the form
dimVy = 256 dyy2)(T9) dso(7)(las13,12)

= 256 (1+T19) deoiy(I4,13,12), (34)
where
19 = 32,31, 415—2ly), (35
and
T =19-4. (36)

If 19<4, the supplementary conditions require tHst 1 and
lb=Il3=1,=01if 19 =0,
l,=1,=0if 19=2,
l, = 2l,+1 if 19=3,

and this forces\ + p to be orthogonal to the simple odd raet in the first case, to the odd
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TABLE IV. Typical condon representations of type Il Lie superalgebras.

Lie Highest weight Highest weight Typicality

superalgebra of g of gy condition
osp(3]2) (¥’15) (D-(15
0sp(5/2) (5.0.1) (-0
0sp(3[4) (0,3,3) 0, D-(

osp(4/2;a) (3 (52+5),0,0) (5-0-0) a#-3-3%

(3 (3a+4),1,0) (3)-(1)—(0) at—4-%

(3 (4a+3),0,1) (3)-(0)-(1) ar—3-3

(3(3a+3),1,1)
(% (2a+5),3,0)
(3(5a+2),0,3)

2—-1)-)
(2-(3—(0)
2—-0)-(3

R R
o H
I w
[SIINEN[G I
WIN N w Wi

root @, + a,+ a3 in the second case and to the odd ragt+ a,+ az+ a, in the third case
(see Ref. 15, pp. 537-541which implies that the representation gttharacterized by the
highest weightA is atypical. Thus, we may assume th%¥4 and deduce that the dimension
of any typical representation &f(4) is a multiple of 256.

The algebras(3):

For g=G(3), wehavegy=su(2) ® G,, r=3,s=1 andN;=7, so Eq.(18) takes the form

dimV, = 1285 (T9) dg,(I5.12)

= 128(1+T19) dg,(I3,12), (37)
where
19 = 3(1-2,-3ly), (38)
and
T =19-12 (39

If 19<3, the supplementary conditions require tHat* 1 and

l,b=l=0if 19 =0,

l,=0if 19=3,

and this forces\ + p to be orthogonal to the simple odd roei in the first case and to the
odd roota; + a,+ ag in the second case. Similarly, Iif=3 and we require in addition that
I,=0 andl;=0, thenA + p will be orthogonal to the odd roat;+3a,+ a3. (See Ref. 15,
pp. 542-54% In both cases, this implies that the representatiog oharacterized by the
highest weightA is atypical. Thus we may assume t}h%\la:% and deduce that the dimension
of any typical representation @(3) is a multiple of 64; moreover, the only candidate of
dimension equal to 64 ,=6, |,=0, I3=0) is excluded, because it is atypical.

With these restrictions, it is now an easy exercise to write down the highest weights of all
irreducible representations gf of the correct dimension and to eliminate all candidates that fail
to satisfy the typicality conditions; the result is presented in Table IV. Note that in the family
D(2|1;a)=0sp(4|2;a), the parameterr remains unspecified and can take any complex value
except 0,—1, « and a few other rational numbers that must be excluded in order to guarantee that
the representation is indeed typical; when this is done, the choieehafs no influence on the
dimension of the representation.

IV. CONCLUSIONS AND OUTLOOK

The main result of the present paper, the first in a sequence of two, is the complete list of all
typical codon representatioiiypical 64-dimensional irreducible representatjootbasic classi-
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cal Lie superalgebras, presented in Table Il and Table IV: we find 12 basic classical Lie super-
algebras with a total of 18 codon representations that are essentially difteceuigate repre-
sentations are not regarded as essentially differdie analysis is based on the classification of
basic classical Lie superalgebras and on their representation theory, which are briefly reviewed in
Secs. Il and lll, respectively, in particular on the Weyl—-Kac dimension formula for typical rep-
resentations. The basic idea is the same as in the case of ordinary simple Lie algebras, where
according to the standard Weyl dimension formula, the dimension of an irreducible representation
grows with its highest weight, so that no algebra belonging to any of the classical series will, from

a certain rank upwards, admit codon representationsnore generally, nontrivial representations

of dimension=< 64) at all. The main difficulty to be overcome was to extend this monotonicity
argument to the superalgebra case and to derive lower bounds on dimensions that are sufficiently
sharp to exclude the appearance of algebras of higher rank. As it turns out, this can be done, and
the resulting bounds on the rank are even more stringent for basic classical Lie superalgebras than
they are for ordinary simple Lie algebras.

On the other hand, our search for codon representations in the context of simple Lie superal-
gebras is somewhat less comprehensive than the corresponding search in the context of ordinary
simple Lie algebrds’® because it is restricted to a subclass of the class of all simple Lie superal-
gebras, namely the basic classical ones, and to a subclass of the class of all irreducible finite-
dimensional representations, namely, the typical ones. We would like to emphasize that we do not
see anya priori argumentmathematical or biologicako regard other simple Lie superalgebras,
such as the strange superalgeld?das) andQ(n) or the Cartan type superalgebN&n), S(n),

S(n) andH(n) as being less relevant than the basic classical ones or to regard atypical represen-
tations as being less relevant than the typical ones; see Ref. 15, pp. 258/259 for comments on this
matter. Rather, our main motivation for these restrictions has been to identify a class of simple Lie
superalgebras and a class of irreducible representations within which we are able to provide a
completeclassification of all codon representations. In particular, this has led us to exclude atypi-
cal representations since although dimension formulas for some classes of atypical representations
have been known for some timéa completely general dimension formula does not appear to be
available; at present, the best result in this direction seems to be the character formula for so-called
generic representations derived in Ref. 19. It would be interesting to see whether our monotonicity
argument, which is crucial in order to exclude the appearance of Lie superalgebras of arbitrarily
high rank, can be maintained in this context.

Despite these limitations, our investigation does provide a framework for the subsequent
investigation of branching schemes, the main goal being to identify the ones that reproduce the
standard genetic code. This analysis will be performed in the forthcoming second paper of this
series.
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