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The Molien function associated with a finite-dimensional representation of a com-
pact Lie group is a useful tool in representation theory because it acts as a gener-
ating function for counting the number of invariant polynomials on the representa-
tion space. The main purpose of this paper is to introduce a more general~and
apparently new! generating function which, in the same sense, counts not only the
number of invariant real polynomials in a real representation or the number of
invariant complex polynomials in a complex representation, as a function of their
degree, but encodes the number of invariant real polynomials in a complex repre-
sentation, as a function of their bidegree~the first and second component of this
bidegree being the number of variables in which the polynomial is holomorphic
and antiholomorphic, respectively!. This is obviously an additional and non-trivial
piece of information for representations which are truly complex~i.e., not self-
conjugate! or are pseudo-real, but it provides additional insight even for real rep-
resentations. In addition, we collect a number of general formulas for these func-
tions and for their coefficients and calculate them in various irreducible
representations of various classical groups, using the software packageMAPLE.
© 1998 American Institute of Physics.@S0022-2488~98!02901-6#

I. INTRODUCTION

Determining the ring of invariant polynomials in arbitrary representations is perhaps o
the most important open problems in group theory. Trying to solve this problem in
generality—for example, in the framework of arbitrary finite-dimensional representations of
pact Lie groups~including finite groups!—is presently considered to be a hopeless enterp
What is, however, a tractable problem is to determine at least the number of~linearly independent!
invariant polynomials, or more precisely, the dimension of the space of invariant homoge
polynomials of any given degree, and this is often an extremely useful piece of information
it comes to calculating invariant polynomials for a concrete representation of a concrete gr

The present investigation originated from the recent work of J. E. M. Hornos and Y. M
Hornos1 on the origin of the genetic code that has found great repercussion in the interna
scientific literature.2,3 According to their proposal, the degeneracy of the universal genetic cod
protein synthesis is not~as many molecular biologists used to and some continue to beli!
purely accidental, but can be understood as resulting from an evolutionary process which in
symmetry breaking: evolution from a highly symmetric initial state to a final state in which
symmetry is strongly broken. This evolution must have occurred, in several consecutive ste
back in earth’s early history, and so is not accessible to direct observation. For the time bei
scheme proposed by Hornos and Hornos is purely group theoretical, its main virtue being
within the limits of the originally proposed scheme—the initial symmetry and all intermed
steps in the sequence can be uniquely reconstructed from presently available data.~More recently,
the scope of the scheme has been extended and, as a result, a second possibility has em!4

The great challenge for the future is to identify a dynamical system modelling the under
evolutionary process, so that the sequence of symmetry breakings found can be associate
sequence of~generic! bifurcations. In fact, it is well known that in dynamical systems w
symmetry and with external parameters, bifurcations that occur under appropriate variations
parameters almost unavoidably lead to symmetry breaking.5 In this general framework, of course
the variety of possibilities is enormous, so that for the time being, we have decided to perfor
search in the more restricted class of Hamiltonian dynamical systems. But the most natur
11070022-2488/98/39(2)/1107/35/$15.00 © 1998 American Institute of Physics
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didates for a Hamiltonian function capable of reproducing the desired symmetry breaking p
are just the polynomial functions on the representation space which are invariant under t
symmetry group and which, if possible, should be of degree<4. ~This would correspond to som
kind of anharmonic oscillator type model.! In the case at hand, the full symmetry group is the ra
3 symplectic group Sp~6! and the representation is the 64-dimensional irreducible represent
of highest weight~1,1,0!—a complex representation which is self-conjugate but is pseudo-
rather than real, and which has come to be called the codon representation of Sp~6!.

Before attempting to explicitly construct all invariant polynomials up to a given degree, in
given representation of any group, it is obviously of great help to know precisely how many
polynomials there are. To see how useful this information can be and how it may help to
unpleasant surprises, consider as an example the problem of finding the invariant polynom
degree 4 in, say, the spin 3 representation of the ordinary rotation group.~This example has bee
chosen because of certain similarities with the codon representation.! Given the fact that vectors in
this representation space can be realized as totally symmetric tensorst of rank 3 over three-
dimensional Euclidean space which are traceless in any pair of indices, it is easy to co
invariant polynomials of degree 4 by considering all possibilities of contracting indices
product of four such tensors, using the invariant scalar product. Symmetry implies that the
relevant information is how many indices of any given tensor are contracted with how m
indices of any other given tensor~not which with which!, while tracelessness forbids contractio
of two indices that appear within the same tensor. Therefore, there are three different poss
to contract the 12 indices~each one ranging from 1 to 3! in the product

t i 1 j 1k1
t i 2 j 2k2

t i 3 j 3k3
t i 4 j 4k4

which come to mind.

~1! Every tensor has only one partner for the contraction. Contract, for example,i 1 with i 2 , j 1

with j 2 ,k1 with k2 and i 3 with i 4 , j 3 with j 4 ,k3 with k4 :

P4,1~ t !5P2~ t !2, P2~ t !5 (
i , j ,k51

3

t i jk
2 .

~2! Every tensor has two partners for the contraction. Contract, for example,i 1 with i 2 , j 1 with
j 2 ,k1 with i 3 ,k2 with i 4 , j 3 with j 4 ,k3 with k4 :

P4,2~ t !5 (
i , j ,k,l ,m,n51

3

t i jk t i j l tkmnt lmn .

~3! Every tensor has three partners for the contraction. Contract, for example,i 1 with i 2 , j 1 with
i 3 ,k1 with i 4 , j 2 with j 3 ,k2 with j 4 ,k3 with k4 :

P4,3~ t !5 (
i , j ,k,l ,m,n51

3

t i jk t i lmt j ln tkmn.

The first possibility corresponds to the square of the quadratic polynomial stemming from
invariant scalar product in this representation, while the other two are genuinely quarti
apparently independent. Therefore, it comes as a surprise that the number of invariant polyn
of degree 4 in this representation, as computed by the techniques to be discussed~and further
developed! in the present paper, turns out to be 2, and not 3. This means that the three polyn
obtained above must be linearly dependent! And indeed, writing out these polynomials as e
functions of the seven variablest112,t122,t113,t133,t223,t233,t123, we find, usingMAPLE, the fol-
lowing linear relation:

P4,152~P4,21P4,3!.

This simple example shows that independent information on the correct number of inv
polynomials is crucial if one wants to avoid naive overcounting. It is equally crucial if one w
to avoid undercounting, which may occur as a result of overlooking non-obvious, ‘‘hidd
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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invariants.~One fairly well-known example that comes to mind is the Pfaffian—an invariant in
adjoint representation of the special orthogonal groups in even dimensions which is hard to
by tensorial methods.!

The basic strategy for determining the number of invariant polynomials of any given deg
to encode all of them into a generating function, which is commonly called the Molien fun
and which can often be calculated in closed form, at least in sufficiently simple situations
even when this is not possible in practice, the existing formulas for the generating function c
exploited to compute at least the first few coefficients.

Unfortunately, the standard Molien functionMp associated with a given finite-dimension
representationp of a given compact Lie groupG is inadequate for handling the problem at ha
in its full generality, due to a discrepancy between ground fields. On the one hand, the rep
tation spaces encountered in group theory are always assumed to be complex~this guarantees tha
one can simultaneously diagonalize maximal commuting sets of linear transformations!; the usual
convention for handling real representations is then to view them as complex represen
possessing an invariant antilinear involution. On the other hand, we are typically interes
finding all invariant real polynomials and not just the complex ones. The standard Molien
tion, however, does not allow one to identify the extent to which a real polynomial on the s
of a complex representation is holomorphic or antiholomorphic in its variables. What is wor
does not detect invariant polynomials of mixed type. The obvious prototype of such a polyn
is the invariant scalar product—a quadratic polynomial on the representation space, holom
in one variable and antiholomorphic in the other—which exists in any finite-dimensional r
sentation of any compact Lie group and, in addition, is the only polynomial of its kind~up to a
constant multiple! in case the representation is irreducible. The fact that the standard M
function captures only purely holomorphic~or purely antiholomorphic! invariants, but fails to
detect mixed invariants, including the invariant scalar product, can already be illustrated by
ing at the simplest of all representations: the fundamental spin 1/2 representation of the or
rotation group~or rather its universal covering group SU~2!!.

The natural way out of this dilemma, proposed and elaborated in the present paper, is to
a new generating functionFp which generalizes the usual Molien function and is specifica
designed to capture all real polynomials in complex representations, discriminating betwe
lomorphic ones, purely antiholomorphic ones and mixed ones, according to their bidegree

As far as the specific case of the codon representation of Sp~6! is concerned, the technique
developed in the present work allow one to conclude that:~a! there are no invariant quadrati
polynomials of bidegree~2,0! ~purely holomorphic! or of bidegree~0,2! ~purely antiholomorphic!,
while there is one invariant quadratic polynomial of bidegree~1,1! ~the scalar product!, ~b! there
are no invariant cubic polynomials of any kind and~c! the numbers of invariant quartic polyno
mials are as follows: 3 of bidegree~4,0! ~purely holomorphic!, 3 of bidegree~0,3! ~purely anti-
holomorphic!, 6 of bidegree~3,1!, 6 of bidegree~1,3! and finally 15 of bidegree~2,2!. Since a
Hamiltonian function must be real, we may therefore conclude that the general candidate
Hamiltonian capable of describing the evolution of the genetic code through an anhar
oscillator type model must be a linear combination of the invariant scalar product, its squa
another 14 genuinely quartic invariant polynomials of bidegree~2,2!. What remains to be deter
mined are the explicit form of these polynomials and the conditions to be imposed on
coefficients in order to guarantee positivity of the energy.~The remaining final freedom of modi
fying the Hamiltonian by an additive constant may then be used to normalize its minimum
to 0.!

The paper is organized as follows. In Sec. II, we briefly review the definition of the Mo
function, whereas in Sec. III we define our new generating function for counting invariant
polynomials in complex representations. Both sections contain comments on the relations b
the analytic form of the generating functions and the structure of the~graded or bigraded! algebra
of invariant polynomials, in terms of generators and relations. In Sec. IV, we derive int
formulas for both generating functions, with emphasis on their explicit form for unitary repre
tations of compact connected Lie groups, in terms of roots and weights. In Sec. V, we p
purely combinatorial formulas for the coefficients, involving the multiplicities of the weights
a set of integer coefficients called ‘‘decomposition indices’’ associated with the vectors in the
lattice. In Sec. VI, we discuss as an example the results we have obtained for the simplest
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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all compact connected simple Lie groups: SU~2!. Finally, in Sec. VII, we present calculations fo
various irreducible representations of the rank 2 symplectic group Sp~4! and the rank 3 symplectic
group Sp~6!, including the fundamental representations and the other irreducible represent
which appear in the symmetry breaking scheme of Hornos and Hornos.1

II. THE MOLIEN FUNCTION: DEFINITION AND ELEMENTARY PROPERTIES

Given an arbitrary finite-dimensional representationp of a compact Lie groupG on some
n-dimensional vector spaceV, and denoting byck(p) the number of~linearly independent!
G-invariant polynomials of degreek on V, one defines the corresponding Molien functionMp by
the power series

Mp~z!5 (
k50

`

ck~p!zk. ~1!

Note that identifying homogeneous polynomials of degreek on V with totally symmetric tensors
of degreek over V* , we easily obtain the estimate

0<ck~p!<S n1k21
k D5S n1k21

n21 D ,

so ck(p) grows at most polynomially ask→` ~the highest power beingkn21!; therefore, the
above power series is absolutely convergent on the open unit disk in the complexz plane and
henceMp is a complex analytic function there—a function from which we may obviously reco
all the numbersck(p) as Taylor coefficients:

ck~p!5
1

k!

dk

dzk Mp~z!U
z50

. ~2!

Note also that this definition can be used both in the real and in the complex setting, and
generally, for representationsp of G by F-linear transformations on finite-dimensional vect
spacesV over F, whereF is an arbitrary field of characteristic 0.

Some initial information on the structure of the Molien function can be gained by descr
the graded ring ofG-invariant polynomials onV in terms of generators and relations. In fact, t
Hilbert–Weyl theorem guarantees that this graded ring is finitely generated, i.e., that there
a finite set$P1 ,...,PN% of homogeneousG-invariant polynomials onV such that every~homoge-
neous! G-invariant polynomialP on V can be written in the form

P~v !5p~P1~v !,...,PN~v !!. ~3!

wherep is some~homogeneous! polynomial onFN, provided we define homogeneity of polyno
mials onFN as referring to a modified notion of degree, namely,

deg pm1 ,...,mN
5m1 deg P11...1mN deg PN , ~4!

for the monomialpm1
,...,mN given by

pm1 ,...,mN
~u1 ,...,uN!5u1

m1...uN
mN. ~5!

~See, for example, Ref. 5, p. 46 for a statement and pp. 54–58 for a proof. However, I pre
avoid the term ‘‘Hilbert basis’’ used in Ref. 5, which I consider to be potentially misleading
therefore unfortunate.! Note that the polynomialp is in general not uniquely fixed by the poly
nomial P because there may be relations, i.e., polynomialsR on FN satisfying
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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R~P1~v !,...,PN~v !![0. ~6!

Note also that the relationsR form a graded ring which is nothing but the kernel of the degr
preserving homomorphism, defined by~3!, from the graded ring of polynomialsp on FN onto the
graded ring ofG-invariant polynomialsP on V. Being a graded ideal in a polynomial ring, th
kernel is finitely generated, i.e., there exists a finite set$R1 ,...,RM% of homogeneous polynomial
on FN such that every~homogeneous! polynomial R on FN satisfying ~6! can be written in the
form

R~u1 ,...,uN!5r ~R1~u1 ,...,uN!,...,RM~u1 ,...,un!!, ~7!

wherer is some~homogeneous! polynomial onFM, provided we define homogeneity of polyno
mials onFM as referring to a modified notion of degree, namely,

deg r n1 ,...,nM
5n1 deg R11...1nM deg RM , ~8!

for the monomialr n1 ,...,nM
given by

r n1 ,...,nM
~v1 ,...,vM !5v1

n1...vM
nM. ~9!

~See, for example, Ref. 5, Corollary 6.2, p. 54.! In general, neither the set$P1 ,...,PN% of genera-
tors nor the set$R1 ,...,RM% of relations is unique, but we can at least fix the numberN of
generators and the numberM of relations by requiring bothN andM to be minimal.

The simplest case is, of course, whenM50, i.e., there are no relations. Counting the num
ck(p) of G-invariant polynomials of degreek on V gives

ck~p!5cardH ~m1 ,...,mN!PN0
NY (

j 51

N

mj deg Pj5kJ .

But this is just the coefficient ofzk in the power series expansion of the function

Mp~z!5
1

P j 51
N ~12zdeg Pj !

. ~10!

Conversely, it is clear that if the Molien function for the representationp of G on V has this form,
then there can be no relations, because otherwise the number ofG-invariant polynomial functions
on V of degreek would have to be strictly less than the coefficient ofzk in the power series
expansion of Eq.~10!, at least for somek. Thus the Molien function detects the presence
absence of relations among the generators of the ring of invariant polynomials.

For later use, it is also of some interest to write down the corresponding result fo
next-simplest caseM51, i.e., when there is a single relationR5r (P1 ,...,PN). Due to the fact
that polynomials of the formp(P1 ,...,PN) r (P1 ,...,PN) will vanish identically, counting the
numberck(p) of G-invariant polynomials of degreek on V now gives

ck~p!5cardH ~m1 ,...,mN!PN0
NY (

j 51

N

mj deg Pj5kJ
2cardH ~m0 ;m1 ,...,mN!PN0

N11Y (
j 51

N

m0mj deg R deg Pj5kJ .

But this is just the coefficient ofzk in the power series expansion of the function
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Mp~z!5
12zdeg R

P j 51
N ~12zdeg Pj !

. ~11!

Again, it is clear that if the Molien function for the representationp of G on V has this form, then
there can be no other relations, because otherwise the number ofG-invariant polynomial functions
on V of degreek would have to be strictly less than the coefficient ofzk in the power series
expansion of Eq.~11!, at least for somek.

III. A NEW GENERATING FUNCTION

As remarked previously, the above definition of the Molien function applies equally we
the real and in the complex setting. Often, however, it is of interest to also determine the n
of ~linearly independent! G-invariant real polynomials in a complex representation, the typ
example for a quadratic polynomial of this kind being the square of the norm in a unitary r
sentation. Therefore, it is useful to introduce a generating function for counting the numb
such invariants as well. The main new feature that must be taken into account is the fact th
polynomials over a complex vector space carry, over and above their usual degree, a bideg
counts the number of variables in which they are holomorphic and antiholomorphic, respec
This will lead to a generating function which depends on two variables, rather than one.

Indeed, given an arbitrary representationp of a compact Lie groupG on somen-dimensional
complex vector spaceV, let us first of all defineV̄ to be then-dimensional complex vector spac
which is ‘‘V with the opposite complex structure’’ andVr5V̄r to be the 2n-dimensional real
vector space obtained fromV or V̄ by ‘‘forgetting the complex structure’’. In other words,V, V̄
andVr are identical as sets and as real vector spaces, while the complex structures onV and onV̄
are in this picture encoded into real linear transformationsJ:Vr→Vr and J̄:Vr→Vr , which are
nothing but multiplication byi in V and in V̄, respectively, soJ2521 and J̄2521; then
‘‘opposite’’ means thatJ̄52J. ~The idea behind this construction is that it enables us to iden
for any complex vector spaceW, complex antilinear maps fromV to W with complex linear maps
from V̄ to W.! Next, recall that homogeneous real polynomials of degreek on V can be identified
with totally symmetricR-multilinear mappings fromVr3...3Vr ~k copies! to R—or to C if we
allow such polynomials to be complex-valued, as will be assumed throughout the following
shall say that such a polynomial is homogeneous of bidegree (p,q), with p1q5k, if under this
identification it corresponds to a totally symmetricC-multilinear mapping fromV3...3V3V̄
3...3V̄ to C, with p copies ofV andq copies ofV̄. For such a polynomialP, we call the number
p its holomorphic degree, denoted by deghP, and the numberq its antiholomorphic degree
denoted by degaP. It is easy to show that any homogeneous real polynomial of degreek may be
uniquely decomposed into a sum of homogeneous polynomials of bidegree (p,q), as follows:

Pk5 (
p,q50
p1q5k

k

Pp,q .

Namely, givenPk , we may set

P̃p,q~v1 ,...,vk!5
1

2k (
l 1 ,...l k50

1

~2 i ! l 11...1 l p i l p111...1 l p1q Pk~ i l 1v1 ,...,i l kvk!,

which defines a real multilinear function, complex linear and symmetric in the firstp variables and
complex antilinear and symmetric in the lastq variables; then the above decomposition holds w
Pp,q obtained fromP̃p,q by symmetrization in allk arguments,

Pp,q~v1 ,...,vk!5
1

k! (
sPSk

P̃p,q~vs~1! ,...,vs~k!!.
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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This decomposition can be stated in more concrete terms by introducing an arbitrary
$v1 ,...,vn% of V ~overC!, together with the induced basis$v1 ,iv1 ,...,vn ,ivn% of Vr ~overR!, and
expanding vectors in the representation space into components:

v5(
j 51

n

z jv j5(
j 51

n

~j j1 ih j !v j .

Then any polynomialP on Vr can be written either as a linear combination of monomials wh
are products of powers of the real coordinatesj j andh j or as a linear combination of monomia
which are products of powers of the complex coordinatesz j and their complex conjugatesz̄ j .
Using the latter representation and employing multi-index notation, we have

P~v !5(
a,b

aa,bzaz̄b,

so

P~v !5(
k

Pk~v !5(
p,q

Pp,q~v !,

with

Pk~v !5 (
uau1ubu5k

aa,bzaz̄b, Pp,q~v !5 (
uau5p
ubu5q

aa,bzaz̄b.

~All sums are supposed to be finite.!
The crucial point is now that sinceG acts onV by complex linear transformationsp(g), these

decompositions preserveG-invariance, that is, ifP is G-invariant, so are not only thePk but also
the Pp,q . Therefore, denoting bycp,q(p) the number of~linearly independent! G-invariant poly-
nomials of bidegree (p,q), we define the following generating functionFp of two variables,
which for later convenience we shall assume to be mutually complex conjugate:

Fp~z,z̄!5 (
p,q50

`

cp,q~p!zpz̄q. ~12!

As before, this power series is absolutely convergent on the open unit disk in the complexz plane
and henceFp is a real analytic function there—a function from which we may obviously reco
all the numberscp,q(p) as Taylor coefficients:

cp,q~p!5
1

p!

1

q!

]p

]zp

]q

] z̄q Fp~z,z̄!uz50,z̄50 . ~13!

As a first elementary property of this new generating function, note that it behaves nat
under complex conjugation. Namely, introducing an arbitrary conjugations on V, that is, an
involutive antilinear transformations:V→V to define the complex conjugate representationp̄ of
p according to

p̄~g!5sp~g!s for gPG, ~14!

we note thatcp,q(p̄)5cq,p(p) and hence

F p̄~z,z̄!5Fp~ z̄,z!. ~15!
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Obviously, this relation does not depend on the choice of the conjugations because the represen
tationsp̄1 andp̄2 defined by means of two different conjugationss1 ands2 are equivalent~with
s2s1

21 as the intertwining operator!. Note also thatFp contains the Molien functionsMp andM p̄

as special cases:

Mp~z!5Fp~z,0!, M p̄~z!5Fp~0,z!. ~16!

As in the case of the ordinary Molien functionMp , the generating functionFp allows one to
read off important information about the generators of the bigraded ring ofG-invariant real
polynomials onV and about the relations that exist between them. Indeed, observe first of a
the set$P1 ,...,PN% of generators and the set$R1 ,...,RM% of relations may without loss of gen
erality ~and at most at the expense of increasing the ‘‘minimum’’ numberN of generators and the
‘‘ minimum’’ number M of relations required! be assumed to consist of polynomials which a
homogeneous in bidegree. Then it is not difficult to see that in the simplest caseM50 ~no
relations!,

cp,q~p!5cardH ~m1 ,...,mN!PN0
NY (

j 51

N

mj deghPj5p, (
j 51

N

mj degaPj5qJ .

and hence

Fp~z,z̄ !5
1

P j 51
N ~12zdeghPj z̄ degaPj !

, ~17!

while in the next-simplest caseM51 ~a single relation!,

cp,q~p!5cardH ~m1 ,...,mN!PN0
NY (

j 51

N

mj deghPj5p, (
j 51

N

mj degaPj5qJ
2card5 ~m0 ;m1 ,...,mN!PN0

N11Y (
j 51

N

m0mj deghR deghPj5p

(
j 51

N

m0mj degaR degaPj5q6 .

and hence

Fp~z,z̄!5
12zdeghR z̄ degaR

P j 51
N ~12zdeghPj z̄ degaPj !

. ~18!

IV. INTEGRAL FORMULAS

To begin with, we quote a well-known integral formula which allows one to compute
Molien functionMp in terms of an integral over the group. Namely, letmG be the biinvariant Haar
measure onG, normalized so that the total volume ofG with respect tomG is 1. Then

Mp~z!5E
G

dmG~g!
1

det~12zp~g!!
. ~19!

This formula is easily generalized to an integral formula for the generating functionFp ; it reads

Fp~z,z̄!5E
G

dmG~g!
1

det~12zp~g!!

1

det~12 z̄p̄~g!!
. ~20!
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The proof is similar to that for the usual Molien function~see, e.g., Ref. 6 p. 204! and is based on
calculating the characterxP of the representationpP of G on the algebra of polynomial function
on V induced by the given representationp of G on V according to

~pP~g!P!~v !5P~p~g!21v !,

as follows: SinceG is a compact Lie group, the given representationp of G on V may without
loss of generality be assumed to be unitary~starting from some arbitrary scalar product onV, a
G-invariant scalar product onV is obtained by integration over the group!, so for fixedgPG,
p(g)21 can be diagonalized, i.e., there exists a basisv1 ,...,vn of V consisting of eigenvectors o
p(g)21 with eigenvaleusl1 ,...,ln . As a result, the monomialszaz̄b ~see above! form a basis of
the space of polynomials onV of bidegree (p,q) consisting of eigenvectors ofpP(g) with
eigenvalueslal̄b, so that the characterxp,q of the representationpp,q on the space of homoge
neous polynomials onV of bidegree (p,q) induced by the given representationp of G on V is
given by

xp,q~g!5tracepp,q~g!5 (
uau5p
ubu5q

lal̄b.

Multiplying by zpz̄q and summing overp andq gives, in the sense of formal power series,

(
p,q50

`

xp,q~g!zpz̄ q5 (
p,q50

`

(
uau5p
ubu5q

~zl!a~ z̄ l̄!b

5)
j 51

n

~12zl j !
21)

j 51

n

~12 z̄ l̄j !
215det~12zp~g!!21det~12 z̄p̄~g!!21.

The result now follows due to a standard fact from the representation theory of compact g
namely, that the dimension of the fixed subspace of a given representation—or to put it diffe
the multiplicity with which the trivial representation occurs in a given representation—is equ
the integral of the character of that representation over the group.

An important aspect of Eqs.~19! and ~20! which greatly facilitates the evaluation of th
integrals is the fact that the determinants appearing under the integral signs are central fu
on the group~i.e., are invariant under conjugation!, so that the integral over the whole group c
be reduced to an integral over the space of conjugacy classes.

Before performing this reduction, we note that the integral representations~19! and ~20! are
valid in two special cases which are at opposite extremes. One of these occurs whenG is discrete,
that is, a finite group, so that the integrals reduce to finite sums,

Mp~z!5
1

uGu (
gPG

1

det~12zp~g!!
, ~21!

Fp~z,z̄!5
1

uGu (
gPG

1

det~12zp~g!!

1

det~12 z̄p̄~g!!
, ~22!

which can be reduced to sums over conjugacy classes; their explicit evaluation, by me
various techniques, has been studied in the literature~see, e.g., Refs. 6, pp. 204–207, 7, and!.
The other and apparently much less studied case occurs whenG is a compact connected Li
group, so that the integrals over the whole groupG can be reduced to integrals over a maxim
torusT: it is this situation that we shall now investigate in some detail.

Thus letG be a compact connected Lie group, letT be a maximal torus inG and letmT be the
bi-invariant Haar measure onT, normalized so that the total volume ofT with respect tomT is 1.
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



t

g
f

ons.
nts of

1116 J. Math. Phys., Vol. 39, No. 2, February 1998 Michael Forger

Downloaded
Moreover, letg be the Lie algebra ofG and t,g be the Lie algebra ofT,G. Introducing a
G-invariant inner product~.,.! on g, we may decomposeg into the orthogonal direct sum

g5t% t'

of t and its orthogonal complementt'; this decomposition is Ad(T)-invariant and does no
depend on the choice of the inner product~.,.!. Finally, let WG be the Weyl group ofG ~WG

5NG(T)/T whereNG(T) is the normalizer ofT in G, defined byNG(T)5$gPG/gtg21PT for
all tPT%! and uWGu be its order. Then

Ad~ t !511Ad'~ t ! for tPT

and ~see, e.g., Ref. 9, pp. 101–103!

Mp~z!5
1

uWGu ET
dmT~ t !

det~12Ad'~ t !!

det~12zp~ t !!
, ~23!

Fp~z,z̄!5
1

uWGu ET
dmT~ t !

det~12Ad'~ t !!

det~12zp~ t !!det~12 z̄p̄~ t !!
. ~24!

These integrals can be further evaluated in terms of the root systemD of g and the weight system
F for the representationp. The procedure is standard wheng is semisimple, but to a certain
degree it works just as well in the more general case wheng has a non-trivial center. The startin
point is the fact thatT being Abelian, the restriction fromG to T of any unitary representation o
G, such as the complexified adjoint representation Ad on the complexificationgc of g or the
representationp on V, splits into the direct sum of irreducible one-dimensional representati
Grouping together all subspaces characterized by the same eigenvalues under all elemeT
leads to the well-known root space decomposition

gc5tc
% %

aPD

ga

of gc and to the weight space decomposition

V5 %
lPF

Vl

of V; the dimension of the subspaceVl is commonly known as the multiplicitym(l) of l. The
action ofT on each of these subspaces is given by a character ofT, i.e., a Lie group homomor-
phism fromT to the unit circle, written ast→ta and t→tl, respectively, according to

Ad~ t !~X!5taX for tPT and XPga , ~25!

and

p~ t !~v !5tlv for tPT and vPVl , ~26!

respectively. At the Lie algebra level, Eqs.~25! and ~26! imply the usual relations

ad~H !~X!5a~H !X for HPt and XPga , ~27!

and

ṗ~H !~v !5l~H !v for HPt and vPVl , ~28!
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respectively. By complex conjugation of Eqs.~26! and ~28!, we obtain

p̄~ t !~v !5t2lv for tPT and vPsVl , ~29!

pG ~H !~v !52l~H !v for HPt and vPsVl . ~30!

We follow here the standard mathematical convention of considering rootsa and weightsl as real
linear forms ont, or as complex linear forms on the complexificationtc of t, which—in accor-
dance with the fact thatg is the compact real form ofgc—take purely imaginary values ont
~eigenvalues of antihermitean matrices are purely imaginary!. Moreover, rootsa and weightsl are
transferred to generatorsHa and Hl using the isomorphism induced by theG-invariant non-
degenerate complex bilinear form~.,.! on gc obtained from theG-invariant inner product~.,.! on g

by complex bilinear extension:

~Ha ,H !5a~H !, ~HlH !5l~H ! for all HPtc.

This isomorphism is, by definition, an isometry:

~a,b!5~Ha ,Hb!, ~l,m!5~Hl ,Hm!.

The reality properties may then be summarized in the statement that rootsa and weightsl belong
to the real vector spacei t* , while the vectorsHa andHl belong to the real vector spacei t. With
this notation, we can rewrite the integrals in Eqs.~23! and ~24! as follows:

Mp~z!5
1

uWGu ET
dmT~ t !

PaPD~12ta!

PlPF~12ztl!m~l! , ~31!

Fp~z,z̄!5
1

uWGu ET
dmT~ t !

PaPD~12ta!

PlPF~12ztl!m~l!~12 z̄t2l!m~l! . ~32!

A further condition to be employed is that rootsa and weightsl must be integral linear forms in
the sense of taking values in 2p iZ on the so-called unit lattice

L15$HPt /exp~H !51% ~33!

of G: such integral linear forms are precisely the ones that arise as differentials of characteT
~Ref. 9, pp. 94–95!. This lattice is the essential ingredient for understanding how to conver
integrals~31! and~32! into integrals over the product ofr unit circles (r 5rank G5dim T), which
can then be evaluated by anr -fold successive application of the residue theorem. Indeed, le
assume that$2pH1 ,...,2pHr% is a basis ofL1 and define

h~a!5~h1~a!,...,hr~a!!5~2 ia~H1!,...,2 ia~Hr !! for aPD,
~34!

h~l!5~h1~l!,...,hr~l!!5~2 il~H1!,...,2 il~Hr !! for lPF.

Then the map

S13...3S1 → T,
~35!

w5~w1 ,...,wr !5~eiu1,...,eiur ! ° t5expS (
j 51

r

u jH j D
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is an isomorphism of compact Abelian Lie groups such that, in multi-index notation~generalized
to include negative integer powers!,

ta5wh~a!5w1
h1~a! ...wr

hr ~a! for aPD,
~36!

t6l5w6h~l!5w1
6h1~l! ...wr

6hr ~l! for lPF.

Thus we obtain
Theorem 1: Assumep is a finite-dimensional unitary representation of a compact connec

Lie group G. Then in terms of the multi-index notation for roots and weights with respect
basis of the unit lattice of G, as introduced in Eqs. (33–36), the generating functions Mp and Fp

are given by

Mp~z!5
1

uWGu )
j 51

r R dwj

2p iw j

PaPD~12wh~a!!

PlPF~12zwh~l!!m~l! , ~37!

Fp~z,z̄ !5
1

uWGu )
j 51

r R dwj

2p iw j

PaPD~12wh~a!!

PlPF~12zwh~l!!m~l!~12 z̄w2h~l!!m~l! . ~38!

The expressions wh(a) and w6h(l) will often be abbreviated to wa and w6l, respectively.
When G is semisimple, which is by far the most important case for applications, the e

nentsh(a) andh(l) are easily calculated from the root systemD of g and the weight systemF
for the representationp. To this end, it is convenient to introduce the following two lattices int:

~a! the coroot latticeLcr , which is dual to the standard weight lattice~Ref. 10, p. 67!, in the
sense that

Lcr5$ǎPt /l~ǎ!P2p iZ for all weights l%, ~39!

and identical with theD-lattice which forms the translation part of the affine Weyl gro
~Ref. 11, p. 314! and generated by the vectors 4p iH a /(Ha ,Ha) with aPD ~Ref. 11, pp.
317–318!,

~b! the coweight latticeLcw , which is dual to the standard root lattice~Ref. 10, p. 67!, in the
sense that

Lcw5$ľPt /a~ľ!P2p iZ for all roots a%, ~40!

and identical with the central lattice, defined as

Lc5$HPt /exp~H!PZ%, ~41!

whereZ is the center ofG ~Ref. 9, p. 95, Ref. 11, p. 311!.

Obviously, the coroot lattice is contained in the coweight lattice, and the unit lattice lie
between:

Lcr,L1,Lcw . ~42!

Note also that the unit lattice is sensitive to coverings, while the coroot lattice and the cow
lattice are not: they depend on the Lie groupG only through its Lie algebrag. In fact, we have two
extreme cases, between which the general case is intermediate:
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~i! When G is simply connected, the unit lattice is minimal and coincides with the co
lattice.

~ii ! When G has trivial center, the unit lattice is maximal and coincides with the cowe
lattice.

Therefore, whenG is simply connected~which we may always assume to be the case, without
of generality!, one possible choice of the basis$2pH1 ,...,2pHr% is to set

H j5
2iH a j

~Ha j
,Ha

!
, ~43!

where $a1 ,...,a r% is a basis of simple roots. In this case, the exponentsh(a) and h(l) are
precisely the coefficients in the expansion

a5(
j 51

r

hj~a!l j , l5(
j 51

r

hj~l!l j ~44!

of a rootaPD and of a weightlPF in terms of the basis$l1 ,...,l r% of fundamental weights,
which is dual to the basis of simple roots in the usual sense:

2~l j ,ak!

~ak ,ak!
5d jk . ~45!

Observe that the relevant parts of this construction do not depend on the choice of the
product ~.,.!: a different choice would simply amount to a change of an overall normaliza
factor on each simple ideal which drops out of the definition of the generators appearing on
of Eq. ~43! or the definition~45! of the fundamental weights. When we want to be specific ab
normalization, we shall not use the Killing form, but rather the so-called standard form, wh
normalized so that the long roots have length&.

The additional assumption thatG should be semisimple is less restrictive than it may se
Indeed, whenG is not semisimple, that is, has a non-discrete centerZ, consider the orthogona
direct decompositiong5z% gs of g into its center z and its maximal semisimple idealgs

5@g,g#, together with the corresponding orthogonal direct decompositiont5z% ts of the maximal
Abelian subalgebrat of g into the centerz of g and a maximal Abelian subalgebrats of gs . Then
the rootsa (aPD) only generate the subspacei ts* of i t* and the vectorsHa (aPD) only
generate the subspacei ts of i t, as real vector spaces. We can still define the unit latticeL1 ~cf. Eq.
~33!! and introduce a basis$2pH1 ,...,2pHr% as before, as well as the exponentsh(a) andh(l)
~cf. Eq. ~34!!, but the unit lattice is now very flexible: any lattice ing which contains the coroo
lattice of gs and whose orthogonal projection togs is contained in the coweight lattice ofgs is
admissible~Ref. 9, p. 97!. Therefore, there is now no general way to proceed beyond Eqs.~37! and
~38!; their explicit evaluation must for each representationp be carried out separately.

A final important observation concerns the form of the generating functionsMp andFp when
p is the adjoint representation Ad. In this case, we may appeal to Chevalley’s theorem,
provides a complete description of the ring of invariant polynomials on a semisimple Lie alg
g: it is freely generated byr 5rank(g) elementary polynomialsP1 ,...,Pr , whose degrees
p1 ,...,pr are commonly known as the exponents ofg. Therefore, the usual Molien function for th
adjoint representation reads

MAd~z!5)
j 51

r
1

12zpj
. ~46!

Explicitly, for the classical groups, the polynomialsP1 ,...,Pr can~with one exception! be written
as trace polynomials in the defining representation:
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~i! Ar :g5sl(r 11) or su(r 11) ~compact real form!:

Pj~X!5tr~Xj 11! for XPg, j 51,...,r .
~ii ! Br :g5so(2r 11,C) or so(2r 11) ~compact real form!:

Pj~X!5tr~X2 j ! for XPg, j 51,...,r .
~iii ! Cr :g5sp(2r ,C) or sp(2r ) ~compact real form!:

Pj~X!5tr~X2 j ! for XPg, j 51,...,r .
~iv! Dr :g5so(2r ,C) or so(2r ) ~compact real form!:

Pj~X!5tr~X2 j ! for XPg, j 51,...,r 21,

Pr~X!5P f~X! for XPg,
whereP f(X) denotes the Pfaffian ofX. See, for example, Ref. 12, pp. 253–263.

It should be pointed out that Chevalley’s theorem refers to invariant complex polynomia
complex semisimple Lie algebras, or equivalently, to invariant real polynomials on real s
simple Lie algebras~including compact real forms!, but not to invariant real polynomials o
complex semisimple Lie algebras. There is thus no reason to believe that this polynomial ri
an equally simple structure. In fact, it does not. To show this, we have calculated the gene
function FAd for the simple Lie algebraB25C2 : the result~cf. Eq. ~125! in Sec. VII below!
exhibits a complicated structure, with lots of generators and relations.

V. COMBINATORIAL FORMULAS

In the following, we shall derive combinatorial formulas which allow one to determine
coefficientsck andcp,q of the generating functionsMp andFp solely in term of the root system
D and the weight systemF of the representationp.

Our starting point will be the integral representations~37! of Mp and~38! of Fp . First of all
we need the following

Proposition:Let f 1 ,...,f n be polynomials of degree 1 in the variablex ~with coefficients that
are rational functions of other variablesw1 ,...,wr!. Then for non-negative integersm1 ,...,mn and
k,

1

k!

]k

]xk S )
i 51

n

f i
2mi D 5~21!k (

u l u5k
)
i 51

n S mi211 l i

l i
D ~ f i

2mi2 l i !S ] f i

]x D l i

, ~47!

where we use multi-index notation, i.e.,l 5( l 1 ,...,l n), where thel i are non-negative integers, an
u l u5 l 11...1 l n .

Proof: For k51, the above formula reduces to the statement that

]

]x S )
i 51

n

f i
2mi D 52(

j 51

n

)
i 51

n

~ f i
2mi !S mj

f j

] f j

]x D ,

which is obvious. The general case is proved by induction onk, using the hypothesis that

]2f i

]x
50,

as follows:
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1

~k11!!

]k11

]xk11 S )
i 51

n

f i
2mi D 5

~21!k11

k11 (
upu5k

(
j 51

n F)i 51
iÞ j

n S mi211pi

pi
D ~ f i

2mi2pi !S ] f i

]x D piG
3S mj211pj

pj
D ~mj1pj !~ f j

2mj 2pj 21
!S ] f j

]x D pj 11

5~21!k11 (
upu5k

(
j 51

n F)i 51
iÞ j

n S mi211 l i

l i
D ~ f i

2mi2 l i !S ] f i

]x D l iG
3S mj211 l j

l j
D l j

k11
~ f j

2mj 2 l j !S ] f j

]x D l j

,

where l is defined in terms ofp and j by putting l i5pi for iÞ j and l j5pj11. Converting the
double sum overp and j to a single sum overl yields the desired result.

As a result, we can explicitly differentiate the integrands of Eqs.~37! and ~38!:

1

k!

]k

]zk

1

PlPF~12zwl!m~l! U
z50

5 (
u l u5k

N~ l ,m!wL~ l !,

1

p!

1

q!

]p

]zp

]q

] z̄ q

1

PlPF~12zwl!m~l!~12 z̄w2l!m~l!z50,z̄505 (
ur u5p,usu5q

N~r ,m!N~s,m!wL~r 2s!,

where

N~ l ,m!5 )
lPF

S m~l!1 l ~l!21
l ~l! D ,

and

L~ l !5 (
lPF

l ~l!l.

In order to carry out the residue integrals in Eqs.~37! and~38!, we must also expand the numerat
in powers ofw. The net result is most conveniently formulated in terms of the following conce

Definition 1: The extended root systemD̃ associated with a given root systemD is the set of
all linear combinations

ã5 (
aPD

a~a!a ~48!

of roots with coefficientsa(a) which are either 0 or 1.~Thus D̃ is a ~finite! subset of the root
lattice generated byD.! To any such extended rootã, we associate its decomposition indexi (ã),
defined as the difference

i ~ ã !5n1~ ã !2n2~ ã !, ~49!

between the numbern1(ã) of such decompositions ofã into a sum of roots with an even numbe
of nonzero coefficients and the numbern2(ã) of such decompositions ofã into a sum of roots
with an odd number of nonzero coefficients. In other words,
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i ~ ã !5(
a

~21! uau, ~50!

where the sum is over all sequences (a(a))aPD of coefficientsa(a)P$0,1% satisfying Eq.~48!,
and

uau[ (
aPD

a~a!. ~51!

We extend the definition of the decomposition index to the whole root lattice by setting

i ~ ã !50 if ãP” D̃. ~52!

In these terms, we have

)
aPD

~12wa!5 (
ãPD̃

i ~ ã !wã. ~53!

Note that just like the usual root system, the extended root system is invariant under the ac
the corresponding Weyl groupW, and so is the decomposition index~it is constant along Weyl
group orbits!. Two particular values that can be computed immediately are

i ~2r!5~21! uDu/2, i ~0!5uWu, ~54!

where 2r is the vector obtained as the sum of all positive roots.~The first formula follows by
observing that in this case there is only one possible sequence, namely~1,...,1!, which has the
parity stated above, while the second formula follows by combining the previous formu
w50 with the fact thatMp(0)51.! For the simplest rank 1 algebraA1 , for example, we have
D5$a,2a% and D̃5$a,0,2a% with i (a)5 i (2a)521 and i (0)52. The result for the simple
rank 2 algebrasA2 , B25C2 andG2 is shown in Figures 1–3.

Definition 2: For any positive integerk, thek-extended weight systemF̃(k) associated with
a given weight systemF is the set of all linear combinations

l̃5 (
lPF

l ~l!l ~55!

of weights with coefficientsl (l) which are non-negative integers, such that

u l u[ (
lPF

l ~l!5k. ~56!

~Thus F̃(k) is a ~finite! subset of the weight lattice.! To any suchk-extended weightl̃, we
associate itsk-extended multiplicitymk(l̃), defined as the sum of the combinatorial coefficien

N~ l ,m!5 )
lPF

S m~l!211 l ~l!

l ~l! D5 )
lPF

S m~l!211 l ~l!

m~l!21 D ~57!

over all such representations ofl̃. In other words,

mk~ l̃!5(
l

N~ l ,m!, ~58!
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where the sum is over all sequences (l (l))lPF of coefficientsl (l)PN satisfying Eqs.~55! and
~56!.

Note that just like the usual weight system and the usual multiplicity, thek-extended weight
system and thek-extended multiplicity are invariant under the action of the corresponding W
groupW, and thatF̃(1)5F, m1(l)5m(l).

Now we are ready to formulate the main result of this section:
Theorem 2: Assumep is a finite-dimensional unitary representation of a compact connec

Lie group G. Then in terms of the multi-index notation for roots and weights with respect
basis of the unit lattice of G, as introduced in Eqs. (33–36), and with the notation introduced
above, the number ck(p) of (linearly independent) G-invariant complex polynomials of degre
and the number cp,q(p) of (linearly independent) G-invariant real polynomials of bidegree(p,q)
on the carrier space ofp are given by the combinatorial formulas

ck~p!5
1

uWGu (
l̃PF̃~k!

i ~ l̃!mk~ l̃!, ~59!

and

cp,q~p!5
1

uWGu (
l̃PF̃ ~p!,m̃PF̃~q!

i ~ l̃2m̃ !mp~ l̃!mq~m̃ !, ~60!

FIG. 1. Root system and extended root system, with decompostion indices:A2 .
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respectively. (Note that the terms on the rhs of these equations yield non-vanishing contrib
only whenl̃ and l̃2m̃, respectively, belongs to the extended root systemD̃.)

We believe that on the basis of this theorem, it should be possible to develop a com
program for calculating the numbersck and cp,q , up to reasonably high orders, for arbitra
groups and representations. The amount of computing time can be reduced by a factor of th
of uWGu by an appropriate implementation of the Weyl group symmetry.

VI. EXAMPLE: SU „2…

As a first example, let us apply Eqs.~37! and~38! to the case whereG5SU(2), with maximal
torusT5U(1) andp5ps the irreducible spins representation. Theng5su(2) is the Lie algebra
of complex traceless antihermitean matrices andt5u(1) the maximal Abelian subalgebra o
imaginary traceless diagonal matrices, with invariant scalar product~.,.! given by

~X,Y!5tr~XY! for X,YPsu~2!. ~61!

Using the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D , ~62!

FIG. 2. Root system and extended root system, with decomposition indices:C2 .
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which satisfy

s jsk5d jk1 i e jkls l , ~63!

we see that the nonzero roots are6a, where

a~H !5H112H225tr~Hs3! for HPu~1!, ~64!

with root vectors

E6a5s16 is2 , ~65!

implying

Ha5s3 , ~66!

which does have length&, in accordance with our previous convention. The fundamental we
is given by

FIG. 3. Root system and extended root system, with decomposition indices:G2 .
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l~H !5 1
2 ~H112H22!5 1

2 tr~Hs3! for HPu~1!, ~67!

so

Hl5 1
2 s3 . ~68!

Note that the root lattice is generated bya and the weight lattice is generated byl, whereas the
coroot lattice~which coincides with the unit lattice for SU~2! since SU~2! is simply connected! is
generated by 2pHa and the coweight lattice~which coincides with the unit lattice fo
SO~3!5SU~2!/Z2 sinceZ2 is the center of SU~2!! is generated by 2pHl . The highest weight of
the irreducible spins representation is precisely 2sl, and its complete weight system consists
the multiples 2ml with m taking all integer~half-integer! values between2s ands ~inclusive!
whens is integer~half-integer!. Therefore, Eqs.~37! and ~38! yield for this case

Ms~z!5
1

4p i R dw

w

~12w2!~12w22!

Pm52s
s ~12zw2m!

, ~69!

Fs~z,z̄!5
1

4p i R dw

w

~12w2!~12w22!

Pm52s
s ~12zw2m!~12 z̄w22m!

. ~70!

~We have abbreviatedMps
to Ms andFps

to Fs .! See Ref. 6, p. 94, noting that the formula give
there is correct only for integer spin, in which case it can be deduced from Eq.~69! by the variable
transformationw5exp(iu/2), together with the observation that the resulting integral from 0 top
may actually be reduced to an integral from 0 top because the argument is a periodic function
u with period 2p and, in addition, invariant under the reflectionu→2u.

For integer spins, these equations are equivalent to

Ms~z!52
1

2~12z!

1

2p i R dw
ws~s11!23~12w2!2

Pk51
s ~12zw2k!~w2k2z!

, ~71!

Fs~z,z̄!52
1

2~12z!~12 z̄!

1

2p i R dw
w2s~s11!23~12w2!2

Pk51
s ~12zw2k!~12 z̄w2k!~w2k2z!~w2k2 z̄!

,

~72!

while for half-integer spins, they are equivalent to

Ms~z!52
1

2

1

2p i R dw
w~s11/2!223~12w2!2

Pk51
s11/2~12zw2k21!~w2k212z!

, ~73!

Fs~z,z̄!52
1

2

1

2p i R dw
w2~s11/2!223~12w2!2

Pk51
s11/2~12zw2k21!~12 z̄w2k21!~w2k212z!~w2k212 z̄!

. ~74!

For integer spin, however, it is more convenient to work with the complex variableu5w2; then
Eqs.~69!, ~70! and ~71!, ~72! become

Ms~z!5
1

4p i R du

u

~12u!~12u21!

Pm52s
s ~12zum!

, ~75!

Fs~z,z̄!5
1

4p i R du

u

~12u!~12u21!

Pm52s
s ~12zum!~12 z̄u2m!

, ~76!
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and

Ms~z!52
1

2~12z!

1

2p i R du
us~s11!/222~12u!2

Pk51
s ~12zuk!~uk2z!

, ~77!

Fs~z,z̄!52
1

2~12z!~12 z̄!

1

2p i R du
us~s11!22~12u!2

Pk51
s ~12zuk!~12 z̄uk!~uk2z!~uk2 z̄!

, ~78!

respectively.~Note that in the last four equations, a factor of 2 has disappeared because we
take into account thatu5w2 winds twice around the unit circle whenw winds around once.!

We now proceed to calculate the generating functionsMs and Fs for a few irreducible
representations of low spin, by applying the residue theorem~and remembering thatuzu,1!.

A. Spin 0

For the trivial representation, the integrands in Eqs.~77!, ~78! both have a double pole a
u50, and

M0~z!52
1

2~12z!

1

2p i R du
122u1u2

u2 ,

F0~z,z̄!52
1

2~12z!~12 z̄!

1

2p i R du
122u1u2

u2 ,

that is,

M0~z!5
1

12z
, ~79!

F0~z,z̄!5
1

~12z!~12 z̄!
. ~80!

This corresponds to the fact that for the one-dimensional trivial representation, every polyn
is invariant, and the ring of all~complex and real, respectively! polynomials in one variable is
generated by the linear monomial~s! z and,z, z̄, respectively.

B. Spin 1/2

For spin 1/2, the integrand in Eq.~73! has a double pole atw50, the coefficient ofw in the
Taylor expansion of the remaining factor around this pole being

d

dw

~12w2!2

~12zw!~w2z!
U

w50

5
~12zw!~w2z!2~12w2!~22w!2~12w2!2~2z~w2z!1~12zw!!

~12zw!2~w2z!2 U
w50

52
11z2

z2 ,

and a simple pole atw5z, whereas the integrand in Eq.~74! has simple poles atw50, w5z and
w5 z̄, so
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M1/2~z!52
1

2

1

2p i R dw
~12w2!2

w2~12zw!~w2z!

52
1

2 H 2
11z2

z2 1
~12z2!2

z2~12z2!J 5
1

2 H 11z2

z2 2
12z2

z2 J ,

whereas

F1/2~z,z̄!52
1

2

1

2p i R dw
~12w2!2

w~12zw!~12 z̄w!~w2z!~w2 z̄!

52
1

2 H 1

zz̄
1

~12z2!2

z~12z2!~12zz̄!~z2 z̄!
1

~12 z̄2!2

z̄~12zz̄!~12 z̄2!~ z̄2z!J
52

1

2zz̄~12zz̄!~z2 z̄!
$~12zz̄!~z2 z̄!1 z̄~12z2!2z~12 z̄2!%,

that is

M1/2~z!51, ~81!

F1/2~z,z̄!5
1

12zz̄
. ~82!

This confirms the idea that for the two-dimensional spinor representation, there are no inv
complex polynomials except 1—in accordance with the fact that thej th symmetric tensor powe
of this fundamental representation is just the irreducible representation of spinj /2 and therefore
cannot contain the trivial representation as a subrepresentation, except whenj 50—whereas the
ring of invariant real polynomials is freely generated by the quadratic formz• z̄, which is nothing
but the invariant scalar product used in the definition of the group SU~2!.

C. Spin 1

For the vector representation, the integrand in Eq.~77! has simple poles atu50 and at
u5z, whereas the integrand in Eq.~78! has simple poles atu5z andu5 z̄, so

M1~z!52
1

2~12z!

1

2p i R du
~12u!2

u~12zu!~u2z!
5

1

2~12z! H 1

z
2

~12z!2

z~12z2!J ,

whereas

F1~z,z̄!52
1

2~12z!~12 z̄!

1

2p i R du
~12u!2

~12zu!~12 z̄u!~u2z!~u2 z̄!

52
1

2~12z!~12 z̄! H ~12z!2

~12z2!~12zz̄!~z2 z̄!
1

~12 z̄!2

~12zz̄!~12 z̄2!~ z̄2z!J
52

1

2~12z!~12 z̄!~12zz̄!~z2 z̄! H 12z

11z
2

12 z̄

11 z̄J ,

that is,

M1~z!5
1

12z2 , ~83!
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F1~z,z̄!5
1

~12z2!~12zz̄!~12 z̄2!
. ~84!

This confirms the idea that for the three-dimensional vector representation, the ring of inv
~complex and real, respectively! polynomials is freely generated by the quadratic formsz 2 andz 2,
z• z̄, z̄ 2, respectively. Alternatively, representing three-dimensional vectors as anti-symmet
33)-matricesA, these generators may be written as tr(A2) and tr(A2), tr(AĀ), tr(Ā2), respec-
tively.

For higher spin, these calculations become increasingly cumbersome because, accor
Eqs.~77!, ~78! and~73!, ~74!, the integrands have poles atuzu1/p times thepth roots of unity, for
all integersp from 1 tos if s is integer and for all odd integersp from 1 to 2s if s is half-integer.
They can, however, be simplified by combining a decomposition of the integrand into p
fractions with the fact that the residue integral with a single factor in the denominator can be
evaluated, even when the numerator is a complicated polynomial in the integration va
without having to sum over roots of unity. In fact, we may use the following elementary

Proposition:Let P be a polynomial inw with coefficients that are rational functions ofz ~and
possibly of other variablesz1 ,...,zr!:

P~z1 ,...,zr ,z,w!5 (
n51

N

an~z1 ,...,zr ,z!wn21. ~85!

For any integerk>1, let M be the largest integer such thatkM<N, and define

Qk~z1 ,...,zr ,z!5 (
m51

M

akm~z1 ,...,zr ,z!zm21. ~86!

Then

R dw

2p i

P~z1 ,...,zr ,z,w!

wk2z
5Qk~z1 ,...,zr ,z!. ~87!

Proof: Let a be any kth root of z and e be any primitive kth root of unity, e.g.,
e5exp(2pi/k). Then

(
l 50

k21

xl5
xk21

x21
5)

j 51

k21

~x2e j !,

so taking the limitx→1, we obtain

)
j 51

k21

~12e j !5k,

while puttingx5e gives

(
l 50

k21

e l50.

More generally, we have

(
l 50

k21

e ln50
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if k andn are relatively prime, because in this case,ln modk will assume every value between
andk21 exactly once whenl ranges from 0 tok21. Still more generally, we have

(
l 50

k21

e ln5 H0 if n is not a multiple of k
k if n is a multiple of k ,

because denoting bym the greatest common divisor ofk andn, p5k/m andr 5n/m are relatively
prime while em will be a primitive pth root of unity, so decomposing the summation variabll
according tol 5p j1 i and using the previous equation,

(
l 50

k21

e ln5 (
l 50

k21

~em! lr 5 (
j 50

m21

(
i 50

p21

~em! ir 5m(
i 50

p21

~em! ir 5 H0 if mÞk
k if m5k.

Now we are ready to prove the proposition~for simplicity, we suppress the variablesz1 ,...,zr!:

R dw

2p i

P~z,w!

wk2z
5 R dw

2p i

P~z,w!

Pm50
k21 ~w2ema!

5 (
l 50

k21
P~z,w!

Pm50
mÞ l

k21
~w2ema!U

w5e l a

5 (
l 50

k21
P~z,e la!

Pm50
mÞ l

k21
~e la2ema!

5 (
l 50

k21
P~z,e la!

~e la!k21P j 51
k21~12e j !

5
1

kz (
l 50

k21

e laP~z,e la!

5
1

kz (
n51

N

(
l 50

k21

an~z!e lnan5
1

z (
n51

n multiple of k

N

an~z!zn/k5Qk~z!.

This proposition is combined with partial fraction decompositions of the form

)
k51

s
1

~wk2z!~12zwk!
5 (

k51

s S ak~z,w!

wk2z
1

bk~z,w!

12zwk D ,

)
k51

s
1

~wk2z!~wk2 z̄!~12zwk!~12 z̄wk!

5 (
k51

s S ak~ z̄,z,w!

wk2z
1

ak~z,z̄,w!

wk2 z̄
1

bk~ z̄,z,w!

12zwk 1
bk~z,z̄,w!

12 z̄wk D ,

for integer spins, where theak andbk are polynomials inw of degree strictly less thank whose
coefficients are rational functions ofz and ofz, z̄, respectively, and of the form

)
k51

s11/2
1

~w2k212z!~12zw2k21!
5 (

k51

s11/2 S ak~z,w!

w2k212z
1

bk~z,w!

12zw2k21D ,

)
k51

s11/2
1

~w2k212z!~w2k212 z̄!~12zw2k21!~12 z̄w2k21!

5 (
k51

s11/2 S ak~ z̄,z,w!

w2k212z
1

ak~z,z̄,w!

w2k212 z̄
1

bk~ z̄,z,w!

12zw2k21 1
bk~z,z̄,w!

12 z̄w2k21D ,

for half-integer spins, where theak and bk are polynomials inw of degree strictly less than
2k21 whose coefficients are rational functions ofz and ofz, z̄, respectively; these functions an
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coefficients can be calculated recursively, by induction on the number of factors~that is, induction
on s! and repeated application of the Euclid algorithm. Using these two techniques, we
developed, withinMAPLE, a program which allows to calculate the functionF up to spin 2 and the
functionM up to spin 4 within reasonable limits of a few minutes of computing time on a stan
386 PC, with the following results:

Spin 3/2:

M3/2~z!5
1

12z4 , ~88!

F3/2~z,z̄!5
~12z4z̄ 4!~12z6z̄ 6!

~12zz̄!~12z4!~12z3z̄!~12zz̄3!~12 z̄ 4!~12z3z̄ 3!
. ~89!

Spin 2:

M2~z!5
1

~12z2!~12z3!
, ~90!

F2~z,z̄!5
12z6z̄ 6

~12z2!~12zz̄!~12 z̄ 2!~12z3!~12z2z̄!~12zz̄2!~12 z̄ 3!~12z2z̄ 2!
. ~91!

Spin 5/2:

M5/2~z!5
12z36

~12z4!~12z8!~12z12!~12z18!
. ~92!

Spin 3:

M3~z!5
12z30

~12z2!~12z4!~12z6!~12z10!~12z15!
. ~93!

Spin 7/2:

numer~M7/2~z!!5112z814z1214z1415z1619z1816z2019z2218z2419z2616z2819z30

15z3214z3414z3612z401z48, ~94!

denom~M7/2~z!!5~12z4!~12z8!~12z12!2~12z20!.

Spin 4:

M4~z!5
11z81z91z101z18

~12z2!~12z3!~12z4!~12z5!~12z6!~12z7!
. ~95!

These formulas lead to several interesting observations.
To begin with, let us comment on the result for the five-dimensional spin 2 represent

which can be interpreted most conveniently by realizing five-dimensional vectors as tra
symmetric (333)-matricesA. Equation~90! confirms the idea that the ring of invariant comple
polynomials in this representation is freely generated by the quadratic form tr(A2) and the cubic
form tr(A3), whereas Eq.~91! states that the ring of invariant real polynomials in this repres
tation is generated by three quadratic forms of bidegree~2,0!, ~1,1! and ~0,2!, respectively, to-
gether with four cubic forms of bidegree~3,0!, ~2,1!, ~1,2! and ~0,3!, respectively, plus an extra
quartic form of bidegree~2,2!, and that these generators should satisfy a relation of bidegree~6,6!.
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Obviously, the quadratic forms are given by tr(A2), tr(AĀ) and tr(Ā2), respectively, and the cubi
forms by tr(A3), tr(A2Ā), tr(AĀ2) and tr(Ā3), respectively, but the extra generator of bidegr
~2,2! comes as a surprise, especially in view of the fact that the usual Molien function provid
hint toward its existence. To see why there should be such an extra generator, note first t
natural invariant quartic forms tr(A4) of bidegree~4,0!, tr(A3Ā) of bidegree~3,1!, tr(AĀ3) of
bidegree~1,3! and tr(Ā4) of bidegree~0,4! are not independent, but can be expressed in term
the natural invariant quadratic forms tr(A2), tr(AĀ) and tr(Ā2):

tr~A4!5 1
2 ~ tr~A2!!2,

tr~A3Ā!5 1
2 tr~A2!tr~AĀ!,

tr~AĀ3!5 1
2 tr~AĀ!tr~Ā2!,

tr~Ā4!5 1
2 ~ tr~Ā2!!2.

On the other hand, there are four natural invariant quartic forms of bidegree~2,2!, namely

tr~A2Ā2!, tr~~AĀ!2!, tr~A2!tr~Ā2!, tr~AĀ!2,

between which there exists precisely one linear relation:

4 tr~A2Ā2!12 tr~~AĀ!2!5tr~A2!tr~Ā2!22 tr~AĀ!2.

The extra generator of bidegree~2,2! can therefore be chosen to be any linear combination
tr(A2Ā2) and tr((AĀ)2) which is not proportional to the lhs of this equation. As far as the rela
of bidegree~6,6! is concerned, we have not been patient enough to determine its explicit form
seems a formidable task in view of the fact that a power series expansion of Eq.~91! shows, using
MAPLE, that the coefficient ofz6z̄6 in F2(z,z̄) is 36, so one has to find exactly one linear relati
between 37 polynomials of bidegree~6,6! in 10 variables~5 holomorphic and 5 antiholomorphic!!

A similar situation, though somewhat more complicated, occurs for the four-dimensiona
3/2 representation. Here, we encounter one invariant quadratic form of bidegree~1,1! ~the invari-
ant scalar product, as usual! and four invariant quartic forms of bidegree~4,0!, ~3,1!, ~1,3! and
~0,4!, respectively, plus an extra invariant form of bidegree~3,3! ~besides the cube of the invarian
scalar product!, as generators. There are two relations: one relation of bidegree~4,4!, expressing a
linear dependence between the four invariant polynomialsP(4,0)•P(0,4), P(3,1)•P(1,3),
P(1,1)4 and P(1,1)•P(3,3), and one relation of bidegree~6,6!, expressing a linear dependen
between the seven invariant polynomialsP(4,0)•P(0,4)•P(1,1)2,P(3,1)•P(1,3)•P(1,1)2,
P(1,1)6, P(1,1)3•P(3,3), P(4,0)•P(1,3)2, P(0,4)•P(3,1)2 and P(3,3)2, over and above the
relation obtained by multiplying the previous one byP(1,1)2. These two relations are, howeve
not independent, because the presence of an additional generator of bidegree~10,10! suggests that
their product reduces to a trivial identity.

As far as the Molien functions for representations of spin.2 are concerned, the resul
indicate that for spin 5/2 and spin 3, the generators of the ring of invariant complex polyno
are subject to a single relation, while for spin 7/2 and spin 4, the structure of the rela
themselves becomes complicated and no longer fits into the relatively simple scheme given
~11!: there are lots of additional generators satisfying complicated relations, relations betwe
relations, etc. It is not even clear what is in general the most adequate way to presen
functions, since numerator and denominator may have common factors. For example, the n
tor and the denominator of the Molien function for spin 7/2 as given in Eq.~94! have a common
factor (11z6)(11z10) which has been introduced to eliminate factors 12z6 and 12z10 from the
denominator, so as to comply with the fact that there are no invariant polynomials of degree
 30 May 2003 to 132.230.70.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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of degree 10 in this representation~as can be seen upon Taylor expansion!. At any rate, the
polynomials in the numerator of Eq.~94! and of Eq.~95! have roots of modulusÞ1 and hence
cannot possibly be reduced to an expression of the form 12zk or to a product of such expression
~More precisely, a numerical calculation, usingMAPLE, shows that the quotient of the numerator
Eq. ~94! by (11z6)(11z10), considered as a polynomial of degree 16 inz2, has 8 roots of
modulus 1, 2 roots of modulus 1.46292, 2 roots of modulus 1.36453, 2 roots of modulus 0.
and 2 roots of modulus 0.68356, while the numerator of Eq.~95! has 14 roots of modulus 1, 2
roots of modulus 1.10697 and 2 roots of modulus 0.90377.!

In summary, everything indicates that with increasing spin, the situation becomes extr
complex. We shall therefore not pursue this matter any further and instead pass to other
and representations.

VII. THE CODON REPRESENTATION AND ITS REDUCTIONS

Apart from the circle group, U~1!, and the ordinary rotation group~or rather its universal
covering group!, SU~2!, the compact simple Lie groups appearing in the symmetry brea
scheme of Hornos and Hornos1 for describing the degeneracy of the genetic code involve
symplectic groups Sp~4! and Sp~6!. With these applications in mind, we begin by collecting a fe
pertinent facts about the symplectic groups Sp(2r ) and some of their irreducible representation
especially for the casesr 52 and r 53. ~Note that we shall be dealing exclusively with th
compact real form Sp(2r ) of the complex symplectic group Sp(2r ,C), which can be defined as
group of (r 3r )-matrices with quaternionic entries, not with the normal real form Sp(2r ,R) that
appears, e.g., in Hamiltonian mechanics.

The symplectic group Sp(2r ) is a compact, connected, simply connected Lie group w
centerZ2 , and its Lie algebrasp(2r ) is the compact real form of the complex simple Lie algeb
sp(2r ,C); in the Cartan classification this isCr , of rankr and dimensionr (2r 11). To construct
its root system and the weight systems of various other irreducible representations besid
adjoint, we identify the spacest and i t* used before~cf. Sec. 4! with Rr by introducing bases
$H1 ,...,Hr% of t and$e1 ,...,er% of i t* , dual to each other in the sense that

ej~Hk!5 id jk , ~96!

and orthonormal except for an overall normalization factor of&; more precisely, we assume th

~ej ,ek!5 1
2 d jk , ~H j ,Hk!52d jk . ~97!

Then the root systemD of sp(2r ), when written as the disjoint union

D5D løDs ~98!

of the setD l of long roots~of length&! and the setDs of short roots~of length 1!, is given by

D l5$62ej /1< j <r %, ~99!

Ds5$6ej6ek/1< j ,k<r %. ~100!

~All signs are to be read independently.! We choose an ordering in this root system such that
set of positive roots becomes

D15D l
1øDs

1 , ~101!

where

D l
15$2ej /1< j <r %, ~102!
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Ds
15$ej6ek/1< j ,k<r %, ~103!

leading to the following basis$a1 ,...,a r% of simple roots:

a15e12e2, ..., a r 215er 212er , a r52er . ~104!

The highest root is

d52e1 . ~105!

Moreover, the vectorr defined as half the sum of the positive roots, or equivalently, as the su
the fundamental weights, which plays an important role in representation theory, is given b

r5re11~r 21!e21...12er 211er . ~106!

Passing to irreducible representations, we first compute the fundamental weights, defined
condition ~45!, which in the present case leads to

l15e1 , l25e11e2 , ..., l r 215e11...1er 21 , l r5e11...1er . ~107!

This implies that$e1 ,...,er% is a basis of the weight lattice and$2pH1 ,...,2pHr% is a basis of the
coroot lattice~which coincides with the unit lattice for Sp(2r ) since Sp(2r ) is simply connected!;
these are much more convenient than the basis$l1 ,...,l r% of fundamental weights and the bas
$2pă1 ,...,2pă r% formed by the simple coroots, respectively, because they are orthonorma~ex-
cept for the aforementioned overall normalization factor of&!.

With these generalities out of the way, we can proceed to write down the weight system
as a consequence, the generating functionsMp andFp for the irreducible representations of Sp~4!
and Sp~6! that appear in Ref. 1. For completeness, we also list their dimension and h
recalling that all irreducible representations of Sp(2r ) are self-conjugate and that the height ht~L!
of a self-conjugate representation of highest weightL allows one to decide whether the represe
tation is real or pseudo-real: it is real iff ht~L! is even and pseudo-real iff ht~L! is odd ~see Ref.
13, pp. 31–33!. Finally, we list the coefficientscp,q in the Taylor expansion ofFp , up to fourth
order, which have been calculated by differentiating under the integral sign and then com
the residues, usingMAPLE. The results obtained forc0,0, c1,0, c0,1 andc1,1 are not listed becaus
they come out to be what they must be for any irreducible representation:

c0,051, c1,0505c0,1, c1,151. ~108!

The result forc0,0 reflects the correct normalization: there is~up to a constant multiple! always
precisely one invariant polynomial of bidegree~0,0!, namely the constant 1. The results forc1,0

and forc0,1 reflect the fact that an irreducible representation does not admit any invariant ve
while the result forc1,1 corresponds to the theorem that in an irreducible representation
invariant scalar product is unique~up to a constant multiple!, due to Schur’s lemma.

A. Sp „4…

For an irreducible representationpL of highest weightL5a1l11a2l2 , we have

dim~pL!5~11a1!~11a2!S 11
a11a2

2 D S 11
a212a3

3 D , ~109!

ht~pL!53a114a2 . ~110!

The Weyl group of Sp~4! is Z23Z23S2 , generated by the reflectionse1↔2e1 , e2↔2e2 and the
permutation ofe1 with e2 ; it has order 8. Therefore,
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ML~z!5
1

8 R dw1

2p i R dw2

2p i

w1
25w2

25f N~w1 ,w2!2

f L,D~z,w1 ,w2!
, ~111!

FL~z,z̄!5
1

8 R dw1

2p i R dw2

2p i

w1
25w2

25f N~w1 ,w2!2

f L,D~z,w1 ,w2! f L,D~ z̄,w1 ,w2!
, ~112!

with

f N~w1 ,w2!5~12w1
2!~12w2

2!~12w1w2!~w12w2!. ~113!

~The definition off L,D follows below.!

1. First fundamental representation (1,0)

The highest weight isL5l15e1 , the dimension is 4, the height is 3~so the representation i
pseudo-real!, the complete weight system~cf. Figure 4! is

F~1,0!5$6e1 ,6e2% ~114!

~all weights have multiplicity 1; the signs are to be read independently!, so

f ~1,0!,D~x,w1 ,w2!5~12xw1!~12xw1
21!~12xw2!~12xw2

21!. ~115!

The non-trivial coefficientscp,q up to fourth order are

c2,0505c0,2,

c3,0505c0,3, c2,1505c1,2, ~116!

c4,0505c0,4, c3,1505c1,3, c2,251.

Without much difficulty, the generating functionF can be computed in closed form; the result

F ~1,0!~z,z̄!5
1

12zz̄
. ~117!

2. Second fundamental representation (0,1)

The highest weight isL5l25e11e2 , the dimension is 5, the height is 4~so the represen
tation is real!, the complete weight system~cf. Figure 4! is

F~0,1!5$0,6e16e2% ~118!

~all weights have multiplicity 1; the signs are to be read independently!, so

f ~0,1!,D~x,w1 ,w2!5~12x!~12xw1w2!~12xw1
21w2!~12xw1w2

21!~12xw1
21w2

21!.
~119!

The non-trivial coefficientscp,q up to fourth order are

c2,0515c0,2,

c3,0505c0,3, c2,1505c1,2, ~120!
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c4,0515c0,4, c3,1515c1,3, c2,252.

Again, the generating functionF can be computed in closed form; the result is

F ~0,1!~z,z̄!5
1

~12z2!~12zz̄!~12 z̄2!
. ~121!

3. Adjoint representation (2,0)

The highest weight isL52l152e1 , the dimension is 10, the height is 6~so the representa
tion is real!, the complete weight system~cf. Figure 4! is the union of$0% with the root systemD,

F~2,0!5$0%ø$62e1 ,62e2 ,6e16e2% ~122!

~0 has multiplicity 2 and the roots have multiplicity 1; the signs are to be read independentl!, so

f ~2,0!,D~x,w1 ,w2!5~12x!2~12xw1
2!~12xw1

22!~12xw2
2!~12xw2

22!

3~12xw1w2!~12xw1
21w2!~12xw1w2

21!~12xw1
21w2

21!. ~123!

The non-trivial coefficientscp,q up to fourth order are

c2,0515c0,2,

c3,0505c0,3, c2,1505c1,2, ~124!

c4,0525c0,4, c3,1525c1,3, c2,254.

With considerable effort, the generating functionF can be computed in closed form; the result

numer~F ~2,0!~z,z̄!!511z2z̄ 21z3z̄ 31z4z̄ 31z3z̄ 41z4z̄ 41z6z̄ 31z5z̄ 4

1z4z̄ 51z3z̄ 61z5z̄ 51z6z̄ 51z5z̄ 61z6z̄ 61z7z̄ 71z9z̄ 9,
~125!

denom~F ~2,0!~z,z̄!!5~12z2!~12zz̄!~12 z̄ 2!~12z4!~12z3z̄ !~12z2z̄ 2!

3~12zz̄3!~12 z̄ 4!~12z4z̄ 2!~12z2z̄ 4!.

4. Reduced codon representation (1,1)

The highest weight isL5l11l252e11e2 , the dimension is 16, the height is 7~so the
representation is pseudo-real!, the complete weight system~cf. Figure 4! is the union

F~1,1!5F~1,1!
~1! øF~1,1!

~2! , ~126!

where

F~1,1!
~1! 5$62e16e2 ,62e26e1% ~127!

~these weights have multiplicity 1; the signs are to be read independently! and

F~1,1!
~2! 5$6e1 ,6e2% ~128!

~these weights have multiplicity 2; the signs are to be read independently!, so
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f ~1,1!,D~x,w1 ,w2!5~12xw1!2~12xw1
21!2~12xw2!2~12xw2

21!2

3~12xw1
2w2!~12xw1

22w2!~12xw1
2w2

21!~12xw1
22w2

21!

3~12xw1w2
2!~12xw1

21w2
2!~12xw1w2

22!~12xw1
21w2

22!. ~129!

The non-trivial coefficientscp,q up to fourth order are

c2,0505c0,2,

c3,0505c0,3, c2,1505c1,2, ~130!

c4,0515c0,4, c3,1525c1,3, c2,256.

FIG. 4. Weight diagrams for some irreducible representations of Sp~4!.
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B. Sp „6…

For an irreducible representationpL of highest weightL5a1l11a2l21a3l3 , we have

dim~pL!5~11a1!~11a2!~11a3!S 11
a11a2

2 D S 11
a21a3

2 D S 11
a212a3

3 D
3S 11

a11a21a3

3 D S 11
a11a212a3

4 D S 11
a112a212a3

5 D , ~131!

ht~pL!55a118a219a3 . ~132!

The Weyl group of Sp~6! is Z23Z23Z23S3 , generated by the reflectionsei↔2ei and the
permutations of theei ( i 51,2,3); it has order 48. Therefore,

ML~z!5
1

48 R dw1

2p i R dw2

2p i R dw3

2p i

w1
27w2

27w3
27f N~w1 ,w2 ,w3!2

f L,D~z,w1 ,w2 ,w3!
, ~133!

FL~z,z̄!5
1

48 R dw1

2p i R dw2

2p i R dw3

2p i

w1
27w2

27w3
27f N~w1 ,w2 ,w3!2

f L,D~z,w1 ,w2 ,w3! f L,D~ z̄,w1 ,w2 ,w3!
, ~134!

with

f N~w1 ,w2 ,w3!52~12w1
2!~12w2

2!~12w3
2!~12w1w2!~12w1w3!

3~12w2w3!~w12w2!~w12w3!~w22w3!. ~135!

~The definition off L,D follows below.!

1. First fundamental representation (1,0,0)

The highest weight isL5l15e1 , the dimension is 6, the height is 5~so the representation i
pseudo-real!, the complete weight system is

F~1,0,0!5$6e1 ,6e2 ,6e3% ~136!

~all weights have multiplicity 1; the signs are to be read independently!, so

f ~1,0,0!,D~x,w1 ,w2 ,w3!5~12xw1!~12xw1
21!~12xw2!~12xw2

21!~12xw3!~12xw3
21!.

~137!

The non-trivial coefficientscp,q up to fourth order are

c2,0505c0,2,

c3,0505c0,3, c2,1505c1,2,

c4,0505c0,4, c3,1505c1,3, c2,251. ~138!

2. Second fundamental representation (0,1,0)

The highest weight isL5l25e11e2 , the dimension is 14, the height is 8~so the represen
tation is real!, the complete weight system is

F~0,1,0!5$0%ø$6e16e2 ,6e16e3 ,6e26e3% ~139!
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~0 has multiplicity 2 and all other weights have multiplicity 1; the signs are to be read inde
dently!, so

f ~0,1,0!,D~x,w1 ,w2 ,w3!5~12x!2~12xw1w2!~12xw1
21w2!~12xw1w2

21!~12xw1
21w2

21!

3~12xw1w3!~12xw1
21w3!~12xw1w3

21!~12xw1
21w3

21!

3~12xw2w3!~12xw2
21w3!~12xw2w3

21!~12xw2
21w3

21!. ~140!

The non-trivial coefficientscp,q up to fourth order are

c2,0515c0,2,

c3,0515c0,3, c2,1515c1,2, ~141!

c4,0515c0,4, c3,1515c1,3, c2,253.

3. Third fundamental representation (0,0,1)

The highest weight isL5l35e11e21e3 , the dimension is 14, the height is 9~so the
representation is pseudo-real!, the complete weight system is

F~0,0,1!5$6e1 ,6e2 ,6e3 ,6e16e26e3% ~142!

~all weights have multiplicity 1; the signs are to be read independently!, so

f ~0,0,1!,D~x,w1 ,w2 ,w3!5~12xw1!~12xw1
21!~12xw2!~12xw2

21!~12xw3!~12xw3
21!

3~12xw1w2w3!~12xw1
21w2w3!~12xw1w2

21w3!

3~12xw1
21w2

21w3!~12xw1w2w3
21!~12xw1

21w2
21w3

21!. ~143!

The non-trivial coefficientscp,q up to fourth order are

c2,0505c0,2,

c3,0505c0,3, c2,1505c1,2, ~144!

c4,0515c0,4, c3,1515c1,3, c2,251.

4. Codon representation (1,1,0)

The highest weight isL5l11l252e11e2 , the dimension is 64, the height is 13~so the
representation is pseudo-real!, the complete weight system is the union

F~1,1,0!5F~1,1,0!
~1! øF~1,1,0!

~2! øF~1,1,0!
~4! , ~145!

where
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F~1,1,0!
~1! 5$62e16e2 ,62e26e1 ,62e16e3 ,62e36e1 ,62e26e3 ,62e36e2% ~146!

~these weights have multiplicity 1; the signs are to be read independently!,

F~1,1,0!
~2! 5$6e16e26e3% ~147!

~these weights have multiplicity 2; the signs are to be read independently!, and

F~1,1,0!
~4! 5$6e1 ,6e2 ,6e3% ~148!

~these weights have multiplicity 4; the signs are to be read independently!, so

f ~1,1,0!,D~x,w1 ,w2 ,w3!5~12xw1!4~12xw1
21!4~12xw2!4~12xw2

21!4~12xw3!4~12xw3
21!4

3~12xw1w2w3!2~12xw1
21w2w3!2~12xw1w2

21w3!2

3~12xw1
21w2

21w3!2~12xw1w2w3
21!2~12xw1

21w2
21w3

21!2

3~12xw1
2w2!~12xw1

22w2!~12xw1
2w2

21!~12xw1
22w2

21!

3~12xw1w2
2!~12xw1

21w2
2!~12xw1w2

22!~12xw1
21w2

22!

3~12xw1
2w3!~12xw1

22w3!~12xw1
2w3

21!~12xw1
22w3

21!

3~12xw1w3
2!~12xw1

21w3
2!~12xw1w3

22!~12xw1
21w3

22!

3~12xw2
2w3!~12xw2

22w3!~12xw2
2w3

21!~12xw2
22w3

21!

3~12xw2w3
2!~12xw2

21w3
2!~12xw2w3

22!~12xw2
21w3

22!. ~149!

The non-trivial coefficientscp,q up to fourth order are

c2,0505c0,2,

c3,0505c0,3, c2,1505c1,2,

c4,0535c0,4, c3,1565c1,3, c2,2515. ~150!

ACKNOWLEDGMENTS

The author would like to thank J. E. M. Hornos and Y. M. M. Hornos for introducing him
their work on the origin of the genetic code, which provided the motivation for the pre
investigation, and for generously sharing their insights into this fascinating subject. Thank
also due to Renato Zornoff Ta´boas and Viktor Bojarczuk for discussions, and last but not leas
all the people who developed the software packageMAPLE, without which many of the calcula
tions reported here would never have been performed. Finally, the financial support by
~Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico! and by FAPESP~Fundac¸ão de
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