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The Molien function associated with a finite-dimensional representation of a com-
pact Lie group is a useful tool in representation theory because it acts as a gener-
ating function for counting the number of invariant polynomials on the representa-
tion space. The main purpose of this paper is to introduce a more gdaeadl
apparently neywgenerating function which, in the same sense, counts not only the
number of invariant real polynomials in a real representation or the number of
invariant complex polynomials in a complex representation, as a function of their
degree, but encodes the number of invariant real polynomials in a complex repre-
sentation, as a function of their bidegréhbe first and second component of this
bidegree being the number of variables in which the polynomial is holomorphic
and antiholomorphic, respectivelyThis is obviously an additional and non-trivial
piece of information for representations which are truly compliex, not self-
conjugate or are pseudo-real, but it provides additional insight even for real rep-
resentations. In addition, we collect a number of general formulas for these func-
tions and for their coefficients and calculate them in various irreducible
representations of various classical groups, using the software package.

© 1998 American Institute of Physids$0022-24888)02901-9

[. INTRODUCTION

Determining the ring of invariant polynomials in arbitrary representations is perhaps one of
the most important open problems in group theory. Trying to solve this problem in full
generality—for example, in the framework of arbitrary finite-dimensional representations of com-
pact Lie groups(including finite groups—is presently considered to be a hopeless enterprise.
What is, however, a tractable problem is to determine at least the numbiereaily independent
invariant polynomials, or more precisely, the dimension of the space of invariant homogeneous
polynomials of any given degree, and this is often an extremely useful piece of information when
it comes to calculating invariant polynomials for a concrete representation of a concrete group.

The present investigation originated from the recent work of J. E. M. Hornos and Y. M. M.
Hornog on the origin of the genetic code that has found great repercussion in the international
scientific literaturé® According to their proposal, the degeneracy of the universal genetic code for
protein synthesis is notas many molecular biologists used to and some continue to bglieve
purely accidental, but can be understood as resulting from an evolutionary process which involves
symmetry breaking: evolution from a highly symmetric initial state to a final state in which this
symmetry is strongly broken. This evolution must have occurred, in several consecutive steps, far
back in earth’s early history, and so is not accessible to direct observation. For the time being, the
scheme proposed by Hornos and Hornos is purely group theoretical, its main virtue being that—
within the limits of the originally proposed scheme—the initial symmetry and all intermediate
steps in the sequence can be uniquely reconstructed from presently availab{&degarecently,
the scope of the scheme has been extended and, as a result, a second possibility hasemerged.

The great challenge for the future is to identify a dynamical system modelling the underlying
evolutionary process, so that the sequence of symmetry breakings found can be associated with a
sequence ofgeneri¢ bifurcations. In fact, it is well known that in dynamical systems with
symmetry and with external parameters, bifurcations that occur under appropriate variations of the
parameters almost unavoidably lead to symmetry breakinghis general framework, of course,
the variety of possibilities is enormous, so that for the time being, we have decided to perform our
search in the more restricted class of Hamiltonian dynamical systems. But the most natural can-
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didates for a Hamiltonian function capable of reproducing the desired symmetry breaking pattern
are just the polynomial functions on the representation space which are invariant under the full
symmetry group and which, if possible, should be of degrde (This would correspond to some
kind of anharmonic oscillator type modeln the case at hand, the full symmetry group is the rank
3 symplectic group Sp) and the representation is the 64-dimensional irreducible representation
of highest weight(1,1,0—a complex representation which is self-conjugate but is pseudo-real,
rather than real, and which has come to be called the codon representatiof®of Sp

Before attempting to explicitly construct all invariant polynomials up to a given degree, in any
given representation of any group, it is obviously of great help to know precisely how many such
polynomials there are. To see how useful this information can be and how it may help to avoid
unpleasant surprises, consider as an example the problem of finding the invariant polynomials of
degree 4 in, say, the spin 3 representation of the ordinary rotation gibuig.example has been
chosen because of certain similarities with the codon represenjdiiiven the fact that vectors in
this representation space can be realized as totally symmetric tensdreank 3 over three-
dimensional Euclidean space which are traceless in any pair of indices, it is easy to construct
invariant polynomials of degree 4 by considering all possibilities of contracting indices in a
product of four such tensors, using the invariant scalar product. Symmetry implies that the only
relevant information is how many indices of any given tensor are contracted with how many
indices of any other given tens@not which with which, while tracelessness forbids contraction
of two indices that appear within the same tensor. Therefore, there are three different possibilities
to contract the 12 indice@ach one ranging from 1 to & the product

t t t t

151Ky il oko i3l 3k 41 4K

which come to mind.

(1) Every tensor has only one partner for the contraction. Contract, for examphath i,,j,
with j,,k; with k, andiz with is,j3 with j,, ks with ky:
3
Pa=Po(V% Pot)= 3ty
(2) Every tensor has two partners for the contraction. Contract, for exampteth i,,j; with
J2.Ky with i3,ks with i,,j3 with j4,ks with ky:
3
PaAt)= > tijitiji tkmebimn -
i,j,kI,mn=1
(3) Every tensor has three partners for the contraction. Contract, for examp¥éh i,,j, with
i3,kq with i4,j, with j3,k, with j,,ks with k,:
3
Padt)= > ) tijktimtjintkmn-

i,j,k,I,mn=

The first possibility corresponds to the square of the quadratic polynomial stemming from the
invariant scalar product in this representation, while the other two are genuinely quartic and
apparently independent. Therefore, it comes as a surprise that the number of invariant polynomials
of degree 4 in this representation, as computed by the techniques to be dis@rebddrther
developedlin the present paper, turns out to be 2, and not 3. This means that the three polynomials
obtained above must be linearly dependent! And indeed, writing out these polynomials as explicit
functions of the seven variablég;,,t125,t113,t133,t223,1233,1123, We find, usingvAPLE, the fol-

lowing linear relation:

P41=2(P421+Pas3).

This simple example shows that independent information on the correct number of invariant
polynomials is crucial if one wants to avoid naive overcounting. It is equally crucial if one wants
to avoid undercounting, which may occur as a result of overlooking non-obvious, “hidden”
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invariants.(One fairly well-known example that comes to mind is the Pfaffian—an invariant in the
adjoint representation of the special orthogonal groups in even dimensions which is hard to detect
by tensorial methods.

The basic strategy for determining the number of invariant polynomials of any given degree is
to encode all of them into a generating function, which is commonly called the Molien function
and which can often be calculated in closed form, at least in sufficiently simple situations. But
even when this is not possible in practice, the existing formulas for the generating function can be
exploited to compute at least the first few coefficients.

Unfortunately, the standard Molien functivi , associated with a given finite-dimensional
representationr of a given compact Lie grou@ is inadequate for handling the problem at hand
in its full generality, due to a discrepancy between ground fields. On the one hand, the represen-
tation spaces encountered in group theory are always assumed to be c(implguarantees that
one can simultaneously diagonalize maximal commuting sets of linear transformtienssual
convention for handling real representations is then to view them as complex representations
possessing an invariant antilinear involution. On the other hand, we are typically interested in
finding all invariant real polynomials and not just the complex ones. The standard Molien func-
tion, however, does not allow one to identify the extent to which a real polynomial on the space
of a complex representation is holomorphic or antiholomorphic in its variables. What is worse, it
does not detect invariant polynomials of mixed type. The obvious prototype of such a polynomial
is the invariant scalar product—a quadratic polynomial on the representation space, holomorphic
in one variable and antiholomorphic in the other—which exists in any finite-dimensional repre-
sentation of any compact Lie group and, in addition, is the only polynomial of its kipdo a
constant multiplg in case the representation is irreducible. The fact that the standard Molien
function captures only purely holomorphior purely antiholomorphicinvariants, but fails to
detect mixed invariants, including the invariant scalar product, can already be illustrated by look-
ing at the simplest of all representations: the fundamental spin 1/2 representation of the ordinary
rotation group(or rather its universal covering group 8)).

The natural way out of this dilemma, proposed and elaborated in the present paper, is to invent
a new generating functiofr ., which generalizes the usual Molien function and is specifically
designed to capture all real polynomials in complex representations, discriminating between ho-
lomorphic ones, purely antiholomorphic ones and mixed ones, according to their bidegree.

As far as the specific case of the codon representation @) $pconcerned, the techniques
developed in the present work allow one to conclude tftatthere are no invariant quadratic
polynomials of bidegre€,0) (purely holomorphig or of bidegre€0,2) (purely antiholomorphig
while there is one invariant quadratic polynomial of bidegfed) (the scalar produgt(b) there
are no invariant cubic polynomials of any kind a@l the numbers of invariant quartic polyno-
mials are as follows: 3 of bidegred,0) (purely holomorphig, 3 of bidegreg0,3) (purely anti-
holomorphig, 6 of bidegree(3,1), 6 of bidegree(1,3) and finally 15 of bidegreé2,2). Since a
Hamiltonian function must be real, we may therefore conclude that the general candidate for a
Hamiltonian capable of describing the evolution of the genetic code through an anharmonic
oscillator type model must be a linear combination of the invariant scalar product, its square and
another 14 genuinely quartic invariant polynomials of bided&a). What remains to be deter-
mined are the explicit form of these polynomials and the conditions to be imposed on their
coefficients in order to guarantee positivity of the enefdye remaining final freedom of modi-
fying the Hamiltonian by an additive constant may then be used to normalize its minimum value
to 0)

The paper is organized as follows. In Sec. I, we briefly review the definition of the Molien
function, whereas in Sec. Ill we define our new generating function for counting invariant real
polynomials in complex representations. Both sections contain comments on the relations between
the analytic form of the generating functions and the structure ofgraeled or bigradedalgebra
of invariant polynomials, in terms of generators and relations. In Sec. IV, we derive integral
formulas for both generating functions, with emphasis on their explicit form for unitary represen-
tations of compact connected Lie groups, in terms of roots and weights. In Sec. V, we present
purely combinatorial formulas for the coefficients, involving the multiplicities of the weights and
a set of integer coefficients called “decomposition indices” associated with the vectors in the root
lattice. In Sec. VI, we discuss as an example the results we have obtained for the simplest among
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all compact connected simple Lie groups:(8)J Finally, in Sec. VII, we present calculations for
various irreducible representations of the rank 2 symplectic gro) 8pd the rank 3 symplectic
group Sy6), including the fundamental representations and the other irreducible representations
which appear in the symmetry breaking scheme of Hornos and Hbrnos.

II. THE MOLIEN FUNCTION: DEFINITION AND ELEMENTARY PROPERTIES

Given an arbitrary finite-dimensional representatiormof a compact Lie groufgs on some
n-dimensional vector spac¥, and denoting byc,(7r) the number of(linearly independent
G-invariant polynomials of degrdeon V, one defines the corresponding Molien functidr). by
the power series

[

M.(2)= 2, c(m)Z~. (1)

k=0

Note that identifying homogeneous polynomials of dedeamn V with totally symmetric tensors
of degreek overV*, we easily obtain the estimate

O=cy(m)=

n+k—1 _(n+k—1
k n—-1

so ¢ () grows at most polynomially ak— (the highest power being"™1); therefore, the
above power series is absolutely convergent on the open unit disk in the complare and
henceM ., is a complex analytic function there—a function from which we may obviously recover
all the numberg, () as Taylor coefficients:

1 dk
Ck(W):E ax M .(2)

)

z=0

Note also that this definition can be used both in the real and in the complex setting, and more
generally, for representations of G by I-linear transformations on finite-dimensional vector
spacesV overF, wherel is an arbitrary field of characteristic O.

Some initial information on the structure of the Molien function can be gained by describing
the graded ring of5-invariant polynomials oV in terms of generators and relations. In fact, the
Hilbert—Weyl theorem guarantees that this graded ring is finitely generated, i.e., that there exists
a finite set{P,...,Py} of homogeneou&-invariant polynomials oV such that everyhomoge-
neous G-invariant polynomialP onV can be written in the form

P(v)=p(P1(v),....Pn(v)). )

wherep is some(homogeneoyspolynomial onk™N, provided we define homogeneity of polyno-
mials onkN as referring to a modified notion of degree, namely,

deg P, ,..m, =M1 deg P;+...+my deg Py, 4

Prm, ... mN(ul,...,uN)zuTl...umN. (5)
(See, for example, Ref. 5, p. 46 for a statement and pp. 54-58 for a proof. However, | prefer to
avoid the term “Hilbert basis” used in Ref. 5, which | consider to be potentially misleading and
therefore unfortunatg Note that the polynomiap is in general not uniquely fixed by the poly-
nomial P because there may be relations, i.e., polynonfRatn N satisfying
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R(P.(v),...,Pn(v))=0. (6)

Note also that the relatiorR form a graded ring which is nothing but the kernel of the degree-
preserving homomorphism, defined ), from the graded ring of polynomiafs on N onto the
graded ring ofG-invariant polynomiald? on V. Being a graded ideal in a polynomial ring, this
kernel is finitely generated, i.e., there exists a finite{&at,...,Ry} of homogeneous polynomials
on FN such that everfhomogeneoyspolynomial R on N satisfying(6) can be written in the
form

R(ul,...,UN):r(Rl(ul,...,UN),...,RM(Ul,...,Un)), (7)

wherer is some(homogeneouyspolynomial onf™, provided we define homogeneity of polyno-
mials on™ as referring to a modified notion of degree, namely,

nM=n1 deg R1++I’1M deg RM’ (8)

------

for the monomialrnl Ny given by

n n
Mg,y (U1s--om) =0t o (9)

(See, for example, Ref. 5, Corollary 6.2, p. 5 general, neither the séP,,...,P\} of genera-
tors nor the sefR,,...,Ry} of relations is unique, but we can at least fix the numlNeof
generators and the numblker of relations by requiring bottN andM to be minimal.

The simplest case is, of course, whdr=0, i.e., there are no relations. Counting the number
ck(m) of G-invariant polynomials of degrele on V gives

N
ck(w)zcard[(ml,...,m,\,)el\g/ > m; deg pjzk].
=1

But this is just the coefficient & in the power series expansion of the function

1

M (177 (10

M.(2)=

Conversely, it is clear that if the Molien function for the representatiaf G onV has this form,
then there can be no relations, because otherwise the num@eimefriant polynomial functions
on V of degreek would have to be strictly less than the coefficientzbfin the power series
expansion of Eq(10), at least for somé. Thus the Molien function detects the presence or
absence of relations among the generators of the ring of invariant polynomials.

For later use, it is also of some interest to write down the corresponding result for the
next-simplest cas& =1, i.e., when there is a single relatiét=r(P4,...,P\). Due to the fact
that polynomials of the formp(P4,...,P\) r(P4,...,Py) will vanish identically, counting the
numberc,(7) of G-invariant polynomials of degrele on V now gives

N
ck(w)=card|'(m1,...,mN)el\"g'/ > m; deg pj:k]
j=1

N
—card[(mo;ml,...,mN) eNQ*l/ >, mem; deg R deg szk].
j=1
But this is just the coefficient a* in the power series expansion of the function
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1— Zdeg R

13

Again, itis clear that if the Molien function for the representationf G onV has this form, then
there can be no other relations, because otherwise the numBeinefriant polynomial functions
on V of degreek would have to be strictly less than the coefficientzbfin the power series
expansion of Eq(11), at least for somé.

Ill. ANEW GENERATING FUNCTION

As remarked previously, the above definition of the Molien function applies equally well in
the real and in the complex setting. Often, however, it is of interest to also determine the number
of (linearly independentG-invariant real polynomials in a complex representation, the typical
example for a quadratic polynomial of this kind being the square of the norm in a unitary repre-
sentation. Therefore, it is useful to introduce a generating function for counting the number of
such invariants as well. The main new feature that must be taken into account is the fact that real
polynomials over a complex vector space carry, over and above their usual degree, a bidegree that
counts the number of variables in which they are holomorphic and antiholomorphic, respectively.
This will lead to a generating function which depends on two variables, rather than one.

Indeed, given an arbitrary representatiof a compact Lie grou® on somen-dimensional
complex vector spac¥, let us first of all define/ to be then-dimensional complex vector space
which is “V with the opposite_complex structure” and =V, to be the Z-dimensional real
vector space obtained from or V by “forgetting the complex structure”. In other word¥, V
andV, are identical as sets and as real vector spaces, while the complex structitesidronV
are in this picture encoded into real linear transformatidng —V, andJ:V,—V,, which are
nothing but multiplication byi in V and inV, respectively, sa)J?=—1 and J’°=—1; then
“opposite” means thal= —J. (The idea behind this construction is that it enables us to identify,
for any complex vector spad#/, complex antilinear maps froiv to W with complex linear maps
from V to W.) Next, recall that homogeneous real polynomials of degree V can be identified
with totally symmetricR-multilinear mappings fronV, X...XV, (k copies to R—or to C if we
allow such polynomials to be complex-valued, as will be assumed throughout the following. We
shall say that such a polynomial is homogeneous of bidegres ( with p+g=Kk, if under this
identification it corresponds to a totally symmetfiemultilinear mapping fromvVXx...XVXV
X...XV to C, with p copies ofV andq copies ofV. For such a polynomid, we call the number
p its holomorphic degree, denoted by gBg and the numbeq its antiholomorphic degree,
denoted by degP. It is easy to show that any homogeneous real polynomial of dégreay be
uniguely decomposed into a sum of homogeneous polynomials of bidegygg @s follows:

k
Pi= 2 Pug-
p,q=0
p+g=k
Namely, givenP,, we may set
1
Ppa(v1.-- 0K = 5% > (miate e leeat et Pyl LTy,

1, =0

which defines a real multilinear function, complex linear and symmetric in thepfivariables and
complex antilinear and symmetric in the lasvariables; then the above decomposition holds with

Pp.q Obtained fromP, , by symmetrization in alk arguments,

1 _
Pp,q(vl!"'rvk): k_l ”251( Pp’q(v(r(l) 1"'!Ulr(k))'
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This decomposition can be stated in more concrete terms by introducing an arbitrary basis
{vy,...,vn} of V (overC), together with the induced badis, ,iv4,...,v,,iv,} of V, (overR), and
expanding vectors in the representation space into components:

v=2, ;=2 (§+in)v;.
=1 j=1

Then any polynomiaP onV, can be written either as a linear combination of monomials which
are products of powers of the real coordinaggand »; or as a linear combination of monomials
which are products of powers of the complex coordindteand their complex conjugates .
Using the latter representation and employing multi-index notation, we have

P(”)ZEﬁ CHNCICH

SO

P(v)=2, P(v)=2, Ppqv),
k p.q

with

Prv)= 2 aupl"E Pp,q(v)j%%g 2,500,

(All sums are supposed to be finite.

The crucial point is now that sindgg acts onV by complex linear transformations(g), these
decompositions preserng-invariance, that is, iP is G-invariant, so are not only the, but also
the P, 4. Therefore, denoting by, () the number oflinearly independentG-invariant poly-
nomials of bidegreef,q), we define the following generating functidn, of two variables,
which for later convenience we shall assume to be mutually complex conjugate:

e}

F.(z2)= Zo Cp.o( )220, (12)
o

As before, this power series is absolutely convergent on the open unit disk in the canmbéare
and hencd- , is a real analytic function there—a function from which we may obviously recover
all the numbers, () as Taylor coefficients:

1 1 9P 49
Cpq(m)= ol ql 92 30 F(2,2)],-07=0- (13

As a first elementary property of this new generating function, note that it behaves naturally
under complex conjugation. Namely, introducing an arbitrary conjugadiacon V, that is, an
involutive antilinear transformation:V—V to define the complex conjugate representatioaf
7 according to

m(g)=om(g)o for geG, (14)

we note that, 4(m) =cq () and hence

Frz.2)=F.(2,2). (15)
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Obviously, this relation does not depend on the choice of the conjugatimtause the represen-
tations7, and, defined by means of two different conjugations and o, are equivalentwith
azoil as the intertwining operatprNote also thaF .. contains the Molien functions! ., andM—
as special cases:

M~(2)=F(2,0), Mz(z)=F.(02). (16)

As in the case of the ordinary Molien functidvi,, the generating functiok , allows one to
read off important information about the generators of the bigraded rinG-ofvariant real
polynomials onV and about the relations that exist between them. Indeed, observe first of all that
the set{P4,...,Py} of generators and the sfR,,...,Ry} of relations may without loss of gen-
erality (and at most at the expense of increasing the “minimum” nunibeff generators and the
“ minimum” number M of relations requiredbe assumed to consist of polynomials which are
homogeneous in bidegree. Then it is not difficult to see that in the simplestMas@ (no
relations,

N

N
cp,q(w)zcarf{(ml,...,mN)eNQ/ ,2’1 m; deg,P;=p, ,—2 m; deg,Pj=q.

=1

and hence

1

Fa(z.2)= I (1—Z%aPizeaP)) 1n

while in the next-simplest cadd =1 (a single relatioj

N N
cp,q(w)=card[(ml,...,mN)eNB‘/ ]Zl m; deg,P;=p, ]Zl m; deg,P;=q

N
mem; deg,R deg,P;=p

j=1

—car (mo;ml,...,mN)eNgﬂ/JN

le mem; deg,R deg,P;=q

and hence

L 1-zteaR7oeaR
F.(z,2)=

. 18
HlN:l(l_Zdegth ?e%Pj) ( )

IV. INTEGRAL FORMULAS

To begin with, we quote a well-known integral formula which allows one to compute the
Molien functionM . in terms of an integral over the group. Namely, dgf be the biinvariant Haar
measure orG, normalized so that the total volume Gf with respect toug is 1. Then

1
Mw(Z)ZLdMG(Q) de(1—27(9))" (19

This formula is easily generalized to an integral formula for the generating funtjqrit reads

1

. 1
Fa(22)= deMG@) de(1-2m(g)) de(1-27(g))" 20
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The proof is similar to that for the usual Molien functisee, e.g., Ref. 6 p. 2D4nd is based on
calculating the charactegp of the representatiorrp of G on the algebra of polynomial functions
onV induced by the given representatianof G onV according to

(mp(9)P)(v)=P(m(g) ),

as follows: SinceG is a compact Lie group, the given representatioof G on V may without
loss of generality be assumed to be unitéstarting from some arbitrary scalar product \éna
G-invariant scalar product oW is obtained by integration over the grougo for fixedg e G,
m(g) ! can be diagonalized, i.e., there exists a basis..,v, of V consisting of eigenvectors of
w(g) ! with eigenvaleus\,, ... \,. As a result, the monomial&*? (see aboveform a basis of
the space of polynomials oW of bidegree p,q) consisting of eigenvectors ofp(g) with
eigenvalues\ “\?, so that the charactey, 4 of the representatiom, 4 on the space of homoge-
neous polynomials olv of bidegree p,q) induced by the given representatianof G onV is
given by

al=p

Xp.q(9)=tracem, (9)= % NONE.
Bl=q

Multiplying by zPz% and summing ovep andq gives, in the sense of formal power series,

> xpa(9)2P20= X (2\)%(Z0)*
p,q=0 p.q=0 }ﬁ zg

n

_]'[1 (1—z>\j)*11’[1 (1-2zN) '=de(1-2zm(g)) ‘de(1-zm(g))
i= j=

The result now follows due to a standard fact from the representation theory of compact groups,
namely, that the dimension of the fixed subspace of a given representation—or to put it differently,
the multiplicity with which the trivial representation occurs in a given representation—is equal to
the integral of the character of that representation over the group.

An important aspect of Eqg19) and (20) which greatly facilitates the evaluation of the
integrals is the fact that the determinants appearing under the integral signs are central functions
on the group(i.e., are invariant under conjugatiprso that the integral over the whole group can
be reduced to an integral over the space of conjugacy classes.

Before performing this reduction, we note that the integral representdti®snd (20) are
valid in two special cases which are at opposite extremes. One of these occur&ughdiscrete,
that is, a finite group, so that the integrals reduce to finite sums,

1 1
MW(Z)=@

&5 deli—zm(g))’ @)

— 1 2 1 1
Fr22=16] 2 de(1-zn(g)) deli—zm(g))" @)

which can be reduced to sums over conjugacy classes; their explicit evaluation, by means of
various techniques, has been studied in the literaisee, e.g., Refs. 6, pp. 204—207, 7, and 8
The other and apparently much less studied case occurs ®hisna compact connected Lie
group, so that the integrals over the whole gr@igan be reduced to integrals over a maximal
torusT: it is this situation that we shall now investigate in some detail.

Thus letG be a compact connected Lie group, Tebe a maximal torus i and letut be the
bi-invariant Haar measure oh, normalized so that the total volume Bfwith respect tout is 1.
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Moreover, letg be the Lie algebra o5 and tCg be the Lie algebra of CG. Introducing a
G-invariant inner product.,.) on g, we may decomposg into the orthogonal direct sum

g=tott

of t and its orthogonal complement; this decomposition is Adf)-invariant and does not
depend on the choice of the inner prodygl). Finally, let W be the Weyl group ofc (Wg
=Ng(T)/T whereNg(T) is the normalizer ofl in G, defined byNg(T)={ge G/gtg e T for
all te T}) and|Wg| be its order. Then

Ad(t)=1+Ad*(t) for teT

and(see, e.g., Ref. 9, pp. 101-103

1 de(l—Adi(t))
M. (2)= Wal JTdMT(t) de(i=za(0) (23

1 de(1—Ad (1))
Fal2.2)= T Ld’”(” det1—zm(0)de(1—za(D) "

(29

These integrals can be further evaluated in terms of the root systefy and the weight system

@ for the representationr. The procedure is standard whgnis semisimple, but to a certain
degree it works just as well in the more general case whleas a non-trivial center. The starting
point is the fact thal being Abelian, the restriction froi® to T of any unitary representation of

G, such as the complexified adjoint representation Ad on the complexificafiamf g or the
representationr on V, splits into the direct sum of irreducible one-dimensional representations.
Grouping together all subspaces characterized by the same eigenvalues under all eleffients of
leads to the well-known root space decomposition

g°=t°e D g,

ael

of g° and to the weight space decomposition

V: @ V)\
Ned

of V; the dimension of the subspabl is commonly known as the multiplicityn(\) of N. The
action of T on each of these subspaces is given by a charactér pé., a Lie group homomor-
phism fromT to the unit circle, written as—t* andt—t", respectively, according to

Ad(t)(X)=t*X for teT and Xeg,, (25

and

m(t)(v)=t*v for teT and veV,, (26)

respectively. At the Lie algebra level, Eq25) and(26) imply the usual relations

adH)(X)=a(H)X for Het and Xeg,, (27

and

m(H)(v)=A(H)v for Het and veV,, (28
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respectively. By complex conjugation of Eq26) and (28), we obtain
w(t)(v)=t v forteT andveaV,, (29

m(H)(v)=—\(H)v for Het and veoV,. (30

We follow here the standard mathematical convention of considering scantsl weights\ as real
linear forms ont, or as complex linear forms on the complexificatinof t, which—in accor-
dance with the fact thag is the compact real form of°—take purely imaginary values on
(eigenvalues of antihermitean matrices are purely imagjnstgreover, rootsr and weights\ are
transferred to generatotd, and H, using the isomorphism induced by tl@&invariant non-
degenerate complex bilinear forf.) on g¢ obtained from thés-invariant inner product.,.) ong
by complex bilinear extension:

(H,,H)=a(H), (HH)=X(H) for all Het".

This isomorphism is, by definition, an isometry:

(a,.8)=(HaHp)  (Mp)=(Hy H,).

The reality properties may then be summarized in the statement thataraots weights\ belong
to the real vector spade¢* , while the vectordd,, andH, belong to the real vector space With
this notation, we can rewrite the integrals in E&3) and (24) as follows:

1 HaeA(l_ta)
M@= [ din®) 2, (3D

F — 1 fd t HaeA(l_ta)
2,2)= |WG| . mr(t) H)\Eq)(l_Zt)\)m()\)(l_i_)\)m()\).

(32

A further condition to be employed is that roatsand weights\ must be integral linear forms in
the sense of taking values inm27Z on the so-called unit lattice

L,={H e t/exp(H)=1} (33

of G: such integral linear forms are precisely the ones that arise as differentials of charadters of
(Ref. 9, pp. 94-95b This lattice is the essential ingredient for understanding how to convert the
integrals(31) and(32) into integrals over the product ofunit circles  =rank G=dim T), which

can then be evaluated by arfold successive application of the residue theorem. Indeed, let us
assume thaf2mH,,...,.27H,} is a basis oL, and define

h(a)=(hi(a@),....h(a))=(—ia(H,),...,—ia(H,)) for aeA, (34
h(A)=(hy(N),....,h,(N))=(—=iX(Hy),...,—iA(H,)) for A e®.
Then the map
1 1
Stx..xst - T, @5

r
j=1
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is an isomorphism of compact Abelian Lie groups such that, in multi-index notegemeralized
to include negative integer powers

t“=wh(“)=wzl(“) ...W:”(“) for acA,
(36)

tﬂzwih(*)zwfhlw...th’(}‘) for A e ®.

Thus we obtain

Theorem 1: Assumer is a finite-dimensional unitary representation of a compact connected
Lie group G Then in terms of the multi-index notation for roots and weights with respect to a
basis of the unit lattice of Gas introduced in Egs. (336), the generating functions Mand F,

are given by
1 dw, I, A(1-w"®)
Ma(2)= A 11:[1 % 2miwj I (g (1—zw™)mh) 37
1/ dw, I, o(1—wh@)

The expressions %W and w*"®) will often be abbreviated to fvand w**, respectively.

When G is semisimple, which is by far the most important case for applications, the expo-
nentsh(a) andh(\) are easily calculated from the root systénof g and the weight systenb
for the representatiom. To this end, it is convenient to introduce the following two lattices:in

(@ the coroot latticd_,, which is dual to the standard weight lattiRef. 10, p. 67, in the
sense that

Lo={aet/\(a)e2miZ for all weights \}, (39
and identical with theA-lattice which forms the translation part of the affine Weyl group
(Ref. 11, p. 31%and generated by the vectorsriH ,/(H,,H,) with ae A (Ref. 11, pp.
317-318,

(b) the coweight lattice.,,, which is dual to the standard root latti¢Ref. 10, p. 6%, in the
sense that

LCW={Xet/a(X)62wiZ for all roots a}, (40
and identical with the central lattice, defined as

L.={Het/expH)eZ}, (41
whereZ is the center of5 (Ref. 9, p. 95, Ref. 11, p. 311

Obviously, the coroot lattice is contained in the coweight lattice, and the unit lattice lies in
between:

Lo CLiCLley- (42

Note also that the unit lattice is sensitive to coverings, while the coroot lattice and the coweight
lattice are not: they depend on the Lie graBmnly through its Lie algebrg. In fact, we have two
extreme cases, between which the general case is intermediate:
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(i) When G is simply connected, the unit lattice is minimal and coincides with the coroot
lattice.

(i) When G has trivial center, the unit lattice is maximal and coincides with the coweight
lattice.

Therefore, whei is simply connectedwhich we may always assume to be the case, without loss
of generality, one possible choice of the bag®wH,,...,27H,} is to set

2iH,,
_— 43
= H., H.) 3

H
where{ay,...,a,} is a basis of simple roots. In this case, the exponéits) and h(\) are
precisely the coefficients in the expansion

a=j§1 hj(a)\;, ngl hi (M)A (44)

of a rootae A and of a weight e ® in terms of the basi§\,,...,\;} of fundamental weights,
which is dual to the basis of simple roots in the usual sense:

2(N\i,ap)
<(akj, 2 O 9

Observe that the relevant parts of this construction do not depend on the choice of the scalar
product(.,.): a different choice would simply amount to a change of an overall normalization
factor on each simple ideal which drops out of the definition of the generators appearing on the rhs
of Eq. (43) or the definition(45) of the fundamental weights. When we want to be specific about
normalization, we shall not use the Killing form, but rather the so-called standard form, which is
normalized so that the long roots have lenghh

The additional assumption th& should be semisimple is less restrictive than it may seem.
Indeed, wherG is not semisimple, that is, has a non-discrete certeconsider the orthogonal
direct decompositiong=3®gs of g into its center; and its maximal semisimple ideals
=[g,9g], together with the corresponding orthogonal direct decompoditigi® t; of the maximal
Abelian subalgebra of g into the centep of g and a maximal Abelian subalgebtaof g,. Then
the rootsa (aeA) only generate the subspac€ of it* and the vectorH, (aeA) only
generate the subspaidg of it, as real vector spaces. We can still define the unit latticéef. Eq.
(33)) and introduce a basi2wH,...,27H,} as before, as well as the exponehts) andh(\)
(cf. Eq. (34)), but the unit lattice is now very flexible: any lattice gnwhich contains the coroot
lattice of g; and whose orthogonal projection g is contained in the coweight lattice @f is
admissiblgRef. 9, p. 97. Therefore, there is now no general way to proceed beyond(Bfjsand
(38); their explicit evaluation must for each representatiobe carried out separately.

A final important observation concerns the form of the generating funchibpandF , when
7 is the adjoint representation Ad. In this case, we may appeal to Chevalley’s theorem, which
provides a complete description of the ring of invariant polynomials on a semisimple Lie algebra
g. it is freely generated by =rank(g) elementary polynomials,,...,P,, whose degrees
P1,...,p, are commonly known as the exponentgoTherefore, the usual Molien function for the
adjoint representation reads

r

1
MAd(Z):]l:[l 1 (46)

Explicitly, for the classical groups, the polynomidts,...,P, can(with one exceptionbe written
as trace polynomials in the defining representation:
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(i)  A;:g=sl(r+1) orsu(r+1) (compact real form

Pi(X)=tr(X1*1) for Xeg, j=1,
(i) By:g=so(2r+1,C) orso(2r+1) (compact real form

Pi(X)=tr(X?) for Xeg, j=1,
(i) C,:g=sp(2r,C) orsp(2r) (compact real form

Pi(X)=tr(X?) for Xeg, j=1,
(iv) D,:g=s0(2r,C) orso(2r) (compact real form

Pi(X)=tr(X?)) for Xeg, j=1,..r—1,

P, (X)=Pf(X) for Xeg,
whereP f(X) denotes the Pfaffian of. See, for example, Ref. 12, pp. 253-263.

It should be pointed out that Chevalley's theorem refers to invariant complex polynomials on
complex semisimple Lie algebras, or equivalently, to invariant real polynomials on real semi-
simple Lie algebragincluding compact real formsbut not to invariant real polynomials on
complex semisimple Lie algebras. There is thus no reason to believe that this polynomial ring has
an equally simple structure. In fact, it does not. To show this, we have calculated the generating
function F o4 for the simple Lie algebrd8,=C,: the result(cf. Eq. (125 in Sec. VII below
exhibits a complicated structure, with lots of generators and relations.

V. COMBINATORIAL FORMULAS

In the following, we shall derive combinatorial formulas which allow one to determine the
coefficientsc, andc, q of the generating functions! ;. andF . solely in term of the root system
A and the weight systerd® of the representatiofr.
Our starting point will be the integral representatig®%) of M . and(38) of F .. First of all
we need the following
Proposition:Let f,...,f,, be polynomials of degree 1 in the varialddwith coefficients that
are rational functions of other variables ,...,w,). Then for non-negative integens, ,...,m,, and
K,

1 O RN i R

where we use multi-index notation, i.e5(l,,...,l,)), where thd; are non-negative integers, and
H=1,+...+1,.
Proof: For k=1, the above formula reduces to the statement that

d n i —m mJ (9f]
a_(H ) oy e
which is obvious. The general case is proved by inductiork,onsing the hypothesis that

azfi_o
x

as follows:
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H( 1_+p')<f. m- p'>(‘9f) ]

1 (9k+l ( n ) (_1)k+1

“m| _
L ,21

(k+1)! ox<F T =1 Pi X
i#]
m— 1+ p; N ] L
x( ! 0, J)(mj+|oj)(fj i~ Pi )((9—)(')
e C S (mi— 1+|) ml,l(af)
SR A} (ia (Tl
J

X(mj—l+|J) IJ f7 m— 1 (9fJ |j
IJ k+1( ) oX ’

wherel is defined in terms op andj by puttingl;=p; for i #] andl;=p;+1. Converting the
double sum ovep andj to a single sum over yields the desired result.

As a result, we can explicitly differentiate the integrands of E§%) and (38):

1 K 1

A(l
K 7 T a(l—zw)™ N(Lmw*®,

,—0 M=k

11 6P g9 1 720=
b1 Q1 927 70 Ty g (1= 2w (1 =070 | 2

N(r,m)N(s,m)wrT s,

where

m()\)+l(>\)—1)
[(N) ’

and

A(I)=AE¢ (M)A,

In order to carry out the residue integrals in E@¥) and(38), we must also expand the numerator
in powers ofw. The net result is most conveniently formulated in terms of the following concepts:
Definition 1: The extended root systeth associated with a given root systeins the set of

all linear combinations

a=2 ala)a (48

ae

of roots with coefficientsa(a) which are either 0 or 1(ThusK is a (finite) subset of the root
lattice generated bg.) To any such extended roat, we associate its decomposition indéx),
defined as the difference

i(@)=n,(a)—n_(a), (49
between the number, (@) of such decompositions @f into a sum of roots with an even number

of nonzero coefficients and the number(a) of such decompositions @f into a sum of roots
with an odd number of nonzero coefficients. In other words,
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i(’&):g (—-1), (50)

where the sum is over all sequencegd)), . of coefficientsa(«) €{0,1} satisfying Eq.(48),
and

|a|= EA a(a). (51)

ae

We extend the definition of the decomposition index to the whole root lattice by setting

i(@)=0 if T&A. (52)
In these terms, we have
HA (1-w)=2 i(@)w. (53
ae TacA

Note that just like the usual root system, the extended root system is invariant under the action of
the corresponding Weyl grolyy, and so is the decomposition indékis constant along Weyl
group orbitg. Two particular values that can be computed immediately are

i(2p)=(—1)1*1”2, ji(0)=|w], (54)

where 2 is the vector obtained as the sum of all positive ro6the first formula follows by
observing that in this case there is only one possible sequence, némely), which has the
parity stated above, while the second formula follows by combining the previous formula at
w=0 with the fact thatM ,(0)=1.) For the simplest rank 1 algebrg , for example, we have
A={a,—a} andA={a,0,— a} with i(a)=i(—a)=—1 andi(0)=2. The result for the simple
rank 2 algebrag\,, B,=C, andG, is shown in Figures 1-3. _

Definition 2: For any positive integek, the k-extended weight systed(k) associated with
a given weight systend is the set of all linear combinations

= IO\ (59
Ned
of weights with coefficient$(\) which are non-negative integers, such that

=2 1) =k. (56)
Aed

(Thus E)(k) is a (finite) subset of the weight latticeTo any suchk-extended Weighﬁ, we
associate itk-extended multiplicitym,()\), defined as the sum of the combinatorial coefficients

B m(\)—1+1(N)) m(N)—1+1(N)
N("m)‘ﬂqa( 1) )1111; m(\) 1 ) 67
over all such representations %f In other words,

m(N) =2 N(l,m), (58)
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-1 2 -1
® o ®
2 -2 -2 2
° ® ® °
-1 e -2 @ [ | e -2 o —1
6
° ® ® °
9 -2 —2 2
® ® o
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FIG. 1. Root system and extended root system, with decompostion indiges:

where the sum is over all sequencéé\()), . of coefficientsl(\) e N satisfying Egs(55) and
(56).

Note that just like the usual weight system and the usual multiplicityktk®tended weight
system and th&-extended multiplicity are invariant under the action of the corresponding Weyl
groupW, and that®(1)=®, my(A)=m(\).

Now we are ready to formulate the main result of this section:

Theorem 2: Assumer is a finite-dimensional unitary representation of a compact connected
Lie group G Then in terms of the multi-index notation for roots and weights with respect to a
basis of the unit lattice of Gas introduced in Egs. (336), and with the notation introduced
above, the number, () of (linearly independent) G-invariant complex polynomials of degree k
and the number ¢,(7) of (linearly independent) G-invariant real polynomials of bideg(peq)
on the carrier space ofr are given by the combinatorial formulas

ck<w>=i > iomd), (59)
|WG| e d(k)

and
Coq(m) =t L iN=myOmg(R), (60)
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FIG. 2. Root system and extended root system, with decomposition infges:

respectively. (Note that the terms on the rhs of these equations yield non-vanishing contributions
only when\ and A— 1, respectively, belongs to the extended root sysien

We believe that on the basis of this theorem, it should be possible to develop a computer
program for calculating the numbecg andc, 4, up to reasonably high orders, for arbitrary
groups and representations. The amount of computing time can be reduced by a factor of the order
of |Wg| by an appropriate implementation of the Weyl group symmetry.

VI. EXAMPLE: SU (2)

As a first example, let us apply Eq87) and(38) to the case wher& = SU(2), with maximal
torusT=U(1) andz= 7 the irreducible spirs representation. Theg= su(2) is the Lie algebra
of complex traceless antihermitean matrices asdi(1) the maximal Abelian subalgebra of
imaginary traceless diagonal matrices, with invariant scalar prdductiiven by

(X,Y)=tr(XY) for X,Yesu(2). (62

Using the Pauli matrices

0 1 0 —i 1 0
"1:(1 o)’ “Zz(i o)’ “3:(0 —1)’ 62
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FIG. 3. Root system and extended root system, with decomposition inBges:

which satisfy

O-jo-k:(Sjk—’_iEjkla-ll (63)

we see that the nonzero roots arer, where

a’(H):Hll_szztr(H(T3) fOI’ Heu(l), (64)
with root vectors
Eta:O'lii(Tz, (65)
implying
H, =03, (66)

which does have lengt¥2, in accordance with our previous convention. The fundamental weight
is given by
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MH)=3(Hy;—Hyp=3tr(Hog) for Heu(l), (67

SO

H)\:%O':g. (68)

Note that the root lattice is generated #yand the weight lattice is generated bywhereas the
coroot lattice(which coincides with the unit lattice for SB) since SU2) is simply connectedis
generated by 2ZH, and the coweight latticwhich coincides with the unit lattice for
SQO(3)=SU(2)/7, sinceZ, is the center of S(2)) is generated by 2H, . The highest weight of
the irreducible spirs representation is preciselys®, and its complete weight system consists of
the multiples 2n\ with m taking all integer(half-integey values between-s ands (inclusive
whens is integer(half-integey. Therefore, Eqs(37) and (38) yield for this case

1 dw (1-w?)(1-w?)
M@=70 ¢ wiIE__ 1=z’ €9

1 dw (1-w’)(1-w?)
F22=15 3£ w I, (1-zw™)(1—zw 27)° (70

(We have abbreviatell = 10 Mg andF7Ts to Fs.) See Ref. 6, p. 94, noting that the formula given

there is correct only for integer spin, in which case it can be deduced fror®8doy the variable
transformatiorw=exp( 6/2), together with the observation that the resulting integral from Osto 4
may actually be reduced to an integral from Orttbecause the argument is a periodic function of
0 with period 2t and, in addition, invariant under the reflectién- — 6.

For integer spirs, these equations are equivalent to

WS(S+ 1)—3(1_W2)2

1
My(2)=~ 2(1—2) 2mi %dw b (1—zw?f)(wPk—2) (72)
. 1 1 W25(S+l)—3(1_w2)2
2= 12 2 4) s (1- 2w (1— 2w (W= z) (W —2)"
(72
while for half-integer spirs, they are equivalent to

1 1 W(s+1/2)2—3( 2)2
MS(Z):_Eﬁ fd S+1/2(1 ZVV2k l)( 2k—1__ )’ (73)

2<s+1/2)2—3(1 Wz)z
Fs(z,2) 554 %dW Hs+l/2(1 W (1w H(wE Iy 1= (79

For integer spin, however, it is more convenient to work with the complex variable?; then
Egs.(69), (70) and(71), (72) become

1 du(1-u)(1-u™?Y
Ms(2)= 2 fﬁ u IS (1—zd’ (79
= 1 du (1-u)(1—-u™Y
22> 70 fﬁ u Il (I-—zd)(1-zu ™)’ (79
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and
1 us(s+1)/2—2(l_u)2
M(D== 507 2mi ff S_(1-zU)(u*—2) 7
. 1 1 uS(SJrl)*Z(l_u)Z
FS(Z’Z)__Z(l—z)(l—z_)Z_Tri % S _(1—zd)(1—zu (U -2)(uk-2)" (78)

respectively(Note that in the last four equations, a factor of 2 has disappeared because we must
take into account thai=w? winds twice around the unit circle whem winds around onceg.

We now proceed to calculate the generating functibhs and F¢ for a few irreducible
representations of low spin, by applying the residue thediamd remembering thag|<1).

A. Spin 0
For the trivial representation, the integrands in E@¥), (78) both have a double pole at
u=0, and
M (7= 1 d 1-2u+u?
D=0 2m N
e e 1 1 35 1-2u+u?
o(2D= = 50 p(1=2) 2mi T
that is,
M = ! 79
ol2=71-5" (79)
Fo(z,2)= ! 80
o(Z,Z)—m- (80)

This corresponds to the fact that for the one-dimensional trivial representation, every polynomial
is invariant, and the ring of alcomplex and real, respectivglpolynomials in one variable is
generated by the linear monom&l{ and, ¢, £, respectively.

B. Spin 1/2
For spin 1/2, the integrand in E¢73) has a double pole at=0, the coefficient ofv in the
Taylor expansion of the remaining factor around this pole being

d (1-w?)?
dw (1—zw)(w—2) weo

_(l—ZW)(W—Z)Z(l—WZ)(—2W)—(1—W2)2(—Z(W—Z)+(1—ZW))‘
- (1—zw)’(w—2)? |w:o
1+27°

= 22'

and a simple pole at=z, whereas the integrand in E(f4) has simple poles at=0, w=z and
w=2, SO
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11 (1-w?)?
Mud2)==3 55 3€dw w2(1—zw)(w—2)
1 1+ (1-79)%) 11+ 1-7
2| 2 Jr22(1—22) 2| 2 A
whereas
11 (1-w?)?
Fudz2)==3555 i; W Wa—zw)(1—zw)(w—2)(w—2)
11 (1-2%)2 (1-2%)?
=202 - (1-22(z—2)  21-22(1-D)(z-2)
1 o
=— 2231_27)(2_2—){(1—22)(z—z)+z(l—zz)—z(1—7)},
that is
My(2) =1, (81)
1
FuAz,2)= 177 (82

This confirms the idea that for the two-dimensional spinor representation, there are no invariant
complex polynomials except 1—in accordance with the fact thaf ttnsymmetric tensor power

of this fundamental representation is just the irreducible representation of/pamd therefore
cannot contain the trivial representation as a subrepresentation, excepj whenwhereas the

ring of invariant real polynomials is freely generated by the quadratic forén which is nothing

but the invariant scalar product used in the definition of the grouf25U

C. Spin1

For the vector representation, the integrand in Etf) has simple poles an=0 and at
u=z, whereas the integrand in E{8) has simple poles at=z andu=z, so

B (1-w? 1 1 (1-2)7?

M@ ==30=7 2m %duu(l—zu)(u—z)_Z(l—z) {E_ z(l—zz)]’
whereas
. 1 1 (1—u)?

F22=- 50702 2m fﬁd“ A—zu(1l-20)(u—2u-2

B 1 (1-2)? (1-2)?

T 2(1-7(1-2) (1—22)(1—27)(2—_)+(1—27)(1—?)(2_—2)

1

1-z 1-z
1+z 1+2z|’

T 21-2(1-2)(1-22(z—2)

that is,

Mq(2)=

1— 22 ’ (83)
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_ 1
F2D= =0

(89

This confirms the idea that for the three-dimensional vector representation, the ring of invariant
(complex and real, respectivelgolynomials is freely generated by the quadratic foffAsindZ?,
- & &2, respectively. Alternatively, representing three-dimensional vectors as anti-symmetric (3
X 3)-matricesA, these generators may be written asA®) and tr(A?), tr(AA), tr(A?), respec-
tively.
For higher spin, these calculations become increasingly cumbersome because, according to
Eqgs.(77), (78) and(73), (74), the integrands have poles|at'? times thepth roots of unity, for
all integersp from 1 tos if sis integer and for all odd integepsfrom 1 to 2s if s is half-integer.
They can, however, be simplified by combining a decomposition of the integrand into partial
fractions with the fact that the residue integral with a single factor in the denominator can be easily
evaluated, even when the numerator is a complicated polynomial in the integration variable,
without having to sum over roots of unity. In fact, we may use the following elementary
Proposition:Let P be a polynomial inv with coefficients that are rational functions ofand
possibly of other variables, ,...,z,):

N

P(zy,....2,, ZW)= D, an(Zq,....2,, 2)W" L, (85)
n=1

For any integek=1, letM be the largest integer such tHa¥!<N, and define

M
Qu(zy,....2,,2)= Z am(Zy,....2,2)2" L (86)
Then
dw P(zq,...,2,,Z,w)
% ﬁ—wk—z—:Qk(zl'”"Zr'z)' (87)

Proof: Let a be any kth root of z and € be any primitive kth root of unity, e.g.,
e=exp(2mi/k). Then

k-1 K k—1
x=1 .
| _ — — €l
X = = X ,
;o x—1 11:[1 (x=€)
so taking the limitx— 1, we obtain
k-1
[I (1-é)=k,
j=1
while puttingx= e gives
k-1
€ =0.
=0
More generally, we have
k—1
€"=0

1
o
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if k andn are relatively prime, because in this casemodk will assume every value between 0
andk—1 exactly once wheh ranges from 0 tk— 1. Still more generally, we have

kil in_ |0 if nis not a multiple ofk
“ € “|k if nis a multiple ofk

because denoting bm the greatest common divisor kfandn, p=k/m andr =n/m are relatively
prime while €™ will be a primitive pth root of unity, so decomposing the summation varidble
according to =pj+i and using the previous equation,

m-tel it m#k

k-1 k—1 ' p-1 _ 0
3 =3 (@)= 3 (@-m, (@ ={) i my

j=0 i=
Now we are ready to prove the propositifor simplicity, we suppress the variables,...,z,):

1

é dw P(z,w)_§ dw P(z,w) _ki P(z,w)
2mi W=z ] 27 IS h(w—eMa) S Ik o(w—e™a)
m#| w=éa
k—1 | k—1 | k—1
P(z,ea) P(z,ea) |
= — = — —=— aP(z,e'a
2 T daema) 2 (daF N1 &) kz 2 < 2P
m#|
1 N k-1 1 N
== 2 2 a2eha’=- X a(22"=Qu2).
kz =1 =0 z n=1

n multiple of k

This proposition is combined with partial fraction decompositions of the form

S

° 1 B a(z,w) by(z,w)
k[[l W—2)(l-zw) & | w—z 1—zvvk>’

> 1
K—2z)(WK—2)(1—zw)(1—zw")

aW(z,zw) alz,zw) b(z,z,w) by(z,z,w)
E L wk—z wk—z 12wk | 1—zwF )

for integer spins, where thea, andb, are polynomials irw of degree strictly less thakwhose
coefficients are rational functions afand ofz, z, respectively, and of the form

s+1/2 1 s+1/2 ak(z,w) bk(Z,W) )

I G & L i

s+1/2
1

k1:[1 W T=z) (W T=7)(1—zw 5 (1—zw?T)

s+1/2

a(z,zw) alzz,w) b(z,z,w) bk(Z.Z_,W))
1-zw '

=> 1 ST k1=t e R I ——) =
S lwk -z w7z 12w

for half-integer spins, where thea, and b, are polynomials inwv of degree strictly less than
2k—1 whose coefficients are rational functionszadnd ofz, z, respectively; these functions and
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coefficients can be calculated recursively, by induction on the number of fgttiatss, induction

on s) and repeated application of the Euclid algorithm. Using these two techniques, we have
developed, withirMAPLE, a program which allows to calculate the functi®rup to spin 2 and the
functionM up to spin 4 within reasonable limits of a few minutes of computing time on a standard
386 PC, with the following results:

Spin 3/2:
1
MaA2)= 73 (88)
. (1-2*2%)(1-252°)
Fad2.2)= = A - (1-2) (-2 89
Spin 2;
Mz(Z)Zm, (90)
S 1—252°
F22)= o1 -ZD1-DA-1-229) Y
Spin 5/2:
1-2%
Ms(2) = 1-M1-D1-291-5 (92
Spin 3:
1-2z%
Mol = A —Aa—H -0 ©3
Spin 7/2:

numetMqx(2)) =1+ 228+ 4212+ 4714+ 5710+ 9718+ 6220+ 9722+ 8724+ 9726+ 6728+ 97°°
+52%+47%+ 47%%+ 22°0+ 2%, (94)
denontM(2)) = (1-2z*)(1-2%)(1-2"9)*(1-2%9).

Spin 4:

1+278+ 794 7104 718
(1-2%)(1-2°)(1-2%)(1-2°)(1-2%(1-2)"

My(2)= (95

These formulas lead to several interesting observations.

To begin with, let us comment on the result for the five-dimensional spin 2 representation,
which can be interpreted most conveniently by realizing five-dimensional vectors as traceless
symmetric (3< 3)-matricesA. Equation(90) confirms the idea that the ring of invariant complex
polynomials in this representation is freely generated by the quadratic foA?) tand the cubic
form tr(A%), whereas Eq(91) states that the ring of invariant real polynomials in this represen-
tation is generated by three quadratic forms of bided®®), (1,1) and (0,2), respectively, to-
gether with four cubic forms of bidegrd8,0), (2,1), (1,2) and(0,3), respectively, plus an extra
quartic form of bidegre€2,2), and that these generators should satisfy a relation of bid¢g®e
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Obviously, the quadratic forms are given byAf), tr(AA) and tr(A?), respectively, and the cubic
forms by tr(A%), tr(A%A), tr(AA?) and tr(A®), respectively, but the extra generator of bidegree
(2,2 comes as a surprise, especially in view of the fact that the usual Molien function provides no
hint toward its existence. To see why there should be such an extra generator, note first that the
natural invariant quartic forms #¢) of bidegree(4,0, tr(A%A) of bidegree(3,1), tr(AA3) of
bidegree(1,3) and tr(A%) of bidegree(0,4) are not independent, but can be expressed in terms of
the natural invariant quadratic forms ), tr(AA) and tr(A?):

tr(A%)= 3 (tr(A%))?,
tr(A3A) = L tr(A2)tr(AA),
tr(AA%) = L tr(AA)tr(A?),

tr(A%) =} (tr(A2))2.

On the other hand, there are four natural invariant quartic forms of bid€g/@e namely

tr(A2A2), tr((AA)2), tr(A2)tr(A2), tr(AA)2,

between which there exists precisely one linear relation:

4 tr(A2A2)+ 2 tr((AA)2) =tr(A2)tr(A2)— 2 tr(AA)2.

The extra generator of bidegré®,2) can therefore be chosen to be any linear combination of
tr(A2A2?) and tr((AA)?) which is not proportional to the Ihs of this equation. As far as the relation
of bidegre€(6,6) is concerned, we have not been patient enough to determine its explicit form: this
seems a formidable task in view of the fact that a power series expansion (FIEghows, using
MAPLE, that the coefficient 0£%z° in F,(z,2) is 36, so one has to find exactly one linear relation
between 37 polynomials of bidegré&6) in 10 variableg5 holomorphic and 5 antiholomorphic

A similar situation, though somewhat more complicated, occurs for the four-dimensional spin
3/2 representation. Here, we encounter one invariant quadratic form of biddgteé&he invari-
ant scalar product, as usyand four invariant quartic forms of bidegré4,0), (3,1), (1,3) and
(0,4), respectively, plus an extra invariant form of bideg(@g) (besides the cube of the invariant
scalar produgt as generators. There are two relations: one relation of bidég®eexpressing a
linear dependence between the four invariant polynomi{g,0)- P(0,4), P(3,1)-P(1,3),

P(1,1)* and P(1,1)- P(3,3), and one relation of bidegré6,6), expressing a linear dependence
between the seven invariant polynomiaR(4,0)- P(0,4)- P(1,1)?,P(3,1)- P(1,3)- P(1,1),
P(1,1)8, P(1,1)%-P(3,3), P(4,0)- P(1,3)?, P(0,4)-P(3,1)? and P(3,3)?, over and above the
relation obtained by multiplying the previous one By1,1)°. These two relations are, however,
not independent, because the presence of an additional generator of bid€gi€esuggests that
their product reduces to a trivial identity.

As far as the Molien functions for representations of spi@ are concerned, the results
indicate that for spin 5/2 and spin 3, the generators of the ring of invariant complex polynomials
are subject to a single relation, while for spin 7/2 and spin 4, the structure of the relations
themselves becomes complicated and no longer fits into the relatively simple scheme given by Eg.
(11): there are lots of additional generators satisfying complicated relations, relations between the
relations, etc. It is not even clear what is in general the most adequate way to present these
functions, since numerator and denominator may have common factors. For example, the numera-
tor and the denominator of the Molien function for spin 7/2 as given in(g4). have a common
factor (1+z%) (14 z'% which has been introduced to eliminate factorsZ and 1—z*° from the
denominator, so as to comply with the fact that there are no invariant polynomials of degree 6 and
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of degree 10 in this representatiéas can be seen upon Taylor expangiokt any rate, the
polynomials in the numerator of E¢94) and of Eq.(95) have roots of modulusc1 and hence
cannot possibly be reduced to an expression of the forrz“lor to a product of such expressions.
(More precisely, a numerical calculation, usingPLE, shows that the quotient of the numerator of
Eq. (94) by (1+2°%)(1+29), considered as a polynomial of degree 16zf) has 8 roots of
modulus 1, 2 roots of modulus 1.46292, 2 roots of modulus 1.36453, 2 roots of modulus 0.73285
and 2 roots of modulus 0.68356, while the numerator of @§) has 14 roots of modulus 1, 2
roots of modulus 1.10697 and 2 roots of modulus 0.90377.

In summary, everything indicates that with increasing spin, the situation becomes extremely
complex. We shall therefore not pursue this matter any further and instead pass to other groups
and representations.

VII. THE CODON REPRESENTATION AND ITS REDUCTIONS

Apart from the circle group, 1), and the ordinary rotation groufr rather its universal
covering group, SU(2), the compact simple Lie groups appearing in the symmetry breaking
scheme of Hornos and Horrofor describing the degeneracy of the genetic code involve the
symplectic groups Sg) and Si66). With these applications in mind, we begin by collecting a few
pertinent facts about the symplectic groups Sp(a@nd some of their irreducible representations,
especially for the cases=2 andr=3. (Note that we shall be dealing exclusively with the
compact real form Sp(J of the complex symplectic group Sp(2), which can be defined as a
group of ( Xr)-matrices with quaternionic entries, not with the normal real form P that
appears, e.g., in Hamiltonian mechanics.

The symplectic group Sp¢2 is a compact, connected, simply connected Lie group with
centerZ,, and its Lie algebrap(2r) is the compact real form of the complex simple Lie algebra
sp(2r,C); in the Cartan classification this 3, , of rankr and dimensiom (2r +1). To construct
its root system and the weight systems of various other irreducible representations besides the
adjoint, we identify the spacesandit* used beforgcf. Sec. 4 with R" by introducing bases
{Hy,...,H,} of t and{e,,...,e;} of it*, dual to each other in the sense that

€j(H) =16k, (96)

and orthonormal except for an overall normalization factorZyf more precisely, we assume that
(ej,ek):%5jk, (HJ’Hk):25]k (97)
Then the root system of sp(2r), when written as the disjoint union

A=AUA (99)

of the setA, of long roots(of lengthv2) and the sef\ of short roots(of length 1), is given by
Aj={*+2¢j/lsj=r}, (99

As={*ejrellsj<ksr}. (100

(All signs are to be read independentiyWe choose an ordering in this root system such that the
set of positive roots becomes

AT=AJUAS, (101)

where

A ={2e¢j/1sj=r}, (102
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A ={ejxellsj<ksr}, (103

leading to the following basi§a;,...,a;} of simple roots:

a1=el—ez, ey ar_1=er_1—er, ar=Zer. (104)

The highest root is

5="2e,. (105

Moreover, the vectop defined as half the sum of the positive roots, or equivalently, as the sum of
the fundamental weights, which plays an important role in representation theory, is given by

p=re;+(r—=1)e,+...+2¢e,_,+e,. (1006

Passing to irreducible representations, we first compute the fundamental weights, defined by the
condition (45), which in the present case leads to

)\1281, )\2=el+€‘2, ey )\r_1:e1+...+er_1, )\r:el+...+er. (107)

This implies thafe,,...,e;} is a basis of the weight lattice af@#wH,,...,27H,} is a basis of the
coroot lattice(which coincides with the unit lattice for SpfR since Sp(2) is simply connecteq
these are much more convenient than the bgsjs...,\,} of fundamental weights and the basis
{2may,...,2ma,} formed by the simple coroots, respectively, because they are orthon@xaal
cept for the aforementioned overall normalization factow?f.

With these generalities out of the way, we can proceed to write down the weight systems and,
as a consequence, the generating functinsandF . for the irreducible representations of(8p
and Sii6) that appear in Ref. 1. For completeness, we also list their dimension and height,
recalling that all irreducible representations of Sp(2re self-conjugate and that the heightt
of a self-conjugate representation of highest weiglatllows one to decide whether the represen-
tation is real or pseudo-real: it is real iff(A) is even and pseudo-real iff () is odd (see Ref.
13, pp. 31-3B Finally, we list the coefficients,, 4 in the Taylor expansion df ., up to fourth
order, which have been calculated by differentiating under the integral sign and then computing
the residues, usingApPLE. The results obtained far o, ¢, 9, Co 4 @andc, ; are not listed because
they come out to be what they must be for any irreducible representation:

CO,O::Li C]_’OZOZCO']_, Cl,l: 1 (108)

The result forc o reflects the correct normalization: there(i to a constant multip)ealways
precisely one invariant polynomial of bidegré&0), namely the constant 1. The results far,

and forcg , reflect the fact that an irreducible representation does not admit any invariant vectors,
while the result forc, ; corresponds to the theorem that in an irreducible representation, the
invariant scalar product is uniguep to a constant multipjedue to Schur’s lemma.

A. Sp(4)

For an irreducible representatian, of highest weightA =a;\;+a,\,, we have

. a;ta, a,+2a;
dim(my)=(1+a;)(1+ay)| 1+ 5 3 , (109
ht( 7TA) = 3a1+4a2 . (110)

The Weyl group of S@) is Z,X 7Z,XS,, generated by the reflectiors— —e;, e, —e, and the
permutation ofe; with e,; it has order 8. Therefore,
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1 dw dw, Wj 2w, 2 f(Wy,W,)2
MA(2)= = 5{5 dwy AW, Wy W (W, o) (111
8 21ri 2@ fup(z,wy,Wp)
1 dw. dw wy 2w, Sy (Wq ,Ws)2
FA(z2)=2 3@ — jﬂ dwy Wy W TulWa o (112
8 2 2mi T p(z,wy,Wy)f A p(Z,W1,W5)
with
Fr(Wy ,Wa) = (1= W) (1—W3)(1—WiW,) (W; —Wy). (113

(The definition off ,  follows below)

1. First fundamental representation (1,0)

The highest weight is\ =\ ;=e,, the dimension is 4, the height is(8o the representation is
pseudo-rea) the complete weight systefuf. Figure 4 is

Dog={*e;, >ey (114

(all weights have multiplicity 1; the signs are to be read independersity

f(1,0,0(%W1,Wp) = (1—xwy)(1—xwp ) (1—xwy)(1—xw; ). (115

The non-trivial coefficientg, , up to fourth order are
C20=0=Cop,
C30=0=Cp3, €21=0=Cyp, (116

C40=0=Cp4, C31=0=Cy3, Cpo=1.

Without much difficulty, the generating functidh can be computed in closed form; the result is

1

Fo(z,2)= 177 (119

2. Second fundamental representation (0,1)

The highest weight is\=\,=e;+e,, the dimension is 5, the height is(4o the represen-
tation is real, the complete weight systefof. Figure 4 is

D n={0xe; = ey} (118

(all weights have multiplicity 1; the signs are to be read independerstty

f(0,1),0(X, W1, Wp) = (1= X)(1—XWyW,) (1 —XW] W) (1—xwywy 1) (1—xw 'wy b).

(119
The non-trivial coefficientg, , up to fourth order are
C20=1=Cop,

C30=0=Cos C21=0=Cyp, (120
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Cs0=1=Coa, C31=1=Cy3, Cpo=2.

Again, the generating functioR can be computed in closed form; the result is

1
(1-2)(1-27(1-2%)"

Fo,(z,2)= (121

3. Adjoint representation (2,0)

The highest weight is\ =2\ ;= 2e;, the dimension is 10, the height is(§o the representa-
tion is rea), the complete weight systefuf. Figure 4 is the union of0} with the root systena,

q)(z’o):{O}U{i261,t2€2,ieliez} (122)
(0 has multiplicity 2 and the roots have multiplicity 1; the signs are to be read independsaotly
f(2,0,006 W1, Wa) = (1=3)2(1=xWi) (1= xwy %) (1= xw5)(1—xw; %)
X (1= XxWyWp) (1—xwy two) (1—xwyw, D (1—xw; 'w, b, (123
The non-trivial coefficientg, , up to fourth order are
C20=1=Cop,
C30=0=Co3, C€21=0=Cy>, (124
C40=2=Coy4, C€31=2=Cy3, Cyo=4.
With considerable effort, the generating functiércan be computed in closed form; the result is
numetF ,0(2,2)) = 1+ 2%2%+ %23+ 2°23+ 22+ 2%2*+ 2523+ °2*

+72%72°4+ 7572%+ 2572+ 287°+ 752°%+ 7525+ 777 "+ 7977

(129
denon@F(zlo)(z,z_))=(1—22)(1—27)(1—?)(1—24)(1—232_)(1—22?)
X(1-22%)(1-2%(1-2'2%)(1-2°Z%).

4. Reduced codon representation (1,1)

The highest weight is\=X\;+\,=2e;+e,, the dimension is 16, the height is(30 the
representation is pseudo-reahe complete weight systefuf. Figure 4 is the union

d(LY=0F udd,, (126
where

q’ﬁi)l—{ﬂel e, =2e,*-e} (127

(these weights have multiplicity 1; the signs are to be read indepenyleniy

‘I’Ef?l):{iel,iez} (128

(these weights have multiplicity 2; the signs are to be read indepengestly
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€9 : €2
® ® [ J
o ® ¢ €1
® ® o
(1,0) (0,1)
® [ J o
€2 €2
[ ] [ J ® [ ] [ ]
Y €1 ) [ ] e
[ ] ® ® ] [
® [ [
(2,0) (1,1)

FIG. 4. Weight diagrams for some irreducible representations ¢f)Sp

f 11,006 W1,Wp) = (1—xwp)2(1—xw; H)2(1—xw,)2(1—xw;, )2
X (1= xWAW,) (1—xw; 2w,) (1 —xwiw, 1) (1—xwy 2w, b
X (1= xwyW3) (1—xw; W) (1—xww;, 2 (1—xwp 'w, 2). (129

The non-trivial coefficientg, , up to fourth order are
C20=0=Co 2,
C30=0=Cp3, Cz1=0=cCyp, (130
C40=1=Cp4, C31=2=Cy3, Cp=6.
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B. Sp(6)

For an irreducible representatian, of highest weightA =a;\;+a,\,+az\3, we have

) a;t+a, a,+aj a,+2as
dim(m,)=(1+a;)(1+a,)(1l+az)| 1+ 5 1+ 5 3
a;ta,+as a,ta,+2az a,t+2a,+2az
X
1+ 3 2 5 , (131
ht( 7TA) :5a1+ 8a2+ 9a3. (132)

The Weyl group of S(B) is 7Z,X7,X7,XS;, generated by the reflectiorss— —¢; and the
permutations of the, (i=1,2,3); it has order 48. Therefore,

1 dw dw. dws Wi "W, ‘wg T (We Wy, Wa)2

|\/|A(z):—3l;—.1 ~2 g 3Tt 72 78 N TR (133
48 2i 2i 21ri fA.p(Z,W1, Wy, W3)
E 1 3golw1 fﬁ dw, 3£ dws Wi ‘wy ‘wg (W, Wp,Wg)2 ™
A2DZ28 P 221 P 2mi P 2w apzWi o wa fapmwi Wy 39
with

F(Wy,Wa,W3) = — (1—=W5)(1—w5)(1—w5)(1—W;Wp)(1—w,;Wj)

X (1—WoW3) (W1 — W) (Wy— W3) (W —W3). (139

(The definition off ,  follows below)

1. First fundamental representation (1,0,0)

The highest weight iss =\ ;=¢;, the dimension is 6, the height is(50 the representation is
pseudo-rea) the complete weight system is

Poo={Fer, e, +esf (136)

(all weights have multiplicity 1; the signs are to be read independersity

f(1,0,0,00% W1, Wy, Wg) = (1 —xw;)(1—xwy 1)(1—xW,)(1—xwW5 1) (1—xwz)(1—xw;s ).

(137)
The non-trivial coefficientg, , up to fourth order are
C20=0=Cop,
C30=0=Coz, C21=0=Cyp,
C0=0=Coy4, C€31=0=Cy3, Cp=1. (138

2. Second fundamental representation (0,1,0)
The highest weight i\ =\ ,=e;+e,, the dimension is 14, the height is(8o the represen-
tation is real, the complete weight system is

@(0’1’0)={0}U{teliez,ieli e3,iezie3} (139)
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(0 has multiplicity 2 and all other weights have multiplicity 1; the signs are to be read indepen-
dently), so

(01,0006 W1, Wa,W3) = (1 =) (1= xWyWp) (1= xwWj 'Wp) (1—xwywy ) (1—xwy 'wy )
X (1= xWyWg) (1—xwy *wg)(1—xwywg H(1—xwy twa b

X (1= XWoWg) (1—XW, wg) (1—xwows B (1—xw; twa ). (140

The non-trivial coefficientg, 4 up to fourth order are
C20=1=Cop,
C30=1=Co3, Cz1=1=Cy,, (141

Cs0=1=Co4, C31=1=Cy3, Czo=3.
3. Third fundamental representation (0,0,1)

The highest weight isA=\;=e;+e,+e3, the dimension is 14, the height is (8o the
representation is pseudo-rgahe complete weight system is

Doon=1*e;,*€,*e;5,*e;*e,+e5f (142

(all weights have multiplicity 1; the signs are to be read independersity

f0.01,0(X, W1, Wy, Wg) = (1—XWy)(1—xwy H)(1—xwW,)(1—xW, 1)(1—xwa)(1—xwz 1)

X (1= XWyWoW3) (1= XWy 'Wowg) (1—xwyw; 'ws)

X (1—xwy 'w, twg) (1—xwywows B (1—xwy tw, 'wa b, (143
The non-trivial coefficientg, 4 up to fourth order are
C20=0=Cpp2,
C30=0=Co3, C21=0=Cy,, (144
Cs0=1=Coy4, Cz1=1=Cy3, Cpo=1.

4. Codon representation (1,1,0)

The highest weight is\=\;+\,=2e;+e,, the dimension is 64, the height is 180 the
representation is pseudo-rgahe complete weight system is the union

_ 1 2 4
D 110=P(T1oUPT1oUP (110, (145

where
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Cbgi?lvo)={i281iez,i2€2i el,i2€1t e3,i293i el,iZGZi e3,i263i ez} (146)

(these weights have multiplicity 1; the signs are to be read indepengently

‘I’g,)l,of{ieli e,* e} (147

(these weights have multiplicity 2; the signs are to be read indepenyesmtly

(P g={*e;, xey,xe5} (148

(these weights have multiplicity 4; the signs are to be read indepengiestly

f(1,2,0,006W1,Wz,Wa) = (1—xwp)*(1—xwy ) *(L—xwp) (1 —xwy H)*(1—xwg)*(1—xw5 H)*
X (1= XWyWoW3)2(1— XW; 'Wows)2(1—xwyw, twg)?
X (1—xwy *wy 'wg)2(1—xwywowg 21— xwy tw, twg )2

X (1= xWAW,) (11— xw; 2w,) (1 —xwiw, 1) (1—xwy 2w, b

X (1= xwyW3) (1 —xw; w2)(1—xwyw;, %) (1—xwy tw, 2)

X (1= xW2wg) (1—xw; 2wg)(1—xwiwz 1) (1—xw; 2ws b
X (1= xwyW3) (1 —xw; w2)(1—xwyw; %) (1—xw; tws ?)
X (1= XWHW3) (1 —XW5 “W3) (1 —xwaws 1) (1—xw; w3 )
X (1= XxWoW3) (1= xw, 'w3) (11— xwows ) (1—xw; twy 2). (149

The non-trivial coefficientg, , up to fourth order are
C20=0=Cop,
C30=0=Co3, Cz1=0=Cyp,

C40=3=Co4, C31=6=Cy3, Cpp=15. (150
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