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a b s t r a c t

It is shown that the correct mathematical implementation of symmetry in the geometric
formulation of classical field theory leads naturally beyond the concept of Lie groups and
their actions on manifolds, out into the realm of Lie group bundles and, more generally, of
Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries,
which lie at the heart of gauge theories, but is already true even for global symmetries
when one allows for fields that are sections of bundles with (possibly) non-trivial topology
or, even when these are topologically trivial, in the absence of a preferred trivialization.
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1. Introduction

Gauge theories constitute a class of models of central importance in field theory, since they provide the conceptual basis
for our present understanding of three of the four fundamental interactions: strong, weak, and electromagnetic. At the
very heart of gauge theories lies the principle of gauge invariance, according to which physics is invariant under symmetry
transformations even if one is allowed to perform different symmetry transformations at different points of space–time:
such transformations have come to be known as local symmetries, as opposed to rigid transformations, which are the same
at all points of space–time and are commonly referred to as global symmetries.1

One of the reasons why gauge theories are so natural is that there is a standard procedure, due to Hermann Weyl,
for ‘‘gauging’’ a global symmetry so as to promote it to a local symmetry, or, to put it differently, for constructing a field
theory with local symmetries out of any given field theory with global symmetries. A salient feature of this method is
that it requires the introduction of a new field, the gauge potential, which is needed to define covariant derivatives that
replace ordinary (partial) derivatives: such a prescription, known as ‘‘minimal coupling’’, is already familiar from general
relativity. (A subsequent step is to provide the gauge potential with a dynamics of its own.) In his original proposal [1], Weyl
explored the possibility of applying this construction to scale transformations and, by converting scale invariance into a local
symmetry, of arriving at a unified theory of gravity and electromagnetism. Although this version was almost immediately
dismissed2 after Einstein had argued that it leads to physically unacceptable predictions, the method as such persisted.
It became fruitful after the advent of quantum mechanics, when, in his modified proposal [2], Weyl applied the same
construction to phase transformations and showed that by converting phase invariance, which is a characteristic feature
of quantum mechanics, into a local symmetry, the electromagnetic field (or better, the electromagnetic potential) emerges

∗ Corresponding author.
E-mail addresses: forger@ime.usp.br (M. Forger), bsoares@ime.usp.br (B.L. Soares).

1 In this paper, when speaking of symmetries (local or global), we are tacitly assuming that we are dealingwith continuous symmetries, not with discrete
ones.
2 Somewhat ironically, an important remnant of this very first attempt at a unification between the fundamental interactions (the only two known ones

at that time) is the persistent use of the word ‘‘gauge’’.

0393-0440/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2012.05.003

http://dx.doi.org/10.1016/j.geomphys.2012.05.003
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
mailto:forger@ime.usp.br
mailto:bsoares@ime.usp.br
http://dx.doi.org/10.1016/j.geomphys.2012.05.003


1926 M. Forger, B.L. Soares / Journal of Geometry and Physics 62 (2012) 1925–1938

naturally. In this way, Weyl created the concept of a gauge theory and established electromagnetism (coupled to matter) as
its first example. In the 1950s, these ideas were extended from the abelian group U(1) of quantum mechanical phases to
the non-abelian isospin group SU(2) [3] and, soon after, to general compact connected Lie groups G [4].

Another aspect that deserves to be mentioned in this context is that the field theory governing the only one of the
four fundamental interactions not covered by gauge theories of the standard Yang–Mills type, namely Einstein’s general
relativity, also exhibits a kind of local symmetry (even though of a slightly different type), namely general coordinate
invariance. The same type of local symmetry, going under the name of reparameterization invariance, prevails in string
theory and membrane theory. Thus we may say that the concept of local symmetry pervades all of fundamental physics.

Unfortunately, there is one basic mathematical aspect of local symmetries which is the source of numerous difficulties:
the relevant symmetry groups are infinite-dimensional. For example, on an arbitrary space–time manifold M , gauging a
field theory which is invariant under the action of some connected compact Lie group G will lead to a field theory which,
in the simplest case where all fiber bundles involved are globally trivial, is invariant under the action of the infinite-
dimensional group C∞(M,G). Similarly, in general relativity, we find invariance under the action of the infinite-dimensional
group Diff(M): the diffeomorphism group of space–time [5]. The same type of local symmetry group also appears in string
theory and membrane theory, although in this case the manifold M is to be interpreted as a space of parameters and not
as space–time. As is well known, the mathematical difficulties one has to face when dealing with such infinite-dimensional
groups and their actions on infinite-dimensional spaces of field configurations or of solutions to the equations of motion
(covariant phase space) are enormous, in particular when M is not compact, as is the case for physically realistic models of
space–time [5].

In view of this situation, it would be highly desirable to recast the property of invariance of a field theory under local
symmetries into a form in which one deals exclusively with finite-dimensional objects. That such a reformulation might be
possible is suggested by observing that gauge transformations are, in a very specific sense, localized in space–time: according
to the principle of relativistic causality, performing a gauge transformation in a certain region can have no effect in other,
causally disjoint regions. Intuitively speaking, gauge transformations are ‘‘spread out’’ over space–time, and this should
make it possible to eliminate all reference to infinite-dimensional objects if one looks at what happens at each point of
space–time separately and only fits the results together at the very end.

This idea can be readily implemented in mechanics, where space–time M is reduced to a copy of the real line R
representing the time axis. In the context of the lagrangian formulation, the procedure works as follows. Consider an
autonomous mechanical system3 with configuration space Q and lagrangian L, which is a given function on the tangent
bundle TQ of Q : its dynamics is specified by postulating the solutions of the equations of motion of the system to be the
stationary points of the action functional S associated with an arbitrary time interval [t0, t1], defined by

S[q] =

 t1

t0
dtL(q(t), q̇(t)) (1)

for curves q ∈ C∞(R,Q ) in Q . To implement the notion of symmetry, we must fix a Lie group G together with an action

G × Q −→ Q
(g, q) −→ g · q

(2)

of G on Q , and note that this induces an action

G × TQ −→ TQ
(g, (q, q̇)) −→ g · (q, q̇) = (g · q, g · q̇)

(3)

of G on the tangent bundle TQ of Q as well as, more generally, an action

TG × TQ −→ TQ
((g, Xg), (q, q̇)) −→ (g, Xg) · (q, q̇) = (g · q, g · q̇ + XQ (g · q))

(4)

of the tangent group TG of G on the tangent bundle TQ ofQ . (Here, we use that the tangent bundle TG of a Lie group G is again
a Lie group, whose group multiplication is simply the tangent map to the original one, and that we can use, for example,
right translations to establish a global trivialization

TG −→ G × g

(g, ġ) −→ (g, ġg−1),
(5)

which shows that TG is isomorphic to the semidirect product of Gwith its own Lie algebra g, allowing us to bring the induced
action of TG on TQ , which is simply the tangent map to the original action of G on Q , into the form given in Eq. (4).) Then
the system will exhibit a global symmetry under G if S is invariant under the induced action of G on curves in Q , that is, if

3 The generalization to non-autonomous systems is straightforward.
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S[g ·q] = S[q], where (g ·q)(t) = g ·q(t); obviously, this will be the case if and only if the lagrangian L is invariant under the
action (3) of G on TQ . On the other hand, the systemwill exhibit a local symmetry under G if S is invariant under the induced
action of curves in G on curves in Q , that is, if S[g · q] = S[q], where (g · q)(t) = g(t) · q(t). Now it is easily verified that
this will be so if and only if the lagrangian L is invariant under the action (4) of TG on TQ (see, e.g., Ref. [6]). In other words,
the condition of invariance of the action functional under the infinite-dimensional group C∞(R,G) can be reformulated as a
condition of invariance of the lagrangian under a finite-dimensional Lie group, which is simply the tangent group TG of the
original global symmetry group G. Moreover, it is also shown in Ref. [6] how one can use this approach to ‘‘gauge’’ a given
global symmetry to promote it to a local symmetry, provided that one replaces the configuration space Q by its cartesian
product with the Lie algebra g and studies the dynamics of curves (q,A) where A is a Lagrange multiplier: the mechanical
analogue of the gauge potential. Of course, in mechanics, there is no natural dynamics for such a Lagrange multiplier, since
the ‘‘curvature’’ of this ‘‘connection’’ vanishes identically.

The main goal of the present paper, which is based on the PhD thesis of the second author [7], is to show how one can
implement the same program – recasting local symmetries in a purely finite-dimensional setting – in field theory, that is,
for fully fledged gauge theories and in a completely geometric setup. As we shall see, this requires an important extension
of the mathematical tools employed to describe symmetries: the passage from Lie groups and their actions on manifolds to
Lie group bundles and their actions on fiber bundles (over the same base manifold).

The formulation of (classical) gauge theories in the language ofmodern differential geometry is an extensive subject that,
since its beginnings in the 1970s, has been addressed bymany authors and has become standardwisdom; some references in
this direction which have been useful in the course of our work are [8–13]. In this general context, there is a very interesting
but apparently much less widely known approach, namely the theory of ‘‘gauge natural bundles’’, developed by Eck [14],
and based on the earlier theory of ‘‘natural bundles’’ initiated by Nijenhuis [15] and further elaborated by Terng [16].4
A comprehensive exposition of this subject can be found in [17], and a further extension to ‘‘natural’’ and ‘‘gauge natural’’
classical field theories is presented in [18]. A result of central importance for that area is the theorem of Peetre (in its various
diverse versions), which implies that ‘‘natural’’ and ‘‘gauge natural’’ operations are of local nature and, more than that, of
finite order, thus achieving the same goal as that advocated here: the reduction of infinite-dimensional symmetries to a
finite-dimensional setting.

In addition, the functorial interpretation of geometric constructions on which these concepts of ‘‘naturality’’ and ‘‘gauge
naturality’’ are based has recently found another fruitful application, namely in the formulation of the axioms of algebraic
quantum field theory on curved space–time [19], lending further support to the conviction that this circle of ideas provides
the most adequate realization of Einstein’s principle of general covariance, as well as of the principle of gauge invariance,
found so far.

However, in this paper, we pursue amoremodest goal, proposing to investigate an alternativemethod for implementing
symmetry principles in classical field theory, again in such a way as to reduce infinite-dimensional objects to finite-
dimensional ones: it appears whenwe replace Lie groups and their actions onmanifolds by Lie groupoids (over space–time)
and their actions on fiber bundles (over space–time); see [20] for the underlyingmathematical theory. (Note that the concept
of Lie groupoid or the corresponding infinitesimal concept of Lie algebroid does not appear at all in Refs. [14–18]. On the
other hand, the use of Lie groupoids in gauge theories has already been advocated by some authors [21,22].)

As a first step, we want to deal with what physicists call ‘‘internal symmetries’’ (corresponding to the case of ‘‘gauge
natural bundles’’), as opposed to the more general ‘‘internal plus space–time symmetries’’ (corresponding to the case of
‘‘natural plus gauge natural bundles’’). This amounts to restricting Lie groupoids to Lie group bundles. Indeed, Lie group
bundles can be regarded as a special class of Lie groupoids, namely, Lie groupoids which are locally trivial and such that the
source and target projections coincide [20]. The main reason for this restriction (which we plan to remove in a subsequent
paper) is technical: there are various familiar constructions from the theory of Lie groups which can be extended in a fairly
straightforwardmanner to Lie group bundles but are farmore difficult to formulate for general Lie groupoids. As an example
which is relevant here, consider the fact used above that the tangent bundle TG of a Lie group G is a Lie group and the tangent
map to an action of a Lie group G is an action of the tangent Lie group TG: its natural extension to Lie group bundles is
formulated in Theorems 1 and 2 below, but the question of how to extend it to general Lie groupoids – i.e., how to define
the jet groupoid of a Lie groupoid as a new Lie groupoid, so that J becomes a functor not only on fiber bundles but also on
Lie groupoids, and in such a way as to ensure that these two jet functors are compatible with actions, i.e., when applied to
the action of a Lie groupoid on a fiber bundle, they provide an induced action of the jet groupoid on the jet bundle – does
not seem to have been addressed anywhere in the literature. Another example would be the question of how to define the
notion of invariance of a tensor field under the action of a Lie groupoid. Thus handling the case of Lie group bundles first is,
at least, a useful intermediate step since, intuitively speaking, Lie group bundles occupy a place ‘‘halfway in between’’ Lie
groups and general Lie groupoids. However, we believe that the theory of Lie group bundles deserves a separate treatment
also because it has a flavor of its own: it should not be regarded as just a special case of the theory of general Lie groupoids.

4 It should be noted that the term ‘‘bundle’’ in this context is really an unfortunate misnomer that has led to widespread misunderstandings about the
nature of the whole approach. What one is really dealing with are certain functors between certain categories of manifolds and of bundles.
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2. Jet bundles and the connection bundle

The theory of jet bundles – as exposed, for example, in Ref. [23] – is an important tool in differential geometry and,
in particular, it plays a central role in the understanding of symmetries in gauge theories as advocated in this paper. The
abstract definition of jets of arbitrary order (as equivalence classes of local maps whose Taylor expansions coincide up to
that order) is simple, but handling them in practice is difficult, because the transformation law of higher-order derivatives
under changes of local coordinates is complicated. Fortunately, explicit expressions will not be needed here, since in first
and second order (which is all we are going to consider) there are alternative definitions that are simpler [24]. In fact, given
a fiber bundle E over a manifoldM with projection π : E −→ M , we can define its first-order jet bundle JE and its linearized
first-order jet bundle J⃗E as follows: for any point e in E with base pointm = π(e) inM , let L(TmM, TeE) denote the space of
linear maps from the tangent space TmM to the tangent space TeE, and consider the affine subspace

JeE = {u ∈ L(TmM, TeE) | Teπ ◦ u = idTmM}, (6)

and its difference vector space

J⃗eE = L(TmM, VeE) = T ∗

mM ⊗ VeE, (7)

where VeE = ker Teπ is the vertical space of E at e; note that this not only defines JE as an affine bundle over E and J⃗E as a
vector bundle over E with respect to the target projection (which takes JeE and J⃗eE to e), but also defines both of them as fiber
bundles over M with respect to the source projection (which takes JeE and J⃗eE to m = π(e)). Moreover, composition with
the appropriate tangent maps provides a canonical procedure for associating with every strict homomorphism f : E −→ F
of fiber bundles E and F over M a homomorphism Jf : JE −→ JF of affine bundles (sometimes called the jet prolongation
of f ) and a homomorphism J⃗ f : J⃗E −→ J⃗F of vector bundles covering f : in this way, J and J⃗ become functors. Iterating
the construction, we can also define the second-order jet bundle J2E by (a) considering the iterated first-order jet bundle
J(JE), (b) passing to the so-called semiholonomic second-order jet bundle J̄2E, which is the affine subbundle of J(JE) over JE
defined by the condition

J̄2E = {w ∈ J(JE) | τJE(w) = JτE(w)}, (8)

where τE and τJE are the target projections of JE and of J(JE), respectively, while JτE : J(JE) −→ JE is the jet prolongation
of τE : JE −→ E, and (c) decomposing this, as a fiber product of affine bundles over JE, into a symmetric part and an
antisymmetric part: the former is precisely J2E and is an affine bundle over JE, with difference vector bundle equal to the
pull-back to JE of the vector bundle π∗(

2 T ∗M) ⊗ VE over E by the target projection τE , whereas the latter is a vector
bundle over JE, namely the pull-back to JE of the vector bundle π∗(

2 T ∗M) ⊗ VE over E by the target projection τE :

J̄2E ∼= J2E ×JE τ ∗

E


π∗


2

T ∗M


⊗ VE



J⃗2E ∼= τ ∗

E


π∗


2

T ∗M


⊗ VE


.

(9)

Turning to gauge theories, we begin by recalling that the starting point for the formulation of a gauge theory is the
choice of (a) a Lie group G, with Lie algebra g, (b) a principal G-bundle P over the space–time manifold M with projection
ρ : P −→ M and carrying a naturally defined right action of G that will be written in the form

P × G −→ P
(p, g) −→ p · g,

(10)

and (c) a manifold Q carrying an action of G as in Eq. (2) above, so that we can form the associated bundle E = P ×G Q over
M as well as the connection bundle CP = JP/G over M . Sections of E represent the (multiplet of all) matter fields present
in the theory, whereas sections of CP represent the gauge potentials (connections). The group G is usually referred to as
the structure group of the model: it contains a compact ‘‘internal part’’ (e.g., a U(1) factor for electrodynamics or, more
generally, an SU(2) × U(1) factor for the electroweak theory, an SU(3) factor for chromodynamics, etc.) but possibly also a
non-compact ‘‘space–time part’’ which is an appropriate spin group, in order to accommodate tensor and spinor fields.

The constructions of the associated bundle E = P ×G Q and of the connection bundle CP = JP/G are standard (both can
be obtained as quotients by a free action of G), and we just recall a few basic aspects in order to fix notation.

The first arises from the cartesian product P × Q , on which G acts according to

g · (p, q) = (p · g−1, g · q),

and we denote the equivalence class (orbit) of a point (p, q) ∈ P × Q by [p, q] ∈ P ×G Q .
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The second is obtained from the first-order jet bundle JP of P , which carries a natural right G-action induced from the
given right G-action on P by taking derivatives (jets) of local sections: for any pointm ∈ M ,

(jmσ) · g = jm(σ · g),

and we denote the equivalence class (orbit) of a point jmσ ∈ JP by [jmσ ] ∈ CP . Such an equivalence class can be identified
with a horizontal lifting map on the fiber Pm of P atm, that is, a G-equivariant homomorphism

Γm : Pm × TmM −→ TP | Pm

of vector bundles over Pm which, when composed with the restriction to TP | Pm of the tangent map Tρ : TP −→ TM to
the principal bundle projection ρ : P −→ M , gives the identity. Still another representation, and the most useful one for
practical purposes, is in terms of a connection form on the fiber Pm of P at m, that is, a G-equivariant 1-form Am on Pm with
values in the Lie algebra g whose restriction to the vertical subspace VpP at each point p of Pm coincides with the canonical
isomorphism of VpP with g given by the standard formula for fundamental vector fields,

g −→ VpP
X −→ X̂P(p)

where X̂P(p) =
d
dt

p · exp(tX)


t=0

,

the relation between the two being that the image of Γm coincides with the kernel of Am. Since JP is an affine bundle over
P , with difference vector bundle J⃗P ∼= ρ∗(T ∗M) ⊗ VP , where VP is the vertical bundle of P , which in turn is canonically
isomorphic to the trivial vector bundle P × g over P , and since G acts by fiberwise affine transformations on JP and
by fiberwise linear transformations on J⃗P , it follows that CP is an affine bundle over M , with difference vector bundle
C⃗P ∼= T ∗M ⊗ (P ×G g).

Finally, we shall also need to consider the first-order jet bundle of the connection bundle, which turns out to admit a
canonical decomposition into a symmetric and an antisymmetric part. To derive this, note that, when we lift the given right
G-action from P first to JP as above and then to J(JP) by applying the same prescription again, the semiholonomic second-
order jet bundle J̄2P will be a G-invariant subbundle of J(JP), and its quotient by G will be precisely J(CP):

J(CP) ∼= J̄2P/G. (11)

But the canonical decomposition of J̄2P into symmetric and antisymmetric parts as given in Eq. (9), when specialized to
principal bundles, ismanifestlyG-invariant, sowe candivide by theG-action to arrive at the desired canonical decomposition
of J(CP), as a fiber product of affine bundles over CP , into a symmetric part (an affine bundle) and an antisymmetric part
(vector bundle):

J(CP) ∼= (J2P)/G ×CP π∗

CP


2

T ∗M ⊗ (P ×G g)



(J⃗2P)/G ∼= π∗

CP


2

T ∗M ⊗ (P ×G g)


.

(12)

The projection onto the second summand in this decomposition is called the curvature map because, at the level of sections,
it maps the 1-jet of a connection form A to its curvature form FA. See Theorem 1 of Ref. [12] and Theorems 5.3.4 and 5.3.5 of
Ref. [23].

3. Gauge group bundles and their actions

In this section, we introduce the basic object that we use to describe symmetries in gauge theories within a purely finite-
dimensional setting: the gauge group bundle and its descendants. All of these are Lie group bundles which admit certain
natural actions on various of the bundles introduced before and/or their descendants: our aim here will be to define them
rigorously. In order to do so, we must first introduce the notion of a Lie group bundle and of an action of a Lie group bundle
on a fiber bundle (over the same base manifold): this involves the concept of a locally constant structure on a fiber bundle.

Let E be a fiber bundle over a base manifold M with projection π : E → M and typical fiber E0, and suppose that both
E0 and every fiber Em of E are equipped with some determined geometric structure of the same kind. We say that such a
geometric structure is locally constant along M if there exists a family (Φα)α∈A of local trivializationsΦα : π−1(Uα) → Uα×E0
of E whose domains Uα cover M and such that, for every point m in Uα , the diffeomorphism (Φα)m : Em → E0 is structure
preserving: any (local) trivialization of this kind will be called compatible.

Definition 1. A Lie group bundle (often abbreviated to LGB) over a given base manifold M is a fiber bundle Ḡ over M whose
typical fiber is a Lie group G and which comes equipped with a strict bundle homomorphism overM ,

Ḡ×M Ḡ −→ Ḡ
(h, g) −→ hg,

(13)
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calledmultiplication or the product, a global section 1 of Ḡ called the unit, and a strict bundle homomorphism overM ,

Ḡ −→ Ḡ

g −→ g−1,
(14)

called inversion, which, taken together, define a Lie group structure in each fiber of Ḡ that is locally constant alongM .

This definition coincides with the one adopted in Ref. [20, p. 11].

Example 1. Let P be a principal bundle over a given manifold M with structure group G and bundle projection ρ : P → M .
Then the associated bundle P ×G G, where G is supposed to act on itself by conjugation, is a Lie group bundle over M , if we
define multiplication by

[p, h][p, g] = [p, hg], (15)

the unit by

1ρ(p) = [p, 1], (16)

and inversion by

[p, g]−1
= [p, g−1

]. (17)

We call it the gauge group bundle associated with P because the group of its sections is naturally isomorphic to the group of
strict automorphisms of P , which is usually referred to as the group of gauge transformations (or sometimes simply, though
somewhat misleadingly, the gauge group) associated with P:

Γ (P ×G G) ∼= Auts(P). (18)

Definition 2. An action of a Lie group bundle Ḡ on a fiber bundle E, both over the same given base manifold M , is a strict
bundle homomorphism overM ,

Ḡ×M E −→ E
(g, e) −→ g · e,

(19)

which defines an action of each fiber of Ḡ on the corresponding fiber of E that is locally constant alongM .

Example 2. Let P be a principal bundle over a given manifold M with structure group G and bundle projection ρ : P → M ,
and let Q be a manifold carrying an action of G as in Eq. (2) above. Then the gauge group bundle P ×G G acts naturally on the
associated bundle P ×G Q , according to

[p, g] · [p, q] = [p, g · q]. (20)

A particular case occurs if we take Q to be G itself, but this time letting G (the structure group) act on G (the typical fiber)
by left translation: using the fact that the resulting associated bundle is canonically isomorphic to P itself,5we see that the
gauge group bundle P ×G G acts naturally on P itself, according to

[p, g] · (p · g0) = p · (gg0). (21)

Note that this (left) action of P ×G G on P commutes with the (right) action of G on P specified in Eq. (10) above, a fact which
can be viewed as a natural generalization, from Lie groups to principal bundles and bundles of Lie groups, of the well-known
statement that left translations commute with right translations (and to which it reduces whenM is a single point).

Bundles of Lie groups and their actions also behave naturally under taking derivatives. For example, we have the
following.

Proposition 1. An action of a Lie group bundle Ḡ on a fiber bundle E, both over the same base manifold M, induces in a natural
way actions of Ḡ on the vertical bundle VE of E and on the linearized jet bundle J⃗E of E.

5 Explicitly, this isomorphism is given by mapping [p, g] to p.
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Explicitly, the first of these induced actions is defined by

g ·
d
dt

e(t)

t=0

=
d
dt

(g · e(t))

t=0

form ∈ M, g ∈ Ḡm, e any smooth curve in Em, (22)

whereas the second is obtained by taking its tensor product with the trivial action of Ḡ on the cotangent bundle T ∗M of M ,
using the canonical isomorphism J⃗E ∼= π∗(T ∗M) ⊗ VE.
In a slightly different direction, we note the following.

Theorem 1. Let Ḡ be a Lie group bundle over M. Then, for any r > 1, its rth-order jet bundle J r Ḡ is also a Lie group bundle over
M.6 (When r = 1, we often omit the superfix r.)

Theorem 2. An action of a Lie group bundle Ḡ on a fiber bundle E, both over the same base manifold M, induces in a natural way
an action of J r Ḡ on J rE, for any r > 1. (When r = 1, we often omit the superfix r.)

Proof. Both theorems are direct consequences of the fact that the procedure of taking rth-order jets is a functor, together
with the fact that, for any two fiber bundles E and F over the same base manifoldM , there is a canonical isomorphism

J r(E ×M F) ∼= J rE ×M J rF

induced by the identification of (local) sections of E ×M F with pairs of (local) sections of E and of F . More specifically, we
define the product, the unit, and the inversion in J r Ḡ by extending the product, the unit, and the inversion in Ḡ, respectively,
pointwise to local sections and then taking rth-order jets, and, similarly, we define the action of J r Ḡ on J rE by extending the
action of Ḡ on E pointwise to local sections and then taking rth-order jets. �

Example 3. Let P be a principal bundle over a given manifold M with structure group G and bundle projection ρ : P → M .
Then, for any r > 1, the rth-order jet bundle J r(P ×G G) of the gauge group bundle P ×G G is a Lie group bundle over M
which we shall call the (rth-order) derived gauge group bundle associated with P . (When r = 1, we often omit the prefix
‘‘first-order’’.)

With these tools at our disposal, we proceed to define various actions of the gauge group bundle and the (first-order
and second-order) derived gauge group bundles that play an important role in the analysis of symmetries in gauge theories.
Starting with the action

(P ×G G) × (P ×G Q ) −→ P ×G Q (23)

of the gauge group bundle P ×G G on the matter field bundle P ×G Q already mentioned in Example 2 (cf. Eq. (20)), consider
first the induced action

(P ×G G) × V (P ×G Q ) −→ V (P ×G Q ) (24)

of P ×G G on the vertical bundle V (P ×G Q ) of P ×G Q obtained by taking derivatives along the fibers (this corresponds to the
transition from the action (2) to the action (3), using that, for each point m in M , the fiber of V (P ×G Q ) over m is precisely
the tangent bundle of the fiber of P ×G Q overm), and extend it trivially to an action

(P ×G G) × J⃗(P ×G Q ) −→ J⃗(P ×G Q ) (25)

of P ×G G on the linearized first-order jet bundle J⃗(P ×G Q ) of P ×G Q , using the canonical isomorphism

J⃗(P ×G Q ) ∼= π∗(T ∗M) ⊗ V (P ×G Q )

and taking the tensor product with appropriate identities on π∗(T ∗M). Similarly, the action (23) induces an action

J(P ×G G) × J(P ×G Q ) −→ J(P ×G Q ) (26)

of J(P ×G G) on the first-order jet bundle J(P ×G Q ) of P ×G Q , obtained by applying Theorem 2 (with r = 1). On the other
hand, starting with the action

(P ×G G) × P −→ P

of the gauge group bundle P ×G G on the principal bundle P itself already mentioned in Example 2 (cf. Eq. (20)), which
commutes with the (right) action of G on P , Theorem 2 (with r = 1) provides an action

J(P ×G G) × JP −→ JP

6 One should note that an analogous statement for principal bundles would be false: the fact that P is a principal bundle does not imply that J rP is a
principal bundle.
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of J(P ×G G) on the first-order jet bundle JP of P which commutes with the induced (right) action of G on JP , and therefore
factors through the quotient to yield an action

J(P ×G G) × CP −→ CP (27)

of J(P ×G G) on the connection bundle CP of P . Finally, applying Theorem 2 (with r = 1) once more and using the fact that
J2(P ×G G) can be realized as a Lie group subbundle of the iterated Lie group bundle J(J(P ×G G)), we arrive at an action

J2(P ×G G) × J(CP) −→ J(CP) (28)

of J2(P ×G G) on the first-order jet bundle J(CP) of CP .

4. Local expressions

Our next goal will be to derive local expressions for the actions (23)–(28) to show that they are global versions of well-
known and intuitively obvious constructions used by physicists.

In order to build this bridge, the first obstacle to be overcome is the fact that physicists usuallywrite these actions in terms
of fields, that is, of (local) sections of the bundles involved, rather than the bundles themselves. In mathematical terms, this
corresponds to thinking in terms of sheaves, rather than bundles. Now, a Lie group bundle corresponds to a ‘‘locally constant’’
sheaf of Lie groups, and an action of a Lie groupbundle on a fiber bundle corresponds to a ‘‘locally constant’’ action of a ‘‘locally
constant’’ sheaf of Lie groups on a ‘‘locally constant’’ sheaf of manifolds. Explicitly, these sheaves are obtained by associating
with each open subset U of the base manifold M the group Γ (U, Ḡ) of sections g of Ḡ over U and the space Γ (U, E) of
sections ϕ of E over U , and with each pair of open subsets of M , one of which is contained in the other, the appropriate
restriction maps. The requirement of local triviality then means that each point of M admits an open neighborhood such
that, for every open subset U of M contained in it, we have isomorphisms Γ (U, Ḡ) ∼= C∞(U,G) and Γ (U, E) ∼= C∞(U,Q ),
and the requirement of local constancy means that these isomorphisms can be chosen such that the product, the unit, and
the inversion in Γ (U, Ḡ) correspond to the pointwise defined product, unit, and inversion in C∞(U,G), and the action of
Γ (U, Ḡ) on Γ (U, E) corresponds to the pointwise defined action of C∞(U,G) on C∞(U,Q ):

(g1g2)(x) = g1(x) g2(x), g−1(x) = (g(x))−1 for x ∈ U
(g · ϕ)(x) = g(x) · ϕ(x) for x ∈ U .

This interpretation is particularly useful for considering induced actions of jet bundles of Ḡ on jet bundles of E, because it
allows one to state their definition in the simplest possible way: the action of JḠ on JE, say, induced by an action of Ḡ on E,
when translated from an action of fibers on fibers to an action of local sections on local sections, is simply given by taking
the derivative, according to the standard rules.

Let us apply this strategy to the actions of the gauge group bundle and its descendants introduced at the end of the
previous section. To this end, we assume throughout the rest of this section that U is an arbitrary but fixed coordinate
domain inM over which P is trivial, and that we have chosen a section σ of P over U , together with a system of coordinates
xµ on U: together, these will induce, for each of the bundles appearing in Eqs. (23)–(28), a trivialization over U which in turn
provides an isomorphism between its space of sections over U and an appropriate function space.7

Under the identifications Γ (U, P ×G G) ∼= C∞(U,G), Γ (U, P ×G Q ) ∼= C∞(U,Q ), Γ (U, V (P ×G Q )) ∼= C∞(U, TQ ) and
Γ (U, J⃗(P ×G Q )) ∼= Hom(TU, TQ ), for example, the actions (23)–(25) correspond, respectively, to an action

C∞(U,G) × C∞(U,Q ) −→ C∞(U,Q )

(g, ϕ) −→ g · ϕ
(29)

defined pointwise, i.e., by

(g · ϕ)(x) = g(x) · ϕ(x) for x ∈ U, (30)

as above, where the symbol · on the right-hand side (rhs) stands for the original action (2) of G on Q , to an action

C∞(U,G) × C∞(U, TQ ) −→ C∞(U, TQ )

(g, δϕ) −→ g · δϕ
(31)

defined pointwise, i.e., by

(g · δϕ)(x) = g(x) · δϕ(x) for x ∈ U, (32)

7 Among these function spaces we will find spaces of the form Hom(E, F), where E and F are vector bundles over (possibly different) manifolds M and
N , respectively, consisting of all vector bundle homomorphisms from E to F , that is, of all smooth maps from the manifold E to the manifold F which are
fiber preserving and fiberwise linear. As an example, note that, for f in C∞(M,N), its tangent map Tf , which we shall also denote by ∂ f , is in Hom(TM, TN).
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and to an action

C∞(U,G) × Hom(TU, TQ ) −→ Hom(TU, TQ )

(g,Dϕ) −→ g · Dϕ
(33)

defined pointwise, i.e., by

(g · Dϕ)(x, u) = g(x) · Dϕ(x, u) for x ∈ U, u ∈ TxM, (34)

where the symbol · on the rhs now stands for the induced action (3) of G on TQ , and we have used the symbols δϕ and Dϕ
to indicate that the transformation laws of these objects correspond to those of variations of sections8and of covariant
derivatives of sections.9 Similarly, under the identifications Γ (U, J(P ×G G)) ∼= Hom(TU, TG) and Γ (U, J(P ×G Q )) ∼=

Hom(TU, TQ ), the action (26) corresponds to an action

Hom(TU, TG) × Hom(TU, TQ ) −→ Hom(TU, TQ )

(∂g, ∂ϕ) −→ ∂g · ∂ϕ
(35)

defined pointwise, i.e., by

(∂g · ∂ϕ)(x, u) = ∂g(x, u) · ∂ϕ(x, u) for x ∈ U, u ∈ TxM, (36)

where the symbol · on the rhs now stands for the induced action (4) of TG on TQ , andwe have used the symbol ∂ϕ to indicate
that the transformation law of this object corresponds to that of ordinary derivatives of sections; we can also imagine the
symbol ∂ϕ to represent the collection of all partial derivatives ∂µϕ of ϕ and, similarly, the symbol ∂g to represent the
collection of all partial derivatives ∂µg of g.

In order to deal with the remaining two actions, as well as to rewrite the last of the previous ones in a different form,
we use additional identifications provided by the trivialization (5) of the tangent bundle TG of G and by the interpretation
of sections of CP as connection forms to represent the pertinent objects in a more manageable form. Writing T 0

1 (U, g) =

Ω1(U, g) for the space of rank-1 tensor fields, or 1-forms, T 0
2 (U, g) for the space of rank-2 tensor fields, and T 0

2,s(U, g) for
the space of symmetric rank-2 tensor fields on U with values in g, the pertinent isomorphisms for the derived gauge group
bundles are

Γ (U, J(P ×G G)) ∼= Hom(TU, TG) ∼= Hom(TU,G × g) ∼= C∞(U,G) × T 0
1 (U, g),

and

Γ (U, J2(P ×G G)) ∼= C∞(U,G) × T 0
1 (U, g) × T 0

2,s(U, g),

while those for the connection bundle and its first-order jet bundle are

Γ (U, CP) ∼= T 0
1 (U, g),

and

Γ (U, J(CP)) ∼= T 0
1 (U, g) × T 0

2 (U, g),

respectively. Explicitly, in terms of a G-valued function g on U representing a section of P ×G G over U , the first two
isomorphisms are given by the prescription of taking its 1-jet, symbolically represented by the pair (g, ∂g), to the pair
(g, ∂g g−1) and its 2-jet, symbolically represented by the triple (g, ∂g, ∂2g), to the triple (g, ∂g g−1, ∂(∂g g−1)), where
we can imagine the expression ∂2g to represent the collection of all second-order partial derivatives ∂µ∂νg of g, while
the expression ∂(∂g g−1) is supposed to represent the collection of symmetrized partial derivatives ∂(µ(∂ν)g g−1), with
expansions into components as follows:

∂gg−1
= (∂µgg

−1) dxµ

∂(∂g g−1) =
1
2


∂µ(∂νgg

−1) + ∂ν(∂µgg
−1)

dxµ

⊗ dxν .

Similarly, the last two isomorphisms amount to representing a section of CP over U by a g-valued connection 1-form A on U
and its 1-jet by the pair (A, ∂A), where we can imagine the expression ∂A to represent the collection of all partial derivatives
∂µAν , with expansions into components as follows:

A = Aµ dxµ

∂A = ∂µAν dxµ
⊗ dxν .

8 Variations δϕ of a section ϕ of a fiber bundle E over M are formal first-order derivatives of one-parameter families (ϕs)−ϵ<s<ϵ of sections of E around
ϕ with respect to the parameter (ϕ0 = ϕ, dϕs/ds|s=0 = δϕ) and are therefore sections of the pull-back ϕ∗(VE) of the vertical bundle VE of E to M via ϕ. If,
formally, one considers the space Γ (E) of sections of E as a manifold, they form its tangent space at ϕ: Tϕ(Γ (E)) = Γ (ϕ∗(VE)).
9 Given an arbitrary connection in a fiber bundle E overM , which can be viewed as the choice of a horizontal bundle, or, equivalently, a vertical projection,

or, equivalently, a horizontal projection, one has a notion of covariant derivative: the covariant derivative of a section is obtained from its ordinary derivative
(tangent map) by composition with the vertical projection. Thus, for any section ϕ of E and any pointm ∈ M , its ordinary derivative atm can be viewed as
belonging to the affine space Jϕ(m)E (jet space), but its covariant derivative atm belongs to the vector space J⃗ϕ(m)E (linearized jet space).
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With these identifications, the action (35) can be rewritten as an action

(C∞(U,G) × T 0
1 (U, g)) × Hom(TU, TQ ) −→ Hom(TU, TQ )

((g, ∂gg−1), ∂ϕ) −→ (g, ∂gg−1) · ∂ϕ
(37)

defined pointwise, i.e., by

((g, ∂gg−1) · ∂ϕ)(x, u) = g(x) · (∂ϕ(x, u)) +

(∂gg−1)(x, u)


Q (g(x) · ϕ(x)) for x ∈ U, u ∈ TxM, (38)

where the second symbol · on the rhs stands for the original action (2) of G on Q , the first symbol · on the rhs for the induced
action (3) of G on TQ , and, for any X ∈ g, XQ denotes the fundamental vector field on Q associated with this generator: this
is the precise meaning of the intuitive but formal ‘‘Leibniz rule for group actions’’:

∂(g · ϕ) = g · ∂ϕ + ∂g · ϕ.

Similarly, the action (27) corresponds to an action
C∞(U,G) × T 0

1 (U, g)

× T 0

1 (U, g) −→ T 0
1 (U, g) (39)

taking

g, ∂gg−1


, A

to

g, ∂gg−1


· A, which is given by the well-known transformation law

g, ∂gg−1
· A

µ

= gAµ g−1
− ∂µgg

−1, (40)

and finally the action (28) corresponds to an action
C∞(U,G) × T 0

1 (U, g) × T 0
2,s(U, g)


×

T 0

1 (U, g) × T 0
2 (U, g)


−→ T 0

1 (U, g) × T 0
2 (U, g), (41)

taking

g, ∂gg−1, ∂(∂g g−1)


, (A, ∂A)


to

g, ∂gg−1, ∂(∂g g−1)


· (A, ∂A), which is given by differentiating Eq. (40) and

rearranging terms:
g, ∂gg−1, ∂(∂g g−1)


· (A, ∂A)


µν

= g ∂µAν g−1
+ [∂µgg

−1, gAνg
−1

] −
1
2

[∂µgg
−1, ∂νgg

−1
]

−
1
2

∂µ(∂νgg
−1) −

1
2

∂ν(∂µgg
−1). (42)

For later use, we decompose this transformation law into its symmetric part,
g, ∂gg−1, ∂(∂g g−1)


· (A, ∂A)


µν

+

g, ∂gg−1, ∂(∂g g−1)


· (A, ∂A)


νµ

= g

∂µAν + ∂νAµ


g−1

+ [∂µgg
−1, gAνg

−1
] + [∂νgg

−1, gAµg
−1

] −
1
2

∂µ(∂νgg
−1) −

1
2

∂ν(∂µgg
−1), (43)

and its antisymmetric part,
g, ∂gg−1, ∂(∂g g−1)


· (A, ∂A)


µν

−

g, ∂gg−1, ∂(∂g g−1)


· (A, ∂A)


νµ

= g

∂µAν − ∂νAµ


g−1

+ [∂µgg
−1, gAνg

−1
] − [∂νgg

−1, gAµg
−1

] − [∂µgg
−1, ∂νgg

−1
], (44)

the latter being equivalent to the simple transformation law

(g · F)µν = gFµνg
−1 (45)

for the curvature form F of the connection form A, with components

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν].

As is well known, the affine transformation law (40) implies that one can, at any given point of M , gauge the potential A to
zero by an appropriate choice of gauge transformation, namely by assuming that, at the given point x, the value of g is 1 and
that of its first-order partial derivatives is given by ∂µg(x) = Aµ(x). In the language adopted here, this translates into the
following.

Proposition 2. The action of J(P ×G G) on CP is fiber transitive.

Similarly, the affine transformation laws (42)–(44) imply that one can, at any given point of M , gauge the potential A to
zero, the symmetric part of its derivative to zero, and the antisymmetric part of its derivative to be equal to its curvature
by an appropriate choice of gauge transformation, namely by assuming that, at the given point x, the value of g is 1, that
of its first-order partial derivatives is given by ∂µg(x) = Aµ(x), and that of its second-order partial derivatives is given by
∂µ(∂νg g−1) + ∂ν(∂µg g−1)


(x) =


∂µAν + ∂νAµ


(x). In the language adopted here, this translates into the following.

Proposition 3. The action of J2(P ×G G) on J(CP) preserves the decomposition (12) into symmetric and antisymmetric parts, is
fiber transitive on the symmetric part, and under the curvature map (which is the projection to the antisymmetric part) is taken
to the natural action of P ×G G on

2 T ∗M ⊗ (P ×G g) induced by the adjoint representation of G on g.
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5. Global and local invariance

In the usual geometric formulation of a gauge theory with structure group G and underlying principal G-bundle P over
space–time M , gauge potentials are represented by connection forms A on P , which can be reinterpreted as sections of the
bundle CP of principal connections on P , and the matter fields (all assembled into one big multiplet) by sections of a fiber
bundle P ×G Q associated to P . The configuration bundle of thewhole theory is thus the fiber product E = CP ×M (P ×G Q ).
The group Aut(P) of automorphisms of P and the subgroup Gau(P) of gauge transformations, or in mathematical terms, of
strict automorphisms of P , act naturally on Γ (CP) and on Γ (P ×G Q ) and, therefore, also on Γ (E), and it is to this group
and its actions that one usually refers to when speaking about gauge invariance. Unfortunately, the group Gau(P) and all
the spaces on which it acts are infinite-dimensional, which makes this kind of symmetry very hard to handle. As observed
in the introduction, this happens already in the case of mechanics. And precisely as in that case, there is a way out: we can
convert the principle of gauge invariance into a completely finite-dimensional setting by making use of the natural actions
of Lie group bundles introduced in the preceding two sections. In fact, in a completely geometric formulation of field theory,
even the correct implementation of global symmetries, in the matter field sector, already requires the use of actions of Lie
group bundles over space–time, rather than just ordinary Lie groups!

At first sight, the reader will probably find the last statement rather surprising (we certainly did when we first stumbled
over it), partly because it seems to go against widespread belief (but as the reader will be able to check as we go along,
this is not really the case), partly also because it is not immediately visible in the mechanical analogue discussed in the
introduction. However, its origins are really quite easy to understand. Consider, for example, a function V on the total space
P ×G Q , whichmay represent a potential term for somematter field lagrangian: then, since it is not the Lie group G itself but
rather the Lie group bundle P ×G G that acts naturally on this total space,10the only way to formulate the condition that V be
globally invariant is to require V to be invariant under the action of P ×G G. For a truly dynamical theory, with configuration
bundle P ×G Q , we must include not only the ‘‘basic’’ fields, which are sections of P ×G Q , but also the ‘‘composite’’ fields,
including as a particular case the derivatives of the ‘‘basic’’ fields. For simplicity, we shall assume, as always in this paper,
that the dynamics of the theory is governed by a first-order ‘‘matter field lagrangian’’, for which we shall contemplate three
slightly different options regarding the choice of its domain,11 depending on whether we use the linearized first-order jet
bundle J⃗(P ×G Q ) or the full first-order jet bundle J(P ×G Q ) of P ×G Q , and whether we include an explicit dependence on
connections or not.

• L⃗mat : J⃗(P ×G Q ) −→
n T ∗M: such a lagrangian will be called globally invariant if it is invariant under the action (25)

of the Lie group bundle P ×G G on J⃗(P ×G Q ).
• Lmat : J(P ×G Q ) −→

n T ∗M: such a lagrangian will be called locally invariant or gauge invariant if, for every compact
subset K of space–timeM , the action functional (Smat)K : Γ (P ×G Q ) −→ R defined by integration of Lmat over K , i.e.,

(Smat)K [ϕ] =


K

Lmat(ϕ, ∂ϕ), (46)

is invariant under the action of the group Gau(P).
• Lmat : CP ×M J(P ×G Q ) −→

n T ∗M: again, such a lagrangian will be called locally invariant or gauge invariant if,
for every compact subset K of space–time M , the action functional (Smat)K : Γ (CP ×M(P ×G Q )) −→ R defined by
integration of Lmat over K , i.e.,

(Smat)K [A, ϕ] =


K

Lmat(A, ϕ, ∂ϕ), (47)

is invariant under the action of the group Gau(P).

Regarding gauge invariance, we then have the following.

Theorem 3. The action functional Smat defined by integration of the lagrangianLmat over compact subsets of space–time is gauge
invariant if and only if the lagrangian Lmat is invariant under the action (26) of the Lie group bundle J(P ×G G) on J(P ×G Q ),
in the first case, and under the action of the Lie group bundle J(P ×G G) on CP ×M J(P ×G Q ) that results from combining its
actions (27) on CP and (26) on J(P ×G Q ), in the second case.

Proof. As observed in the preceding sections, the action (23) of P ×G G on P ×G Q , when lifted to sections, induces the
standard action of strict automorphisms of P on sections ϕ of P ×G Q , the action (26) of J(P ×G G) on J(P ×G Q ), when
lifted to sections, induces the standard action of strict automorphisms of P on sections of P ×G Q together with their first-
order derivatives, and finally the action (27) of J(P ×G G) on CP , when lifted to sections, induces the standard action of
strict automorphisms of P on connection forms on P by pull-back. Now, since gauge transformations do not move the

10 Recall that, in the definition of P ×G Q , we divide P × Q by the joint action of G, so P ×G Q no longer carries any remnants of the action of G on Q .
11 For the range, we use volume forms (pseudoscalars) rather than scalars: this allows us to integrate lagrangians over regions of space–time without
having to fix a separately defined volume form onM .
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points of space–time, invariance of the integral (Smat)K over any compact subset K of M is equivalent to invariance of the
integrand Lmat. �

It should be noted at this point that, without specifying further data, only the third of the above versions is physically
meaningful. Indeed, the function L⃗mat of the first version, by itself, is not an acceptable lagrangian, because lagrangians
in field theory must be defined on the first-order jet bundle and not on the linearized first-order jet bundle. On the other
hand, lagrangiansLmat as in the second version, depending only on thematter fields and their first-order partial derivatives,
are impossible to construct directly: all known examples require additional data. (In particular, this holds when the fields
are represented by sections of bundles which may be non-trivial or at least are not manifestly trivialized.) The only way to
overcome these problems, all in one single stroke, is to introduce some connection in P: thismay either be a fixed (preferably,
flat) background connection which allows us to identify J⃗(P ×G Q ) and J(P ×G Q ) (and is usually introduced tacitly, without
ever being mentioned explicitly), or it may itself be a dynamical variable, as indicated in the third version above. In the next
section, we shall show that, when this is done, there is a natural prescription, called ‘‘minimal coupling’’, that allows us to
pass from a globally invariant lagrangian L⃗mat on J⃗(P ×G Q ) to a locally invariant lagrangian Lmat on CP ×M J(P ×G Q ), and
back.

In the gauge field sector, the situation is completely analogous. Now, the configuration bundle is just CP , and the dynamics
of the theory is assumed to be governed by a first-order ‘‘gauge field lagrangian’’, which is amapLgauge : J(CP) −→

n T ∗M .
(The standard example is of course the Yang–Mills lagrangian.) Again, such a lagrangian will be called locally invariant or
gauge invariant if, for every compact subset K of space–time M , the action functional (Sgauge)K : Γ (CP) −→ R defined by
integration of Lgauge over K , i.e.,

(Sgauge)K [A] =


K

Lgauge(A, ∂A), (48)

is invariant under the action of the group Gau(P).

Theorem 4. The action functional Sgauge defined by integration of the lagrangian Lgauge over compact subsets of space–time is
gauge invariant if and only if the lagrangian Lgauge is invariant under the action (28) of the Lie group bundle J2(P ×G G) on J(CP).

Proof. As observed in the preceding sections, the action (27) of J(P ×G G) on CP , when lifted to sections, induces the standard
action of strict automorphisms of P on connection forms A on P , and the action (28) of J2(P ×G G) on J(CP), when lifted to
sections, induces the standard action of strict automorphisms of P on connection forms on P together with their first-order
derivatives. Now, since gauge transformations do not move the points of space–time, invariance of the integral (Smat)K over
any compact subset K of M is equivalent to invariance of the integrand Lmat. �

The general situation is handled by simply combining the previous constructions. The configuration bundle is now
E = CP ×M(P ×G Q ), as stated at the beginning of the section, and the dynamics of the complete theory is governed by
a total lagrangian L : JE −→

n T ∗M which is the sum of a ‘‘gauge field lagrangian’’ Lgauge, as before, and a ‘‘matter field
lagrangian’’ Lmat : CP ×M J(P ×G Q ) −→

n T ∗M:

L(A, ∂A, ϕ, ∂ϕ) = Lgauge(A, ∂A) + Lmat(A, ϕ, ∂ϕ). (49)

(Note that the gauge fields do appear in thematter field lagrangian – otherwise, there would be no coupling betweenmatter
fields and gauge fields and hence no interaction – but they appear only as auxiliary fields, or Lagrange multipliers, i.e.,
through the gauge potentials, without any derivatives.) The hypothesis of local (or gauge) invariance is then understood to
mean that both Lgauge and Lmat should be locally (or gauge) invariant, and so Theorems 3 and 4 apply as before.

6. Minimal coupling

In this section,wewant to show that the prescription of ‘‘minimal coupling’’, which plays a central role in the construction
of gauge invariant lagrangians for thematter field sector, can be understoodmathematically as a one-to-one correspondence
between globally invariant matter field lagrangians,

L⃗mat : J⃗(P ×G Q ) −→

n
T ∗M, (50)

and locally invariant matter field lagrangians,

Lmat : CP ×M J(P ×G Q ) −→

n
T ∗M. (51)
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The basic idea underlying this correspondence can be summarized in a simple commutative diagram,

J(P ×G G)

��

acts
on

//______ CP ×M J(P ×G Q )

D

��

Lmat ((PPPPPPPPPPPP

n T ∗M ,

P ×G G acts
on

//________ J⃗(P ×G Q )

L⃗mat

66nnnnnnnnnnnn

(52)

where the first vertical arrow is the target projection from J(P ×G G) to P ×G Gwhile the second vertical arrow is the covariant
derivative map defined by

D(A, ϕ, ∂ϕ) = (ϕ,DAϕ), (53)
where, for any local section ϕ of P ×G Q , its covariant derivative DAϕ with respect to A can be defined simply as the
composition of its standard derivative ∂ϕ with the corresponding vertical projection. As indicated in the diagram, this map
is equivariant under the respective actions of the Lie group bundles J(P ×G G) and P ×G G, and even more than that is true:
it takes the J(P ×G G)-orbits in CP ×M J(P ×G Q ) precisely onto the (P ×G G)-orbits in J⃗(P ×G Q ). This proves our claim that
the formula

Lmat(A, ϕ, ∂ϕ) = L⃗mat(ϕ,DAϕ) (54)
establishes a one-to-one correspondence between (

n T ∗M)-valued functions Lmat on CP ×M J(P ×G Q ) and (
n T ∗M)-

valued functions L⃗mat on J⃗(P ×G Q ): this construction of the former from the latter is what is known as the prescription of
minimal coupling.

7. Utiyama’s theorem

Another important fact concerning the construction of gauge invariant lagrangians, this time in the gauge field sector,
is known as Utiyama’s theorem: it states, roughly speaking, that any gauge invariant lagrangian in the gauge field sector
must be a function only of the curvature tensor and its covariant derivatives. In the present context, where we consider only
first-order lagrangians, it can be understood mathematically as a one-to-one correspondence between globally invariant
lagrangians

Lcurv :

2
T ∗M ⊗ (P ×G g) −→

n
T ∗M, (55)

and locally invariant gauge field lagrangians

Lgauge : J(CP) −→

n
T ∗M. (56)

Again, the basic idea underlying this correspondence can be summarized in a simple commutative diagram,

J2(P ×G G)

��

acts
on

//_________ J(CP)

F

��

Lgauge ((QQQQQQQQQQQQQ

n T ∗M ,

P ×G G acts
on

//_______ 2 T ∗M ⊗ (P ×G g)

Lcurv

66mmmmmmmmmmmmm

(57)

where the first vertical arrow is the target projection from J2(P ×G G) to P ×G G while the second vertical arrow is the
curvature map that to each connection form A associates its curvature form FA. As indicated in the diagram, this map is
equivariant under the respective actions of the Lie group bundles J2(P ×G G) and P ×G G, and, as stated in Proposition 3, it
takes the J2(P ×G G)-orbits in J(CP) precisely onto the (P ×G G)-orbits in

2 T ∗M ⊗ (P ×G g). This proves our claim that the
formula

Lgauge(A, ∂A) = Lcurv(FA) (58)
establishes a one-to-one correspondence between (

n T ∗M)-valued functions Lgauge on J(CP) and (
n T ∗M)-valued

functions Lcurv on
2 T ∗M ⊗ (P ×G g).
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8. Conclusions and outlook

Aswehave tried to demonstrate in this paper, the concept of Lie groupbundles and their actions on fiber bundles (over the
same base manifold M) is an appropriate mathematical tool for dealing with internal symmetries in classical field theory
within a geometric and at the same time purely finite-dimensional framework, as opposed to the – inherently infinite-
dimensional – functional approach. This general statement applies not only to local symmetries but, perhaps somewhat
surprisingly, even to global symmetries, allowing one to view the passage from the latter to the former – generally known
as the procedure of ‘‘gauging a symmetry’’ – simply as the transition from the original Lie group bundle to its jet bundle. Our
approach is a continuation and generalization of a similar one developed earlier in the context of classical mechanics [6], to
which it reduces when one (a) takesM = R, which implies that the principal G-bundle P overM is trivial (and hence so are
all other bundles involved), and (b) supposes that a fixed trivialization has been chosen: then the product in P ×G G ∼= R×G
and its action on P ×G Q ∼= R ×Q do not depend on the base point, or in other words, they reduce to an ordinary Lie group
product in G and an ordinary action of G on the manifold Q . Similarly, the induced product in J(P ×G G) ∼= R × TG and its
induced action on J(P ×G Q ) ∼= R × TQ also do not depend on the base point and reduce to the ordinary induced Lie group
product in TG and the ordinary induced action of TG on TQ . These reductions explain why, in the case of mechanics, the need
for using Lie group bundles, rather than ordinary Lie groups, was not properly appreciated.

In the context of field theory, the method allows for a conceptually transparent and natural formulation of various
procedures and statements that play an important role in gauge theories, such as the prescription of ‘‘minimal coupling’’ and
Utiyama’s theorem on the possible form of gauge invariant lagrangians for the pure gauge field sector. Of course, the result
generically known as Utiyama’s theorem is not new and has been discussed in the literature in a variety of contexts; see, for
example, Refs. [12,13]. In particular, it finds a natural place in the theory of gauge natural bundles [14,17,18], where it can be
generalized so as to allow for lagrangians depending on higher-order derivatives; see, for example, Ref. [25]. The discussion
of ‘‘minimal coupling’’ in the literature is not nearly as extensive or explicit. At any rate, we have included both mainly to
give an illustration and concrete application of the method, which in our view provides a simple conceptual alternative to
the – technically demanding – functorial approach on which the theory of natural and gauge natural bundles is based.

Finally, the extension of our approach to achieve unification of internal symmetrieswith space–time symmetries requires
the transition from Lie group bundles to Lie groupoids, a problem which is presently under investigation. Another issue is
how to correctly formulate invariance of geometric objects represented by certain prescribed tensor fields (such as pseudo-
riemannian metrics or symplectic forms, for instance) under actions of Lie group bundles or, more generally, Lie groupoids
and/or their infinitesimal counterparts, that is, Lie algebra bundles or, more generally, Lie algebroids. These and similar
questions will have to be answered before one can hope to really understand what is the field-theoretical analogue of the
momentum map of classical mechanics.

Acknowledgments

This work has been financially supported by CAPES (‘‘Coordenação de Aperfeiçoamento de Pessoal de Nível Superior’’), by
CNPq (‘‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’’) and by FAPESP (‘‘Fundação de Amparo à Pesquisa
do Estado de São Paulo’’), Brazil.

References

[1] H. Weyl, Gravitation und Elektrizität, Sitzungsber. Preuss. Akad. Wiss. Berlin 26 (1918) 465–480.
[2] H. Weyl, Elektron und Gravitation I, Z. Phys. 56 (1929) 330–352.
[3] C.N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191–195.
[4] R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101 (1956) 1597–1607.
[5] S. Hawking, G.F.R. Ellis, The Large Scale Structure of Space–Time, Cambridge University Press, Cambridge, 1973.
[6] M. Forger, J. Kellendonk, Classical BRST cohomology and invariant functions on constraint manifolds I, Commun. Math. Phys. 143 (1992) 235–251.
[7] B.L. Soares, Simetrias Globais e Locais em Teorias de Calibre, Ph.D. Thesis, IME-USP, March 2007.
[8] M. Daniel, C.M. Viallet, The geometrical setting of gauge theories of the Yang–Mills type, Rev. Mod. Phys. 52 (1980) 175–197.
[9] D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley, Reading, 1981.

[10] G. Naber, Topology, Geometry and Gauge Fields—Interactions, Springer, Berlin, 2000.
[11] P.L. Garcia, Gauge algebras, curvature and symplectic geometry, J. Diff. Geom. 12 (1977) 209–227.
[12] L. Mangiarotti, M. Modugno, On the geometric structure of gauge theories, J. Math. Phys. 26 (1985) 1373–1379.
[13] D. Betounes, The geometry of gauge particle field interaction: a generalization of Utiyama’s theorem, J. Geom. Phys. 6 (1989) 107–125.
[14] D.J. Eck, Gauge natural bundles and generalized gauge theories, Mem. Am. Math. Soc. 247 (1981).
[15] A. Nijenhuis, Natural bundles and their general properties, in: Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, pp. 317–334.
[16] C.L. Terng, Natural vector bundles and natural differential operators, Am. J. Math. 100 (1978) 775–828.
[17] I. Kolář, P.W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[18] L. Fatibene, M. Francaviglia, Natural and Gauge Natural Formalism for Classical Field Theories, Kluwer, Dordrecht, 2003.
[19] R. Brunetti, K. Fredenhagen, R. Verch, The generally covariant locality principle—a new paradigm for local quantum field theory, Commun.Math. Phys.

237 (2003) 31–68.
[20] K.C.H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, Cambridge, 2005.
[21] M.E. Mayer, Groupoids and Lie bigebras in gauge and string theories, in: K. Bleuler, M. Werner (Eds.), Differential Geometric Methods in Theoretical

Physics, Proceedings of the NATO Advanced Research Workshop and the 16th International Conference, Como, Italy 1987, Kluwer, Dordrecht, 1988,
pp. 149–164.

[22] M. Keyl, About the geometric structure of symmetry breaking, J. Math. Phys. 32 (1991) 1065–1071.
[23] D.J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989.
[24] M. Forger, S.V. Romero, Covariant Poisson brackets in geometric field theory, Commun. Math. Phys. 256 (2005) 375–410. arXiv:math-ph/0408008.
[25] J. Janyška, Higher order Utiyama invariant interaction, Rep. Math. Phys. 59 (2007) 63–81.

http://arxiv.org/math-ph/0408008

	Local symmetries in gauge theories in a finite-dimensional setting
	Introduction
	Jet bundles and the connection bundle
	Gauge group bundles and their actions
	Local expressions
	Global and local invariance
	Minimal coupling
	Utiyama's theorem
	Conclusions and outlook
	Acknowledgments
	References


