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1. Introduction

Understanding the origin and primordial evolution of the genetic code is one of the

most intriguing problems of modern evolutionary biology, due to its close connection

with the question for the origin of life. Over the last few decades, this issue has been

approached from many different points of view, as illustrated, for example, by the

discussion on the chronological order in which the 20 “biological” amino acids have

been incorporated into the code: there are presently about 60 proposals referring to

various aspects of the early evolution of life on Earth that lead to predictions about
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this order; see Ref. 1 for an overview and Ref. 2 for an updated version. Among

them is the algebraic model for the evolution of the genetic code first proposed in

19933 (see also Refs. 4 and 5) and further developed in subsequent years.6–14

The present paper is devoted to the analysis of the issue of amino acid and codon

assignment in the algebraic approach. The first such assignment was performed in

the original paper, based on a best fit to a certain physico-chemical parameter called

Grantham polarity.3 An entirely different method was proposed in Ref. 6, where

it was observed that the algebraic model of Ref. 3 allows for a natural subdivision

of codons into 32 “bosonic” ones and 32 “fermionic” ones, according to whether

they belong to a multiplet of integral spin or of half-integral spin under a certain

SU(2)-subgroup of the primordial symmetry group Sp(6). As it turns out, we can

then formulate two simple criteria that allow us to fix the codon assignment up to

a relatively small number of remaining ambiguities:

• Family box completeness: Codons in the same family box, that is, codons of the

form XY N where N runs through the four possible choices U , C, A, and G, are

either all “bosonic” or all “fermionic.”

• Partial Watson-Crick duality: Family boxes dual to each other are either both

“bosonic” or both “fermionic”, the dual of a family box XY N in this sense being

defined by X†Y †N or by Y †X†N , where U † = A, C† = G, A† = U and G† = C

and N stands for any of the four possible choices U , C, A, and G.

The corresponding tree of evolution, with an amino acid assignment compatible

with these two rules, is shown in Fig. 1. The remaining ambiguities just mentioned

result from the option of permuting the amino acids assigned to the five bosonic

doublets (Phe, Asp, Glu, Asn, and Lys) and four fermionic doublets (Cys, Tyr, Gln,

and His), to the four fermionic quartets (Gly, Pro, Val, and Thr) and to the three

sextets (Arg, Leu, and Ser) freely among each other, which after excluding trivial

permutations leads to a total of 30 × 12 × 6 × 3 = 12.960 assignments allowed by

these two rules. This compares favorably to the 3!5!2!9!2! = 1.045.094.400 possible

assignments of the 20 “biological” amino acids to the three sextets, five quartets,

two triplets, nine doublets and two singlets of the genetic code that would be allowed

if no additional criteria were imposed.

It should be noticed at this point that the analysis in Ref. 6 whose results we

have just summarized was carried out exclusively in the context of the specific model

of Ref. 3 which in accordance with the primordial symmetry group on which it is

based, may be referred to as the Sp(6)-model. What is missing is a corresponding

analysis for the other algebraic models that have meanwhile been found. Indeed,

apart from the Sp(6)-model, there area

aThis list has been shown to be complete if we exclude chains starting from the codon represen-
tations of the “large” simple Lie groups Sp(64), SO(64), SU(64), and of the “large” simple finite
groups and their satellites, which are the alternating groups Alt14, Alt15, Alt65 and the symmetric
groups Sym13 , Sym14, Sym65.
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Fig. 1. Tree of evolution for the standard genetic code in the Sp(6) model.

• two models based on the simple Lie group G2 or Lie algebra g2,

• six models based on the simple Lie group SO(14) or Lie algebra so(14) (D7),

• three models based on the simple Lie superalgebra osp(5|2) (B(2|1)),

• 12 models based on the bicyclic extension Z2 ·B2(3) :Z2 of the simple finite group

B2(3),

• one model based on the cyclic extension Z2 · C3(2) of the simple finite group

C3(2),

• six models based on the simple finite group G2(3).
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In the case of groups, all of these models are obtained by starting out from

(one of) the codon representations (≡ 64-dimensional irreducible representations)

of G, which is one of the groups listed above and is referred to as the primordial

symmetry group and carrying out the procedure of (stepwise) symmetry breaking

along an appropriate chain of subgroups

G ⊃ · · · ⊃ H ⊃ K , (1)

according to the pertinent branching rules. More details will be given in the next

section, but for the time being it is sufficient to note that, due to the occurrence

of the phenomenon of “freezing”,7 it is important to consider not only the last

subgroup K in the chain, which following common usage we shall refer to as the

residual symmetry group, but also the penultimate subgroup H which we propose to

call the pre-residual symmetry group. This distinction has originally been proposed

in the context of finite groups,11–14 where it is particularly useful, since it allows us

to interpret frozen multiplets as multiplets under H and fully broken multiplets as

multiplets under K.

In order to analyze the question of amino acid and codon assignment based

on the two criteria spelled out above, the first issue to be addressed is to give an

appropriate definition of the “fermion operator” that allows us to subdivide the

multiplets encountered in a given specific model into “bosons” and “fermions.” To

avoid misunderstandings, we would like to stress that this terminology has been

borrowed from physics in a purely formal sense, by mere analogy: it is not intended

to have any deeper meaning, nor does it bear any relation to the original meaning

of the words “boson” and “fermion” which refers to the statistics of elementary par-

ticles. For the purpose of the analysis to be carried out in what follows, a “fermion

operator” is simply defined to be any involution (≡ element of order 2) in the pri-

mordial symmetry group which belongs to the center of one of the intermediate

groups in the chain, that is, to the center of any group in the chain except the

very first (the primordial symmetry group) and the very last (the residual symme-

try group). This implies, in particular, that a fermion operator must belong to the

centralizer CG(H) of the pre-residual symmetry group H in G. Correspondingly,

considering the action of the operator that represents this involution in the codon

representation, the multiplets encountered in a given specific model can, even in

the presence of freezing, be subdivided according to whether they belong to eigen-

value +1 (“bosons”) or −1 (“fermions”). This being understood, we shall, in what

follows, omit the quotation marks.

Analogous terminology will be used when groups are replaced by algebras and

the procedure of (stepwise) symmetry breaking is implemented through an appro-

priate chain of subalgebras

g ⊃ · · · ⊃ h ⊃ k . (2)

Note also that our definition of fermion operator, originally formulated for chains

of Lie groups or of finite groups, applies equally well to chains of Lie algebras and
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Lie superalgebras, since it should be understood that for chains of Lie algebras,

the right place to look for fermion operators is in the corresponding connected Lie

subgroups of the primordial symmetry group, and the same goes for the chains of Lie

superalgebras considered here since these employ Lie superalgebras with nontrivial

odd part only to describe the primordial symmetry.

2. Fermion Operators

In the first step of our analysis, we shall determine, for each of the chains that

are known to reproduce the degeneracies of the genetic code, the possible fermion

operators.

The simplest case is that of finite groups, since it can be verified by a direct

calculation with GAP15 that for all chains based on finite groups which arise in the

genetic code, the centralizer CG(H) of H in G is already contained in H and hence

equals the center Z(H) of H , and that in all cases H does contain at least one

nontrivial central involution. Moreover, the action of such a central involution z on

the space V of an irreducible representation can be determined from the character

table of the group H since z acts on V by ± id where the sign ± is given by the

value of the corresponding irreducible character on the conjugacy class of z, which

consists of z alone since z is central.

For the chains based on Lie algebras or superalgebras, the situation is more

complicated since here, the centralizer CG(H) of H in G is often much larger than

the center Z(H) of H . Thus, in principle, we must perform a case-by-case analysis to

determine all involutions belonging to the center of each of the intermediate groups

which appear in the various possible chains. Fortunately, it turns out that it is

sufficient to consider only one intermediate group in each chain (or class of chains),

namely the one appearing at the end of what in Ref. 8 is called the first phase,

which consists of breaking the primordial symmetry down to SU (2)-symmetries.

Correspondingly, this intermediate group is a “maximal SU (2) type subgroup” in

the sense of being a direct product of SU (2) groups with the maximal possible

number of factors.

In order to see why it is sufficient to consider only the central involutions be-

longing to this “maximal SU (2) type subgroup,” we note first that no new central

involutions arise during posterior steps of the symmetry breaking process, which in

Ref. 8 are assembled into a second phase and a third phase. Indeed, during the sec-

ond phase which consists in diagonally breaking (some of the) SU (2)-symmetries,

the center shrinks from a direct product of Z2-groups to a direct product of Z2-

groups with a smaller number of factors, since the center of the product group

SU (2)× SU (2) contains the center of its diagonal subgroup SU (2). Similarly, dur-

ing the third phase, which consists of breaking one or several of the remaining SU (2)

groups either to the full orthogonal group O(2) or to the special orthogonal group

SO(2), the center Z2 is unaltered in the first case and, although it grows to become

equal to all of SO(2) in the second case, does not acquire any new involutions (≡

elements of order 2).
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In the opposite direction, the general rule is that the number of central involu-

tions also decreases when we go back from the “maximal SU (2) type subgroup” to

previous intermediate subgroups. As a simple first example, consider the only such

inclusion that appears in the sp(6)-chain

sp(4) ⊕ su(2) ⊃ su(2) ⊕ su(2) ⊕ su(2) ,

and similarly in the osp(5|2)-chains

so(5) ⊕ sp(2) ⊃ su(2) ⊕ su(2) ⊕ su(2) .

Note that this is really the same inclusion, since sp(2) ∼= so(3) ∼= su(2) and sp(4) ∼=

so(5). At the level of simply connected Lie groups, it reads

Sp(4) × SU (2) ⊃ SU (2) × SU (2) × SU(2) ,

or equivalently

Spin(5) × Sp(2) ⊃ SU (2) × SU (2) × SU(2) .

Obviously, the center Z2 of Sp(4) ∼= Spin(5) is contained in the center Z2 × Z2 of

SU (2) × SU (2).

In order to deal with the same question for the inclusions appearing in the

so(14)-chains, which all start out from (one of) the chiral spinor representation(s)

of so(14), we shall adopt a systematic approach based on the theory of Clifford

algebras and the spin groups which, unlike the special orthogonal groups, are simply

connected and hence allow us to accommodate arbitrary representations; see Ref. 16

for the relevant background material. Briefly, the group Spin(n) is constructed

as a subgroup of the group of invertible elements in the even part C+(n) of the

(real) Clifford algebra C(n) over n-dimensional Euclidean space R
n. Any (oriented)

orthonormal basis of R
n provides a set {γ1, . . . , γn} of generators of C(n) subject

to the basic Dirac anticommutation relations γiγj + γjγi = 2δij , and writing γ̃ =

γ1 · · · γn for their product, we have

• for n odd, the center of C+(n) is R1 and the center of Spin(n) is

Z(Spin(n)) = {+1,−1} ∼= Z2 ,

• for n even, the center of C+(n) is R1 ⊕ Rγ̃ and the center of Spin(n) is

Z(Spin(n)) = {+1,−1, +γ̃,−γ̃} ∼=

{

Z2 × Z2 if n = 0 mod 4(γ̃2 = +1)

Z4 if n = 2 mod 4(γ̃2 = −1)
.

Explicitly, the first few of them are

Spin(1) ∼= Z2 ,

Spin(2) ∼= U(1) ,

Spin(3) ∼= SU (2) ,

Spin(4) ∼= SU (2) × SU (2) ,
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Spin(5) ∼= Sp(4) ,

Spin(6) ∼= SU (4) .

Now when n = p+q (p, q > 1), there is a canonical isomorphism C(n) ∼= C(p) ⊗̂C(q)

of Clifford algebras, where ⊗̂ denotes the graded tensor product which induces the

following inclusion between spin groups:

Spin(p) ×Z2
Spin(q) ⊂ Spin(n) .

Here the symbol ×Z2
indicates taking the direct product × and then dividing out

by the central Z2 subgroup generated by (−1,−1). Note that under the respective

covering homomorphisms, it corresponds to the following obvious inclusion between

special orthogonal groups:

SO(p) × SO(q) ⊂ SO(n) .

As far as the centers are concerned, we then have the following situation.

• If p and q are odd, n is even and the center of Spin(n) contains two elements, γ̃n

and −γ̃n which are not contained in the center Z2 ×Z2
Z2 of Spin(p)×Z2

Spin(q).

• If p is odd and q is even or p is even and q is odd, n is odd, and the center Z2 of

Spin(n) is contained in the center of Spin(p) ×Z2
Spin(q).

• If p and q are even, n is even, and the center of Spin(n) is contained in the

center of Spin(p)×Z2
Spin(q): γ̃n corresponds to (γ̃p, γ̃q) or (−γ̃p,−γ̃q) and −γ̃n

corresponds to (γ̃p,−γ̃q) or (−γ̃p, γ̃q).

Analyzing the so(14)-chains that reproduce the degeneracies of the genetic code,

as depicted graphically in Figs. 1–4 of Ref. 8, we therefore conclude that there are

only a few inclusions where the center of the larger group is larger than that of the

smaller group, and all but one are inclusions of the above type with p and q both

odd. These can be analyzed separately:

• so(10): this subalgebra appears in chains of the form

so(14) ⊃ su(2) ⊕ su(2) ⊕ so(10) ⊃ su(2) ⊕ su(2) ⊕ h ⊃ · · ·

where

h = so(9) or su(2) ⊕ so(7) or sp(4)

The corresponding symmetry breaking scheme is shown in the following table.

D7 (A1)2 ⊕ D5

HW d HW d

(0000010) 64 (0,1,00010) 32

(1,0,00001) 32
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Moreover, upon restriction to any of the three subalgebras h, the two chiral

spinor representations of so(10) (with highest weights (00010) and (00001)) that

appear in this chain remain irreducible and in fact induce the same irreducible

representation of h (with highest weight (0001) under so(9), (1, 001) under su(2)⊕

so(7) and (11) under sp(4)). However, they can be distinguished by the value of

the central involution of (any one of) the other two SU (2)-subgroups, so no

information is lost by discarding those elements of the center of Spin(10) that

are not contained in the center of the next smaller subgroup.

• so(8): this subalgebra appears in chains of the form

so(14) ⊃ su(4) ⊕ so(8) ⊃ su(4) ⊕ h ⊃ · · ·

or

so(14) ⊃ k ⊃ su(2) ⊕ su(2) ⊕ so(8) ⊃ su(2) ⊕ su(2) ⊕ h ⊃ · · ·

where

h = su(2) ⊕ sp(4) or su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2)

and

k = su(4) ⊕ so(8) or su(2) ⊕ so(11)

or in the chain

so(14) ⊃ su(2) ⊕ su(2) ⊕ so(10) ⊃ su(2) ⊕ su(2) ⊕ so(9)

⊃ su(2) ⊕ su(2) ⊕ so(8) ⊃ su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2)

⊃ · · ·

The corresponding symmetry breaking schemes are shown in the following tables.

D7 A3 ⊕ D4 (A1)2 ⊕ D4

HW d HW d HW d

(0000010) 64 (001,0010) 32 (1,1,0010) 32

(100,0001) 32 (1,1,0001) 32

D7 A1 ⊕ B5 (A1)2 ⊕ D4

HW d HW d HW d

(0000010) 64 (1,00001) 64 (1,1,0010) 32

(1,1,0001) 32
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D7 (A1)2 ⊕ D5 (A1)2 ⊕ B4 (A1)2 ⊕ D4

HW d HW d HW d HW d

(0000010) 64 (0,1,00010) 32 (0,1,0001) 32 (0,1,0010) 16

(0,1,0001) 16

(1,0,00001) 32 (1,0,0001) 32 (1,0,0010) 16

(1,0,0001) 16

Moreover, upon restriction to the two subalgebras h, the two chiral spinor rep-

resentations of so(8) (with highest weights (0010) and (0001)) that appear in all

these tables split as shown in the following tables:

D4 A1 ⊕ C2

HW d HW d

(0010) 8 (0,01) 5

(2,00) 3

(0001) 8 (1,10) 8

D4 (A1)4

HW d HW d

(0010) 8 (0,1,1,0) 4

(1,0,0,1) 4

(0001) 8 (0,1,0,1) 4

(1,0,1,0) 4

This shows that they can still be distinguished by the value of the central involu-

tion of one of the resulting SU (2)-subgroups, so again no information is lost by

discarding those elements of the center of Spin(8) that are not contained in the

center of the next smaller subgroup.

• so(6): this subalgebra appears in chains of the form

so(14) ⊃ su(4) ⊕ so(8)

⊃ su(2) ⊕ su(2) ⊕ so(8) ⊃ · · ·

or

so(14) ⊃ su(4) ⊕ so(8) ⊃ su(4) ⊕ su(2) ⊕ sp(4)

⊃ su(2) ⊕ su(2) ⊕ su(2) ⊕ sp(4) ⊃ · · ·

or

so(14) ⊃ su(4) ⊕ so(8) ⊃ su(4) ⊕ su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2)

⊃ su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2) ⊃ · · ·

The corresponding symmetry breaking schemes are shown in the following tables.

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2

HW d HW d HW d

(0000010) 64 (001,0010) 32 (001,0,01) 20

(001,2,00) 12

(100,0001) 32 (100,1,10) 32
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D7 A3 ⊕ D4 A3 ⊕ (A1)4

HW d HW d HW d

(0000010) 64 (001,0010) 32 (001,0,1,1,0) 16

(001,1,0,0,1) 16

(100,0001) 32 (100,0,1,0,1) 16

(100,1,0,1,0) 16

Moreover, upon restriction to the subalgebra su(2)⊕ su(2), the two chiral spinor

representations of so(6) (with highest weights (100) and (001)) that appear in

these tables remain irreducible and in fact induce the same irreducible repre-

sentation of su(2) ⊕ su(2) (with highest weight (1, 1)). However, they can be

distinguished by the value of the central involution of one of the other two SU (2)-

subgroups (that, in the case of the first of these chains, appear after breaking the

so(8)), so again no information is lost by discarding those elements of the center

of Spin(6) that are not contained in the center of the next smaller subgroup.

We are left with a unique case in which the center of the larger group is larger

than that of the smaller group, given by the inclusion so(7) ⊃ Ξ2, since the center

of Spin(7) is Z2 while that of G2 is trivial. However, inspection of the symmetry

breaking schemes where B3 appears reveal that every single one of these schemes

contains one and the same irreducible representation of so(7), namely the spinor

representation (with highest weight (001)), on which the nontrivial element of the

center Z2 of Spin(7) acts as minus the identity. This implies that in all these

schemes, the central involution in Spin(7) that does not belong to G2 acts as minus

the identity on the entire codon space and hence may be discarded without loss of

information.

Having proved that all central involutions that need to be considered may be

found in the “maximal SU (2) type subgroup” mentioned before, we proceed to

the enumeration of the possible fermion operators for the chains of subalgebras or

subgroups that reproduce the degeneracies of the genetic code. In each of these

chains, we indicate this subgroup by framing the corresponding subalgebra, which

is the direct sum of a certain number, say k, of copies of su(2), leading to a total

number of 2k − 1 nontrivial central involutions. Depending on the specific codon

representation under consideration, further reductions in the number of central

involutions that need to be analyzed can be achieved by observing which of them

act in the same way or are even irrelevant since they act as a multiple of the identity.

As a result, they lead to relatively few possible schemes for classifying part or all of

the codons as bosonic or fermionic. Most of these schemes are balanced in the sense

that they contain an equal number of bosonic and fermionic family boxes (eight

each); in particular, all schemes derived from Lie algebras or Lie superalgebras are

of this kind, exhibiting 32 bosonic and 32 fermionic codons. In the case of schemes

derived from finite groups, however, we also encounter unbalanced schemes, in which



February 18, 2010 11:20 WSPC/INSTRUCTION FILE S0217979210054944

Algebraic Models for Genetic Code 445

the number of bosonic and of fermionic codons is different. All these schemes are

presented in Tables 1 and 2.

(1) The sp(6)-chain (Eq. (7) of Ref. 8, p. 3189):

sp(6) ⊃ sp(4) ⊕ su(2) ⊃ su(2)3 ⊃ su(2) ⊕ o(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊕ so(2)

There are seven nontrivial central involutions in SU (2)3 among which only three

need to be considered, since (−1,−1,−1) acts as minus the identity on the entire

codon space; they can be chosen as (−1, 1, 1), (1,−1, 1) and (1, 1,−1), say. Inspec-

tion of the corresponding symmetry breaking scheme (Table 4 of Ref. 8, p. 3189),

combined with the criterion of family box completeness, leads to the following

conclusions:

(i) The action of (−1, 1, 1) provides the scheme shown in item (a) of Table 1, where

the lightly shaded family boxes must contain four bosonic and two fermionic

doublets.

(ii) The action of (1,−1, 1) provides the scheme shown in item (b) of Table 1, where

the lightly shaded family boxes must contain one bosonic and four fermionic

quartets as well as four bosonic and two fermionic doublets.

(iii) The action of (1, 1,−1) provides the scheme shown in item (c) of Table 1, where

the lightly shaded family boxes must contain one bosonic and four fermionic

quartets as well as four bosonic and two fermionic doublets.

(2) The Ξ2-chains (Eqs (8) & (9) of Ref. 8, pp. 3190 and 3191):

Ξ2 ⊃ su(2)2

⊃ su(2) ⊕ o(2) ⊃ so(2) ⊕ o(2) (first chain, Eq. (8))

⊃ su(2) ⊕ o(2) ⊃ su(2) ⊕ so(2) (second chain, Eq. (9))

There are three nontrivial central involutions in SU (2)2 among which only one

needs to be considered, since (−1,−1) acts as the identity on the entire codon

space; it can be chosen as (−1, 1), say. Inspection of the corresponding symmetry

breaking scheme (Tables 5 and 6 of Ref. 8, pp. 3190 and 3191) shows that its action

is compatible with and in fact completely fixed by the requirement of family box

completeness; the result is the same for both chains and is shown in item (d) of

Table 1.

(3) The first so(14)-chain (Eq. (10) of Ref. 8, pp. 3191–3193):

so(14) ⊃ su(4) ⊕ so(8) ⊃ su(4) ⊕ su(2) ⊕ sp(4) ⊃ su(2)5 ⊃ su(2)4 ⊃ su(2)3

⊃ su(2) ⊕ o(2) ⊕ su(2) ⊃ su(2) ⊕ so(2) ⊕ su(2)

There are 31 nontrivial central involutions in SU (2)5 among which only three need

to be considered, since (−1,−1,−1,−1,−1) acts as the identity while (−1, 1, 1, 1, 1)

and (1,−1, 1, 1, 1) act as minus the identity on the entire codon space; they can be
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chosen as (1, 1,−1, 1, 1), (1, 1, 1,−1, 1) and (1, 1, 1, 1,−1), say. Inspection of the

corresponding symmetry breaking scheme (Tables 7 and 8 of Ref. 8, p. 3192) shows

that the first two of these are inconsistent with the requirement of family box

completeness since they force the triplets and singlets to be bosonic but eight of

the nine doublets to be fermionic; only the third leads to an action that is compatible

with and in fact completely fixed by the requirement of family box completeness;

the result is shown in item (e) of Table 1.

(4) The second so(14)-chain (Eq. (11) of Ref. 8, pp. 3193–3196):

so(14) ⊃ su(4) ⊕ so(8) ⊃ su(4) ⊕ su(2) ⊕ sp(4) ⊃ su(2)5 ⊃ su(2)4 ⊃ su(2)3

⊃ o(2) ⊕ su(2) ⊕ su(2) ⊃ o(2) ⊕ su(2) ⊕ so(2) ⊃ so(2) ⊕ su(2) ⊕ so(2)

(first option)

⊃ o(2) ⊕ su(2) ⊕ su(2) ⊃ o(2) ⊕ su(2) ⊕ so(2) ⊃ o(2) ⊕ so(2) ⊕ so(2)

(second option)

There are 31 nontrivial central involutions in SU (2)5 among which only three need

to be considered, since (−1,−1,−1,−1,−1), acts as the identity while (−1, 1, 1, 1, 1)

and (1,−1, 1, 1, 1) act as minus the identity on the entire codon space; they can be

chosen as (1, 1,−1, 1, 1), (1, 1, 1,−1, 1) and (1, 1, 1, 1,−1), say. Inspection of the

corresponding symmetry breaking scheme (Tables 9–11 of Ref. 8, pp. 3194–3196)

shows that combining their action with the criterion of family box completeness

leads to the following conclusions, for both options:

(i) The action of (1, 1,−1, 1, 1), which corresponds to the action of the central in-

volution (1, 1,−1) in SU (2)3, provides the scheme shown in item (f) of Table 1,

where the lightly shaded family boxes must contain three bosonic and two

fermionic quartets.

(ii) The action of (1, 1, 1,−1, 1), which corresponds to the action of the central

involution (1,−1, 1) in SU (2)3, provides the scheme shown in item (d) of

Table 1.

(iii) The action of (1, 1, 1, 1,−1), which corresponds to the action of the central in-

volution (−1, 1, 1) in SU (2)3, provides the scheme shown in item (b) of Table 1,

where the lightly shaded family boxes must contain two bosonic and three

fermionic quartets as well as two bosonic and fout fermionic doublets.

(5) The third so(14)-chain (Eq. (12) of Ref. 8, pp. 3197–3198):

so(14) ⊃ su(4) ⊕ so(8) ⊃ su(4) ⊕ su(2)4 ⊃ su(2)6 ⊃ su(2)5 ⊃ su(2)4

⊃ su(2) ⊕ o(2) ⊕ su(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊕ su(2) ⊕ so(2)

⊃ su(2) ⊕ so(2) ⊕ su(2) ⊕ so(2)

There are 63 nontrivial central involutions in SU (2)6 among which only three
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need to be considered, since (−1, 1, 1, 1, 1, 1), (1,−1, 1, 1, 1, 1), (1, 1,−1,−1, 1, 1)

and (1, 1, 1, 1,−1,−1) all act as minus the identity on the entire codon space; they

can be chosen as (1, 1, 1,−1, 1, 1), (1, 1, 1, 1, 1,−1) and (1, 1, 1,−1, 1,−1), say. In-

spection of the corresponding symmetry breaking scheme (Tables 12 and 13 of

Ref. 8, p. 3198) shows that combining their action with the criterion of family box

completeness leads to the following conclusions:

(i) The actions of (1, 1, 1,−1, 1, 1), which corresponds to the action of the central

involutions (1,−1, 1, 1) and (1, 1,−1, 1) in SU (2)4, provide the scheme shown

in item (e) of Table 1.

(ii) The actions of (1, 1, 1, 1, 1,−1), which corresponds to the action of the cen-

tral involutions (−1, 1, 1, 1) and (1, 1, 1,−1) in SU (2)4, are inconsistent with

the requirement of family box completeness since they force the triplets and

singlets to be bosonic but eight of the nine doublets to be fermionic.

(iii) The actions of (1, 1, 1,−1, 1,−1), which corresponds to the action of the central

involutions (−1,−1, 1, 1) and (1, 1,−1,−1) in SU (2)4, are inconsistent with

the requirement of family box completeness since they force the triplets and

singlets to be bosonic but eight of the nine doublets to be fermionic.

(6) The fourth so(14)-chain (Eq. (13) of Ref. 8, pp. 3199–3202):

so(14) ⊃ su(2) ⊕ so(11) ⊃ su(2)3 ⊕ so(7) ⊃ su(2)3 ⊕ Ξ2 ⊃ su(2)4 ⊃ su(2)3 ⊃ su(2)2

⊃ su(2) ⊕ o(2) ⊃ so(2) ⊕ o(2) (first option)

⊃ su(2) ⊕ o(2) ⊃ su(2) ⊕ so(2) (second option)

There are 15 nontrivial central involutions in SU (2)4 among which only one needs

to be considered, since (−1, 1, 1, 1) and (1,−1,−1, 1) act as minus the identity

while (1, 1, 1,−1) acts as the identity on the entire codon space; it can be chosen as

(1,−1, 1, 1), say, whose action corresponds to that of the central involutions (−1, 1)

and (1,−1) in SU (2)2. Inspection of the corresponding symmetry breaking scheme

(Tables 14–16 of Ref. 8, pp. 3199–3201) shows that its action is compatible with

and in fact completely fixed by the requirement of family box completeness; the

result is the same for both options and is shown in item (d) of Table 1.

(7) The osp(5|2)-chain (Tables V–VIII of Ref. 10, pp. 5436 and 5438–5440):

osp(5|2) ⊃ so(5) ⊕ sp(2) ⊃ su(2)3 ⊃ su(2)2

⊃ su(2) ⊕ o(2) ⊃ o(2) ⊕ o(2) (first option)

⊃ su(2) ⊕ o(2) ⊃ o(2) ⊕ o(2) (second option)

⊃ su(2) ⊕ o(2) ⊃ o(2) ⊕ o(2) (third option)

There are seven nontrivial central involutions in SU (2)3 among which only three

need to be considered, since (1,−1,−1) acts as minus the identity on the entire



February 18, 2010 11:20 WSPC/INSTRUCTION FILE S0217979210054944

448 F. Antoneli et al.

codon space; they can be chosen as (1, 1,−1), (−1,−1, 1), and (−1,−1,−1). Inspec-

tion of the corresponding symmetry breaking schemes (Tables V–VIII of Ref. 10,

pp. 5436 and 5438–5440), combined with the criterion of family box completeness,

leads to the following conclusions:

(i) The action of (1, 1,−1), which corresponds to the action of the central involu-

tion (1,−1) in SU (2)2,

• provides the scheme shown in item (b) of Table 1, where the lightly shaded

family boxes must contain one bosonic and four fermionic quartets as well

as four bosonic and two fermionic doublets, for the first option,

• provides the scheme shown in item (f) of Table 1 below, where the lightly

shaded family boxes must contain three bosonic and two fermionic quartets,

for the second and third option.

(ii) The action of (−1,−1, 1), which corresponds to the action of the central in-

volution (−1, 1) in SU (2)2, provides the scheme shown in item (d) of Table 1

below, for all three options.

(iii) The action of (−1,−1,−1)

• is inconsistent with the requirement of family box completeness since it

forces the triplets and singlets to be bosonic but eight of the nine doublets

to be fermionic, for the first option,

• provides the scheme shown in item (b) of Table 1, where the lightly shaded

family boxes must contain two bosonic and three fermionic quartets as well

as two bosonic and four fermionic doublets, for the second and third option.

(8) The B2(3)-chain11,14

Z2 · B2(3) :Z2 ⊃ Q8 : (32 :22) ⊃ Q8 : (32×2)

Recall that Z2 · B2(3) : Z2 has four different codon representations which, in this

chain, produce two inequivalent patterns of symmetry breaking: one is obtained

from any of the two real representations and the other from any of the two complex

representations, which form a complex conjugate pair. Moreover, the intermediate

subgroup Q8 : (32 : 22) has three nontrivial central involutions, denoted by 2a, 2b,

and 2c. Inspection of the relevant character table shows that (except for a total

sign in the last two cases) their action is the same for both patterns and that:

(i) The involution 2a provides the scheme shown in item (d) of Table 1.

(ii) The involution 2b provides the slightly unbalanced scheme shown in item (a)

of Table 2, where the lightly shaded family boxes must contain two bosonic

doublets and four fermionic doublets.

(iii) The involution 2c provides the highly unbalanced scheme shown in item (c)

of Table 2, where only two doublets are fermionic and all other multiplets are

bosonic.
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(9) The B2(3)-chain11,14

Z2 · B2(3) : Z2 ⊃ Q8 : (32 :22) ⊃ Q8 : D12

Recall that Z2 · B2(3) : Z2 has four different codon representations which, in this

chain, produce two inequivalent patterns of symmetry breaking: one is obtained

from any of the two real representations and the other from any of the two complex

representations, which form a complex conjugate pair. Moreover, the intermediate

subgroup Q8 : (32 : 22) has three nontrivial central involutions, denoted by 2a, 2b,

and 2c. Inspection of the relevant character table shows that:

(i) The involution 2a provides the scheme shown in item (d) of Table 1, for the

real representations as well as the complex representations.

(ii) The involution 2b

• provides the scheme shown in item (d) of Table 1, for the real representations,

• provides (except for a total sign) the slightly unbalanced scheme shown in

item (b) of Table 2, where the lightly shaded family boxes must contain one

bosonic and four fermionic quartets, for the complex representations.

(iii) The involution 2c

• acts trivially (as the identity) on the entire codon space, for the real repre-

sentations,

• provides (except for a total sign) the highly unbalanced scheme shown in

item (d) of Table 2 below, where only one quartet is fermionic and all other

multiplets are bosonic, for the complex representations.

(10) The B2(3)-chain11,14

Z2 · B2(3) : Z2 ⊃ Q8 : (32 : 22) ⊃ 32 : 23

Recall that Z2 · B2(3) : Z2 has four different codon representations which, in this

chain, produce two inequivalent patterns of symmetry breaking: one is obtained

from any of the two real representations and the other from any of the two complex

representations, which form a complex conjugate pair. Moreover, the intermediate

subgroup Q8 : (32 : 22) has three nontrivial central involutions, denoted by 2a, 2b,

and 2c. Inspection of the relevant character table shows that:

(i) The involutions 2a and 2b produce schemes which are inconsistent with the

requirement of family box completeness since they force the triplets and singlets

to be of opposite nature, for the real representations as well as the complex

representations.

(ii) The involution 2c

• provides the highly unbalanced scheme shown in item (c) of Table 2, where

only two doublets are fermionic and all other multiplets are bosonic, for the

real representations,

• acts trivially (as minus the identity) on the entire codon space, for the com-

plex representations.



February 18, 2010 11:20 WSPC/INSTRUCTION FILE S0217979210054944

450 F. Antoneli et al.

(11) The B2(3)-chain11,14

Z2 · B2(3) : Z2 ⊃ Q8 : (32 : 2) ⊃ Q8 : 32

Recall that there are really two chains of this type and also that Z2 · B2(3) : Z2

has four different codon representations, but all of these produce, in both of these

chains, the same pattern of symmetry breaking. Moreover, the intermediate sub-

group Q8 : (32 : 2) has only one nontrivial central involution, denoted by 2a. Its

action provides the scheme shown in item (d) of Table 1.

(12) The B2(3)-chain11,14

Z2 · B2(3) : Z2 ⊃ Q8 : (32 : 2) ⊃ Q8 : D6

Recall that there are really two chains of this type and also that Z2 · B2(3) : Z2

has four different codon representations, but all of these produce, in both of these

chains, the same pattern of symmetry breaking. Moreover, the intermediate sub-

group Q8 : (32 : 2) has only one nontrivial central involution, denoted by 2a. Its

action provides the scheme shown in item (d) of Table 1.

(13) The B2(3)-chain11,14

Z2 · B2(3) : Z2 ⊃ Q8 : (32 : 2) ⊃ 32 : 22

Recall that there are really two chains of this type and also that Z2 · B2(3) : Z2

has four different codon representations, but all of these produce, in both of these

chains, the same pattern of symmetry breaking. Moreover, the intermediate sub-

group Q8 : (32 : 2) has only one nontrivial central involution, denoted by 2a. Its

action is inconsistent with the requirement of family box completeness since it

forces the triplets and singlets to be of opposite nature.

(14) The C3(2)-chain11,14

Z2 · C3(2) ⊃ (Q8 : 3)2 ⊃ Q8 : (32 × 2)

Recall that Z2 · C3(2) has two (complex conjugate) codon representations, both of

which produce the same pattern of symmetry breaking. Moreover, the intermediate

subgroup (Q8 : 3)2 has three nontrivial central involutions, denoted by 2a, 2b and

2c. Inspection of the relevant character table shows that:

(i) The involution 2a acts trivially (i.e., as minus the identity) on the entire codon

space.

(ii) The involution 2b provides the scheme shown in item (d) of Table 1.

(iii) The involution 2c provides (except for a total sign) the scheme shown in

item (d) of Table 1.

(15) The G2(3)-chain11,14

G2(3) ⊃ Q8 : (32 : 2) ⊃ Q8 : 32
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Recall that there are really two chains of this type and also that G2(3) has two

(complex conjugate) codon representations, but these produce, in both of these

chains, the same pattern of symmetry breaking. Moreover, the intermediate sub-

group Q8 : (32 : 2) has only one nontrivial central involution, denoted by 2a. Its

action provides the scheme shown in item (d) of Table 1.

(16) The G2(3)-chain11,14

G2(3) ⊃ Q8 : (32 : 2) ⊃ Q8 : D6

Recall that there are really two chains of this type and also that G2(3) has two

(complex conjugate) codon representations, but these produce, in both of these

chains, the same pattern of symmetry breaking. Moreover, the intermediate sub-

group Q8 : (32 : 2) has only one nontrivial central involution, denoted by 2a. Its

action provides the scheme shown in item (d) of Table 1.

(17) The G2(3)-chain11,14

G2(3) ⊃ Q8 : (32 : 2) ⊃ 32 : 22

Recall that there are really two chains of this type and also that G2(3) has two

(complex conjugate) codon representations, but these produce, in both of these

chains, the same pattern of symmetry breaking. Moreover, the intermediate sub-

group Q8 : (32 : 2) has only one nontrivial central involution, denoted by 2a. Its

action is inconsistent with the requirement of family box completeness since it forces

the triplets and singlets to be of opposite nature.

The results are summarized in Tables 1 and 2, where the distribution of codons

within the lightly shaded family boxes is as follows:

Table 1, (a): four bosonic doublets in two shaded family boxes,

two fermionic doublets in one unshaded family box.

Table 1, (b1): one bosonic quartet in one shaded family box,

four fermionic quartets in four unshaded family boxes,

four bosonic doublets in two shaded family boxes,

two fermionic doublets in one unshaded family box.

Table 1, (b2): two bosonic quartets in two shaded family boxes,

three fermionic quartets in three unshaded family boxes,

two bosonic doublets in one shaded family box,

four fermionic doublets in two unshaded family boxes.

Table 1, (c): one bosonic quartet in one shaded family box,

four fermionic quartets in four unshaded family boxes,

four bosonic doublets in two shaded family boxes,

two fermionic doublets in one unshaded family box.
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Table 1, (f): three bosonic quartets in three shaded family boxes,

two fermionic quartets in two unshaded family boxes.

Table 2, (a): two bosonic doublets in one shaded family box,

four fermionic doublets in two unshaded family boxes.

Table 2, (b): one bosonic quartet in one shaded family box,

four fermionic quartets in four unshaded family boxes.

Table 2, (c): two fermionic doublets in one unshaded family box,

all other multiplets are bosonic, in 15 shaded family boxes.

Table 2, (d): one fermionic quartet in one unshaded family box,

all other multiplets are bosonic, in 15 shaded family boxes.

Table 1. Action of fermion operators leading to balanced schemes, with 32 bosonic and 32
fermionic codons. Bosonic families are shaded and fermionic families are unshaded. Light shading
indicates undefined family boxes.

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

(a) (b) (c)

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

(d) (e) (f)
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Table 2. Action of fermion operators leading to unbalanced schemes. Bosonic

families are shaded and fermionic families are unshaded. Light shading indicates
undefined family boxes.

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

(a) (b)

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

(c) (d)

3. Watson-Crick Duality

Proceeding to the second step of our analysis, we want to determine, for each of

the schemes shown in Tables 1 and 2, whether there is some kind of natural duality

transformation on family boxes that leaves them invariant. We shall require such a

duality transformation to be induced by a duality transformation

X → X†

on the individual nucleic bases, which can be thought of as an involutive permu-

tation of the set {U, C, A, G}. A brief look at the permutation group Sym4 shows
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that it contains three full permutations of order 2, with no fixed points, namely

(1) Watson-Crick duality: U † = A, C† = G, A† = U , G† = C

(2) Pyrimidine–purine switch: U † = C, C† = U , A† = G, G† = A

(3) Wrong-way Watson-Crick duality: U † = G, C† = A, A† = C, G† = U

and another six partial permutations of order 2, with two fixed points, namely

(4) C–G pair switch: U † = U , C† = G, A† = A, G† = C

(5) U–A pair switch: U † = A, C† = C, A† = U , G† = G

(6) Pyrimidine switch (U–C switch): U † = C, C† = U , A† = A, G† = G

(7) Purine switch (A–G switch): U † = U , C† = C, A† = G, G† = A

(8) C–A switch: U † = U , C† = A, A† = C, G† = G

(9) U–G switch: U † = G, C† = C, A† = A, G† = U

We do not consider the latter to be natural; they are only mentioned for complete-

ness but will not be analyzed any further.

For the induced action of any of these duality transformations on family boxes

of codons, we consider the following two options:

(i) without inversion of order: (XY N)† = X†Y †N

(ii) with inversion of order: (XY N)† = Y †X†N

Regarding the first option, we note that it is inconsistent with the schemes shown

in Table 2 since all these contain an odd number of bosonic as well as fermionic

family boxes (nine bosonic and seven fermionic for the slightly unbalanced schemes

shown in items (a) and (b), 15 bosonic and one fermionic for the highly unbalanced

schemes shown in items (c) and (d)), so consistency would require the corresponding

duality operator to have at least one family box as a fixed point, which is not the

case for any of the operators in the first option.

(1) Watson-Crick duality (U † = A, C† = G, A† = U , G† = C)

(i) option (i) (without inversion of order)

• Table 1, (a): pairs UGN (bosonic) with ACN (fermionic): contradiction.

• Table 1, (b): since the quartet ACN pairs with UGN and the doublets in

AAN and GAN pair with UUN and CUN , respectively, and hence must

all be bosonic, whereas the quartet GCN pairs with CGN and hence must

be fermionic, it is seen that a consistent solution (with one bosonic and four

fermionic quartets and four bosonic and two fermionic doublets in the lightly

shaded family boxes) emerges if all quartets except ACN and the doublets

in CAN are chosen to be fermionic; the corresponding coloring is shown in

item (a) of Table 3.

• Table 1, (c): since the quartet GCN pairs with CGN and the doublets in

AAN and GAN pair with UUN and CUN , respectively, and hence must

all be bosonic, whereas the quartet ACN pairs with UGN and hence must
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Table 3. Action of fermion operators in the two schemes consistent with family

box completeness and Watson–Crick duality.

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

first second base third

base U C A G base

Phe Ser Tyr Cys U

Phe Ser Tyr Cys C
U

Leu Ser TERM TERM A

Leu Ser TERM Try G

Leu Pro His Arg U

Leu Pro His Arg C
C

Leu Pro Gln Arg A

Leu Pro Gln Arg G

Ile Thr Asn Ser U

Ile Thr Asn Ser C
A

Ile Thr Lys Arg A

Met Thr Lys Arg G

Val Ala Asp Gly U

Val Ala Asp Gly C
G

Val Ala Glu Gly A

Val Ala Glu Gly G

(a) (b)

be fermionic, it is seen that a consistent solution (with one bosonic and four

fermionic quartets and four bosonic and two fermionic doublets in the lightly

shaded family boxes) emerges if all quartets except GCN and the doublets

in CAN are chosen to be fermionic; the corresponding coloring is shown in

item (b) of Table 3.

• Table 1, (d): pairs UUN (bosonic) with AAN (fermionic): contradiction.

• Table 1, (e): pairs UGN (bosonic) with ACN (fermionic): contradiction.

• Table 1, (f): pairs UUN (bosonic) with AAN (fermionic): contradiction.

(ii) option (ii) (with inversion of order)

• Table 1, (a): pairs CUN (fermionic) with AGN (bosonic): contradiction.

• Table 1, (b): pairs CUN (fermionic) with AGN (bosonic): contradiction.

• Table 1, (c): since the quartets CCN and GGN as well as the quartets

ACN and GUN pair among themselves while the quartet GCN remains

invariant, whereas the doublets in AAN and GAN pair with UUN and

UCN , respectively, and hence must be bosonic while the doublets in CAN

pair with UGN and hence must be fermionic, it is seen that a consistent

solution (with one bosonic and four fermionic quartets and four bosonic and

two fermionic doublets in the lightly shaded family boxes) emerges if all

quartets except GCN and the doublets in CAN are chosen to be fermionic;

again, the corresponding coloring is shown in item (b) of Table 3.

• Table 1, (d): pairs UUN (bosonic) with AAN (fermionic): contradiction.

• Table 1, (e): pairs UCN (fermionic) with GAN (bosonic): contradiction.

• Table 1, (f): pairs UUN (bosonic) with AAN (fermionic): contradiction.

• Table 2, (a): since the doublets in CAN , AAN and GAN pair with UGN ,

UUN and UCN , respectively, and hence must all be bosonic, we arrive at a
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contradiction with the condition that the lightly shaded family boxes must

contain two bosonic and four fermionic doublets.

• Table 2, (b): pairs UUN (bosonic) with AAN (fermionic): contradiction.

• Table 2, (c): since none of the doublets in CAN , AAN , and GAN is fixed

under the duality operation, we arrive at a contradiction.

• Table 2, (d): taking the quartet GCN , which is fixed under the duality op-

eration, to be the unique fermionic family box, we arrive at a solution.

(2) Pyrimidine-purine switch (U † = C, C† = U , A† = G, G† = A)

(i) option (i) (without inversion of order)

• Table 1, (a): pairs UCN (bosonic) with CUN (fermionic): contradiction.

• Table 1, (b): pairs UCN (fermionic) with CUN (bosonic): contradiction.

• Table 1, (c): pairs UAN (fermionic) with CGN (bosonic): contradiction.

• Table 1, (d): pairs UUN (bosonic) with CCN (fermionic): contradiction.

• Table 1, (e): pairs UUN (bosonic) with CCN (fermionic): contradiction.

• Table 1, (f): pairs UCN (fermionic) with CUN (bosonic): contradiction.

(ii) option (ii) (with inversion of order)

• Table 1, (a): pairs UAN (bosonic) with GCN (fermionic): contradiction.

• Table 1, (b): pairs CGN (fermionic) with AUN (bosonic): contradiction.

• Table 1, (c): pairs CGN (bosonic) with AUN (fermionic): contradiction.

• Table 1, (d): pairs UUN (bosonic) with CCN (fermionic): contradiction.

• Table 1, (e): pairs UUN (bosonic) with CCN (fermionic): contradiction.

• Table 1, (f): pairs CGN (fermionic) with AUN (bosonic): contradiction.

• Table 2, (a): pairs UUN (bosonic) with CCN (fermionic): contradiction.

• Table 2, (b): since the quartets CCN , ACN , GUN , GCN and GGN pair

with UUN , UGN , CAN , UAN and AAN , respectively, we arrive at a contra-

diction with the condition that the lightly shaded family boxes must contain

one bosonic and four fermionic quartets.

• Table 2, (c): taking the doublets in GAN , which is fixed under the duality

operation, to be the unique fermionic family box, we arrive at a solution.

• Table 2, (d): since none of the quartets CCN , ACN , GUN , GCN and GGN

is fixed under the duality operation, we arrive at a contradiction.

(3) Wrong-way Watson–Crick duality (U † = G, C† = A, A† = C, G† = U)

(i) option (i) (without inversion of order)

• Table 1, (a): pairs UAN (bosonic) with GCN (fermionic): contradiction.

• Table 1, (b): pairs CUN (bosonic) with AGN (fermionic): contradiction.

• Table 1, (c): pairs CGN (bosonic) with AUN (fermionic): contradiction.

• Table 1, (d): pairs UUN (bosonic) with GGN (fermionic): contradiction.

• Table 1, (e): pairs UUN (bosonic) with GGN (fermionic): contradiction.

• Table 1, (f): pairs CUN (bosonic) with AGN (fermionic): contradiction.
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(ii) option (ii) (with inversion of order)

• Table 1, (a): pairs AUN (bosonic) with GCN (fermionic): contradiction.

• Table 1, (b): pairs UAN (bosonic) with CGN (fermionic): contradiction.

• Table 1, (c): pairs UAN (fermionic) with CGN (bosonic): contradiction.

• Table 1, (d): pairs UUN (bosonic) with GGN (fermionic): contradiction.

• Table 1, (e): pairs UUN (bosonic) with GGN (fermionic): contradiction.

• Table 1, (f): pairs UAN (bosonic) with CGN (fermionic): contradiction.

• Table 2, (a): pairs UUN (bosonic) with GGN (fermionic): contradiction.

• Table 2, (b): pairs CUN (bosonic) with GAN (fermionic): contradiction.

• Table 2, (c): taking the doublets in CAN , which is fixed under the duality

operation, to be the unique fermionic family box, we arrive at a solution.

• Table 2, (d): taking either the quartet ACN or the quartet GUN , which are

both fixed under the duality operation, to be the unique fermionic family

box, we arrive at a solution.

Summarizing, we have shown that among the schemes exhibited in Tables 1 and

2 above and except for the highly unbalanced and, in our view, unnatural solutions

coming from items (c) and (d) of Table 2, the only ones that are invariant under

some kind of natural duality transformation are the ones shown in Table 3, where

the first is obtained from item (b1) of Table 1 using Watson–Crick duality with

option (i) (without inversion of order) while the second is obtained from item (c)

of Table 1 using Watson–Crick duality either with option (i) (without inversion of

order) or with option (ii) (with inversion of order).

4. Trees of Evolution

Combining the results of Secs. 2 and 3, we can state the main result of this paper

as follows. Among the algebraic models for the evolution of the genetic code, the

only ones that allow for an amino acid and codon assignment which is consistent

with the requirements of family box completeness and invariance under some kind

of natural duality transformation are the following.

(1) The sp(6) model based on the chain

sp(6) ⊃ sp(4) ⊕ su(2) ⊃ su(2)3 ⊃ su(2) ⊕ o(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊕ so(2)

(see Table 4 of Ref. 8, p. 3189 for the branching rules)

(a) either with the central involution (1,−1, 1) in SU (2)3 and partial Watson–

Crick duality defined without inversion of order ((XY N)† = X†Y †N),

leading to the scheme shown in item (a) of Table 3,

(b) or with the central involution (1, 1,−1) in SU (2)3 and partial Watson–Crick

duality defined either without inversion of order ((XY N)† = X†Y †N) or

with inversion of order ((XY N)† = Y †X†N), leading to the scheme shown

in item (b) of Table 3 which has already been identified in Ref. 6.



February 18, 2010 11:20 WSPC/INSTRUCTION FILE S0217979210054944

458 F. Antoneli et al.

2

6

6
16

4

2

2

2

2

3

1

4

2

2

4

6

8

6

4

2

2

2

2

2

2

8
4

1

4

3

4

4

1

2

2

12

2

10

1

2

2

1

2

2

1

2

2

6

6 6

6

64

20

6

2

F−S

Leu

B−D

B−D

F−Q

F−Q

Met

Trp

B−D

B−D

Ile

Stop

F−Q

F−Q

Thr

B−D

F−D

F−D

B−D

B−D

F−S

Fig. 2. Possible tree of evolution with amino acid assignments for the standard genetic code in
the sp(6) model, according to option 1, (a) of the text and Table 3, (a): boxes marked “F–S”
contain the two fermionic sextets Arg and Ser, boxes marked “F–Q” contain the four fermionic
quartets Ala, Gly, Pro and Val, boxes marked “F–D” contain the two fermionic doublets Gln and
His, and boxes marked “B–D” contain the seven bosonic doublets Asn, Asp, Cys, Glu, Lys, Phe,
and Tyr.
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Fig. 3. Possible tree of evolution with amino acid assignments for the standard genetic code in the
sp(6) model, according to option 1, (b) of the text and Table 3, (b): boxes marked “B–S” contain
the three sextets Arg, Leu, and Ser (all of which are bosonic), boxes marked “F–Q” contain the
four fermionic quartets Gly, Pro, Thr and Val, boxes marked “F–D” contain the four fermionic
doublets Cys, Gln, His, and Tyr and boxes marked “B–D” contain the five bosonic doublets Asn,
Asp, Glu, Lys, and Phe. Compare Fig. 1.
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Fig. 4. Possible tree of evolution with amino acid assignments for the standard genetic code in
the osp(5|2) model, according to option 2 of the text and Table 3, (a): boxes marked “F–S” contain
the two fermionic sextets Arg and Ser, boxes marked “F–Q” contain the four fermionic quartets
Ala, Gly, Pro, and Val, boxes marked “B–T” contain the two triplets Ile and Stop (both of which
are bosonic), boxes marked “B–D” contain the seven bosonic doublets Asn, Asp, Cys, Glu, Lys,
Phe, and Tyr, and boxes marked “B–S” contain the two singlets Met and Trp (both of which are
bosonic).

(2) The osp(5|2) model based on the chain

osp(5|2) ⊃ so(5) ⊕ sp(2) ⊃ su(2)3 ⊃ su(2)2 ⊃ su(2) ⊕ o(2) ⊃ o(2) ⊕ o(2)

(see Tables V and VI of Ref. 10, pp. 5436 and 5438 for the branching rules)

with the central involution (1, 1,−1) in SU (2)3 which corresponds to the cen-
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tral involution (1,−1) in SU (2)2 and partial Watson–Crick duality defined

without inversion of order ((XY N)† = X†Y †N), leading to the scheme shown

in item (a) of Table 3.

The resulting possible trees of evolution, together with the allowed amino acid

assignments, are shown in the following figures.

Note that our presentation of these trees is intended to exhibit the remaining

freedom allowed by the rules as explicitly as possible, in accordance with the fact

that many of the final amino acid assignments, even though strongly restricted, are

not completely fixed. In particular, the tree shown in Fig. 1 presents an example

of a final assignment which is consistent with the tree shown in Fig. 3, but it is by

no means the only one. But we see this remaining freedom as an advantage rather
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Fig. 5. Tree of evolution with intermediate amino acid assignments for the standard genetic code
in the sp(6) model (new proposal).
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than as a drawback, since it can be exploited in order to achieve a best fit with

predictions from other models.

For example, the tree that comes closest to what is suggested by the consensus

temporal order of amino acid incorporation into the genetic code, as proposed in

Refs 1 and 2, is the original sp(6)-model as shown in Fig. 3. The best fit is the tree

shown in Fig. 5 which differs from the one in Fig. 1 only by the exchange of the pair

Asp/Glu and the pair Asn/Lys. This leads to a remarkable amount of coincidence

but — as was of course to be expected — also to some differences: for example,

among the six multiplets that appear in the first step of the symmetry breaking

process, five can be naturally assigned to five among the first six amino acids in

the consensus sequence, namely Ala, Gly, Asp, Val, and Ser, whereas the sixth one

is a fermionic doublet corresponding to one of the amino acids Cys, Gln, His or

Tyr (here we have chosen His), all of which appear rather late in the consensus

sequence.

5. Conclusion

Even though the investigation of the role of symmetry in biology is still in its

infancy and new mathematical models, based on symmetry principles, for funda-

mental biological processes keep appearing (see, e.g., Refs 17 and 18), we can claim

that with the present work, the question of symmetry in the genetic code has been

largely settled. The two basic criteria used here to restrict the huge number of alter-

natives for amino acid assignment, namely family box completeness and (partial)

Watson–Crick duality, are based on experimentally well founded biological facts:

the highly reduced importance of the third base and a complementarity rule that

has been used in a variety of other models.1,2 Using these rules, the entire world

of possible symmetries has been searched (whether based on Lie algebras, on Lie

superalgebras or on finite groups) and only the original symplectic model and a su-

persymmetric version thereof have survived. It is really remarkable that searching

the enormous universe of possible symmetries using only a few simple and mathe-

matically and/or biologically well motivated hypotheses, there emerges a unique so-

lution, with mathematical rigor, whose basic message can be summarized as follows:

If there is symmetry in the evolution of the genetic code, it is symplectic. The unicity

of this symmetry, the good agreement with the consensual order of amino acids and

the notable ability of the model to accommodate deviations such as the ones found

in mitochondrial codes19,20 lend support to the speculation that this symmetry in

the genetic code has been selected by evolution.
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University of São Paulo, 2003.
12. F. Antoneli, M. Forger and J. E. M. Hornos, Mod. Phys. Lett. B 18, 971 (2004).
13. F. Antoneli and M. Forger, Finite Groups for the Genetic Code I: Codon Represen-

tations, preprint, (University of São Paulo, 2000).
14. F. Antoneli and M. Forger, Finite Groups for the Genetic Code II: Branching Rules,

preprint, (University of São Paulo, 2005).
15. The GAP Group: GAP — Groups, Algorithms, and Programming 4.2, Aachen, St.

Andrews, 1999. http://www-gap.dcs.st-and.ac.uk/ gap.
16. A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras (Dordrecht, Kluwer,

1990).
17. G. C. P. Innocentini and J. E. M. Hornos, J. Math. Biol. 55, 413 (2007).
18. A. F. Ramos and J. E. M. Hornos, Phys. Rev. Lett. 99, 108103 (4 pp.) (2007).
19. J. E. M. Hornos, L. Braggion, M. Magini and M. Forger: IUBMB Life 56, 125 (2004).
20. W. Arber, Hist. Philos. Life Sci. 28, 525 (2006).


	Introduction
	Fermion Operators
	Watson-Crick Duality
	Trees of Evolution
	Conclusion

