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We report on the search for symmetries in the genetic code involving the medium rank
simple Lie algebras B6 = so(13) and D7 = so(14), in the context of the algebraic
approach originally proposed by one of the present authors, which aims at explaining
the degeneracies encountered in the genetic code as the result of a sequence of symmetry
breakings that have occurred during its evolution.
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1. Introduction

The genetic code constitutes a dictionary for protein synthesis that to each codon

(triplet of nucleic bases in DNA or RNA) associates one of the twenty fundamental

aminoacids or the termination signal. It summarizes, in condensed form, the rules

governing the complex process of translation that occurs in the ribosome, involving

all three forms of RNA (mRNA, tRNA and rRNA) together with various proteins

and other auxiliary molecules. The degeneracy of this code, resulting simply from

the fact that the number of aminoacids (20) is much smaller than that of codons

(64), immediately suggests an analysis based on invariance principles, that is, on

the concept of symmetry. The main idea is to construct a codon space, i.e. a 64-

dimensional vector space carrying an irreducible representation of a group G. The

irreducibility of this representation is lost, step by step, by imposing that in each

step the symmetry is lowered to a maximal subgroup of G. The result is a chain of

subgroups G ⊃ G1 ⊃ · · · ⊃ Gn which must generate precisely twenty-one subspaces
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to allocate the aminoacids and the termination signal. This process of spontaneous

symmetry breaking has been used before, in various fields of science. The crucial

point in such a search for symmetries is to find the ancestor group G and the

possible chains of subgroups.

The first search for symmetries in the genetic code along this line of reasoning, as

outlined in Ref. 1 (see also Ref. 2, and Refs. 3 and 4 for comments), has been carried

out within the class of ordinary compact Lie groups G or, what amounts to the same

thing, of semisimple Lie algebras g, based on Cartan’s classification of semisimple

Lie algebras, Dynkin’s classification of their maximal semisimple subalgebras5,6 and

the tables of branching rules of McKay and Patera.7 This search has shown that,

on the one hand, there is no simple Lie algebra that can generate the standard

genetic code directly in its present form. On the other hand, it turned out that the

standard genetic code can be obtained from the symplectic algebra sp(6) if, in the

last step, the process of symmetry breaking is allowed to be gently interrupted, or

frozen. This means that a few of the multiplets (subspaces) that have resulted from

previous steps of the process do not participate in the symmetry reduction implied

by the last step.

Two restrictions have been imposed on the search reported in Ref. 1. The first

refers to the last phase of the process, after the ancestor algebra has already been

broken to a direct sum of su(2)-subalgebras. In this last phase, further steps con-

sist in breaking one or several of these su(2)-subalgebras completely, which in the

language of atomic or nuclear physics can be implemented by introducing an ap-

propriate generator Lz into the Hamiltonian. Another possibility that was also

considered is to introduce instead its square L2
z, which leads to a softer form of

symmetry breaking. However, the possibility of performing both of these breakings

sequentially, with freezing applied to the second step only, was not contemplated.

The second restriction was the exclusion of “diagonal breaking”, which in the case

of su(2)-subalgebras amounts to a Clebsch–Gordan summation law for quantum

numbers.

In Ref. 8, this search has been enlarged as a consequence of a new geometric

interpretation of the operator L2
z (rather than Lz): it implements symmetry break-

ing of the compact Lie group SU(2) to its maximal non-connected subgroup O(2)

(rather than its maximal connected subgroup SO(2)). This point of view makes it

perfectly acceptable to allow a symmetry breaking from SU(2) to O(2) followed

by one from O(2) to SO(2). As a result, there appeared a new chain based on the

exceptional group G2. Soon after, a second chain based on G2 was discovered. The

main problem with both of these G2 models, which will appear again in the anal-

ysis of the medium rank algebras so(13) and so(14) to be reported in this paper,

is the large number of multiplets (subspaces) which must be frozen, in contrast to

biological information that seems to speak in favor of a small amount of freezing.

A complete review of the full process has been given in Ref. 9, eliminating the

restrictions pointed out above for the low rank algebras. Here, we extend this anal-

ysis to the medium rank algebras so(13) and so(14). In this sense, the present paper
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is a companion of Ref. 9. Of course, we were aware from the very beginning that the

analysis of hundreds of chains, required to handle this case, is a formidable task.

However, when attempting to fully settle the question of the existence of symmetries

behind a fundamental biological structure such as that underlying the organization

of the genetic code, we cannot afford to discard any reasonable possibilities a priori.

Another aspect that deserves to be commented is that, as already proposed in

Ref. 1, a similar analysis for Lie superalgebras has already been completed,10,11

whereas the same investigation in the context of finite groups is under way and has

so far given rise to partial results.12

This article, which has grown out of previous work by Y.M.M. Hornos (un-

published) and the authors,13,14 is organized as follows. Section 2 is dedicated to

exposing the general strategy adopted in the search that is reported in the follow-

ing three sections. Given the fact that branching from the medium rank simple

Lie algebras B6 = so(13) and D7 = so(14) leads to thousands of chains that are

impossible to analyze case by case, our strategy is to first formulate a set of rules

that allows one to discard the great majority of these chains without detailed anal-

ysis, thus reducing the number of “surviving” chains to manageable proportions.

Sections 3–5 report the details of this search, organized in three phases and in a

tree-like structure, where each branch is followed up to the point where it can ei-

ther be discarded or else be shown to produce the pattern of degeneracies observed

in the genetic code. In Section 6, we summarize the results, and in Section 7, we

comment on conclusions that can be drawn from our work.

Given the highly technical nature of Sections 3–5, in which the material has been

organized into enormous lists, the reader is strongly advised to concentrate first on

Section 2 and then on Section 6, consulting Sections 3–5 according to necessity or

to his/her personal preferences and interests, in an encyclopaedic manner.

2. General Strategy

The mathematical procedure for analyzing the degeneracies of the genetic code is

based on repeated symmetry reduction to maximal subalgebras, leading to descend-

ing chains of subalgebras, each of which is maximal in the previous one. For this

purpose, it is sufficient to consider only semisimple subalgebras, because a possible

non-trivial center does not contribute to dimensions or branching rules. Therefore,

the explicit construction of all possible chains requires, as a pre-requisite, a complete

classification of the maximal semisimple subalgebras of semisimple Lie algebras —

a problem solved long ago by Dynkin.5,6

An important first step in Dynkin’s classification is to realize that the general

problem can be reduced to that of classifying the maximal semisimple subalgebras

of simple Lie algebras, namely by means of a theorem (Ref. 5, Theorem 15.1) stating

that the maximal semisimple subalgebras g′ of a semisimple Lie algebra g are of

two types:
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(a) the simple type: up to an isomorphism, including an appropriate permutation

of the simple ideals that constitute g, we have g = g0 ⊕ g1 and g′ = g′0 ⊕ g1,

where g0 is one of the simple ideals of g, g1 is the direct sum of the other simple

ideals of g and g′0 is a maximal semisimple subalgebra of g0,

(b) the diagonal type: up to an isomorphism, including an appropriate permutation

of the simple ideals that constitute g, we have g = g0⊕g0⊕g1 and g′ = g0⊕g1,

where g0 is one of the simple ideals of g that occurs (at least) twice in g, g1

is the direct sum of the other simple ideals of g and the embedding of g0 into

g0 ⊕ g0 is the diagonal one, mapping X0 ∈ g0 to (X0, X0) ∈ g0 ⊕ g0.

Correspondingly, the chains can be classified into simple chains, i.e. chains that do

not involve breaking to a subalgebra of diagonal type at any point, and diagonal

chains, i.e. chains that do so at some point.

The task of classifying the maximal semisimple subalgebras of simple Lie alge-

bras is much more difficult and forms the core of Dynkin’s work. The results for

the simple Lie algebras of interest here are assembled in Table 1; they can also be

read off from the tables of McKay and Patera7 that are themselves, in this respect,

derived from Dynkin’s work and have been verified independently by one of the

present authors.14

Table 1. Maximal semisimple subalgebras of some simple Lie algebras

(A2 ⊃ A
(1)
1 means su (3) ⊃ su (2), A2 ⊃ A

(2)
1 means su (3) ⊃ so (3)).

Cartan label of
simple Lie algebra Cartan label of maximal semisimple subalgebra

D7 A6, B6, C3, C2, G2, A3 ⊕ D4, A1 ⊕ B5,
C2 ⊕ B4, B3 ⊕ B3, A1 ⊕ A1 ⊕ D5

A6 A5, B3, A1 ⊕ A4, A2 ⊕ A3

B6 D6, A1, A1 ⊕ D5, C2 ⊕ D4, A3 ⊕ B3, A1 ⊕ A1 ⊕ B4

D6 A5, B5, A3 ⊕ A3, A1 ⊕ B4, C2 ⊕ B3, A1 ⊕ C3,
A1 ⊕ A1 ⊕ A1, A1 ⊕ A1 ⊕ D4

A5 A4, A3, C3, A2, A1 ⊕ A3, A2 ⊕ A2, A1 ⊕ A2

B5 D5, A1, A1 ⊕ D4, A3 ⊕ C2, A1 ⊕ A1 ⊕ B3

D5 A4, B4, C2, A1 ⊕ B3, C2 ⊕ C2, A1 ⊕ A1 ⊕ A3

A4 A3, C2, A1 ⊕ A2

B4 D4, A1, A1 ⊕ A3, A1 ⊕ A1, A1 ⊕ A1 ⊕ C2

D4 B3, A2, A1 ⊕ C2, A1 ⊕ A1 ⊕ A1 ⊕ A1

A3 A2, C2, A1 ⊕ A1

B3 G2, A3, A1 ⊕ A1 ⊕ A1

C3 A2, A1, A1 ⊕ C2, A1 ⊕ A1

A2 A
(1)
1 , A

(2)
1

C2 A1, A1 ⊕ A1

G2 A2, A1, A1 ⊕ A1
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Here and in what follows, the subalgebras are ordered according to the following

criteria: first by increasing number of simple summands, then by decreasing total

rank and finally by decreasing rank for the simple summand of highest rank.

The general strategy for analyzing the chains that result from repeated sym-

metry reduction to maximal semisimple subalgebras consists in proceeding along

each chain one step at a time and analyzing, after each step, whether the resulting

pattern of degeneracies is still compatible with that of the genetic code, as shown

in Table 2. If not, the chain is non-surviving and may be discarded without fur-

ther analysis. Otherwise, the chain is surviving (up to the stage considered), which

means that we must proceed to analyze the possible next steps of the symmetry

breaking.

To organize the multitude of chains that have to be analyzed, we have found it

convenient to first of all divide the whole process into three distinct phases (rather

than two, as stated in Ref. 9):

Phase 1: Breaking of the primordial symmetry to su(2)-symmetries.

During the first phase, symmetry breaking proceeds through chains of maximal

semisimple subalgebras, either by simple breaking or by diagonal breaking of pairs of

simple subalgebras different from su(2). Every such chain will necessarily terminate

in a direct sum of p copies of su(2), where p may range from 1 up to the rank of

the original simple Lie algebra.

Phase 2: Diagonal breaking of the su(2)-symmetries.

The second phase consists in subjecting the chains that have survived up to the

end of phase 1 to diagonal breaking of the su(2)-summands. When there are p such

summands, there will a priori be
(

p
2

)

possibilities of diagonal breaking, but this

number can be substantially reduced when the previously obtained distribution of

multiplets is invariant under certain permutations between the su(2)-summands.

Phase 3: Breaking of the su(2)-symmetries.

The third phase consists in subjecting the chains that have survived up to the end

of phase 2 to breaking of (some of) the su(2)-subalgebras, either to o(2) or to so(2),

including the possibility of freezing in the last step, as explained in Ref. 9.

Table 2. Dimensions and multiplicities in the standard genetic code.

Dimension of Number of
multiplet multiplets Amino acids

6 3 Arg, Leu, Ser
4 5 Ala, Gly, Pro, Thr, Val
3 2 Ile, TERM
2 9 Asn, Asp, Cys, Gln, Glu, His, Lys, Phe, Tyr
1 2 Met, Trp
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Next, it is useful to assemble the chains into families characterized by the same

final algebra and the same distribution of multiplets under it. This reflects the fact

that if

g ⊃ g1 ⊃ g2 ⊃ · · · ⊃ gr ⊃ h

and

g ⊃ g′1 ⊃ g′2 ⊃ · · · ⊃ g′r′ ⊃ h′

are two descending chains of subalgebras starting out from the same initial algebra

g and ending in final subalgebras h and h′ of g that are conjugate in g, then the

distributions of multiplets with respect to h and to h′ obtained from any given

representation of g along the two chains are identical – except when the last step

of the symmetry reduction (from gr to h and/or from g′r′ to h′) involves freezing.9

Of course, it is then sufficient to analyze the further fate of only one chain in each

such family.

Our next task is to specify the criteria used to identify non-surviving chains.

To this end, we observe first of all that there are a few simple rules that allow one

to decide whether the symmetry breaking must be stopped at the stage considered

or whether it must proceed at least one stage further. As explained in Ref. 9, the

process stops whenever we encounter

• more than 21 multiplets,

• more than 2 singlets,

• more than 4 odd-dimensional multiplets,

• not enough multiplets of dimension > 6 or > 4,

whereas it must be continued whenever we encounter

• less than 21 multiplets,

• multiplets of dimension > 7,

• more than 3 multiplets of dimension 6,

• multiplets of dimension 5.

In the limiting case of exactly 21 multiplets, the chain must either reproduce pre-

cisely the degeneracies of the genetic code or else must be discarded.

The simplest of these conditions is certainly the one referring to the total number

of multiplets. When it exceeds 21, this can be taken as an indication that we

should discard the chain in question, return to the previous stage and look for

other possibilities to proceed from there. In the following, we shall therefore apply

the classification of chains as surviving or non-surviving only when the total number

of multiplets does not exceed 21: all others could be considered as trivially non-

surviving. There are then various properties that allow one to identify non-surviving

chains:

• Total pairing: all multiplets occur in (identical or complex conjugate) pairs.

• Singlet excess: more than 2 singlets.
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• Odd multiplet excess: more than 4 odd-dimensional multiplets.

• Large multiplet defect: not enough multiplets of dimension > 6 or > 4.

These criteria for exclusion of chains are “hereditary” in the sense of being based

on features, not shared by the distribution of multiplets found in the genetic code,

that cannot be removed by any further symmetry breaking and therefore allow one

to discard the chain together with all of its possible descendants. Apart from these,

there exist further criteria for the exclusion of chains which are only “partially

hereditary” in the sense of allowing one to discard a certain chain and some but

not all of its descendants; this is the case for a set of rules regarding the possibility

of producing the 3 sextets and 2 triplets of the genetic code and collectively referred

to as the sextet/triplet generating rules.

To explain the content of these rules, which apply to the third phase of the

symmetry breaking process, assume that we are given a surviving chain (where

“surviving” now means that it has survived up to the end of the first and/or second

phase): it will necessarily end in the direct sum of, say, p copies of su(2) where,

for chains starting out from the codon representations of B6 = so(13) or D7 =

so(14), p may range from 1 up to 6. Each of the multiplets appearing in the final

distribution of multiplets for any such chain is characterized by its highest weight,

which can be written in the form (k1, . . . , kp) with non-negative integers k1, . . . , kp;

its dimension is (k1 + 1) · · · · · (kp + 1). Suppose now that we perform a symmetry

reduction by breaking the j-th su(2), that is, from su1(2) ⊕ · · · ⊕ sup(2) either to

su1(2)⊕ · · · ⊕ soj(2)⊕ · · · ⊕ sup(2) or to su1(2)⊕ · · · ⊕ oj(2)⊕ · · · ⊕ sup(2). In the

first case, the multiplet (k1, . . . , kp) will split into kj + 1 multiplets of dimension

(k1 + 1) · · · · · (kj−1 + 1) · (kj+1 + 1) · · · · · (kp + 1), whereas in the second case, it

will split into

•
1
2 (kj +1) multiplets of dimension 2(k1 +1) · · · · ·(kj−1 +1) ·(kj+1 +1) · · · · ·(kp +1),

if kj is odd, and

•
1
2kj multiplets of dimension 2(k1 + 1) · · · · · (kj−1 + 1) · (kj+1 + 1) · · · · · (kp + 1)

plus 1 multiplet of dimension (k1 + 1) · · · · · (kj−1 + 1) · (kj+1 + 1) · · · · · (kp + 1),

if kj is even.

Repeating this process, we see that any breaking whatsoever of the multiplet

(k1, . . . , kp) will lead to a distribution of sub-multiplets whose dimensions are prod-

ucts of certain of the numbers kj + 1, corresponding to those su(2)’s that have

remained unbroken, and when breaking to o(2) is involved, some power of 2. In

particular, sub-multiplets whose dimension is a multiple of 3 can only appear if at

least one of the numbers kj + 1 is a multiple of 3 (and the corresponding suj(2) is

unbroken); moreover, sextets/triplets can only appear if at least one of them is ac-

tually equal to 6 or 3/3. Finally, observe that if any one of the integers kj is greater

than 5, then the corresponding suj(2) must be broken, since otherwise there would

remain multiplets of dimension > 7. Thus we arrive at
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Rule 1: During the last phase of the symmetry breaking process, sub-multiplets

whose dimension is a multiple of 3 can only appear as the result of breaking mul-

tiplets (k1, . . . , kp) whose dimension is a multiple of 3, that is, for which at least

one of the integers k1, . . . , kp equals 2 mod 3. More specifically, the triplets come

from multiplets (k1, . . . , kp) where at least one of the integers k1, . . . , kp equals 2,

whereas the sextets come from multiplets (k1, . . . , kp) where at least one of the

integers k1, . . . , kp equals 2 or 5.

Rule 2: During the last phase of the symmetry breaking process, breaking a mul-

tiplet whose dimension is a multiple of 3 results in a collection of sub-multiplets

whose dimension is a multiple of 3 either for all or for none of the sub-multiplets

within the collection.

Based on these rules, we can make a list of all multiplets (k1, . . . , kp) appearing

in the final distribution of multiplets for one of the surviving chains for B6 = so(13)

or D7 = so(14) whose dimension is a multiple of 3 and that after further breaking

can produce sextets and/or triplets. This information is collected in Table 3, except

that we omit breakings that do not produce any sub-multiplets whose dimension

is a multiple of 3 (1 sextet into 6 singlets or 3 doublets, rather than 2 triplets, for

example) or that do not succeed in eliminating all sub-multiplets of dimension > 6

(1 multiplet of dimension 24 into 2 multiplets of dimension 12, rather than 4 sextets

or 8 triplets, for example). Without loss of generality, the integer that, according to

Table 3. Sextet/triplet generating rules.

Multiplet Dimension Possible breakings into sextets/triplets

(5, 0, . . .) 6 1 sextet (unbroken)
(2, 0, . . .) 3 1 triplet (unbroken)

(5, 1, 0, . . .) 12 2 sextets
(2, 6, 0, . . .) 21 3 sextets and 1 triplet

7 triplets
(2, 5, 0, . . .) 18 3 sextets

6 triplets
(2, 4, 0, . . .) 15 2 sextets and 1 triplet

5 triplets
(2, 3, 0, . . .) 12 2 sextets

4 triplets
(2, 2, 0, . . .) 9 1 sextet and 1 triplet

3 triplets

(2, 1, 0, . . .) 6 1 sextet (unbroken)
2 triplets

(2, 1, 3, 0, . . .) 24 4 sextets
8 triplets

(2, 1, 2, 0, . . .) 18 3 sextets
2 sextets and 2 triplets

6 triplets
(2, 1, 1, 0, . . .) 12 2 sextets

4 triplets
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rule 1, must be equal to 2 or 5 is assumed to be k1, and when we write (k1, 0, . . .),

(k1, k2, 0, . . .), (k1, k2, k3, 0, . . .), etc, the dots indicate that the remaining k’s are

meant to be zero.

The simplest consequence of these sextet/triplet generating rules is of course

the observation, already formalized in Ref. 9, that a chain will be non-surviving

when there are not enough multiplets whose dimension is a multiple of 3: adding

up the dimensions of all these multiplets gives a number called d3 in Ref. 9 that

must be at least 24 in order for the chain to be surviving.

3. First Phase of Symmetry Breaking

In what follows, we list the chains that result from carrying out the symmetry

breaking up to the end of the first phase. Except when explicitly stated otherwise,

the total number of multiplets obtained after the last step is always less than 21,

so that according to the criteria stated above, the procedure must be continued;

in particular no freezing is allowed in this phase. We also present the relevant

information on the distribution of multiplets obtained after the last step that allows

to discard the non-surviving chains.

B6 = so(13)

1. B6 ⊃ D6:

1.1. B6 ⊃ D6 ⊃ A5: continuing the symmetry breaking process, we obtain the following
chains, all of which can be excluded:

1.1.1. B6 ⊃ D6 ⊃ A5 ⊃ A4: 4 quintets and 4 singlets, as well as total pairing.
1.1.2. B6 ⊃ D6 ⊃ A5 ⊃ A3: total pairing.
1.1.3. B6 ⊃ D6 ⊃ A5 ⊃ C3: 4 singlets.
1.1.4. B6 ⊃ D6 ⊃ A5 ⊃ A2: total pairing.
1.1.5. B6 ⊃ D6 ⊃ A5 ⊃ A1 ⊕ A3: 4 singlets.
1.1.6. B6 ⊃ D6 ⊃ A5 ⊃ A2 ⊕ A2: 4 nonets, 8 triplets and 4 singlets.
1.1.7. B6 ⊃ D6 ⊃ A5 ⊃ A1 ⊕ A2: continuing the symmetry breaking process, we

obtain the following chains:

1.1.7.1. B6 ⊃ D6 ⊃ A5 ⊃ A1 ⊕ A2 ⊃ A1 ⊕ A
(1)
1 : this chain exhibits precisely 21

multiplets: 3 sextets, 5 quartets, 4 triplets, 5 doublets and 4 singlets.

1.1.7.2. B6 ⊃ D6 ⊃ A5 ⊃ A1 ⊕ A2 ⊃ A1 ⊕ A
(2)
1 :

2 nonets, 2 quintets and 4 singlets.

1.2. B6 ⊃ D6 ⊃ B5: total pairing.
1.3. B6 ⊃ D6 ⊃ A3 ⊕ A3: total pairing.
1.4. B6 ⊃ D6 ⊃ A1 ⊕ B4: total pairing.
1.5. B6 ⊃ D6 ⊃ C2 ⊕ B3: total pairing.
1.6. B6 ⊃ D6 ⊃ A1 ⊕ C3: continuing the symmetry breaking process, we obtain the

following chains:

1.6.1. B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A2:
distribution of multiplets identical to that from the chain 1.1.7:
B6 ⊃ D6 ⊃ A5 ⊃ A1 ⊕ A2.



August 8, 2003 11:6 WSPC/140-IJMPB 02076

3144 F. Antoneli et al.

1.6.2. B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1: surviving.
1.6.3. B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1: surviving.
1.6.4. B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.
1.6.5. B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ A1: surviving.

1.7. B6 ⊃ D6 ⊃ A1 ⊕A1 ⊕D4: continuing the symmetry breaking process, we obtain the
following chains:

1.7.1. B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ B3: total pairing.
1.7.2. B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A2: total pairing.
1.7.3. B6 ⊃ D6 ⊃ A1⊕A1⊕D4 ⊃ A1⊕A1⊕A1⊕C2 ⊃ A1⊕A1⊕A1⊕A1: surviving.
1.7.4. B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:

surviving.
1.7.5. B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

1.8. B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 1.6.5:
B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ A1.

2. B6 ⊃ A1: does not reproduce the genetic code.

3. B6 ⊃ A1 ⊕ D5: total pairing.

4. B6 ⊃ C2 ⊕D4: in the next step of the symmetry breaking process, we break the

D4-subalgebra, observing that this must be done at some stage since otherwise

the dimensions of all multiplets would remain multiples of 8; this leads to the

following chains:

4.1. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ B3: total pairing.
4.2. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A2: total pairing.
4.3. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2: in the next step of the symmetry breaking process,

we either perform a diagonal breaking of the C2-subalgebras or else we break the
last C2-subalgebra, observing that this must be done at some stage since otherwise
there would remain multiplets whose dimensions are multiples of 5; then breaking
the remaining C2-subalgebra in the last step leads to the following chains:

4.3.1. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ (C2)13 ⊕ A1: distribution of multiplets
identical with that obtained from the sp(6) model after the first step.

4.3.2. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1:
surviving.

4.3.3. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 1.7.3:
B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1.

4.3.4. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
surviving.

4.3.5. B6 ⊃ C2⊕D4 ⊃ C2⊕A1⊕C2 ⊃ C2⊕A1⊕A1⊕A1 ⊃ A1⊕A1⊕A1⊕A1⊕A1:
distribution of multiplets identical to that from the chain 1.7.4:
B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

4.4. B6 ⊃ C2⊕D4 ⊃ C2⊕A1⊕A1⊕A1⊕A1: continuing the symmetry breaking process,
we obtain the following chains:

4.4.1. B6 ⊃ C2⊕D4 ⊃ C2⊕A1⊕A1⊕A1⊕A1 ⊃ A1⊕A1⊕A1⊕A1⊕A1: surviving.
4.4.2. B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:

distribution of multiplets identical to that from the chain 1.7.5:
B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.
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5. B6 ⊃ A3 ⊕ B3: total pairing.

6. B6 ⊃ A1 ⊕ A1 ⊕ B4: continuing the symmetry breaking process, we obtain the

following chains:

6.1. B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ D4:
distribution of multiplets identical to that from the chain 1.7:
B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4.

6.2. B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1: surviving.
6.3. B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A3: total pairing.
6.4. B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.
6.5. B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ C2:

distribution of multiplets identical to that from the chain 4.4:
B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

D7 = so(14)

As a preliminary remark, we observe that the maximal subalgebras B6, C3, C2

and G2 of D7 can be disregarded because the codon representations of D7 remain

irreducible under restriction to these subalgebras, so that these cases are covered

by our previous analysis here (B6) and in Ref. 9 (C3, C2 and G2).

1. D7 ⊃ A6

1.1. D7 ⊃ A6 ⊃ A5: distribution of multiplets identical to that from the B6-chain 1.1:
B6 ⊃ D6 ⊃ A5.

1.2. D7 ⊃ A6 ⊃ B3: continuing the symmetry breaking process, we obtain the following
chains, all of which can be excluded:

1.2.1. D7 ⊃ A6 ⊃ B3 ⊃ A3: total pairing.
1.2.2. D7 ⊃ A6 ⊃ B3 ⊃ G2:

1 multiplet of dimension 27, 3 septets and 2 singlets.
1.2.3. D7 ⊃ A6 ⊃ B3 ⊃ A1 ⊕ A1 ⊕ A1: 2 nonets, 4 triplets and 2 singlets.

1.3. D7 ⊃ A6 ⊃ A2 ⊕ A3: continuing the symmetry breaking process, we obtain the
following chains, all of which can be excluded:

1.3.1. D7 ⊃ A6 ⊃ A2 ⊕ A3 ⊃ A
(1)
1 ⊕ A3: 4 singlets.

1.3.2. D7 ⊃ A6 ⊃ A2 ⊕ A3 ⊃ A
(2)
1 ⊕ A3: any posterior breaking of the A3-algebra

leads to a distribution of multiplets identical with that created by posterior
breaking of the A2-algebra in one of the following three cases and thus contains
far too many odd-dimensional multiplets.

1.3.3. D7 ⊃ A6 ⊃ A2 ⊕ A3 ⊃ A2 ⊕ A2:
4 nonets, 8 triplets and 4 singlets.

1.3.4. D7 ⊃ A6 ⊃ A2 ⊕ A3 ⊃ A2 ⊕ C2:
1 multiplet of dimension 15, 1 quintet, 3 triplets and 3 singlets.

1.3.5. D7 ⊃ A6 ⊃ A2 ⊕ A3 ⊃ A2 ⊕ A1 ⊕ A1: 2 nonets, 4 triplets and 2 singlets.

1.4. D7 ⊃ A6 ⊃ A1 ⊕ A4: continuing the symmetry breaking process, we obtain the
following chains, all of which can be excluded:

1.4.1. D7 ⊃ A6 ⊃ A1 ⊕ A4 ⊃ A1 ⊕ A3: 4 singlets.
1.4.2. D7 ⊃ A6 ⊃ A1 ⊕ A4 ⊃ A1 ⊕ C2 ⊃ A1 ⊕ A1:

2 septets, 2 quintets, 2 triplets and 2 singlets.
1.4.3. D7 ⊃ A6 ⊃ A1 ⊕ A4 ⊃ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1: 4 triplets and 4 singlets.
1.4.4. D7 ⊃ A6 ⊃ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A2: 4 triplets and 4 singlets.
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2. D7 ⊃ A3 ⊕D4: in the next step of the symmetry breaking process, we break the

D4-subalgebra, observing that this must be done at some stage since otherwise

the dimensions of all multiplets would remain multiples of 8; this leads to the

following chains:

2.1. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ B3: total pairing.
2.2. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A2: total pairing.
2.3. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2: in the next step of the symmetry breaking process,

we break the A3-subalgebra, observing that this must be done at some stage since
otherwise the dimensions of all multiplets would remain multiples of 4; this leads to
the following chains:

2.3.1. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2: in the next step of the
symmetry breaking process, we break the C2-subalgebra, observing that this
must be done at some stage since otherwise there would remain multiplets
whose dimensions are multiples of 5; then breaking the A2-subalgebra in the
last step leads to the following chains:

2.3.1.1. D7 ⊃ A3⊕D4 ⊃ A3 ⊕A1 ⊕C2 ⊃ A2 ⊕A1 ⊕C2 ⊃ A
(1)
1 ⊕A1⊕A1: surviving.

2.3.1.2. D7 ⊃ A3⊕D4 ⊃ A3 ⊕A1 ⊕C2 ⊃ A2 ⊕A1 ⊕C2 ⊃ A
(2)
1 ⊕A1⊕A1: surviving.

2.3.1.3. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(1)
1 ⊕ A1 ⊕ A1 ⊕ A1:

surviving.

2.3.1.4. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(2)
1 ⊕ A1 ⊕ A1 ⊕ A1:

surviving.

2.3.2. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ C2:
distribution of multiplets identical to that from the B6-chain 4.3:
B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2.

2.3.3. D7 ⊃ A3⊕D4 ⊃ A3⊕A1⊕C2 ⊃ A1⊕A1⊕A1⊕C2: continuing the symmetry
breaking process, we obtain the following chains:

2.3.3.1. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.
2.3.3.2. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

2.4. D7 ⊃ A3⊕D4 ⊃ A3⊕A1⊕A1⊕A1⊕A1: continuing the symmetry breaking process,
we obtain the following chains:

2.4.1. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
continuing the symmetry breaking process, we obtain the following chains:

2.4.1.1. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A
(1)
1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

2.4.1.2. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A
(2)
1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

2.4.2. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the B6-chain 4.4:
B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

2.4.3. D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
surviving.

3. D7 ⊃ A1 ⊕B5: continuing the symmetry breaking process, we obtain the follow-

ing chains:

3.1. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ D5: total pairing.
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3.2. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1: surviving.
3.3. D7 ⊃ A1⊕B5 ⊃ A1⊕A1⊕D4: continuing the symmetry breaking process, we obtain

the following chains:

3.3.1. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ B3: total pairing.
3.3.2. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A2: total pairing.
3.3.3. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2:

distribution of multiplets identical to that from the chain 2.3.3:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2.

3.3.4. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.3:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

3.4. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A3 ⊕ C2: total pairing.
3.5. D7 ⊃ A1 ⊕B5 ⊃ A1 ⊕A1 ⊕A1 ⊕B3: continuing the symmetry breaking process, we

obtain the following chains:

3.5.1. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A3: total pairing.
3.5.2. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2: continuing the

symmetry breaking process, we obtain the following chains:

3.5.2.1. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A2: total pairing.
3.5.2.2. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.
3.5.2.3. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

3.5.3. D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.3:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

4. D7 ⊃ C2 ⊕B4: in the next step of the symmetry breaking process, we break the

B4-subalgebra, observing that this must be done at some stage since otherwise

the dimensions of all multiplets would remain multiples of 16; this leads to the

following chains:

4.1. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ D4: in the next step of the symmetry breaking process,
we break the D4-subalgebra, observing that this must be done at some stage since
otherwise the dimensions of all multiplets would remain multiples of 8; this leads to
the following chains:

4.1.1. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ B3: total pairing.
4.1.2. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A2: total pairing.
4.1.3. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2:

distribution of multiplets identical to that from the B6-chain 4.3:
B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2.

4.1.4. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the B6-chain 4.4:
B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

4.2. D7 ⊃ C2 ⊕B4 ⊃ C2 ⊕A1: continuing the symmetry breaking process, we obtain the
following chains:

4.2.1. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊃ A1 ⊕ A1: surviving.
4.2.2. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1:

distribution of multiplets identical to that from the B6-chain 6.2:
B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1.
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4.3. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A3: total pairing.
4.4. D7 ⊃ C2⊕B4 ⊃ C2⊕A1⊕A1: continuing the symmetry breaking process, we obtain

the following chains:

4.4.1. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1: surviving.
4.4.2. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:

distribution of multiplets identical to that from the B6-chain 6.4:
B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1.

4.5. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕A1 ⊕A1 ⊕C2: continuing the symmetry breaking process, we
either perform a diagonal breaking of the C2-subalgebras and then break the resulting
diagonal C2-subalgebra, or else we break first one of the two C2-subalgebras and then
the other one; this leads to the following chains:

4.5.1. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ (C2)14 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1: surviving.
4.5.2. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ (C2)14 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.
4.5.3. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.
4.5.4. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.2.1:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.
4.5.5. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.2.1:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.
4.5.6. D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.2.2:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

5. D7 ⊃ B3 ⊕B3: continuing the symmetry breaking process, we obtain the follow-

ing chains:

5.1. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ A3: total pairing.
5.2. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2: in the next step of the symmetry breaking process,

we break the B3-subalgebra, observing that this must be done at some stage since
otherwise the dimensions of all multiplets would remain multiples of 8; this leads to
the following chains:

5.2.1. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ A3 ⊕ G2: total pairing.
5.2.2. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2: continuing the symmetry breaking

process, we either perform a diagonal breaking of the G2-subalgebras or else
we break first one of the two G2-subalgebras and then the other one; this leads
to the following chains:

5.2.2.1. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ (G2)12:
1 multiplet of dimension 27, 3 septets and 2 singlets.

5.2.2.2. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊃ A1 ⊕ A1:
surviving.
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5.2.2.3. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1:
surviving.

5.2.2.4. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1: surviving.
5.2.2.5. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

5.2.3. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2:
distribution of multiplets identical to that from the chain 3.5.2:
D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2.

5.3. D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 3.5:
D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3.

5.4. D7 ⊃ B3 ⊕ B3 ⊃ (B3)12:
distribution of multiplets identical to that from the chain 1.2:
D7 ⊃ A6 ⊃ B3.

6. D7 ⊃ A1 ⊕ A1 ⊕ D5: continuing the symmetry breaking process, we obtain the

following chains:

6.1. D7 ⊃ A1 ⊕A1 ⊕D5 ⊃ A1 ⊕A1 ⊕A4: continuing the symmetry breaking process, we
obtain the following chains:

6.1.1. D7 ⊃ A1⊕A1⊕D5 ⊃ A1⊕A1⊕A4 ⊃ A1⊕A1⊕A3: continuing the symmetry
breaking process, we obtain the following chains:

6.1.1.1. D7 ⊃ A1 ⊕A1 ⊕D5 ⊃ A1 ⊕A1 ⊕A4 ⊃ A1 ⊕A1 ⊕A3 ⊃ A1 ⊕A1 ⊕A2: total
pairing.

6.1.1.2. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A3 ⊃ A1 ⊕ A1 ⊕ C2

⊃ A1 ⊕ A1 ⊕ A1: surviving.
6.1.1.3. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A3 ⊃ A1 ⊕ A1 ⊕ C2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving
(only 2 octets that by themselves cannot produce 3 sextets,
and no other multiplets of dimension > 4).

6.1.1.4. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A3

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 4.5.2:
D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ (C2)14 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1.

6.1.2. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 4.5.1:
D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ (C2)14 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1.
6.1.3. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:

distribution of multiplets identical to that from the chain 4.5.2:
D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ (C2)14 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1.
6.1.4. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A2: continuing the

symmetry breaking process, we obtain the following chains:

6.1.4.1. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A
(1)
1 : non-surviving

(only 2 octets that by themselves cannot produce 3 sextets,
and no other multiplets of dimension > 4).
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6.1.4.2. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A2

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A
(2)
1 : surviving.

6.2. D7 ⊃ A1 ⊕A1 ⊕D5 ⊃ A1 ⊕A1 ⊕B4: continuing the symmetry breaking process, we
obtain the following chains:

6.2.1. D7 ⊃ A1⊕A1⊕D5 ⊃ A1⊕A1⊕B4 ⊃ A1⊕A1⊕D4: continuing the symmetry
breaking process, we obtain the following chains:

6.2.1.1. D7 ⊃ A1 ⊕A1 ⊕D5 ⊃ A1 ⊕A1 ⊕B4 ⊃ A1 ⊕A1 ⊕D4 ⊃ A1 ⊕A1 ⊕B3: total
pairing.

6.2.1.2. D7 ⊃ A1 ⊕A1 ⊕D5 ⊃ A1 ⊕A1 ⊕B4 ⊃ A1 ⊕A1 ⊕D4 ⊃ A1 ⊕A1 ⊕A2: total
pairing.

6.2.1.3. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ D4

⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the B6-chain 4.3.3:
B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ (A1 ⊕ A1) ⊕ A1 ⊕ A1.

6.2.1.4. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ D4

⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the B6-chain 4.3.5:
B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

6.2.1.5. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ D4

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.3:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.
6.2.2. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1:

distribution of multiplets identical to that from the chain 4.2.2:
D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1.

6.2.3. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A3: total pairing.
6.2.4. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:

distribution of multiplets identical to that from the chain 4.4.2:
D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1.

6.2.5. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ C2:
distribution of multiplets identical to that from the chain 2.4.2:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.

6.3. D7 ⊃ A1 ⊕A1 ⊕D5 ⊃ A1 ⊕A1 ⊕C2: continuing the symmetry breaking process, we
obtain the following chains:

6.3.1. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1: surviving.
6.3.2. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

6.4. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3:
distribution of multiplets identical to that from the chain 3.5:
D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3.

6.5. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ C2 ⊕ C2:
distribution of multiplets identical to that from the chain 4.5:
D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2.

6.6. D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A3:
distribution of multiplets identical to that from the chain 2.4:
D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1.
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4. Second Phase of Symmetry Breaking

In this section we list the chains that result from the surviving chains of phase

one by applying diagonal breaking in all possible ways, except that chains obtained

from each other by permutation of the A1-summands are written only once. We

also recall that if a chain is identified as non-surviving due to the sextet/triplet

generating rules, it may still give rise to surviving descendants, obtained by further

diagonal breaking.

B6 = so(13)

• Chain 1.6.2:

B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the fact
that the two multiplets of dimension 18 that occur and that must of course be broken
are incapable of generating the three sextets and two triplets in the genetic code: one
of them has highest weight (1-8) and thus cannot produce any sextets or triplets at all
while the other one has highest weight (2-5) and thus can only produce three sextets or
six triplets or no sextets and triplets at all.

1.6.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

• Chain 1.6.3:

B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 and one sextet (d3 = 18).

1.6.3.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
1.6.3.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.
1.6.3.3 · · · ⊃ (A1)23 ⊕ A1: surviving.

1.6.3.3.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

• Chain 1.6.4:

B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only three sextets (d3 = 18).

1.6.4.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
1.6.4.2 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: surviving.

1.6.4.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
1.6.4.2.2 · · · ⊃ (A1)13 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of
the fact that the six sextets that occur and that may or may not be broken are
incapable of generating the three sextets and two triplets in the genetic code: they
are organized into three identical sextets with highest weight (2-1) plus another
three identical sextets with highest weight (1-2) and thus cannot be broken so as
to produce precisely two triplets.

1.6.4.2.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

1.6.4.2.3. · · · ⊃ (A1)23 ⊕ A1: total pairing.
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• Chain 1.6.5:

B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the two multiplets of dimension 18 that occur and that must of course be bro-
ken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (2-1-2) and (1-2-2) and so each of them can only produce
three sextets or two sextets and two triplets or six triplets or no sextets and triplets at
all, which cannot be combined to yield three sextets and two triplets.

1.6.5.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
1.6.5.2 · · · ⊃ (A1)13 ⊕ A1: distribution of multiplets identical to that from the

chain 1.6.3.3.

• Chain 1.7.3:

B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕A1 ⊕A1 ⊕A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only two sextets (d3 = 12).

1.7.3.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
1.7.3.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 and one sextet (d3 = 18).

1.7.3.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
1.7.3.2.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.
1.7.3.2.3 · · · ⊃ (A1)23 ⊕ A1: distribution of multiplets identical to that from the

chain 1.6.3.3.

1.7.3.3 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: surviving.

1.7.3.3.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
1.7.3.3.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.
1.7.3.3.3 · · · ⊃ (A1)23 ⊕ A1: distribution of multiplets identical to that from the

chain 1.6.3.3.

1.7.3.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: total pairing.

• Chain 1.7.4:

B6 ⊃ D6 ⊃ A1⊕A1⊕D4 ⊃ A1⊕A1⊕A1⊕C2 ⊃ A1⊕A1⊕A1⊕A1⊕A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only two sextets (d3 = 12).

1.7.4.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
1.7.4.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only three sextets (d3 = 18).

1.7.4.2.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
1.7.4.2.2 · · · ⊃ (A1)23 ⊕A1 ⊕A1: distribution of multiplets identical to that from

the chain 1.6.4.2.

1.7.4.3 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

1.7.4.3.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
1.7.4.3.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: total pairing.
1.7.4.3.3 · · · ⊃ (A1)14 ⊕A1 ⊕A1: distribution of multiplets identical to that from

the chain 1.6.4.2.
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1.7.4.3.4 · · · ⊃ (A1)23 ⊕A1 ⊕A1: distribution of multiplets identical to that from
the chain 1.6.4.2.

1.7.4.3.5 · · · ⊃ (A1)24 ⊕ A1 ⊕ A1: distribution of multiplets identical with that
obtained from the sp(6)-model after the second step.

1.7.4.3.6 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: total pairing.

1.7.4.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
1.7.4.5 · · · ⊃ (A1)45 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

1.7.4.5.1 · · · ⊃ (A1)12 ⊕A1 ⊕A1: distribution of multiplets identical to that from
the chain 1.6.4.2.

1.7.4.5.2 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: total pairing.
1.7.4.5.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: total pairing.

• Chain 1.7.5:

B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

1.7.5.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
1.7.5.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: distribution of multiplets identical to

that from the chain 1.7.4.

• Chain 4.3.2:

B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

4.3.2.1 · · · ⊃ (A1)12 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 and one sextet (d3 = 18).

4.3.2.1.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

4.3.2.2 · · · ⊃ (A1)13 ⊕ A1: surviving.

4.3.2.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

4.3.2.3 · · · ⊃ (A1)23 ⊕ A1: total pairing.

• Chain 4.3.4:

B6 ⊃ C2⊕D4 ⊃ C2⊕A1⊕C2 ⊃ C2⊕A1⊕A1⊕A1 ⊃ A1⊕A1⊕A1⊕A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 (d3 = 12).

4.3.4.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only three sextets (d3 = 18).

4.3.4.1.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
4.3.4.1.2 · · · ⊃ (A1)23 ⊕ A1: surviving.

4.3.4.1.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

4.3.4.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: surviving.

4.3.4.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
4.3.4.2.2 · · · ⊃ (A1)13 ⊕ A1: distribution of multiplets identical to that from the

chain 4.3.4.1.2.
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4.3.4.2.3 · · · ⊃ (A1)23 ⊕ A1: total pairing.

4.3.4.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: total pairing.
4.3.4.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the two multiplets of dimension 12 that occur and that must of course be bro-
ken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (2-3-0) and (0-3-2) and so each of them can only produce two
sextets or four triplets or no sextets and triplets at all, which cannot be combined to
yield an odd number of sextets.

4.3.4.4.1 · · · ⊃ (A1)12 ⊕ A1: distribution of multiplets identical to that from the
chain 4.3.4.1.2.

4.3.4.4.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.

• Chain 4.4.1:

B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

4.4.1.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only two sextets (d3 = 12).

4.4.1.1.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
4.4.1.1.2 · · · ⊃ (A1)13 ⊕A1 ⊕A1: distribution of multiplets identical to that from

the chain 4.3.4.1.
4.4.1.1.3 · · · ⊃ (A1)23 ⊕A1 ⊕A1: distribution of multiplets identical to that from

the chain 4.3.4.2.
4.4.1.1.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: total pairing.

4.4.1.2 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
4.4.1.3 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1 ⊕ A1: distribution of multiplets identical to that from

the chain 4.3.4.

• Chain 6.2:

B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

6.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
6.2.2 · · · ⊃ (A1)13 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 and one sextet (d3 = 18).

6.2.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

• Chain 6.4:

B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

6.4.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
6.4.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 and one sextet (d3 = 18).
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6.4.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
6.4.2.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.
6.4.2.3 · · · ⊃ (A1)23 ⊕ A1: surviving.

6.4.2.3.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

Summarizing, we have found a total of 9 chains for B6 that survive up to the end

of the second phase and must be subjected to the third phase (breaking of the

A1-subalgebras).

D7 = so(14)

• Chain 2.3.1.1:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(1)
1 ⊕ A1 ⊕ A1: non-surviving.

This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one sextet and two triplets (d3 = 12).

2.3.1.1.1 · · · ⊃ (A1)12 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 and two triplets (d3 = 18).

2.3.1.1.1.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

2.3.1.1.2 · · · ⊃ (A1)13 ⊕ A1: surviving.

2.3.1.1.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

2.3.1.1.3 · · · ⊃ (A1)23 ⊕ A1: total pairing, as well as 4 quintets and 4 triplets.

• Chain 2.3.1.2:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(2)
1 ⊕ A1 ⊕ A1: surviving.

2.3.1.2.1 · · · ⊃ (A1)12 ⊕ A1: 1 multiplet of dimension 15, 2 quintets, 2 triplets and
1 singlet.

2.3.1.2.2 · · · ⊃ (A1)13 ⊕ A1: 1 nonet, 1 septet, 2 quintets and 2 triplets.
2.3.1.2.3 · · · ⊃ (A1)23 ⊕ A1: total pairing, as well as 2 multiplets of dimension 15,

2 nonets, 2 quintets and 2 triplets.

• Chain 2.3.1.3:

D7 ⊃ A3 ⊕D4 ⊃ A3 ⊕A1 ⊕C2 ⊃ A2 ⊕A1 ⊕C2 ⊃ A
(1)
1 ⊕A1 ⊕A1 ⊕A1: non-surviving.

This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one sextet and two triplets (d3 = 12).

2.3.1.3.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only two sextets and two triplets (d3 = 18).

2.3.1.3.1.1 · · · ⊃ (A1)12 ⊕ A1: total pairing, as well as 4 triplets and 4 singlets.
2.3.1.3.1.2 · · · ⊃ (A1)23 ⊕ A1: 4 triplets and 4 singlets.

2.3.1.3.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: surviving.

2.3.1.3.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing, as well as 4 triplets and 4 singlets.
2.3.1.3.2.2 · · · ⊃ (A1)13 ⊕ A1: 4 triplets and 4 singlets.
2.3.1.3.2.3 · · · ⊃ (A1)23 ⊕ A1: total pairing, as well as 4 triplets and 4 singlets.
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2.3.1.3.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: total pairing, as well as 4 triplets and 4 singlets.
2.3.1.3.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: 4 triplets and 4 singlets.

• Chain 2.3.1.4:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(2)
1 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

2.3.1.4.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: 1 quintet, 3 triplets and 2 singlets.
2.3.1.4.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: surviving.

2.3.1.4.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing, as well as 2 quintets, 6 triplets and
4 singlets.

2.3.1.4.2.2 · · · ⊃ (A1)13 ⊕ A1: 1 nonet, 1 quintet, 5 triplets and 3 singlets.
2.3.1.4.2.3 · · · ⊃ (A1)23 ⊕ A1: total pairing, as well as 2 nonets, 4 triplets and

2 singlets.

2.3.1.4.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: total pairing, as well as 2 nonets, 4 triplets and
2 singlets.

2.3.1.4.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: 2 nonets, 4 triplets and 2 singlets.

• Chain 2.3.3.1:

D7 ⊃ A3⊕D4 ⊃ A3⊕A1⊕C2 ⊃ A1⊕A1⊕A1⊕C2 ⊃ A1⊕A1⊕A1⊕A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

2.3.3.1.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: distribution of multiplets identical to that from the
chain 2.3.1.2.

2.3.3.1.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the multiplet of dimension 24 that occurs and that must of course be broken
is incapable of generating the three sextets and two triplets in the genetic code: it has
highest weight (2-1-3) and so can only produce four sextets or eight triplets or no sextets
and triplets at all.

2.3.3.1.2.1 · · · ⊃ (A1)12⊕A1: 1 multiplet of dimension 15, 2 quintets, 2 triplets and
1 singlet.

2.3.3.1.2.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.
2.3.3.1.2.3 · · · ⊃ (A1)23 ⊕ A1: distribution of multiplets identical with that

obtained from the g2 model after the first step.

2.3.3.1.2.3.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

2.3.3.1.3 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the three multiplets of dimension 12 that occur and that must of course be
broken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (5-1-0), (2-1-1) and (1-1-2) and so the first can only produce
two sextets or no sextets and triplets at all whereas each of the other two can only
produce two sextets or four triplets or no sextets and triplets at all, which cannot be
combined to yield an odd number of sextets.

2.3.3.1.3.1 · · · ⊃ (A1)12 ⊕ A1: 1 nonet, 1 septet, 2 quintets and 2 triplets.
2.3.3.1.3.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.
2.3.3.1.3.3 · · · ⊃ (A1)23 ⊕A1: distribution of multiplets identical to that from the

chain 2.3.3.1.2.3.

2.3.3.1.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: total pairing.
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• Chain 2.3.3.2:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1:
non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 (d3 = 12).

2.3.3.2.1 · · · ⊃ (A1)12 ⊕A1 ⊕A1 ⊕A1: distribution of multiplets identical to that from
the chain 2.3.1.4.

2.3.3.2.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the two multiplets of dimension 12 that occur and that must of course be bro-
ken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (2-1-1-0) and (2-1-0-1) and so each of them can only produce
two sextets or four triplets or no sextets and triplets at all, which cannot be combined
to yield an odd number of sextets.

2.3.3.2.2.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: 1 quintet, 3 triplets and 2 singlets.
2.3.3.2.2.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: total pairing.
2.3.3.2.2.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: surviving.

2.3.3.2.2.3.1 · · · ⊃ (A1)12⊕A1: total pairing, as well as 2 quintets, 6 triplets
and 4 singlets.

2.3.3.2.2.3.2 · · · ⊃ (A1)13 ⊕A1: total pairing, as well as 2 nonets, 4 triplets
and 2 singlets.

2.3.3.2.2.3.3 · · · ⊃ (A1)23 ⊕ A1: 2 nonets, 4 triplets and 2 singlets.

2.3.3.2.2.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of
the fact that the three multiplets of dimension 12 that occur and that must of
course be broken are incapable of generating the three sextets and two triplets in
the genetic code: they have highest weights (2-1-1) and (1-2-1) (twice) and so each
of them can only produce two sextets or four triplets or no sextets and triplets at
all, which cannot be combined to yield an odd number of sextets.

2.3.3.2.2.4.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
2.3.3.2.2.4.2 · · · ⊃ (A1)13 ⊕ A1: 2 nonets, 4 triplets and 2 singlets.
2.3.3.2.2.4.3 · · · ⊃ (A1)23⊕A1: 1 nonet, 1 quintet, 5 triplets and 3 singlets.

2.3.3.2.3 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the three multiplets of dimension 12 that occur and that must of course be
broken are incapable of generating the three sextets and two triplets in the genetic
code: they have highest weights (2-1-1-0), (2-1-0-1) and (1-1-2-0) and so each of them
can only produce two sextets or four triplets or no sextets and triplets at all, which
cannot be combined to yield an odd number of sextets.

2.3.3.2.3.1 · · · ⊃ (A1)12⊕A1⊕A1: distribution of multiplets identical to that from
the chain 2.3.1.4.2.

2.3.3.2.3.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: total pairing.
2.3.3.2.3.3 · · · ⊃ (A1)14⊕A1⊕A1: distribution of multiplets identical to that from

the chain 2.3.3.2.2.4.
2.3.3.2.3.4 · · · ⊃ (A1)23⊕A1⊕A1: distribution of multiplets identical to that from

the chain 2.3.3.2.2.3.
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2.3.3.2.3.5 · · · ⊃ (A1)24 ⊕ A1 ⊕ A1: surviving.

2.3.3.2.3.5.1 · · · ⊃ (A1)12⊕A1: 1 nonet, 1 quintet, 5 triplets and 3 singlets.
2.3.3.2.3.5.2 · · · ⊃ (A1)13 ⊕A1: total pairing, as well as 2 nonets, 4 triplets

and 2 singlets.

2.3.3.2.3.6 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: total pairing.

2.3.3.2.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
2.3.3.2.5 · · · ⊃ (A1)45 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the two multiplets of dimension 12 that occur and that must of course be bro-
ken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (2-1-1-0) and (0-1-1-2) and so each of them can only produce
two sextets or four triplets or no sextets and triplets at all, which cannot be combined
to yield an odd number of sextets.

2.3.3.2.5.1 · · · ⊃ (A1)12⊕A1⊕A1: distribution of multiplets identical to that from
the chain 2.3.3.2.2.4.

2.3.3.2.5.2 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: total pairing.
2.3.3.2.5.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: 2 nonets, 4 triplets and 2 singlets.

• Chain 2.4.1.1:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A
(1)
1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.

This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

2.4.1.1.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only two sextets (d3 = 12).

2.4.1.1.1.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
2.4.1.1.1.2 · · · ⊃ (A1)13⊕A1⊕A1: distribution of multiplets identical to that from

the chain 2.3.1.3.1.
2.4.1.1.1.3 · · · ⊃ (A1)23⊕A1⊕A1: distribution of multiplets identical to that from

the chain 2.3.1.3.2.
2.4.1.1.1.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: total pairing.

2.4.1.1.2 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
2.4.1.1.3 · · · ⊃ (A1)34 ⊕A1 ⊕A1 ⊕A1: distribution of multiplets identical to that from

the chain 2.3.1.3.

• Chain 2.4.1.2:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A2 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ A
(2)
1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.

This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the four multiplets of dimension 12 that occur and that must of course be
broken are incapable of generating the three sextets and two triplets in the genetic
code: they have highest weights (2-1-0-1-0), (2-1-0-0-1), (2-0-1-1-0) and (2-0-1-0-1) and
so each of them can only produce two sextets or four triplets or no sextets and triplets
at all, which cannot be combined to yield an odd number of sextets.

2.4.1.2.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
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fact that the two multiplets of dimension 12 that occur and that must of course be bro-
ken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (2-1-1-0) and (2-1-0-1) and so each of them can only produce
two sextets or four triplets or no sextets and triplets at all, which cannot be combined
to yield an odd number of sextets.

2.4.1.2.1.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
2.4.1.2.1.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: 1 quintet, 3 triplets and 2 singlets.
2.4.1.2.1.3 · · · ⊃ (A1)23⊕A1⊕A1: distribution of multiplets identical to that from

the chain 2.3.1.4.2.
2.4.1.2.1.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: total pairing.

2.4.1.2.2 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
2.4.1.2.3 · · · ⊃ (A1)34⊕A1⊕A1⊕A1: distribution of multiplets identical to that from the

chain 2.3.1.4.

• Chain 2.4.3:

D7 ⊃ A3⊕D4 ⊃ A3⊕A1⊕A1⊕A1⊕A1 ⊃ A1⊕A1⊕A1⊕A1⊕A1⊕A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

2.4.3.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: distribution of multiplets identical to that
from the chain 2.4.1.2.

2.4.3.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the fact
that the two multiplets of dimension 12 that occur and that must of course be broken
are incapable of generating the three sextets and two triplets in the genetic code: they
have highest weights (2-1-0-1-0) and (2-1-0-0-1) and so each of them can only produce
two sextets or four triplets or no sextets and triplets at all, which cannot be combined
to yield an odd number of sextets.

2.4.3.2.1 · · · ⊃ (A1)12 ⊕A1 ⊕A1 ⊕A1: distribution of multiplets identical to that from
the chain 2.4.1.2.1.

2.4.3.2.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
2.4.3.2.3 · · · ⊃ (A1)14 ⊕A1 ⊕A1 ⊕A1: distribution of multiplets identical to that from

the chain 2.3.3.2.2.
2.4.3.2.4 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the four multiplets of dimension 12 that occur and that must of course be
broken are incapable of generating the three sextets and two triplets in the genetic
code: they have highest weights (2-1-1-0), (2-1-0-1), (1-2-1-0) and (1-2-0-1) and so each
of them can only produce two sextets or four triplets or no sextets and triplets at all,
which cannot be combined to yield an odd number of sextets.

2.4.3.2.4.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
2.4.3.2.4.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: distribution of multiplets identical to that

from the chain 2.3.3.2.2.3.

2.4.3.2.5 · · · ⊃ (A1)24 ⊕ A1 ⊕ A1 ⊕ A1: surviving.

2.4.3.2.5.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: 1 quintet, 3 triplets and 2 singlets.
2.4.3.2.5.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: distribution of multiplets identical to that

from the chain 2.3.3.2.2.3.
2.4.3.2.5.3 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: total pairing.
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2.4.3.2.5.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: distribution of multiplets identical to that
from the chain 2.3.3.2.3.5.

2.4.3.2.6 · · · ⊃ (A1)34 ⊕A1 ⊕A1 ⊕A1: distribution of multiplets identical to that from
the chain 2.3.3.2.3.

2.4.3.2.7 · · · ⊃ (A1)45 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.

2.4.3.3 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: total pairing.
2.4.3.4 · · · ⊃ (A1)35 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1: distribution of multiplets identical to that

from the chain 2.3.3.2.

• Chain 3.2:

D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 (d3 = 12).

3.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

• Chain 3.5.2.2:

D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

3.5.2.2.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: surviving.
3.5.2.2.2 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the two multiplets of dimension 12 that occur and that must of course be bro-
ken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (5-1-0) and (5-0-1) and so each of them can only produce two
sextets or no sextets and triplets at all, that is, no triplets.

3.5.2.2.2.1 · · · ⊃ (A1)12 ⊕A1: 1 nonet, 2 septets, 1 quintet, 1 triplet and 1 singlet.
3.5.2.2.2.2 · · · ⊃ (A1)23 ⊕ A1: total pairing.

3.5.2.2.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: total pairing.
3.5.2.2.4 · · · ⊃ (A1)24 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 (d3 = 12).

3.5.2.2.4.1 · · · ⊃ (A1)12 ⊕A1: 1 nonet, 2 septets, 1 quintet, 1 triplet and 1 singlet.
3.5.2.2.4.2 · · · ⊃ (A1)13 ⊕ A1: total pairing.
3.5.2.2.4.3 · · · ⊃ (A1)23 ⊕ A1: surviving.

3.5.2.2.4.3.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

• Chain 3.5.2.3:

D7 ⊃ A1 ⊕B5 ⊃ A1 ⊕A1 ⊕A1 ⊕B3 ⊃ A1 ⊕A1 ⊕A1 ⊕G2 ⊃ A1 ⊕A1 ⊕A1 ⊕A1 ⊕A1:
distribution of multiplets identical to that from the chain 2.4.3.2.

• Chain 4.2.1:

D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊃ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

4.2.1.1 · · · ⊃ (A1)12: does not reproduce the genetic code.
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• Chain 4.4.1:

D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

4.4.1.1 · · · ⊃ (A1)12 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 and one sextet (d3 = 18).

4.4.1.1.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

4.4.1.2 · · · ⊃ (A1)23 ⊕ A1: total pairing.

• Chain 4.5.1:

D7 ⊃ C2⊕B4 ⊃ C2⊕A1⊕A1⊕C2 ⊃ (C2)14⊕A1⊕A1 ⊃ A1⊕A1⊕A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only two sextets (d3 = 12).

4.5.1.1 · · · ⊃ (A1)12 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only three sextets (d3 = 18).

4.5.1.1.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

4.5.1.2 · · · ⊃ (A1)23 ⊕ A1: total pairing.

• Chain 4.5.2:

D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ (C2)14 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the B6-chain 1.7.4.5.

• Chain 4.5.3:

D7 ⊃ C2 ⊕ B4 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ C2 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

4.5.3.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one multiplet of dimension 12 (d3 = 12).

4.5.3.1.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
4.5.3.1.2 · · · ⊃ (A1)13 ⊕ A1: distribution of multiplets identical to that from the

chain 4.5.1.1.
4.5.3.1.3 · · · ⊃ (A1)23 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the two multiplets of dimension 12 that occur and that must of course be bro-
ken are incapable of generating the three sextets and two triplets in the genetic code:
they have highest weights (3-2) and (2-3) and so each of them can only produce two
sextets or four triplets or no sextets and triplets at all, which cannot be combined to
yield an odd number of sextets.

4.5.3.1.3.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

4.5.3.2 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: distribution of multiplets identical to that from the
chain 4.5.1.

4.5.3.3 · · · ⊃ (A1)23 ⊕ A1 ⊕ A1: total pairing.
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• Chain 5.2.2.2:

D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊃ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

5.2.2.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

• Chain 5.2.2.3:

D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 3.5.2.2.1.

• Chain 5.2.2.4:

D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 3.5.2.2.1.

• Chain 5.2.2.5:

D7 ⊃ B3 ⊕ B3 ⊃ B3 ⊕ G2 ⊃ G2 ⊕ G2 ⊃ G2 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.3.2.5.

• Chain 6.1.1.2:

D7 ⊃ A1 ⊕A1 ⊕D5 ⊃ A1 ⊕A1 ⊕A4 ⊃ A1 ⊕A1 ⊕A3 ⊃ A1 ⊕A1 ⊕C2 ⊃ A1 ⊕A1 ⊕A1:
non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
no triplets, sextets etc. (d3 = 0).

6.1.1.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
6.1.1.2.2 · · · ⊃ (A1)13 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules since it exhibits
only one sextet and two triplets (d3 = 12).

6.1.1.2.2.1 · · · ⊃ (A1)12: does not reproduce the genetic code.

• Chain 6.1.4.2:

D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A
(2)
1 :

non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the two multiplets of dimension 12 that occur and that must of course be
broken, together with the four sextets that occur and that may or may not be broken,
are incapable of generating the three sextets and two triplets in the genetic code: the
former have highest weights (1-0-1-2) and (0-1-1-2) and so each of them can only pro-
duce two sextets or four triplets or no sextets and triplets at all, whereas the latter
are organized into two identical sextets with highest weight (1-0-0-2) plus another two
identical sextets with highest weight (0-1-0-2); all this cannot be combined to yield an
odd number of sextets.

6.1.4.2.1 · · · ⊃ (A1)12 ⊕ A1 ⊕ A1: total pairing.
6.1.4.2.2 · · · ⊃ (A1)13 ⊕ A1 ⊕ A1: surviving.

6.1.4.2.2.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
6.1.4.2.2.2 · · · ⊃ (A1)13 ⊕ A1: 1 quintet, 3 triplets and 2 singlets.
6.1.4.2.2.3 · · · ⊃ (A1)23 ⊕ A1: surviving.

6.1.4.2.2.3.1 · · · ⊃ (A1)12: does not reproduce the genetic code.
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6.1.4.2.3 · · · ⊃ (A1)14 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the multiplet of dimension 12 that occurs and that must of course be broken,
together with the two sextets that occur and that may or may not be broken, are in-
capable of generating the three sextets and two triplets in the genetic code: the former
has highest weight (2-1-1) and so can only produce two sextets or four triplets or no
sextets and triplets at all, whereas the latter are organized into two identical sextets
with highest weight (2-1-0); all this cannot be combined to yield an odd number of
sextets.

6.1.4.2.3.1 · · · ⊃ (A1)12 ⊕ A1: total pairing.
6.1.4.2.3.2 · · · ⊃ (A1)13 ⊕ A1: 1 quintet, 3 triplets and 2 singlets.
6.1.4.2.3.3 · · · ⊃ (A1)23 ⊕A1: distribution of multiplets identical to that from the

chain 6.1.4.2.2.3.

6.1.4.2.4 · · · ⊃ (A1)34 ⊕ A1 ⊕ A1: non-surviving.
This chain may be discarded due to the sextet/triplet generating rules in view of the
fact that the four sextets that occur and that may or may not be broken, are incapable
of generating the three sextets and two triplets in the genetic code: they are organized
into two identical sextets with highest weight (2-1-0) plus another two identical sex-
tets with highest weight (2-0-1), which cannot be combined to yield an odd number of
sextets.

6.1.4.2.4.1 · · · ⊃ (A1)12 ⊕ A1: 1 quintet, 3 triplets and 2 singlets.
6.1.4.2.4.2 · · · ⊃ (A1)23 ⊕ A1: total pairing.

• Chain 6.3.1:

D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 3.5.2.2.2.

• Chain 6.3.2:

D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1:
distribution of multiplets identical to that from the chain 2.4.3.2.4.

Summarizing, we have found a total of 12 chains for D7 that survive up to the

end of the second phase and must be subjected to the third phase (breaking of the

A1-subalgebras).

5. Third Phase of Symmetry Breaking

In the last phase of the symmetry breaking process, we subject the surviving chains

from the first two phases to breaking of one or several of the A1-subalgebras, which

requires a rather long and tedious case-by-case analysis of each of the corresponding

tables (in which the abbreviation “HW” stands for “highest weight”).
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B6 = so(13)

1. Chain 1.6.3.3:

B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1

B6 D6 A1 ⊕ C3 (A1)2 ⊕ C2 (A1)3 (A1)2

HW d HW d HW d HW d HW d HW d

(000001) 64 (000010) 32 (2-100) 18 (2-0-10) 12 (2-0-3) 12 (3-2) 12
(2-1-00) 6 (2-1-0) 6 (1-2) 6

(0-001) 14 (0-1-01) 10 (0-1-4) 10 (5-0) 6
(3-0) 4

(0-0-10) 4 (0-0-3) 4 (3-0) 4
(000001) 32 (1-010) 28 (1-1-10) 16 (1-1-3) 16 (4-1) 10

(2-1) 6
(1-0-01) 10 (1-0-4) 10 (4-1) 10
(1-0-00) 2 (1-0-0) 2 (0-1) 2

(3-000) 4 (3-0-00) 4 (3-0-0) 4 (0-3) 4

1 subspace 2 subspaces 4 subspaces 8 subspaces 8 subspaces 10 subspaces

In this chain, the first su(2) must be broken, in order to eliminate the multiplets of
dimension 10. Now observe that

1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 18,
2. breaking the first su(2) down to so(2) generates 35 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 13 multiplets with d3 = 12,
4. breaking the second su(2) down to so(2) generates 21 multiplets with d3 = 12.

Note that option 4 leads to a scheme which does not allow for freezing and is remote from
the genetic code, with 1 sextet, 4 quintets, 5 quartets, 2 triplets, 3 doublets and 6 singlets.
In the case of option 2, the symmetry breaking process must terminate, and we must take
into account the possibility of freezing. However, the multiplets of dimension > 6 must
not be frozen and will therefore provide 4 triplets and 10 doublets, which is certainly too
many.
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2. Chain 1.6.4.2:

B6 ⊃ D6 ⊃ A1 ⊕ C3 ⊃ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1 ⊕ A1

B6 D6 A1 ⊕ C3 (A1)2 ⊕ C2 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(000001) 64 (000010) 32 (2-100) 18 (2-0-10) 12 (2-0-1-0) 6 (1-2-0) 6
(2-0-0-1) 6 (0-2-1) 6

(2-1-00) 6 (2-1-0-0) 6 (1-2-0) 6
(0-001) 14 (0-1-01) 10 (0-1-1-1) 8 (2-0-1) 6

(0-0-1) 2
(0-1-0-0) 2 (1-0-0) 2

(0-0-10) 4 (0-0-1-0) 2 (1-0-0) 2
(0-0-0-1) 2 (0-0-1) 2

(000001) 32 (1-010) 28 (1-1-10) 16 (1-1-1-0) 8 (2-1-0) 6

(0-1-0) 2
(1-1-0-1) 8 (1-1-1) 8

(1-0-01) 10 (1-0-1-1) 8 (1-1-1) 8
(1-0-0-0) 2 (0-1-0) 2

(1-0-00) 2 (1-0-0-0) 2 (0-1-0) 2
(3-000) 4 (3-0-00) 4 (3-0-0-0) 4 (0-3-0) 4

1 subspace 2 subspaces 4 subspaces 8 subspaces 13 subspaces 15 subspaces

In this chain, breaking the third su(2) to o(2) has no effect and will be disregarded;
moreover, at least one of the three su(2)’s must be broken down to so(2) because otherwise
the two octets would remain unbroken. Now observe that

1. breaking the first su(2) down to o(2) generates 17 multiplets with d3 = 18 (only two of
the five sextets are broken into a quartet and a doublet each),

2. breaking the first su(2) down to so(2) generates 25 multiplets with d3 = 18,
3. breaking the second su(2) down to o(2) generates 19 multiplets with d3 = 12 (only

three of the five sextets are broken into a quartet and a doublet each and the only
quartet is broken into two doublets),

4. breaking the second su(2) down to so(2) generates 30 multiplets with d3 = 12,
5. breaking the third su(2) down to so(2) generates precisely 21 multiplets with d3 = 30.

Note that option 5 leads to an interesting scheme which, without any freezing, comes
close to the genetic code but is slightly different, with 3 sextets, 5 quartets, 4 triplets,
5 doublets and 4 singlets. In the cases of options 2 and 4, the symmetry breaking process
must terminate, and we must take into account the possibility of freezing. However, it
turns out that there is no possibility of generating, for example, the correct number of
singlets (2): we can only get 0 or 4 singlets in the first case and 0, 4, 6 or 10 singlets in
the second case, apart from other deviations.
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3. Chain 1.7.3.3:

B6 ⊃ D6 ⊃ A1 ⊕A1 ⊕D4 ⊃ A1 ⊕A1⊕A1 ⊕C2 ⊃ A1 ⊕A1⊕A1 ⊕A1 ⊃ (A1)14 ⊕A1 ⊕A1

B6 D6 (A1)2 ⊕ D4 (A1)3 ⊕ C2 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(000001) 64 (000010) 32 (0-1-0010) 16 (0-1-0-01) 10 (0-1-0-4) 10 (4-1-0) 10
(0-1-2-00) 6 (0-1-2-0) 6 (0-1-2) 6

(1-0-0001) 16 (1-0-1-10) 16 (1-0-1-3) 16 (4-0-1) 10
(2-0-1) 6

(000001) 32 (0-1-0001) 16 (0-1-1-10) 16 (0-1-1-3) 16 (3-1-1) 16
(1-0-0010) 16 (1-0-0-01) 10 (1-0-0-4) 10 (5-0-0) 6

(3-0-0) 4
(1-0-2-00) 6 (1-0-2-0) 6 (1-0-2) 6

1 subspace 2 subspaces 4 subspaces 6 subspaces 6 subspaces 8 subspaces

In this chain, the first su(2) must be broken, in order to eliminate the multiplets of
dimension 10. Moreover, breaking the second su(2) to o(2) has no effect and will be
disregarded. Now observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 17 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 30 multiplets with d3 = 12,
3. breaking the second su(2) down to so(2) generates 11 multiplets with d3 = 24,
4. breaking the third su(2) down to o(2) generates 10 multiplets with d3 = 12,
5. breaking the third su(2) down to so(2) generates 15 multiplets with d3 = 12.

In the case of option 2, the symmetry breaking process must terminate, and we must
take into account the possibility of freezing. However, the two multiplets of dimension 10
must not be frozen and will therefore provide 10 doublets, which is already one too many.
Therefore, the only surviving option for continuing the symmetry breaking process is 3.
Hence in a second step,

3.1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 12,
3.2. breaking the first su(2) down to so(2) generates 40 multiplets with d3 = 12,
3.3. breaking the third su(2) down to o(2) generates 14 multiplets with d3 = 12,
3.4. breaking the third su(2) down to so(2) generates precisely 21 multiplets with d3 = 12.

Note that option 3.4 leads to a scheme which does not allow for freezing and is remote from
the genetic code, with 1 sextet, 4 quintets, 5 quartets, 2 triplets, 3 doublets and 6 singlets.
In the case of option 3.2, the symmetry breaking process must terminate, and we must
take into account the possibility of freezing. However, the two multiplets of dimension 5
must not be frozen and will therefore provide 10 singlets, which is certainly too many.
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4. Chain 1.7.4.3:

B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)14 ⊕ A1 ⊕ A1 ⊕ A1

B6 D6 (A1)2 ⊕ D4 (A1)3 ⊕ C2 (A1)5 (A1)4

HW d HW d HW d HW d HW d HW d

(000001) 64 (000010) 32 (0-1-0010) 16 (0-1-0-01) 10 (0-1-0-1-1) 8 (1-1-0-1) 8
(0-1-0-0-0) 2 (0-1-0-0) 2

(0-1-2-00) 6 (0-1-2-0-0) 6 (0-1-2-0) 6
(1-0-0001) 16 (1-0-1-10) 16 (1-0-1-1-0) 8 (2-0-1-0) 6

(0-0-1-0) 2

(1-0-1-0-1) 8 (1-0-1-1) 8
(000001) 32 (0-1-0001) 16 (0-1-1-10) 16 (0-1-1-1-0) 8 (1-1-1-0) 8

(0-1-1-0-1) 8 (0-1-1-1) 8
(1-0-0010) 16 (1-0-0-01) 10 (1-0-0-1-1) 8 (2-0-0-1) 6

(0-0-0-1) 2
(1-0-0-0-0) 2 (1-0-0-0) 2

(1-0-2-00) 6 (1-0-2-0-0) 6 (1-0-2-0) 6

1 subspace 2 subspaces 4 subspaces 6 subspaces 10 subspaces 12 subspaces

In this chain, breaking the second and the fourth su(2) to o(2) has no effect and will
be disregarded; moreover, at least two of the four su(2)’s must be broken down to so(2)
because otherwise at least one of the four octets would remain unbroken. Note also the
symmetry of the final distribution of multiplets under simultaneous exchange of the first
with the third and the second with the fourth su(2). Now observe that, in a first step,

1. breaking the first or third su(2) down to o(2) generates 14 multiplets with d3 = 12
(only two of the four sextets are broken into a quartet and a doublet each),

2. breaking the first or third su(2) down to so(2) generates precisely 21 multiplets with
d3 = 12,

3. breaking the second or fourth su(2) down to so(2) generates 17 multiplets with d3 = 24.

Note that option 2 leads to an interesting scheme which, without any freezing, comes close
to the genetic code but is slightly different, with 1 octet, 1 sextet, 6 quartets, 2 triplets,
9 doublets and 2 singlets. Therefore, the only surviving option for continuing the symmetry
breaking process is 3; for the sake of definiteness, we choose to break the fourth su(2).
Hence in a second step,

3.1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 12,
3.2. breaking the first su(2) down to so(2) generates 30 multiplets with d3 = 12,
3.3. breaking the second su(2) down to so(2) generates 24 multiplets with d3 = 24,
3.4. breaking the third su(2) down to o(2) generates 19 multiplets with d3 = 12,
3.5. breaking the third su(2) down to so(2) generates 28 multiplets with d3 = 12.

In the cases of options 3.2, 3.3 and 3.5, the symmetry breaking process must terminate,
and we must take into account the possibility of freezing. A closer analysis reveals that in
all three cases, we are able to produce the correct number of sextets (3), triplets (2) and
singlets (2), but there is no possibility of generating the correct number of quartets (5)
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and of doublets (9): we can only get 2, 4, 6 or 8 quartets and, correspondingly, 15, 11, 7
or 3 doublets.

5. Chain 1.7.4.5:

B6 ⊃ D6 ⊃ A1 ⊕ A1 ⊕ D4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)45 ⊕ A1 ⊕ A1 ⊕ A1

B6 D6 (A1)2 ⊕ D4 (A1)3 ⊕ C2 (A1)5 (A1)4

HW d HW d HW d HW d HW d HW d

(000001) 64 (000010) 32 (0-1-0010) 16 (0-1-0-01) 10 (0-1-0-1-1) 8 (2-0-1-0) 6
(0-0-1-0) 2

(0-1-0-0-0) 2 (0-0-1-0) 2
(0-1-2-00) 6 (0-1-2-0-0) 6 (0-0-1-2) 6

(1-0-0001) 16 (1-0-1-10) 16 (1-0-1-1-0) 8 (1-1-0-1) 8
(1-0-1-0-1) 8 (1-1-0-1) 8

(000001) 32 (0-1-0001) 16 (0-1-1-10) 16 (0-1-1-1-0) 8 (1-0-1-1) 8
(0-1-1-0-1) 8 (1-0-1-1) 8

(1-0-0010) 16 (1-0-0-01) 10 (1-0-0-1-1) 8 (2-1-0-0) 6
(0-1-0-0) 2

(1-0-0-0-0) 2 (0-1-0-0) 2
(1-0-2-00) 6 (1-0-2-0-0) 6 (0-1-0-2) 6

1 subspace 2 subspaces 4 subspaces 6 subspaces 10 subspaces 12 subspaces

In this chain, breaking the second and the third su(2) to o(2) has no effect and will be
disregarded. Note also the symmetry of the final distribution of multiplets under exchange
of the second with the third and the first with the fourth su(2). Now observe that

1. breaking the second or third su(2) down to so(2) generates 18 multiplets with d3 = 24,
among which there are already 4 triplets and 4 singlets,

2. breaking the first or fourth su(2) down to o(2) generates 14 multiplets with d3 = 12
(only two of the four sextets are broken into a quartet and a doublet each),

3. breaking the first or fourth su(2) down to so(2) generates 20 multiplets with d3 = 12.

Therefore, there is no surviving option for continuing the symmetry breaking process.
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6. Chain 4.3.2.2 (with one intermediate step omitted):

B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊃ (A1)13 ⊕ A1

B6 C2 ⊕ D4 C2 ⊕ A1 ⊕ C2 (A1)3 (A1)2

HW d HW d HW d HW d HW d

(000001) 64 (10-0010) 32 (10-0-01) 20 (3-0-4) 20 (7-0) 8
(5-0) 6

(3-0) 4
(1-0) 2

(10-2-00) 12 (3-2-0) 12 (3-2) 12
(10-0001) 32 (10-1-10) 32 (3-1-3) 32 (6-1) 14

(4-1) 10
(2-1) 6
(0-1) 2

1 subspace 2 subspaces 3 subspaces 3 subspaces 9 subspaces

In this chain, the first su(2) must be broken, in order to eliminate the multiplets of
dimension 10 and 14. Now observe that

1. breaking the first su(2) down to o(2) generates 22 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 40 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 10 multiplets with d3 = 12,
4. breaking the second su(2) down to so(2) generates 15 multiplets with d3 = 12.

In the cases of options 1 and 2, the symmetry breaking process must terminate, and we
must take into account the possibility of freezing. However, the multiplets of dimension
> 6 must not be frozen. In the case of option 1, we see that all resulting multiplets still
have even dimension. In the case of option 2, we get at least 8 singlets and 4 triplets,
which is certainly too many.
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7. Chain 4.3.4.1.2 (with one intermediate step omitted):

B6 ⊃ C2 ⊕D4 ⊃ C2 ⊕A1 ⊕C2 ⊃ A1 ⊕A1 ⊕A1 ⊕A1 ⊃ (A1)12 ⊕A1 ⊕A1 ⊃ (A1)23 ⊕A1

B6 C2 ⊕ D4 C2 ⊕ A1 ⊕ C2 (A1)4 (A1)3 (A1)2

HW d HW d HW d HW d HW d HW d

(000001) 64 (10-0010) 32 (10-0-01) 20 (3-0-1-1) 16 (3-1-1) 16 (2-3) 12
(0-3) 4

(3-0-0-0) 4 (3-0-0) 4 (0-3) 4
(10-2-00) 12 (3-2-0-0) 12 (5-0-0) 6 (0-5) 6

(3-0-0) 4 (0-3) 4
(1-0-0) 2 (0-1) 2

(10-0001) 32 (10-1-10) 32 (3-1-1-0) 16 (4-1-0) 10 (1-4) 10
(2-1-0) 6 (1-2) 6

(3-1-0-1) 16 (4-0-1) 10 (1-4) 10
(2-0-1) 6 (1-2) 6

1 subspace 2 subspaces 3 subspaces 5 subspaces 9 subspaces 10 subspaces

In this chain, the second su(2) must be broken, in order to eliminate the multiplets of
dimension 10. Now observe that

1. breaking the first su(2) down to o(2) generates 11 multiplets with d3 = 18,
2. breaking the first su(2) down to so(2) generates 16 multiplets with d3 = 18,
3. breaking the second su(2) down to o(2) generates 22 multiplets with d3 = 12,
4. breaking the second su(2) down to so(2) generates 40 multiplets with d3 = 12.

In the cases of options 3 and 4, the symmetry breaking process must terminate, and we
must take into account the possibility of freezing. However, the multiplets of dimension
> 6 must not be frozen. In the case of option 3, we see that all resulting multiplets still
have even dimension. In the case of option 4, there is no possibility of generating the
correct number of triplets (2): we can only get 0 or 4 triplets.

8. Chain 4.3.4.2 (with one intermediate step omitted):

B6 ⊃ C2 ⊕ D4 ⊃ C2 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)13 ⊕ A1 ⊕ A1

B6 C2 ⊕ D4 C2 ⊕ A1 ⊕ C2 (A1)4 (A1)3

HW d HW d HW d HW d HW d

(000001) 64 (10-0010) 32 (10-0-01) 20 (3-0-1-1) 16 (4-0-1) 10
(2-0-1) 6

(3-0-0-0) 4 (3-0-0) 4
(10-2-00) 12 (3-2-0-0) 12 (3-2-0) 12

(10-0001) 32 (10-1-10) 32 (3-1-1-0) 16 (4-1-0) 10
(2-1-0) 6

(3-1-0-1) 16 (3-1-1) 16

1 subspace 2 subspaces 3 subspaces 5 subspaces 7 subspaces
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In this chain, the first su(2) must be broken, in order to eliminate the multiplets of dimen-
sion 10. Moreover, breaking the third su(2) to o(2) has no effect and will be disregarded.
Now observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 16 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 28 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 8 multiplets with d3 = 12,
4. breaking the second su(2) down to so(2) generates 12 multiplets with d3 = 12,
5. breaking the third su(2) down to so(2) generates 10 multiplets with d3 = 24.

In the case of option 2, the symmetry breaking process must terminate, and we must take
into account the possibility of freezing. However, the multiplet of dimension 12 and the
two multiplets of dimension 10 must not be frozen and will therefore provide 4 triplets
and 10 doublets, which is certainly too many. Therefore, the only surviving option for
continuing the symmetry breaking process is 5. Hence in a second step,

5.1. breaking the first su(2) down to o(2) generates 23 multiplets with d3 = 12,
5.2. breaking the first su(2) down to so(2) generates 40 multiplets with d3 = 12,
5.3. breaking the second su(2) down to o(2) generates 11 multiplets with d3 = 12,
5.4. breaking the second su(2) down to so(2) generates 16 multiplets with d3 = 12.

In the cases of options 5.1 and 5.2, the symmetry breaking process must terminate, and we
must take into account the possibility of freezing. However, the multiplets of dimension > 6
and of dimension 5 must not be frozen. In the case of option 5.1, we are able to produce
the correct number of sextets (3), triplets (2) and singlets (2), but there is no possibility
of generating the correct number of quartets (5) and of doublets (9): we can only get 6 or
7 quartets and, correspondingly, 7 or 5 doublets. In the case of option 5.2, we get at least
10 singlets, which is certainly too many.

9. Chain 6.4.2.3:

B6 ⊃ A1 ⊕ A1 ⊕ B4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)13 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1

B6 (A1)2 ⊕ B4 (A1)4 (A1)3 (A1)2

HW d HW d HW d HW d HW d

(000001) 64 (1-0-0001) 32 (1-0-3-1) 16 (4-0-1) 10 (1-4) 10
(2-0-1) 6 (1-2) 6

(1-0-1-3) 16 (2-0-3) 12 (3-2) 12
(0-0-3) 4 (3-0) 4

(0-1-0001) 32 (0-1-3-1) 16 (3-1-1) 16 (2-3) 12
(0-3) 4

(0-1-1-3) 16 (1-1-3) 16 (4-1) 10
(2-1) 6

1 subspace 2 subspaces 4 subspaces 6 subspaces 8 subspaces

In this chain, both the first and the second su(2) must be broken, in order to eliminate
all multiplets whose dimension is a multiple of 5. Note also the symmetry of the final
distribution of multiplets under exchange of the first with the second su(2). On the other
hand, observe that
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1. breaking the first or second su(2) down to o(2) generates 14 multiplets with d3 = 18,
2. breaking the first or the second su(2) down to so(2) generates 24 multiplets with

d3 = 18.

Therefore, there is no possibility to continue the symmetry breaking process to perform
the necessary breaking of the other su(2).

D7 = so(14)

1. Chain 2.3.1.1.2:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(1)
1 ⊕ A1 ⊕ A1 ⊃ (A1)13 ⊕ A1

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 A2 ⊕ A1 ⊕ C2 (A1)3 (A1)2

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-01) 20 (01-0-01) 15 (1-0-4) 10 (5-0) 6
(3-0) 4

(0-0-4) 5 (4-0) 5
(00-0-01) 5 (0-0-4) 5 (4-0) 5

(001-2-00) 12 (01-2-00) 9 (1-2-0) 6 (1-2) 6
(0-2-0) 3 (0-2) 3

(00-2-00) 3 (0-2-0) 3 (0-2) 3
(100-0001) 32 (100-1-10) 32 (10-1-10) 24 (1-1-3) 16 (4-1) 10

(2-1) 6
(0-1-3) 8 (3-1) 8

(00-1-10) 8 (0-1-3) 8 (3-1) 8

1 subspace 2 subspaces 3 subspaces 6 subspaces 9 subspaces 11 subspaces

In this chain, the first su(2) must be broken, in order to eliminate the multiplets of
dimension 5 and 10. Now observe that

1. breaking the first su(2) down to o(2) generates 23 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 40 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 15 multiplets with d3 = 12,
4. breaking the second su(2) down to so(2) generates precisely 21 multiplets with d3 = 12.

Note that option 4 leads to a scheme which does not allow for freezing and is remote from
the genetic code, with 1 sextet, 4 quintets, 5 quartets, 2 triplets, 3 doublets and 6 singlets.
In the cases of options 1 and 2, the symmetry breaking process must terminate, and we
must take into account the possibility of freezing. However, the multiplets of dimension
> 6 and of dimension 5 must not be frozen. In the case of option 1, we are able to produce
the correct number of sextets (3), triplets (2) and singlets (2), but there is no possibility of
generating the correct number of quartets (5) and doublets (9): we get at least 6 quartets
and at most 7 doublets. In the case of option 2, the multiplets of dimension 5 will provide
at least 10 singlets, which is certainly too many.
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2. Chain 2.3.1.2:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(2)
1 ⊕ A1 ⊕ A1

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 A2 ⊕ A1 ⊕ C2 (A1)3

HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-01) 20 (01-0-01) 15 (2-0-4) 15
(00-0-01) 5 (0-0-4) 5

(001-2-00) 12 (01-2-00) 9 (2-2-0) 9
(00-2-00) 3 (0-2-0) 3

(100-0001) 32 (100-1-10) 32 (10-1-10) 24 (2-1-3) 24
(00-1-10) 8 (0-1-3) 8

1 subspace 2 subspaces 3 subspaces 6 subspaces 6 subspaces

In this chain, the third su(2) must be broken, in order to eliminate the multiplets of
dimension 5 and 15. Now observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 9 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 12 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 8 multiplets with d3 = 48,
4. breaking the second su(2) down to so(2) generates 12 multiplets with d3 = 48, among

which there are already 8 odd-dimensional multiplets, including 3 triplets and 3 singlets,
5. breaking the third su(2) down to o(2) generates 12 multiplets with d3 = 51,
6. breaking the third su(2) down to so(2) generates 20 multiplets with d3 = 51,

among which there are already 12 odd-dimensional multiplets, including 6 triplets and
5 singlets.

Therefore, the only surviving options for continuing the symmetry breaking process are 3
and 5. Hence in a second step,

3.1. breaking the first su(2) down to o(2) generates 12 multiplets with d3 = 0,
3.2. breaking the first su(2) down to so(2) generates 16 multiplets with d3 = 0,
3.3. breaking the second o(2) down to so(2) generates 10 multiplets with d3 = 48, among

which there are already 6 odd-dimensional multiplets, including 3 singlets,
3.4. breaking the third su(2) down to o(2) generates 14 multiplets with d3 = 48,
3.5. breaking the third su(2) down to so(2) generates 22 multiplets with d3 = 48,

5.1. breaking the first su(2) down to o(2) generates 18 multiplets with d3 = 12,
5.2. breaking the first su(2) down to so(2) generates 24 multiplets with d3 = 12,
5.3. breaking the second su(2) down to o(2) generates 14 multiplets with d3 = 48:

this gives the same distribution of multiplets as option 3.4,
5.4. breaking the second su(2) down to so(2) generates 20 multiplets with d3 = 48, among

which there are already 6 odd-dimensional multiplets, namely 3 triplets and 3 singlets,
5.5. breaking the third o(2) down to so(2) generates 20 multiplets with d3 = 51, among

which there are already 12 odd-dimensional multiplets, including 6 triplets and
5 singlets.

In the cases of options 3.5 and 5.2, the symmetry breaking process must terminate, and
we must take into account the possibility of freezing. However, the multiplets of dimension
> 6 and of dimension 5 must not be frozen. In the case of option 3.5, the multiplets of
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dimension 15 and of dimension 5 will break into 5 triplets and 5 singlets, respectively,
so we get at least 6 triplets and 6 singlets. In the case of option 5.2, the multiplet of
dimension 9 will break into 3 triplets, so we get at least 3 triplets and 6 odd-dimensional
multiplets. We are thus left with a single surviving option for continuing the symmetry
breaking process, namely 3.4 = 5.3, which consists in breaking the second and the third
su(2) down to o(2), generating 14 multiplets with d3 = 48. Hence in a third step,

3.4.1. breaking the first su(2) down to o(2) generates precisely 21 multiplets with d3 = 0,
3.4.2. breaking the first su(2) down to so(2) generates 28 multiplets with d3 = 0,
3.4.3. breaking the second o(2) down to so(2) generates 12 multiplets with d3 = 48,

among which there are already 8 odd-dimensional multiplets, including 3 triplets
and 3 singlets,

3.4.4. breaking the third o(2) down to so(2) generates 22 multiplets with d3 = 48.

Note that option 3.4.1 leads to a scheme which does not allow for freezing and is remote
from the genetic code, with 2 octets, 7 quartets, 8 doublets and 4 singlets. In the cases of
options 3.4.2 and 3.4.4, the symmetry breaking process must terminate, and we must take
into account the possibility of freezing. However, the multiplets of dimension > 6 must
not be frozen. In the case of option 3.4.2, we are able to produce the correct number of
sextets (3), triplets (2) and singlets (2), but there is no possibility of generating the correct
number of quartets (5) and doublets (9): we can only get 8 quartets and, correspondingly,
3 doublets. In the case of option 3.4.4, the multiplets of dimension 12 will break into
2 sextets, so we get at least 5 sextets.

3. Chain 2.3.1.3.2:

D7 ⊃ A3⊕D4 ⊃ A3⊕A1⊕C2 ⊃ A2⊕A1⊕C2 ⊃ A
(1)
1 ⊕A1⊕A1⊕A1 ⊃ (A1)13⊕A1⊕A1

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 A2 ⊕ A1 ⊕ C2 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-01) 20 (01-0-01) 15 (1-0-1-1) 8 (2-0-1) 6
(0-0-1) 2

(1-0-0-0) 2 (1-0-0) 2
(0-0-1-1) 4 (1-0-1) 4
(0-0-0-0) 1 (0-0-0) 1

(00-0-01) 5 (0-0-1-1) 4 (1-0-1) 4
(0-0-0-0) 1 (0-0-0) 1

(001-2-00) 12 (01-2-00) 9 (1-2-0-0) 6 (1-2-0) 6
(0-2-0-0) 3 (0-2-0) 3

(00-2-00) 3 (0-2-0-0) 3 (0-2-0) 3
(100-0001) 32 (100-1-10) 32 (10-1-10) 24 (1-1-1-0) 8 (2-1-0) 6

(0-1-0) 2
(1-1-0-1) 8 (1-1-1) 8
(0-1-1-0) 4 (1-1-0) 4
(0-1-0-1) 4 (0-1-1) 4

(00-1-10) 8 (0-1-1-0) 4 (1-1-0) 4
(0-1-0-1) 4 (0-1-1) 4

1 subspace 2 subspaces 3 subspaces 6 subspaces 15 subspaces 17 subspaces
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In this chain, breaking the third su(2) to o(2) has no effect and will be disregarded;
moreover, at least one of the three su(2)’s must be broken down to so(2) because otherwise
the octet would remain unbroken. Now observe that

1. breaking the first su(2) down to o(2) generates 19 multiplets with d3 = 12 (only two of
the three sextets are broken into a quartet and a doublet each),

2. breaking the first su(2) down to so(2) generates 28 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 20 multiplets with d3 = 12 (only one

of the three sextets is broken into a quartet and a doublet and the two triplets are
broken into a doublet and a singlet each),

4. breaking the second su(2) down to so(2) generates 30 multiplets with d3 = 12,
5. breaking the third su(2) down to so(2) generates 24 multiplets with d3 = 24.

In the cases of options 2, 4 and 5, the symmetry breaking process must terminate, and
we must take into account the possibility of freezing. A closer analysis reveals that in
all three cases, we are able to produce the correct number of sextets (3), triplets (2) and
singlets (2), but there is no possibility of generating the correct number of quartets (5) and
doublets (9): we can only get 4, 6 or 8 quartets and, correspondingly, 11, 7 or 3 doublets.

4. Chain 2.3.1.4:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A2 ⊕ A1 ⊕ C2 ⊃ A
(2)
1 ⊕ A1 ⊕ A1 ⊕ A1

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 A2 ⊕ A1 ⊕ C2 (A1)4

HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-01) 20 (01-0-01) 15 (2-0-1-1) 12
(2-0-0-0) 3

(00-0-01) 5 (0-0-1-1) 4
(0-0-0-0) 1

(001-2-00) 12 (01-2-00) 9 (2-2-0-0) 9
(00-2-00) 3 (0-2-0-0) 3

(100-0001) 32 (100-1-10) 32 (10-1-10) 24 (2-1-1-0) 12
(2-1-0-1) 12

(00-1-10) 8 (0-1-1-0) 4
(0-1-0-1) 4

1 subspace 2 subspaces 3 subspaces 6 subspaces 10 subspaces

In this chain, breaking the third or fourth su(2) to o(2) has no effect and will be disre-
garded; moreover, at least one of the first two su(2)’s must be broken because otherwise
the nonet would remain unbroken. Note also the symmetry of the final distribution of
multiplets under exchange of the third with the fourth su(2). Now observe that, in a first
step,

1. breaking the first su(2) down to o(2) generates 15 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 20 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 12 multiplets with d3 = 48,
4. breaking the second su(2) down to so(2) generates 18 multiplets with d3 = 48, among

which there are already 4 triplets and 4 singlets,
5. breaking the third su(2) down to so(2) generates 14 multiplets with d3 = 51.
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Therefore, the only surviving options for continuing the symmetry breaking process are 3
and 5. Hence in a second step,

3.1. breaking the first su(2) down to o(2) generates 18 multiplets with d3 = 0,
3.2. breaking the first su(2) down to so(2) generates 24 multiplets with d3 = 0,
3.3. breaking the second o(2) down to so(2) generates 18 multiplets with d3 = 48:

this gives the same distribution of multiplets as option 4 above,
3.4. breaking the third su(2) down to so(2) generates 16 multiplets with d3 = 48,

5.1. breaking the first su(2) down to o(2) generates precisely 21 multiplets with d3 = 12,
5.2. breaking the first su(2) down to so(2) generates 28 multiplets with d3 = 12,
5.3. breaking the second su(2) down to o(2) generates 16 multiplets with d3 = 48:

this gives the same distribution of multiplets as option 3.4 above.
5.4. breaking the second su(2) down to so(2) generates 24 multiplets with d3 = 48,
5.5. breaking the fourth su(2) down to so(2) generates 20 multiplets with d3 = 51, among

which there are already 6 triplets and 5 singlets.

Note that option 5.1 leads to an interesting scheme which, without any freezing, comes
close to the genetic code but is slightly different, with 1 octet, 1 sextet, 6 quartets,
2 triplets, 9 doublets and 2 singlets. In the cases of options 3.2, 5.2 and 5.4, the sym-
metry breaking process must terminate, and we must take into account the possibility
of freezing. However, the multiplets of dimension > 6 must not be frozen. In the case of
option 3.2, the two multiplets of dimension 12 will break into 3 quartets each, so we get at
least 9 quartets and at most 2 sextets. In the cases of options 5.2 and 5.4, the multiplet of
dimension 9 will break into 3 triplets, so we get at least 4 triplets and 6 odd-dimensional
multiplets. We are thus left with a single surviving option for continuing the symmetry
breaking process, namely 3.4 = 5.3, which consists in breaking the second su(2) down to
o(2) and the third su(2) down to so(2), generating 16 multiplets with d3 = 48. Hence in
a third step,

3.4.1. breaking the first su(2) down to o(2) generates 24 multiplets with d3 = 0,
3.4.2. breaking the first su(2) down to so(2) generates 32 multiplets with d3 = 0,
3.4.3. breaking the second o(2) down to so(2) generates 24 multiplets with d3 = 48,
3.4.4. breaking the fourth su(2) down to so(2) generates 22 multiplets with d3 = 48.

In all cases, the symmetry breaking process must terminate, and we must take into account
the possibility of freezing. However, the multiplet of dimension 12 must not be frozen. In
the case of option 3.4.1, the multiplet of dimension 12 will break into an octet and a
quartet. In the cases of options 3.4.3 and 3.4.4, there remain too many multiplets whose
dimension is a multiple of 3 (sextets and triplets), since we still have d3 = 48. Finally,
in the case of option 3.4.2, we are able to produce the correct number of sextets (3),
triplets (2) and singlets (2), but there is no possibility of generating the correct number of
quartets (5) and doublets (9): we can only get 4 quartets and, correspondingly, 11 doublets.



August 8, 2003 11:6 WSPC/140-IJMPB 02076

Search for Symmetries in the Genetic Code 3177

5. Chain 2.3.1.4.2:

D7 ⊃ A3⊕D4 ⊃ A3⊕A1⊕C2 ⊃ A2⊕A1⊕C2 ⊃ A
(2)
1 ⊕A1⊕A1⊕A1 ⊃ (A1)13⊕A1⊕A1

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 A2 ⊕ A1 ⊕ C2 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-01) 20 (01-0-01) 15 (2-0-1-1) 12 (3-0-1) 8
(1-0-1) 4

(2-0-0-0) 3 (2-0-0) 3
(00-0-01) 5 (0-0-1-1) 4 (1-0-1) 4

(0-0-0-0) 1 (0-0-0) 1
(001-2-00) 12 (01-2-00) 9 (2-2-0-0) 9 (2-2-0) 9

(00-2-00) 3 (0-2-0-0) 3 (0-2-0) 3
(100-0001) 32 (100-1-10) 32 (10-1-10) 24 (2-1-1-0) 12 (3-1-0) 8

(1-1-0) 4
(2-1-0-1) 12 (2-1-1) 12

(00-1-10) 8 (0-1-1-0) 4 (1-1-0) 4
(0-1-0-1) 4 (0-1-1) 4

1 subspace 2 subspaces 3 subspaces 6 subspaces 10 subspaces 12 subspaces

In this chain, breaking the third su(2) to o(2) has no effect and will be disregarded;
moreover, at least one of the first two su(2)’s must be broken because otherwise the nonet
would remain unbroken. Now observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 17 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 28 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 14 multiplets with d3 = 24 (only the

nonet is broken into a sextet and a triplet and one of the two triplets is broken into a
doublet and a singlet),

4. breaking the second su(2) down to so(2) generates precisely 21 multiplets with
d3 = 24,

5. breaking the third su(2) down to so(2) generates 17 multiplets with d3 = 27.

Note that option 4 leads to an interesting scheme which, without any freezing, comes close
to the genetic code but is slightly different, with 1 octet, 2 sextets, 4 quartets, 4 triplets,
6 doublets and 4 singlets. In the case of option 2, the symmetry breaking process must
terminate, and we must take into account the possibility of freezing. However, the multiplet
of dimension 9 must not be frozen and will therefore provide 3 triplets, so we get at least
4 triplets and 6 odd-dimensional multiplets and at most 2 sextets. Therefore, the only
surviving options for continuing the symmetry breaking process are 3 and 5. Hence in a
second step:

3.1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 0,
3.2. breaking the first su(2) down to so(2) generates 32 multiplets with d3 = 0,
3.3. breaking the second o(2) down to so(2) generates precisely 21 multiplets with d3 = 24:

this gives the same distribution of multiplets as option 4 above,
3.4. breaking the third su(2) down to so(2) generates 19 multiplets with d3 = 27,

5.1. breaking the first su(2) down to o(2) generates 24 multiplets with d3 = 12,
5.2. breaking the first su(2) down to so(2) generates 40 multiplets with d3 = 12,
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5.3. breaking the second su(2) down to o(2) generates 19 multiplets with d3 = 27:
this gives the same distribution of multiplets as option 3.4 above,

5.4. breaking the second su(2) down to so(2) generates 28 multiplets with d3 = 24.

In the cases of options 3.2, 5.1, 5.2 and 5.4, the symmetry breaking process must terminate,
and we must take into account the possibility of freezing. However, the multiplets of
dimension > 6 must not be frozen. In the case of option 3.2, the multiplet of dimension 12
will break into 3 quartets, so we get at most 1 sextet. In the cases of options 5.2 and 5.4,
the multiplet of dimension 9 will break into 3 triplets, so we get at least 4 triplets and
6 odd-dimensional multiplets and at most 2 sextets. In the case of option 5.1, we are able
to produce the correct number of sextets (3), triplets (2) and singlets (2), but there is no
possibility of generating the correct number of quartets (5) and doublets (9): we can only
get 4 or 6 quartets and, correspondingly, 11 or 7 doublets. We are thus left with a single
surviving option for continuing the symmetry breaking process, namely 3.4 = 5.3, which
consists in breaking the second su(2) down to o(2) and the third su(2) down to so(2),
generating 19 multiplets with d3 = 27. From this, the distribution of multiplets found in
the genetic code could be obtained by breaking the remaining octet into two quartets and
one of the quartets into two doublets, but this is impossible since the available quartets
come in identical pairs. In other words, in any possible further breaking, the number of
quartets will be even and the number of doublets will be 3 mod 4.

6. Chain 2.3.3.2.2.3 (with one intermediate step omitted):

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1 ⊕ A1

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 (A1)5 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-01) 20 (1-1-0-1-1) 16 (1-1-1-1) 16 (2-1-1) 12
(0-1-1) 4

(1-1-0-0-0) 4 (1-1-0-0) 4 (1-1-0) 4
(001-2-00) 12 (1-1-2-0-0) 12 (3-1-0-0) 8 (1-3-0) 8

(1-1-0-0) 4 (1-1-0) 4
(100-0001) 32 (100-1-10) 32 (1-1-1-1-0) 16 (2-1-1-0) 12 (2-2-0) 9

(0-2-0) 3
(0-1-1-0) 4 (2-0-0) 3

(0-0-0) 1
(1-1-1-0-1) 16 (2-1-0-1) 12 (1-2-1) 12

(0-1-0-1) 4 (1-0-1) 4

1 subspace 2 subspaces 3 subspaces 5 subspaces 8 subspaces 11 subspaces

In this chain, breaking the third su(2) to o(2) has no effect and will be disregarded. Now
observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 14 multiplets with d3 = 24,
2. breaking the first su(2) down to so(2) generates 22 multiplets with d3 = 24,
3. breaking the second su(2) down to o(2) generates 15 multiplets with d3 = 24,
4. breaking the second su(2) down to so(2) generates 24 multiplets with d3 = 24,
5. breaking the third su(2) down to so(2) generates 15 multiplets with d3 = 39.
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In the cases of options 2 and 4, the symmetry breaking process must terminate, and we
must take into account the possibility of freezing. However, the multiplets of dimension > 6
must not be frozen. In both cases, the multiplet of dimension 9 will break into 3 triplets, so
we get at least 3 triplets and 6 odd-dimensional multiplets. Therefore, the only surviving
options for continuing the symmetry breaking process are 1, 3 and 5. Hence in a second
step,

1.1. breaking the first o(2) down to so(2) generates 22 multiplets with d3 = 24,
1.2. breaking the second su(2) down to o(2) generates 19 multiplets with d3 = 0,
1.3. breaking the second su(2) down to so(2) generates 30 multiplets with d3 = 0,
1.4. breaking the third su(2) down to so(2) generates 19 multiplets with d3 = 24,

3.1. breaking the first su(2) down to o(2) generates 19 multiplets with d3 = 0,
3.2. breaking the first su(2) down to so(2) generates 30 multiplets with d3 = 0,
3.3. breaking the second o(2) down to so(2) generates 24 multiplets with d3 = 24,
3.4. breaking the third su(2) down to so(2) generates 20 multiplets with d3 = 24,

5.1. breaking the first su(2) down to o(2) generates 19 multiplets with d3 = 24: this gives
the same distribution of multiplets as option 1.4 above,

5.2. breaking the first su(2) down to so(2) generates 30 multiplets with d3 = 24,
5.3. breaking the second su(2) down to o(2) generates 20 multiplets with d3 = 24: this

gives the same distribution of multiplets as option 3.4 above,
5.4. breaking the second su(2) down to so(2) generates 32 multiplets with d3 = 24.

In the cases of options 1.1, 1.3, 3.2, 3.3, 5.2 and 5.4, the symmetry breaking process
must terminate, and we must take into account the possibility of freezing. However, the
multiplets of dimension > 6 must not be frozen. In the case of option 1.1, we are able to
produce the correct number of sextets (3), triplets (2) and singlets (2), but there is no
possibility of generating the correct number of quartets (5) and doublets (9): we get at
least 6 quartets and at most 7 doublets. In the cases of options 1.3 and 3.2, the multiplet of
dimension 12 will break into 3 quartets, so we get at least 6 quartets and at most 1 sextet.
In the case of option 3.3, it suffices to freeze the multiplets coming from the nonet, one
of the quartets and one of the triplets: this will reproduce the genetic code, as shown in
Table 6 of the next section. In the cases of options 5.2 and 5.4, the multiplet of dimension 9
will break into 3 triplets, so we get at least 3 triplets and 6 odd-dimensional multiplets.
We are thus left with two surviving options for continuing the symmetry breaking process,
namely 1.4 = 5.1 and 3.4 = 5.3. From either of these, the distribution of multiplets found
in the genetic code could be obtained by breaking one of the quartets into two doublets
(and, in the first case, the remaining octet into two quartets), but this is impossible since
the available quartets come in identical pairs (and since, in the first case, the remaining
octet can only be broken into two quartets or four doublets, but not into one quartet and
two doublets). In other words, in any possible further breaking, the number of quartets
will be even and the number of doublets will be 3 mod 4.
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7. Chain 2.3.3.2.3.5 (with one intermediate step omitted):

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)14 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)24 ⊕ A1 ⊕ A1

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 (A1)5 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-01) 20 (1-1-0-1-1) 16 (2-1-0-1) 12 (2-2-0) 9
(0-2-0) 3

(0-1-0-1) 4 (2-0-0) 3
(0-0-0) 1

(1-1-0-0-0) 4 (1-1-0-0) 4 (1-1-0) 4
(001-2-00) 12 (1-1-2-0-0) 12 (1-1-2-0) 12 (1-1-2) 12

(100-0001) 32 (100-1-10) 32 (1-1-1-1-0) 16 (2-1-1-0) 12 (1-2-1) 12
(0-1-1-0) 4 (1-0-1) 4

(1-1-1-0-1) 16 (1-1-1-1) 16 (2-1-1) 12
(0-1-1) 4

1 subspace 2 subspaces 3 subspaces 5 subspaces 7 subspaces 10 subspaces

In this chain, at least one of the first two su(2)’s must be broken because otherwise
the nonet would remain unbroken. Note also the symmetry of the final distribution of
multiplets under exchange of the first with the second su(2). Now observe that, in a first
step,

1. breaking the first su(2) down to o(2) generates 13 multiplets with d3 = 36,
2. breaking the first su(2) down to so(2) generates 20 multiplets with d3 = 36, among

which there are already 4 triplets and 4 singlets,
3. breaking the third su(2) down to o(2) generates 11 multiplets with d3 = 39 (only one

of the three multiplets of dimension 12 is broken into an octet and a quartet),
4. breaking the third su(2) down to so(2) generates 16 multiplets with d3 = 39.

Therefore, the only surviving options for continuing the symmetry breaking process are
1, 3 and 4. Hence in a second step,

1.1. breaking the first o(2) down to so(2) generates 20 multiplets with d3 = 36: this gives
the same distribution of multiplets as option 2 above,

1.2. breaking the second su(2) down to o(2) generates 17 multiplets with d3 = 12,
1.3. breaking the second su(2) down to so(2) generates 26 multiplets with d3 = 12,
1.4. breaking the third su(2) down to o(2) generates 14 multiplets with d3 = 24,
1.5. breaking the third su(2) down to so(2) generates 20 multiplets with d3 = 24,

3.1. breaking the first su(2) down to o(2) generates 14 multiplets with d3 = 24: this gives
the same distribution of multiplets as option 1.4 above,

3.2. breaking the first su(2) down to so(2) generates 22 multiplets with d3 = 24,
3.3. breaking the third o(2) down to so(2) generates 16 multiplets with d3 = 39: this gives

the same distribution of multiplets as option 4 above,

4.1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 24: this gives
the same distribution of multiplets as option 1.5 above,

4.2. breaking the first su(2) down to so(2) generates 32 multiplets with d3 = 24.
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In the cases of options 1.3, 3.2 and 4.2, the symmetry breaking process must terminate,
and we must take into account the possibility of freezing. However, the multiplets of
dimension > 6 must not be frozen. In the case of option 1.3, we are able to produce the
correct number of sextets (3), triplets (2) and singlets (2), but there is no possibility of
generating the correct number of quartets (5) and doublets (9): we can only get 6 or 7 or 8
or 9 quartets and, correspondingly, 7 or 5 or 3 or 1 doublets. In the cases of options 3.2 and
4.2, the multiplet of dimension 9 will break into 3 triplets, so we get at least 4 triplets and
6 odd-dimensional multiplets. We are thus left with two surviving options for continuing
the symmetry breaking process, namely 1.4 and 1.5, which consist in breaking the first
su(2) down to o(2) and the third su(2) down to o(2) and so(2), repsectively, generating
14 and 20 multiplets, respectively, with d3 = 48. Hence in a third step,

1.4.1. breaking the first o(2) down to so(2) generates 22 multiplets with d3 = 24: this
gives the same distribution of multiplets as option 3.2 above,

1.4.2. breaking the second su(2) down to o(2) generates 18 multiplets with d3 = 0,
1.4.3. breaking the second su(2) down to so(2) generates 28 multiplets with d3 = 0,
1.4.4. breaking the third o(2) down to so(2) generates 20 multiplets with d3 = 24: this

gives the same distribution of multiplets as option 1.5 above,

1.5.1. breaking the first o(2) down to so(2) generates 32 multiplets with d3 = 24: this
gives the same distribution of multiplets as option 4.2 above,

1.5.2. breaking the second su(2) down to o(2) generates 25 multiplets with d3 = 0,
1.5.3. breaking the second su(2) down to so(2) generates 40 multiplets with d3 = 0.

In the cases of options 1.4.1, 1.4.3, 1.5.1 and 1.5.3, the symmetry breaking process must
terminate, and we must take into account the possibility of freezing. However, the multi-
plets of dimension > 6 must not be frozen. In the case of option 1.4.1 (which may differ
from option 3.2 when freezing is taken into account), we are able to produce the correct
number of sextets (3), triplets (2) and singlets (2), but there is no possibility of generating
the correct number of quartets (5) and doublets (9): since the two multiplets of dimen-
sion 8 will break into 2 quartets each and since there are two other quartets that remain
unbroken during the last step, we get at least 6 quartets and at most 7 doublets. In the
case of option 1.4.3, the multiplet of dimension 12 will break into 3 quartets, so we get at
most 1 sextet. In the cases of options 1.5.1 and 1.5.3, it suffices to break one quartet into
two doublets and freeze all other multiplets: this will reproduce the genetic code, as shown
in Table 7 and Table 8 of the next section.
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8. Chain 2.4.3.2.5:

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)24 ⊕ A1 ⊕ A1 ⊕ A1

D7 A3 ⊕ D4 A3 ⊕ (A1)4 (A1)6 (A1)5 (A1)4

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001-0010) 32 (001-0-1-1-0) 16 (1-1-0-1-1-0) 16 (1-1-1-1-0) 16 (2-1-1-0) 12
(0-1-1-0) 4

(001-1-0-0-1) 16 (1-1-1-0-0-1) 16 (2-1-0-0-1) 12 (1-2-0-1) 12

(0-1-0-0-1) 4 (1-0-0-1) 4
(100-0001) 32 (100-0-1-0-1) 16 (1-1-0-1-0-1) 16 (1-1-1-0-1) 16 (1-1-1-1) 16

(100-1-0-1-0) 16 (1-1-1-0-1-0) 16 (2-1-0-1-0) 12 (2-2-0-0) 9
(0-2-0-0) 3

(0-1-0-1-0) 4 (2-0-0-0) 3
(0-0-0-0) 1

1 subspace 2 subspaces 4 subspaces 4 subspaces 6 subspaces 9 subspaces

In this chain, breaking the third and the fourth su(2) to o(2) has no effect and will
be disregarded; moreover, at least two of the four su(2)’s must be broken down to so(2)
because otherwise there would be octets left over from the multiplet of dimension 16. Note
also the symmetry of the final distribution of multiplets under simultaneous exchange of
the first with the second and the third with the fourth su(2). Now observe that, in a first
step,

1. breaking the first or second su(2) down to o(2) generates 12 multiplets with d3 = 24,
2. breaking the first or second su(2) down to so(2) generates 18 multiplets with d3 = 24,

among which there are already 4 triplets and 4 singlets,
3. breaking the third or fourth su(2) down to so(2) generates 12 multiplets with d3 = 39.

Therefore, the only surviving options for continuing the symmetry breaking process are 1
and 3; for the sake of definiteness, we choose to break the second su(2) in the first case
and the fourth su(2) in the second case. Hence in a second step,

1.1. breaking the first su(2) down to o(2) generates 16 multiplets with d3 = 0,
1.2. breaking the first su(2) down to so(2) generates 24 multiplets with d3 = 0,
1.3. breaking the second o(2) down to so(2) generates 18 multiplets with d3 = 24: this

gives the same distribution of multiplets as option 2 above,
1.4. breaking the third su(2) down to so(2) generates 15 multiplets with d3 = 24,
1.5. breaking the fourth su(2) down to so(2) generates 16 multiplets with d3 = 24,

3.1. breaking the first su(2) down to o(2) generates 15 multiplets with d3 = 24: up to
the aforementioned symmetry operation of simultaneously exchanging the first with
the second and the third with the fourth su(2), this gives the same distribution of
multiplets as option 1.4 above,

3.2. breaking the first su(2) down to so(2) generates 24 multiplets with d3 = 24,
3.3. breaking the second su(2) down to o(2) generates 16 multiplets with d3 = 24: this

gives the same distribution of multiplets as option 1.5 above,
3.4. breaking the second su(2) down to so(2) generates 24 multiplets with d3 = 24,
3.5. breaking the third su(2) down to so(2) generates 16 multiplets with d3 = 39.
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In the cases of options 1.2, 3.2 and 3.4, the symmetry breaking process must terminate, and
we must take into account the possibility of freezing. However, the multiplets of dimension
> 6 must not be frozen. In the case of option 1.2, the multiplet of dimension 16 will break
into 2 octets. In the cases of options 3.2 and 3.4, the multiplet of dimension 9 will break
into 3 triplets, so we get at least 4 triplets and 6 odd-dimensional multiplets. We are thus
left with three surviving options for continuing the symmetry breaking process: 1.4, 1.5
and 3.5. Hence in a third step,

1.4.1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 0,
1.4.2. breaking the first su(2) down to so(2) generates 30 multiplets with d3 = 0,
1.4.3. breaking the second o(2) down to so(2) generates 24 multiplets with d3 = 24,
1.4.4. breaking the fourth su(2) down to so(2) generates 20 multiplets with d3 = 24,

1.5.1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 0,
1.5.2. breaking the first su(2) down to so(2) generates 32 multiplets with d3 = 0,
1.5.3. breaking the second o(2) down to so(2) generates 24 multiplets with d3 = 24,
1.5.4. breaking the third su(2) down to so(2) generates 20 multiplets with d3 = 24: this

gives the same distribution of multiplets as option 1.4.4 above,

3.5.1. breaking the first or second su(2) down to o(2) generates 20 multiplets with d3 = 24:
this gives the same distribution of multiplets as option 1.4.4 above,

3.5.2. breaking the first or second su(2) down to so(2) generates 32 multiplets with
d3 = 24.

In the cases of options 1.4.2, 1.4.3, 1.5.2, 1.5.3 and 3.5.2, the symmetry breaking process
must terminate, and we must take into account the possibility of freezing. However, the
multiplets of dimension > 6 must not be frozen. In the cases of options 1.4.2 and 1.4.3, the
3 multiplets of dimension 8 will break into 2 quartets each, so we get at least 6 quartets.
In the case of option 1.5.2, the 2 multiplets of dimension 8 will break into 2 quartets each
and the multiplet of dimension 12 will break into 3 quartets, so we get at least 7 quartets
and at most 1 sextet. In the case of option 1.5.3, it suffices to freeze the multiplets coming
from the nonet, one of the two quartets and one of the two triplets: this will reproduce

the genetic code, as shown in Table 9 of the next section. In the case of option 3.5.2,
the multiplet of dimension 9 will break into 3 triplets, so we get at least 4 triplets and
6 odd-dimensional multiplets. Finally, we are still left with a single surviving option for
continuing the symmetry breaking process, namely 1.4.4 = 3.3.4 = 3.5.1, which consists
in breaking the first or second su(2) down to o(2) and the third and fourth su(2) down
to so(2), generating 20 multiplets with d3 = 24. From this, the distribution of multiplets
found in the genetic code could be obtained by breaking exactly one of the quartets into
two doublets, but this is impossible since the freezing mechanism only allows us to get 0,
2, 4 or 6 quartets and, correspondingly, 19, 15, 11 or 7 doublets.
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9. Chain 3.5.2.2.1:

D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)12 ⊕ A1 ⊕ A1

D7 A1 ⊕ B5 (A1)3 ⊕ B3 (A1)3 ⊕ G2 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (1-00001) 64 (1-1-0-001) 32 (1-1-0-01) 28 (1-1-0-6) 28 (2-0-6) 21
(0-0-6) 7

(1-1-0-00) 4 (1-1-0-0) 4 (2-0-0) 3
(0-0-0) 1

(1-0-1-001) 32 (1-0-1-01) 28 (1-0-1-6) 28 (1-1-6) 28
(1-0-1-00) 4 (1-0-1-0) 4 (1-1-0) 4

1 subspace 1 subspace 2 subspaces 4 subspaces 4 subspaces 6 subspaces

In this chain, the third su(2) must be broken, in order to eliminate the multiplets of
dimension 7, 21 and 28. Moreover, breaking the second su(2) to o(2) has no effect and will
be disregarded. Now observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 8 multiplets with d3 = 0,
2. breaking the first su(2) down to so(2) generates 10 multiplets with d3 = 0,
3. breaking the second su(2) down to so(2) generates 8 multiplets with d3 = 24,
4. breaking the third su(2) down to o(2) generates 15 multiplets with d3 = 24,
5. breaking the third su(2) down to so(2) generates 24 multiplets with d3 = 24.

In the case of option 5, the symmetry breaking process must terminate, and we must take
into account the possibility of freezing. However, the multiplets of dimension > 6 must not
be frozen, so that we get at least 8 triplets and 8 singlets. Therefore, the only surviving
options for continuing the symmetry breaking process are 3 and 4. Hence in a second step,

3.1. breaking the first su(2) down to o(2) generates 10 multiplets with d3 = 0,
3.2. breaking the first su(2) down to so(2) generates 16 multiplets with d3 = 0,
3.3. breaking the third su(2) down to o(2) generates 20 multiplets with d3 = 24,
3.4. breaking the third su(2) down to so(2) generates 32 multiplets with d3 = 24,

4.1. breaking the first su(2) down to o(2) generates 20 multiplets with d3 = 0,
4.2. breaking the first su(2) down to so(2) generates 32 multiplets with d3 = 0,
4.3. breaking the second su(2) down to so(2) generates 20 multiplets with d3 = 24: this

gives the same distribution of multiplets as option 3.3 above,
4.4. breaking the third o(2) down to so(2) generates 24 multiplets with d3 = 24.

In the cases of options 3.4, 4.2 and 4.4, the symmetry breaking process must terminate, and
we must take into account the possibility of freezing. However, the multiplets of dimension
> 6 must not be frozen. In the case of option 3.4, we again get at least 8 triplets and
8 singlets. In the cases of options 4.2 and 4.4, the 3 multiplets of dimension 8 coming
from the multiplet of dimension 28 will break into 2 quartets each, so we get at least
6 quartets. We are thus left with a single surviving option for continuing the symmetry
breaking process, namely 3.3 = 4.3, which consists in breaking the second su(2) down to
so(2) and the third su(2) down to o(2), generating 20 multiplets with d3 = 24. From this,
the distribution of multiplets found in the genetic code could be obtained by breaking
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exactly one of the quartets into two doublets, but this is impossible since the freezing
mechanism only allows us to get 0 or 6 quartets and, correspondingly, 19 or 7 doublets.

10. Chain 3.5.2.2.4.3:

D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ B3 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ G2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)24 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1

D7 A1 ⊕ B5 (A1)3 ⊕ B3 (A1)3 ⊕ G2 (A1)4 (A1)3 (A1)2

HW d HW d HW d HW d HW d HW d HW d

(0000010) 64 (1-00001) 64 (1-1-0-001) 32 (1-1-0-01) 28 (1-1-0-6) 28 (7-1-0) 16 (1-7) 16
(5-1-0) 12 (1-5) 12

(1-1-0-00) 4 (1-1-0-0) 4 (1-1-0) 4 (1-1) 4
(1-0-1-001) 32 (1-0-1-01) 28 (1-0-1-6) 28 (6-1-1) 28 (2-6) 21

(0-6) 7
(1-0-1-00) 4 (1-0-1-0) 4 (0-1-1) 4 (2-0) 3

(0-0) 1

1 subspace 1 subspace 2 subspaces 4 subspaces 4 subspaces 5 subspaces 7 subspaces

In this chain, the second su(2) must be broken, in order to eliminate the multiplets of
dimension 7 and 21. Now observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 9 multiplets with d3 = 0,
2. breaking the first su(2) down to so(2) generates 14 multiplets with d3 = 0,
3. breaking the second su(2) down to o(2) generates 18 multiplets with d3 = 24,
4. breaking the second su(2) down to so(2) generates 32 multiplets with d3 = 24.

In the case of option 4, the symmetry breaking process must terminate, and we must take
into account the possibility of freezing. However, the multiplets of dimension > 6 must
not be frozen, so we get at least 7 triplets and 7 singlets. Therefore, the only surviving
option for continuing the symmetry breaking process is 3. Hence in a second step,

3.1. breaking the first su(2) down to o(2) generates 23 multiplets with d3 = 0,
3.2. breaking the first su(2) down to so(2) generates 36 multiplets with d3 = 0,
3.3. breaking the second o(2) down to so(2) generates 32 multiplets with d3 = 24.

In all cases, the symmetry breaking process must terminate, and we must take into account
the possibility of freezing. In the case of option 3.1, we are able to produce the correct
number of sextets (3), triplets (2) and singlets (2), but there is no possibility of generating
the correct number of quartets (5) and doublets (9): we can only get 8 quartets and,
correspondingly, 3 doublets. In the cases of options 3.2 and 3.3, it suffices to freeze the
multiplets coming from the multiplets of dimension 21, 16, 7, 4 and 3: this will reproduce

the genetic code, as shown in Table 10 and Table 11 of the next section.
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11. Chain 6.1.4.2.2:

D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A
(2)
1

⊃ (A1)13 ⊕ A1 ⊕ A1

D7 (A1)2 ⊕ D5 (A1)2 ⊕ A4 (A1)3 ⊕ A2 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (0-1-00010) 32 (0-1-0010) 20 (0-1-1-01) 12 (0-1-1-2) 12 (1-1-2) 12
(0-1-0-10) 6 (0-1-0-2) 6 (0-1-2) 6
(0-1-0-00) 2 (0-1-0-0) 2 (0-1-0) 2

(0-1-1000) 10 (0-1-0-10) 6 (0-1-0-2) 6 (0-1-2) 6
(0-1-1-00) 4 (0-1-1-0) 4 (1-1-0) 4

(0-1-0000) 2 (0-1-0-00) 2 (0-1-0-0) 2 (0-1-0) 2
(1-0-00001) 32 (1-0-0100) 20 (1-0-1-10) 12 (1-0-1-2) 12 (2-0-2) 9

(0-0-2) 3
(1-0-0-01) 6 (1-0-0-2) 6 (1-0-2) 6
(1-0-0-00) 2 (1-0-0-0) 2 (1-0-0) 2

(1-0-0001) 10 (1-0-0-01) 6 (1-0-0-2) 6 (1-0-2) 6
(1-0-1-00) 4 (1-0-1-0) 4 (2-0-0) 3

(0-0-0) 1
(1-0-0000) 2 (1-0-0-00) 2 (1-0-0-0) 2 (1-0-0) 2

1 subspace 2 subspaces 6 subspaces 12 subspaces 12 subspaces 14 subspaces

In this chain, breaking the second su(2) to o(2) has no effect and will be disregarded. Now
observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 16 multiplets with d3 = 48,
2. breaking the first su(2) down to so(2) generates 24 multiplets with d3 = 48,
3. breaking the second su(2) down to so(2) generates 20 multiplets with d3 = 51, among

which there are already 4 triplets and 4 singlets,
4. breaking the third su(2) down to o(2) generates precisely 21 multiplets with d3 = 12,
5. breaking the third su(2) down to so(2) generates 28 multiplets with d3 = 12.

Note that option 4 leads to an interesting scheme which, without any freezing, comes close
to the genetic code but is slightly different, with 1 octet, 1 sextet, 6 quartets, 2 triplets,
9 doublets and 2 singlets. In the cases of options 2 and 5, the symmetry breaking process
must terminate, and we must take into account the possibility of freezing. However, the
multiplets of dimension > 6 must not be frozen. In both cases, the multiplet of dimension 9
will break into 3 triplets, so we get at least 4 triplets and 6 odd-dimensional multiplets.
Therefore, the only surviving option for continuing the symmetry breaking process is 1.
Hence in a second step,

1.1. breaking the first o(2) down to so(2) generates 24 multiplets with d3 = 48,
1.2. breaking the second su(2) down to so(2) generates 22 multiplets with d3 = 48,
1.3. breaking the third su(2) down to o(2) generates 24 multiplets with d3 = 0,
1.4. breaking the third su(2) down to so(2) generates 32 multiplets with d3 = 0.

In all cases, the symmetry breaking process must terminate, and we must take into account
the possibility of freezing. However, the multiplet of dimension 12 must not be frozen. In
the cases of options 1.1 and 1.2, we get at least 4 sextets. In the case of option 1.3, the
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multiplet of dimension 12 will break into an octet and a quartet. In the case of option 1.4,
we get at most 4 quartets.

12. Chain 6.1.4.2.2.3:

D7 ⊃ A1 ⊕ A1 ⊕ D5 ⊃ A1 ⊕ A1 ⊕ A4 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A
(2)
1

⊃ (A1)13 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1

D7 (A1)
2
⊕ D5 (A1)

2
⊕ A4 (A1)3 ⊕ A2 (A1)

4 (A1)
3 (A1)

2

HW d HW d HW d HW d HW d HW d HW d

(0000010) 64 (0-1-00010) 32 (0-1-0010) 20 (0-1-1-01) 12 (0-1-1-2) 12 (1-1-2) 12 (3-1) 8
(1-1) 4

(0-1-0-10) 6 (0-1-0-2) 6 (0-1-2) 6 (3-0) 4
(1-0) 2

(0-1-0-00) 2 (0-1-0-0) 2 (0-1-0) 2 (1-0) 2
(0-1-1000) 10 (0-1-0-10) 6 (0-1-0-2) 6 (0-1-2) 6 (3-0) 4

(1-0) 2
(0-1-1-00) 4 (0-1-1-0) 4 (1-1-0) 4 (1-1) 4

(0-1-0000) 2 (0-1-0-00) 2 (0-1-0-0) 2 (0-1-0) 2 (1-0) 2
(1-0-00001) 32 (1-0-0100) 20 (1-0-1-10) 12 (1-0-1-2) 12 (2-0-2) 9 (2-2) 9

(0-0-2) 3 (2-0) 3
(1-0-0-01) 6 (1-0-0-2) 6 (1-0-2) 6 (2-1) 6
(1-0-0-00) 2 (1-0-0-0) 2 (1-0-0) 2 (0-1) 2

(1-0-0001) 10 (1-0-0-01) 6 (1-0-0-2) 6 (1-0-2) 6 (2-1) 6
(1-0-1-00) 4 (1-0-1-0) 4 (2-0-0) 3 (0-2) 3

(0-0-0) 1 (0-0) 1
(1-0-0000) 2 (1-0-0-00) 2 (1-0-0-0) 2 (1-0-0) 2 (0-1) 2

1 subspace 2 subspaces 6 subspaces 12 subspaces 12 subspaces 14 subspaces 17 subspaces

In this chain, observe that, in a first step,

1. breaking the first su(2) down to o(2) generates 24 multiplets with d3 = 12,
2. breaking the first su(2) down to so(2) generates 40 multiplets with d3 = 12,
3. breaking the second su(2) down to o(2) generates 19 multiplets with d3 = 24,
4. breaking the second su(2) down to so(2) generates 28 multiplets with d3 = 24.

In the cases of options 1, 2 and 4, the symmetry breaking process must terminate, and we
must take into account the possibility of freezing. However, the multiplets of dimension
> 6 must not be frozen. In the case of option 1, we are able to produce the correct number
of sextets (3), triplets (2) and singlets (2), but there is no possibility of generating the
correct number of quartets (5) and doublets (9): we can only get 6 or 4 quartets and, cor-
respondingly, 7 or 11 doublets. In the cases of options 2 and 4, the multiplet of dimension 9
will break into 3 triplets, so we get at least 4 triplets and 6 odd-dimensional multiplets.
Therefore, the only surviving option for continuing the symmetry breaking process is 3,
which already presents the correct number of sextets (3), triplets (2) and singlets (2). How-
ever, since the remaining octet can only be broken into 2 quartets or 4 doublets and since
the remaining 4 quartets come in two identical pairs, there is no possibility of generating
the correct number of quartets (5) and doublets (9): in any possible further breaking, the
number of quartets will be even and the number of doublets will be 3 mod 4.
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6. Results

Having concluded the long and tedious case by case analysis reported in the previous

three sections, we proceed to summarize the results.

• There is no symmetry breaking scheme starting out from the simple Lie algebra

B6 = so(13) capable of reproducing the degeneracies observed in the genetic code.

• There are altogether 6 symmetry breaking schemes starting out from the simple

Lie algebra D7 = so(14) that do reproduce the degeneracies observed in the genetic

code.

In what follows, we shall summarize the symmetry breaking schemes based on

simple Lie algebras of low or medium rank (i.e. except su(64), so(64) and sp(64))

that reproduce the distribution of multiplets observed in the standard genetic code.

We begin with the single scheme based on sp(6) and the two schemes based on g2,

which are included not only for the sake of completeness but also because, in the

process of typesetting, the corresponding tables in Ref. 9 have been distorted in such

a way that it has become impossible to infer which of the multiplets are subject to

freezing in the last step.

Some comments about the notation used in the following tables seem in order.

First, for the sake of brevity, we shall continue to characterize simple Lie algebras

by their Dynkin labels, even though this may not always be the most intuitive

manner to understand the embeddings as maximal subalgebras that are involved.

For example, the chains

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ (A1 ⊕ A1) ⊕ A1 ⊕ (A1 ⊕ A1) (1)

and

D7 ⊃ A3⊕D4 ⊃ A3⊕(A1⊕A1)⊕(A1⊕A1) ⊃ (A1⊕A1)⊕(A1⊕A1)⊕(A1⊕A1) (2)

and

D7 ⊃ A1 ⊕ B5 ⊃ A1 ⊕ (A1 ⊕ A1 ⊕ B3) (3)

that appear in the following tables are readily understood using the isomorphisms

A1
∼= so(3), A1 ⊕ A1

∼= so(4), C2
∼= so(5) and A3

∼= so(6) to rewrite them as

so(14) ⊃ so(6) ⊕ so(8) ⊃ so(6) ⊕ (so(3) ⊕ so(5))

⊃ (so(3) ⊕ so(3)) ⊕ so(3) ⊕ so(4) (4)

and

so(14) ⊃ so(6) ⊕ so(8) ⊃ so(6) ⊕ (so(4) ⊕ so(4))

⊃ (so(3) ⊕ so(3)) ⊕ so(4) ⊕ so(4) (5)

and

so(14) ⊃ so(3) ⊕ so(11) ⊃ so(3) ⊕ (so(4) ⊕ so(7)) (6)
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respectively. We also continue to abbreviate the direct sum of p copies of su(2)

by (A1)
p and the expression “highest weight” by “HW”: in the case of A1 = su(2),

this is 2s where s is the “spin” and in the case of o(2) or so(2), it is 2m where m

is the “magnetic quantum number”. In the third phase, breaking of the kth su(2)

to o(2) and to so(2) will be indicated by the symbol L2
k,z and Lk,z, respectively,

representing the operator that, as explained in Ref. 9, implements this breaking.

Finally, freezing of multiplets will be indicated by shading.

The sp(6)-chain

sp(6) ⊃ sp(4) ⊕ su(2) ⊃ su(2) ⊕ su(2) ⊕ su(2)

⊃ su(2) ⊕ o(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊕ so(2) (7)

Table 4. Branching of the codon representation of sp(6) in the chain (7).

and
so(14) ⊃ so(3) ⊕ so(11) ⊃ so(3) ⊕ (so(4) ⊕ so(7)) (6)

respectively. We also continue to abbreviate the direct sum of p copies of su(2) by (A1)
p

and the expression “highest weight” by “HW”: in the case of A1 = su(2), this is 2s
where s is the “spin” and in the case of o(2) or so(2), it is 2m where m is the “magnetic
quantum number”. In the third phase, breaking of the kth su(2) to o(2) and to so(2)
will be indicated by the symbol L2

k,z and Lk,z, respectively, representing the operator
that, as explained in Ref. [9], implements this breaking. Finally, freezing of multiplets
will be indicated by shading.

1. The sp(6)-chain

sp(6) ⊃ sp(4) ⊕ su(2) ⊃ su(2) ⊕ su(2) ⊕ su(2)

⊃ su(2) ⊕ o(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊕ so(2)
(7)

C3 C2 ⊕ A1 (A1)3 L2

2,z
(L2

2,z
, L

3,z
)

HW d HW d HW d HW d HW d

(001) 64 (20, 1) 20 (1, 1, 1) 8 (1,±1, 1) 8 (1,±1, +1) 4

(1,±1,−1) 4

(2, 0, 1) 6 (2, 0, 1) 6 (2, 0,+1) 3

(2, 0,−1) 3

(0, 2, 1) 6 (0,±2, 1) 4 (0,±2, +1) 2

(0,±2,−1) 2

(0, 0, 1) 2 (0, 0,+1) 1

(0, 0,−1) 1

(11, 0) 16 (2, 1, 0) 6 (2,±1, 0) 6 (2,±1, 0) 6

(1, 2, 0) 6 (1,±2, 0) 4 (1,±2, 0) 4

(1, 0, 0) 2 (1, 0, 0) 2

(1, 0, 0) 2 (1, 0, 0) 2 (1, 0, 0) 2

(0, 1, 0) 2 (0,±1, 0) 2 (0,±1, 0) 2

(10, 2) 12 (1, 0, 2) 6 (1, 0, 2) 6 (1, 0,+2) 2

(1, 0,−2) 2

(1, 0, 0) 2

(0, 1, 2) 6 (0,±1, 2) 6 (0,±1, +2) 2

(0,±1,−2) 2

(0,±1, 0) 2

(01, 1) 10 (1, 1, 1) 8 (1,±1, 1) 8 (1,±1, +1) 4

(1,±1,−1) 4

(0, 0, 1) 2 (0, 0, 1) 2 (0, 0,+1) 1

(0, 0,−1) 1

(10, 0) 4 (1, 0, 0) 2 (1, 0, 0) 2 (1, 0, 0) 2

(0, 1, 0) 2 (0,±1, 0) 2 (0,±1, 0) 2

(00, 1) 2 (0, 0, 1) 2 (0, 0, 1) 2 (0, 0,+1) 1

(0, 0,−1) 1

1 subspace 6 subspaces 14 subspaces 16 subspaces 27 subspaces

Table 6.1: Branching of the codon representation of sp(6) in the chain (7).
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The first g2-chain

g2 ⊃ su(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊃ so(2) ⊕ o(2) (8)

Table 5. Branching of the codon representation of g2 in the chain (8).

2. The first g2-chain

g2 ⊃ su(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊃ so(2) ⊕ o(2) (8)

G2 (A1)2 L2

2,z
(L2

2,z
, L

1,z
)

HW d HW d HW d HW d

(11) 64 (2, 4) 15 (2,±4) 6 (+2,±4) 2

(−2,±4) 2

(0,±4) 2

(2,±2) 6 (+2,±2) 2

(−2,±2) 2

(0,±2) 2

(2, 0) 3 (+2, 0) 1

(−2, 0) 1

(0, 0) 1

(1, 5) 12 (1,±5) 4 (+1,±5) 2

(−1,±5) 2

(1,±3) 4 (+1,±3) 2

(−1,±3) 2

(1,±1) 4 (+1,±1) 2

(−1,±1) 2

(2, 2) 9 (2,±2) 6 (+2,±2) 2

(−2,±2) 2

(0,±2) 2

(2, 0) 3 (+2, 0) 1

(−2, 0) 1

(0, 0) 1

(3, 1) 8 (3,±1) 8 (+3,±1) 2

(−3,±1) 2

(+1,±1) 2

(−1,±1) 2

(1, 3) 8 (1,±3) 4 (+1,±3) 2

(−1,±3) 2

(1,±1) 4 (+1,±1) 2

(−1,±1) 2

(0, 4) 5 (0,±4) 2 (0,±4) 2

(0,±2) 2 (0,±2) 2

(0, 0) 1 (0, 0) 1

(1, 1) 4 (1,±1) 4 (+1,±1) 2

(−1,±1) 2

(0, 2) 3 (0,±2) 2 (0,±2) 2

(0, 0) 1 (0, 0) 1

1 subspace 8 subspaces 17 subspaces 36 subspaces

Table 6.2: Branching of the codon representation of g2 in the chain (8).
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The second g2-chain

g2 ⊃ su(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊃ su(2) ⊕ so(2) (9)

Table 6. Branching of the codon representation of g2 in the chain (9).

3. The second g2-chain

g2 ⊃ su(2) ⊕ su(2) ⊃ su(2) ⊕ o(2) ⊃ su(2) ⊕ so(2) (9)

G2 (A1)2 L2

2,z
L

2,z

HW d HW d HW d HW d

(11) 64 (2, 4) 15 (2,±4) 6 (2, +4) 3

(2,−4) 3

(2,±2) 6 (2, +2) 3

(2,−2) 3

(2, 0) 3 (2, 0) 3

(1, 5) 12 (1,±5) 4 (1, +5) 2

(1,−5) 2

(1,±3) 4 (1, +3) 2

(1,−3) 2

(1,±1) 4 (1, +1) 2

(1,−1) 2

(2, 2) 9 (2,±2) 6 (2, +2) 3

(2,−2) 3

(2, 0) 3 (2, 0) 3

(3, 1) 8 (3,±1) 8 (3, +1) 4

(3,−1) 4

(1, 3) 8 (1,±3) 4 (1, +3) 2

(1,−3) 2

(1,±1) 4 (1, +1) 2

(1,−1) 2

(0, 4) 5 (0,±4) 2 (0, +4) 1

(0,−4) 1

(0,±2) 2 (0, +2) 1

(0,−2) 1

(0, 0) 1 (0, 0) 1

(1, 1) 4 (1,±1) 4 (1, +1) 2

(1,−1) 2

(0, 2) 3 (0,±2) 2 (0, +2) 1

(0,−2) 1

(0, 0) 1 (0, 0) 1

1 subspace 8 subspaces 17 subspaces 30 subspaces

Table 6.3: Branching of the codon representation of g2 in the chain (9).
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The so(14)-chain

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1 ⊕ A1 ⊃ · · · (10)

Tables 7 and 8 exhibit the branching of the codon representation of so(14) along

this chain (No. 6 of the previous section): Table 7 presents the first phase (first four
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Table 7. Branching of the codon representation of so(14) in the chain (10): first two phases.

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 (A1)5 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001, 010) 32 (001, 0, 01) 20 (1, 1, 0, 1, 1) 16 (1, 1, 1, 1) 16 (2, 1, 1) 12
(0, 1, 1) 4

(1, 1, 0, 0, 0) 4 (1, 1, 0, 0) 4 (1, 1, 0) 4
(001, 2, 00) 12 (1, 1, 2, 0, 0) 12 (3, 1, 0, 0) 8 (1, 3, 0) 8

(1, 1, 0, 0) 4 (1, 1, 0) 4
(100, 0001) 32 (100, 1, 10) 32 (1, 1, 1, 1, 0) 16 (2, 1, 1, 0) 12 (2, 2, 0) 9

(0, 2, 0) 3
(0, 1, 1, 0) 4 (2, 0, 0) 3

(0, 0, 0) 1
(1, 1, 1, 0, 1) 16 (2, 1, 0, 1) 12 (1, 2, 1) 12

(0, 1, 0, 1) 4 (1, 0, 1) 4

1 subspace 2 subspaces 3 subspaces 5 subspaces 8 subspaces 11 subspaces

Table 8. Branching of the codon representation of so(14) in the chain (10): third phase.

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 (A1)5 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001, 010) 32 (001, 0, 01) 20 (1, 1, 0, 1, 1) 16 (1, 1, 1, 1) 16 (2, 1, 1) 12

(0, 1, 1) 4

(1, 1, 0, 0, 0) 4 (1, 1, 0, 0) 4 (1, 1, 0) 4

(001, 2, 00) 12 (1, 1, 2, 0, 0) 12 (3, 1, 0, 0) 8 (1, 3, 0) 8

(1, 1, 0, 0) 4 (1, 1, 0) 4

(100, 0001) 32 (100, 1, 10) 32 (1, 1, 1, 1, 0) 16 (2, 1, 1, 0) 12 (2, 2, 0) 9

(0, 2, 0) 3

(0, 1, 1, 0) 4 (2, 0, 0) 3

(0, 0, 0) 1

(1, 1, 1, 0, 1) 16 (2, 1, 0, 1) 12 (1, 2, 1) 12

(0, 1, 0, 1) 4 (1, 0, 1) 4

1 subspace 2 subspaces 3 subspaces 5 subspaces 8 subspaces 11 subspaces

Table 6.4: Branching of the codon representation of so(14) in the chain (10):
first two phases.

(A1)3 L2

2,z
L

2,z

HW d HW d HW d

(2, 1, 1) 12 (2,±1, 1) 12 (2, +1, 1) 6

(2,−1, 1) 6

(0, 1, 1) 4 (0,±1, 1) 4 (0, +1, 1) 2

(0,−1, 1) 2

(1, 1, 0) 4 (1,±1, 0) 4 (1, +1, 0) 2

(1,−1, 0) 2

(1, 3, 0) 8 (1,±3, 0) 4 (1, +3, 0) 2

(1,−3, 0) 2

(1,±1, 0) 4 (1, +1, 0) 2

(1,−1, 0) 2

(1, 1, 0) 4 (1,±1, 0) 4 (1, +1, 0) 2

(1,−1, 0) 2

(2, 2, 0) 9 (2,±2, 0) 6 (2, +2, 0) 3

(2,−2, 0) 3

(2, 0, 0) 3 (2, 0, 0) 3

(0, 2, 0) 3 (0,±2, 0) 2 (0, +2, 0) 1

(0,−2, 0) 1

(0, 0, 0) 1 (0, 0, 0) 1

(2, 0, 0) 3 (2, 0, 0) 3 (2, 0, 0) 3

(0, 0, 0) 1 (0, 0, 0) 1 (0, 0, 0) 1

(1, 2, 1) 12 (1,±2, 1) 8 (1, +2, 1) 4

(1,−2, 1) 4

(1, 0, 1) 4 (1, 0, 1) 4

(1, 0, 1) 4 (1, 0, 1) 4 (1, 0, 1) 4

11 subspaces 15 subspaces 24 subspaces

Table 6.5: Branching of the codon representation of so(14) in the chain (10):
third phase.
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columns) and second phase (last three columns) whereas Table 8 shows the third

phase. Of course, it is evident from the analysis performed in Sections 3 and 4 that

there are many other chains that, after completion of the second phase, lead to the

same distribution of multiplets under (A1)
3; they are represented in terms of the

flow diagram shown in Fig. 1.

4. The so(14)-chain

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)13 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)23 ⊕ A1 ⊕ A1 ⊃ . . .
(10)

Tables 6.4 and 6.5 exhibit the branching of the codon representation of so(14) along
this chain (no. 6 of the previous section): Table 6.4 presents the first phase (first four
columns) and second phase (last three columns) whereas Table 6.5 shows the third
phase. Of course, it is evident from the analysis performed in Sects 3 and 4 that
there are many other chains that, after completion of the second phase, lead to the
same distribution of multiplets under (A1)

3; they are represented in terms of the flow
diagram shown in Fig. 6.1.
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Fig. 6.1: Graphical representation of all so(14) chains leading to the same distribution
of multiplets under (A1)

3 as the chain (10) (which is indicated by the double arrows).
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Fig. 1. Graphical representation of all so(14) chains leading to the same distribution of multiplets
under (A1)3 as the chain (10) (which is indicated by the double arrows).

The so(14)-chain

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)14 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)24 ⊕ A1 ⊕ A1 ⊃ · · · (11)

Tables 9–11 exhibit the branching of the codon representation of so(14) along this

chain (No. 7 of the previous section): Table 9 presents the first phase (first four

columns) and second phase (last three columns) whereas Table 10 shows the first

option and Table 11 the second option for the third phase, which differ only in the

last step. Of course, it is evident from the analysis performed in Sections 3 and 4

that there are many other chains that, after completion of the second phase, lead

to the same distribution of multiplets under (A1)
3; they are represented in terms

of the flow diagram shown in Fig. 2.
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Table 9. Branching of the codon representation of so(14) in the chain (11): first two phases.

D7 A3 ⊕ D4 A3 ⊕ A1 ⊕ C2 (A1)5 (A1)4 (A1)3

HW d HW d HW d HW d HW d HW d

(0000010) 64 (001, 0010) 32 (001, 0, 01) 20 (1, 1, 0, 1, 1) 16 (2, 1, 0, 1) 12 (2, 2, 0) 9
(0, 2, 0) 3

(0, 1, 0, 1) 4 (2, 0, 0) 3
(0, 0, 0) 1

(1, 1, 0, 0, 0) 4 (1, 1, 0, 0) 4 (1, 1, 0) 4
(001, 2, 00) 12 (1, 1, 2, 0, 0) 12 (1, 1, 2, 0) 12 (1, 1, 2) 12

(100, 0001) 32 (100, 1, 10) 32 (1, 1, 1, 1, 0) 16 (2, 1, 1, 0) 12 (1, 2, 1) 12
(0, 1, 1, 0) 4 (1, 0, 1) 4

(1, 1, 1, 0, 1) 16 (1, 1, 1, 1) 16 (2, 1, 1) 12
(0, 1, 1) 4

1 subspace 2 subspaces 3 subspaces 5 subspaces 7 subspaces 10 subspaces

5. The so(14)-chain

D7 ⊃ A3 ⊕ D4 ⊃ A3 ⊕ A1 ⊕ C2 ⊃ A1 ⊕ A1 ⊕ A1 ⊕ A1 ⊕ A1

⊃ (A1)14 ⊕ A1 ⊕ A1 ⊕ A1 ⊃ (A1)24 ⊕ A1 ⊕ A1 ⊃ . . .
(11)

Tables 6.6-6.8 exhibit the branching of the codon representation of so(14) along this
chain (no. 7 of the previous section): Table 6.6 presents the first phase (first four
columns) and second phase (last three columns) whereas Table 6.7 shows the first
option and Table 6.8 the second option for the third phase, which differ only in the
last step. Of course, it is evident from the analysis performed in Sects 3 and 4 that
there are many other chains that, after completion of the second phase, lead to the
same distribution of multiplets under (A1)

3; they are represented in terms of the flow
diagram shown in Fig. 6.2.
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Fig. 6.2: Graphical representation of all so(14) chains leading to the same distribution
of multiplets under (A1)

3 as the chain (11) (which is indicated by the double arrows).
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Fig. 2. Graphical representation of all so(14) chains leading to the same distribution of multiplets
under (A1)3 as the chain (11) (which is indicated by the double arrows).


